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Canonical analysis is a common method for exploring and exploiting fitted quadratic response surfaces. Much attention in canonical
analysis is given to identifying ridge behavior in these surfaces in order to achieve optimal response at minimum cost. However, little
attention has been given to classifying the identified ridge as a stationary ridge or a rising ridge. Knowing whether a ridge is stationary
or rising is critical for making decisions about how to continue the response surface exploration or for setting process parameters.
This article presents two methods that allow for identification, classification and confirmation of ridge behavior. The first method is
based on linear regression and though easily implemented, can be imprecise. The second method is more precise and is based on a new
parameterization of the canonical form. It uses nonlinear regression techniques that are becoming increasingly accessible through
software packages.

1. Introduction

Traditional response surface methodology (Box and
Wilson, 1951) advocates the fitting of a quadratic response
surface in the latter stages of response surface exploration.
Many textbooks such as Myers and Montgomery (1995,
p. 217) and Box and Draper (1987, p. 332) suggest canon-
ical analysis (see Section 2) of the fitted quadratic surface
to determine if the surface has a minimum, a maximum,
a saddle point, or some type of ridge system in the exper-
imental region. The primary focus is on the identification
of stationary ridge systems, where there is a line or plane
of optimal or nearly optimal points. In this paper, methods
are presented that not only identify ridge systems, but also
classify them as stationary or rising.

A simple example can demonstrate the importance of
both identifying as well as classifying a ridge system. Sup-
pose that an experiment on the edge quality (1.0 is ideal)
of a metal part involves two factors: (i) the feed rate; and
(ii) the rotational speed of the cutting tool. The fitted sur-
face for edge quality in Fig. 1 has a stationary ridge, such
that any point on the line located at the top of the ridge
(edge quality = 0.8), will have optimal edge quality.

In this example, increasing rotational speed costs vary
little. Since increasing the feed rate increases throughput,
the point shown by the star on the plot maximizes the edge
quality while increasing the throughput. It is this ability
to maximize both quality and productivity that makes the
identification of a stationary ridge highly desirable.

If, instead, there were a rising ridge in the fitted surface
for edge quality as shown in Fig. 2, the edge quality could
only be maximized at one point in the experimental region.
Thus, if maximum quality is to be achieved, the process
must be run at the slowest feed rate (marked by the star
on Fig. 2). In addition, the surface in Fig. 2, suggests that
even higher edge quality could be achieved if the feed rate is
reduced further indicating that more exploration of the sur-
face may be needed if further improvements of edge quality
are required. The example shows that being able to iden-
tify ridge behavior is not enough, one must also classify the
ridge as stationary or rising in order to make well informed
decisions about continued experimentation or setting pro-
cess factors.

When more than three factors are involved, contour
plots are difficult to make and an analytic technique like
ridge analysis or canonical analysis is needed to study the
characteristics of the fitted surface. Ridge analysis locates
the optimal settings of the process factors at a fixed dis-
tance, r, from the center of the experimental design (see
Hoerl (1985) for more details). Plots of the optimal set-
tings and the optimal response as functions of r can be
used to determine the nature of the response surface and
the optimal settings in the experimental region. Peterson
(1993) brought statistical inference into ridge analysis by
constructing a guidance band for the optimal settings that
is based on simultaneous confidence intervals around the
optimal mean response at each value of r. He also gener-
alized his method for use with response surfaces that are
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494 Ankenman

Fig. 1. A stationary ridge in edge quality.

not quadratic and have constraints, like those in mixture
experiments.

The purpose of this paper is to use statistical inference in
the context of canonical analysis, the other commonly used
analytic technique for studying high dimensional quadratic
response surfaces. Canonical analysis gets its name from
the fact that it creates a canonical form for the following
standard fitted quadratic surface model for the predicted
response, ŷ, as a function of k factors:

ŷ = b0 + x′b + x′Bx, (1)

Fig. 2. A rising ridge in edge quality.

where x = (x1, x2, . . . , xk)′ is a vector of k factors, b =
(b1, b2, . . . , bk)′ is a vector of coefficients for each of these
factors, and

B =




b11
1
2 b12 . . . 1

2 b1k
1
2 b12 b22 . . . 1

2 b2k

...
...

. . .
...

1
2 b1k

1
2 b2k . . . bkk




, (2)

is a matrix of the second-order coefficients.
Canonical analysis focuses on the signs and magnitudes

of the eigenvalues of B in Equation (2) to determine the
shape of the response surface. In particular, when all of the
eigenvalues are positive, the stationary point of the fitted
model is a minimum, whereas eigenvalues that are all neg-
ative indicate a maximum. If the eigenvalues have mixed
signs, it indicates a saddle point. An eigenvalue of zero in-
dicates the presence of a ridge in the surface.

Since response surface models are usually based on ex-
perimental data, the eigenvalues of the coefficient matrix,
B, are subject to estimation error. This complicates the de-
termination of the shape of the response surface. In the
past, the focus of this literature has been on providing stan-
dard errors or confidence intervals for the eigenvalues. For
example, Bisgaard and Ankenman (1996) introduce what
they called the Double Linear Regression (DLR) method,
based on a second linear regression in a rotated coordinate
space, for obtaining approximate standard errors and sub-
sequent confidence intervals for the eigenvalues. They go
on to show that this method is equivalent to using the delta
method used by Carter et al. (1990). Both sets of authors
argue that if the confidence interval of one or more eigen-
values contains zero and all other eigenvalues are of the
same sign, the true response surface may be a ridge. How-
ever, neither paper addresses the classification of the ridge
as stationary or rising.

To determine if an identified ridge in a response surface
is rising, there are two cases to consider. First, if the sta-
tionary point of the fitted quadratic surface is within the
experimental region, then there is no suggestion of a rising
ridge because there is no direction of improvement out of
the experimental region. In this case, the DLR method of
Bisgaard and Ankenman (1996) is sufficient since any iden-
tified ridge will be a stationary ridge. In the second case, the
stationary point is outside the experimental region and the
amount of rise in the ridge must be estimated. This paper
provides two methods for testing for significant rise in an
identified ridge with a stationary point outside the experi-
mental region, and thus allows for the classification of such
ridge systems. The first method, discussed in Section 4, is an
extension of the DLR method and thus is based on linear
regression. The second method, discussed in Section 5, is
based on nonlinear regression and though somewhat more
difficult to implement has improved precision. In the next
two sections, the canonical form is reviewed and the steps
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Identifying rising ridge behavior 495

for the identification, classification, and confirmation of a
ridge system model are discussed.

2. The canonical form and rising ridges

The standard quadratic model in Equation (1) is in the co-
ordinate system defined by the factors, x = (xi, x2, . . . , xk)′.
The canonical form of Equation (1) expresses the model in
a new coordinate system defined by new factors denoted
z = (z1, z2, . . . , zk). The new factors are linear combina-
tions of the original factors, but the coordinate axes have
been rotated to be aligned with the natural directions of the
fitted quadratic surface. Figure 3 shows the same surface as
Fig. 2, but also shows the new coordinate system that would
be used for the canonical form of the edge quality response
surface. The new factors, z, can be expressed as a function of
the old factors, x, and the second-order coefficient matrix,
B, as follows:

z = (z1, z2, . . . , zk) = D′x, (3)

where D = [d1, d2, . . . , dk] is a matrix of normalized eigen-
vectors of B in Equation (2) such that DD′ = D′D = I. For
convenience, the eigenvectors will be ordered such that dj is
the eigenvector of B that corresponds to λj , the jth largest
eigenvalue of B (i.e., λj ≥ λj+1∀j).

The canonical form of the fitted model in Equation (1) is
then

ŷ = b0 + z′φ + z′Λz, (4)

Fig. 3. A rising ridge with the A-canonical axes.

where φ = (φ1, φ2, . . . , φk)′ = D′b and Λ = D′BD =
diag(λ1, λ2, . . . , λk). By observing that the second-order
coefficient matrix in this model, �, is a diagonal matrix, it
can be seen that the rotation of the coordinate system has
had the effect of eliminating the interaction terms.

Equation (4) is called the A-canonical form (Box and
Draper, 1987, p. 333) and is usually used for interpreting
a quadratic response surface when the stationary point
is outside the experimental region. The coordinates of
the estimated stationary point, xs, can be calculated by
xs = −B−1b/2. The alternative B-canonical form is used
when the stationary point is inside the experimental region.
The B-canonical form not only rotates the axes, but also
relocates the origin of the new coordinate system to the es-
timated stationary point of the response surface thus elim-
inating the first-order terms. Since the focus of this paper is
the classification of rising ridges, which are indicated only
when the stationary point is outside the experimental re-
gion, only the A-canonical form in Equation (4) will be
considered in this article.

The canonical form shows why the eigenvalues determine
the shape of the response surface. In Equation (4), they are
the curvature terms that will dominate the linear terms far
from the origin. Thus, if all the curvature terms are pos-
itive (negative), then the surface must have a global min-
imum (maximum) at the stationary point. Eigenvalues of
mixed signs will produce saddle shaped surfaces that do
not contain ridges of optimal values and will not be consid-
ered. Also, since a surface with a finite minimum is simply
a mirror image of a surface with a finite maximum, only
maximization of a surface with a finite maximum will be
discussed directly. The discussion can be easily modified
for minimization of a surface with a finite minimum.

Quadratic surfaces with ridges have at least one eigen-
value equal to zero. For example, if the first eigenvalue, λ1,
is zero and all other eigenvalues are negative, then there will
be no curvature along the z1 axis, resulting in a ridge in the
response surface with the top of the ridge being the z1 axis
(a line). If φ1, the linear coefficient related to z1, is zero, the
ridge will be stationary (flat along the ridge). However, if
φ1 is nonzero, the ridge will increase along that axis in one
direction or the other creating a rising ridge.

Similarly, if the first two eigenvalues are zero and the
others are negative, the surface will have a ridge with a
plane (containing the z1 and z2 axes) at the top. This two-
dimensional ridge may or may not be rising. To have a two-
dimensional stationary ridge, both curvature coefficients λ1
and λ2 and both linear coefficients φ1 and φ2 must be zero
and all other eigenvalues must be negative. If the curvature
coefficients are zero, but one or both of the linear coeffi-
cients are nonzero, then the ridge is rising. The canonical
formulation chooses the direction of the z2 axis to be the
direction with the most (negative) curvature and the direc-
tion of the z1 axis to be orthogonal to the z2 axis. If there
is no curvature on this plane, the directions chosen for the
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496 Ankenman

z1 and z2 axes are arbitrary. However, if the ridge is rising
there will a direction of steepest ascent on the plane.

Finding the direction of steepest ascent is a familiar prob-
lem in response surface methodology. The formula for the
fitted response on the top of a two-dimensional ridge as a
function of z1 and z2 is

ŷ |z3, z4, . . . , zk = constant + φ1z1 + φ2z2.

The vector of steepest ascent on the ridge is ∇, the gradient
vector with respect to z1 and z2. The gradient vector is ∇ =
(φ1, φ2)′ and its length is

√
φ2

1 + φ2
2 , which is the change

in the response per unit along this vector. The length of ∇
measures the steepest ascent of the ridge.

The arguments above can be generalized to a
g-dimensional ridge (i.e., λ1 = λ2 = · · · = λg = 0). By in-
duction, to have a g-dimensional stationary ridge, the first
g eigenvalues and their associated linear coefficients must
all be zero. If the ridge is rising, the vector of steepest ascent
is ∇ = (φ1, φ2, . . . , φg)′ and the steepest ascent is

φ∇ =
√√√√ g∑

i=1

φ2
i .

Since there is no curvature on the top of the ridge, the re-
sponse is constant in any direction on the hyperplane that
is orthogonal to the vector of steepest ascent. There will be
g − 1 such directions.

3. Ridge identification, classification, and confirmation

When dealing with a specific data set, three steps are
needed to study the ridge behavior of a multi-dimensional
quadratic response surface. They are identification, classifi-
cation, and confirmation of the ridge. Identification is where
g, the dimension of the ridge is determined. If g is greater
than zero, then a ridge has been identified. Classification
determines if the identified ridge is rising or stationary. In
the last step, the full quadratic model is reduced to the form
of a stationary or rising ridge to confirm that the reduced
model fits sufficiently well.

The first step is ridge identification and this can be accom-
plished using the DLR method. This method is described
in detail in Section 4 and the formula for the confidence in-
tervals for the eigenvalues is given in Equation (6). If there

Table 1. The ANOVA table for the extra sum of squares test

Source Sum of squares Degrees of freedom Mean square F-Ratio

Reduced model SSR νR = pR − 1 S2
R = SSR/νR

Extra parameters SSX = SSL − SSR νX = pL − pR s2
X = SSX/νX FX = S2

X/S2
E

Error SSE νE = n − pL S2
E = SSE/νE

Total, corrected SST n − 1

are g eigenvalues whose confidence intervals contain zero,
then there is reason to suspect a g-dimensional ridge.

The second step, classification of the ridge, is more diffi-
cult. If a g-dimensional ridge has been identified, then the
surface has a ridge with a hyperplane (containing the z1–zg
axes) at the top. Since there is no curvature on the top of
the ridge, the directions of the z1 and zg axes are not mean-
ingful. If zg is reoriented so as to be parallel to the vector
of steepest ascent, the response will be constant along the
other g − 1 axes, which can be chosen arbitrarily provided
each axis is orthogonal to all other axes. In order to deter-
mine if a ridge is rising, two models are compared. One is
a g-dimensional stationary ridge and the other is the same
model, except that it includes an additional linear term in
the reoriented zg. The linear coefficient φg from this term
estimates the steepest ascent on the ridge. An extra sum of
squares test can be used to determine if estimating the di-
rection and rise in the ridge significantly improves the fit of
the model. If it does, the ridge should be classified as rising.

Table 1 shows a general ANOVA table for an extra sum
of squares test for testing a model reduction (Bates and
Watts, 1988, p. 103). In the table, n is the number of obser-
vations. The degrees of freedom used in the larger model
is pL. The degrees of freedom used in the reduced model
is pR. The regression sums of squares accounted for by the
larger and reduced models after correcting for the mean are
denoted SSL and SSR, respectively. The total corrected sum
of squares is denoted SST and the residual sum of squares
from the larger model is SSE. The critical F value for com-
parison is Fα with pL − pR and n − pL degrees of freedom
where 100(1 − α)% is the desired confidence level.

To test for a rising ridge, the extra sum of squares test is
used where the larger model is a g-dimensional rising ridge.
The reduced model is a g-dimensional stationary ridge. The
null hypothesis is that the ridge is stationary. If the test statis-
tic in Table 1, FX, is larger than Fα with pL − pR and n − pL
degrees of freedom, then the null hypothesis is rejected and
the rising ridge model should be used. If the null hypothesis
is not rejected, then it can be reasonably assumed that the
surface is a stationary ridge. This test classifies the ridge.

The third and final step is a confirmation that the cho-
sen model is a close fit. Since both the rising ridge model
and the stationary ridge model are reduced forms of the
full canonical model in Equation (4), another extra sum
of squares test can be used for the confirmation. In the
confirmation step, the full model in Equation (4) is the
larger model and the model chosen in the classification step
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Identifying rising ridge behavior 497

(either rising or stationary ridge) is the reduced model. The
null hypothesis is that the chosen model is correct. If FX
is larger than Fα with pL − pR and n − pL degrees of free-
dom, then the null hypothesis is rejected and the existence
of a g-dimensional ridge in the response surface is in doubt.
Otherwise, the null hypothesis is not rejected and the chosen
model is a reasonable model for the surface.

The two different methods for constructing and fit-
ting the stationary and rising ridge models are presented
in the next two sections. The first method, presented in
Section 4, is based on linear regression and assumes that the
k − g canonical axes that are not on the top of the ridge are
fixed by Equation (3). This method is easily implemented
with a standard regression package, but it suffers some im-
precision due to fixing of the canonical axes. The second
method, in Section 5, is based on nonlinear regression and
is more precise than the first method since it allows the di-
rections of all canonical axes to be re-estimated for each
fitting. The second method is relatively easily implemented
if one has software that handles both manipulation of sym-
bolic matrices and nonlinear regression. Such software is
becoming more common (e.g., Mathematica©R ), but is still
not as accessible as linear regression software.

4. Fitting ridge models with linear regression

As previously mentioned, Bisgaard and Ankenman (1996)
provided a linear regression method, called the DLR
method, for obtaining approximate standard errors of the
eigenvalues of B. This method can identify ridges, but does
not address the classification or confirmation of the ridge.
In this section, the DLR method is modified to include these
steps.

The DLR method is simple in concept and execution.
After the standard quadratic model of Equation (1) is fit to
the data with linear regression, the experimental design is re-
expressed in terms of the A-canonical variables, z, defined
in Equation (3). In this coordinate system, linear regression
is again used to fit the following full second-order model to
the data

ŷ = b∗
0 + z′b∗ + z′B∗z, (5)

where b∗ = (b∗
1, b∗

2, . . . , b∗
k)′ and

B∗ =




b∗
11

1
2 b∗

12 · · · 1
2 b∗

1k
1
2 b∗

12 b∗
22 · · · 1

2 b∗
2k

...
...

. . .
...

1
2 b∗

1k
1
2 b∗

2k · · · b∗
kk


 .

The ith pure quadratic coefficient, b∗
ii, is equal to λi, the ith

eigenvalue of B and the interaction coefficient, b∗
ij, is zero

for all i �= j, so B∗ = Λ. Thus, after fitting Equation (5) to
the data, the standard error, se(b∗

ii), provided by linear re-
gression techniques for b∗

ii is an approximate standard error
for the ith eigenvalue (see the Appendix for details). Note
that for se

(
b∗

ii

)
to be correctly calculated by a regression

program, all interaction terms must be in the model during
fitting even though they will have coefficients that are nearly
zero. The approximate 100(1 − α)% confidence interval for
the ith eigenvalue is:

λi ± t1−α/2,n−pse(b∗
ii), (6)

where n is the number of observations, p is the number
of parameters in the model, and t1−α/2,n−p is the 1 − α/2
quantile of Student’s t-distribution with n − p degrees of
freedom.

Since all the eigenvalues are tested, adjustment for multi-
ple comparisons might be considered. The Bonferroni ad-
justment replaces t1−α/2,n−p in Equation (6) with t1−α/2k,n−p,
for k eigenvalues. Assuming the surface is to be maximized
and all significant eigenvalues are negative, a g-dimen-
sional ridge is identified if the confidence intervals for
λ1, λ2, . . . , λg all contain zero.

To classify the ridge with the extra sum of squares test,
models for a stationary ridge (the reduced model) and a
rising ridge (the larger model) must be constructed. The
model for a g-dimensional stationary ridge has no interac-
tion terms and no terms involving z1, z2, . . . , zg and is

ŷ = b∗
0 +

k∑
i=g+1

zib∗
i +

k∑
i=g+1

z2
i b∗

ii. (7)

When fitting the full model in Equation (5), the interactions
had no effect on the predicted response since their coeffi-
cients were estimated to be zero. These terms were included
to represent the (

k
2

)

degrees of freedom that were used to determine the direc-
tions of the canonical axes. Including them in the regression
for the full model allowed se(b∗

ii) to be correctly calculated in
a standard linear regression output. In the reduced model,
there is no guarantee that these interaction coefficients will
be zero. Including nonzero interaction terms violates the
hypothesis of the stationary ridge, so they must be removed
when fitting Equation (7). The model in Equation (7) has
a total of 2(k − g) + 1 parameter estimates. Although not
explicitly in the linear model, an additional(

k
2

)
−

(
g
2

)
,

degrees of freedom are needed to estimate the directions of
the canonical axes that are not on the ridge. The number
of degrees of freedom needed to determine the direction
of the canonical axes will be explained more thoroughly in
Section 5. Thus, for the extra sum of squares test, the num-
ber of degrees of freedom for the stationary ridge model is

pR = 1 + 2k − 2g +
(

k
2

)
−

(
g
2

)
. (8)
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498 Ankenman

The rising ridge model (the larger model in the ex-
tra sum of squares test) must also be constructed. For
the rising ridge, the k − g canonical axes with significant
curvature are preserved. The gth canonical axis is redi-
rected to coincide with the vector of steepest ascent on the
ridge and the other g − 1 canonical axes are eliminated. A
new rotation matrix is defined as D∇ = (d∇, dg+1, . . . , dk),
where the new canonical axis is the normalized gradient
vector

d∇ =
∑g

i=1 φidi

φ∇
,

where

φ∇ =
√√√√ g∑

i=1

φ2
i .

The rising ridge model can now be fit using the definition
z = (z∇, zg+1, . . . , zk) = D′

∇x. The model does not include
any interactions or a curvature term for z∇ and thus the
rising ridge model is:

ŷ = b∗
0 + z∇φ∇ +

k∑
i=g+1

zib∗
i +

k∑
i=g+1

z2
i b∗

ii, (9)

where φ∇ is the steepest ascent on the ridge. To estimate the
directions of the k − g + 1 axes,(

k
2

)
−

(
g − 1

2

)

degrees of freedom are used. The number of degrees of
freedom needed for the rising ridge model is then

pL = 2 + 2(k − g) +
(

k
2

)
−

(
g − 1

2

)
. (10)

Using the extra sum of squares test in Table 1 for clas-
sification of the ridge, the regression sums of squares from
Equations (7) and (9) are used as SSR and SSL respec-
tively. The residual and total corrected sum of squares from
Equation (9) are SSE and SST respectively. The degrees of
freedom for the reduced and larger models are given in
Equations (8) and (10), respectively.

This test will allow the ridge to be classified as stationary
or rising, however, a more precise test is presented in the
next section. The primary problem with the linear regres-
sion method just described is that the direction of the last
k − g canonical axes are not reoriented for the fitting of
Equations (7) and (9). Thus, there may be a stationary
ridge model that fits better than Equation (7) and a ris-
ing ridge model that fits better than Equation (9). In the
nonlinear method presented in Section 5, the directions of
these canonical axes are re-estimated for each model assur-
ing that each model fits the data as closely as possible.

The confirmation step requires no more model fitting. It
only requires another extra sum of squares test where the
full model in Equation (5) is used as the larger model and

the model chosen in the classification step is the reduced
model. The regression, residual, and total corrected sum
of squares from the fitting of Equation (5) are SSL, SSE
and SST, respectively. The number of degrees of freedom
needed for the full model is

pL = 1 + 2k +
(

k
2

)
.

If the ridge has been classified as rising, then the regression
sum of squares from fitting Equation (9) is used as SSR and
the degrees of freedom calculated in Equation (10) are used
as pR instead of pL. If the ridge is classified as stationary,
then SSR is taken from fitting Equation (7) and pR from
Equation (8). Since the linear regression method does not
necessarily find the best fitting model with the stationary or
rising ridge form, the F statistic, FX, calculated in this test
may be somewhat inflated. Thus, if the test fails to reject the
chosen ridge model, then it is reasonable to conclude that
the chosen ridge model clearly fits the data. However, if the
test rejects the chosen model, there is still some chance that
that model would fit if the canonical axes were reoriented.
In this case, the nonlinear method in Section 5 should be
used for confirmation.

5. Fitting ridge models with nonlinear regression

In this section, a parameterization is presented which al-
lows each of the models (full, stationary ridge, and rising
ridge) needed for ridge classification and confirmation to
be written as a nonlinear regression model. Each nonlinear
model contains parameters related to the directions of the
canonical axes and thus will allow the canonical axes to be
re-estimated for each fitting.

Since the coordinate system of the A-canonical form
is obtained by rotation, polar coordinates will be used to
parameterize the unit vectors in D. Elementary rotation
matrices, sometimes called the Givens matrix (Seber, 1977,
p. 314) will be the basis of the parameterization. In
two dimensions, the full model in Equation (4) can be
written as:

ŷ = β0 + (x1, x2)D
(

φ1

φ2

)
+ (x1, x2)

× D
[
λ1 0
0 λ2

]
D′

(
x1

x2

)
, (11)

where

D =
[

cos(θ ) − sin(θ )
sin(θ ) cos(θ )

]
.

The nonlinear model in (11) has six parameters,
(b0, φ1, φ2, θ, λ1, λ2). This parameterization does not re-
move all ambiguity because any multiple of an eigenvector is
still an eigenvector and thus there are four possible sign pat-
terns for the eigenvectors in the matrix D: (d1, d2), (−d1, d2),
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Identifying rising ridge behavior 499

(d1, −d2), (−d1, −d2). Each of these matrices will be valid
eigenvector matrices, but will have a different value for the
parameter θ . In response surface applications, the signs of
the eigenvectors are unimportant since it does not matter
which direction along the canonical axis is called positive.
Ultimately the sign of the eigenvector, di, will change only
the sign, (but not the magnitude) of the linear coefficient,
φi.

The parameterization used above can be readily gener-
alized to k dimensions by expressing the rotation matrix
D′ as a function of a vector θ. The matrix function will be
denoted D′(θ). To produce such a parameterization, D′(θ)
is decomposed into (

k
2

)

possible k × k Givens matrices, each of which represents
one of the (

k
2

)

planar rotations necessary to realign the coordinate axes
from the original x axes to the canonical z axes. Each of
these rotation matrices will include a parameter θqr, which
defines the angle of rotation in the plane containing the qth
and r th coordinate axes, where q < r . Each Givens matrix
looks like an identity matrix in all rows except q and r .
The (q, q) and (r, r ) elements are cos(θqr) and the (q, r ) and
(r, q) elements are sin(θqr) and −sin(θqr), respectively. All
other elements in the two rows are zero. For example, in
three dimensions, D′(θ) is decomposed as

D′(θ)

=




1 0 0
0 cos(θ23) sin(θ23)
0 − sin(θ23) cos(θ23)







cos(θ13) 0 sin(θ13)
0 1 0

− sin(θ13) 0 cos(θ13)




×




cos(θ12) sin(θ12) 0
− sin(θ12) cos(θ12) 0

0 0 1


 .

Since the determinant of any product of Givens matrices
must be equal to one and many orthogonal matrices have
a determinant of −1, any sign pattern for the eigenvectors
in D(θ) such that the determinant of D(θ) is one can be
used. Other parameterizations for orthogonal matrices are
given in Pinheiro and Bates (1996). In Section 4, it was
suggested that estimation of the directions of the canonical
axes reduce the degrees of freedom available for estimating
the error. It is the estimation of the rotation angles that
cause the loss of these degrees of freedom.

If the order and signs of the eigenvectors are fixed,
the reparameterization is a one-to-one transformation from
(b0, b1, b2, . . . , bk

... b11, b12, . . . , b1k
... b22, b23 , · · · , b2k

... · · · ...

bkk) to a new parameter set:

ξ ′ = (
b0, φ1, φ2, . . . , φk

... θ12, θ13, . . . , θ1k
...

θ23, θ24, . . . , θ2k
... · · · ...θk−1,k

...λ(1), λ(2), . . . , λ(k)
)
,

(12)

with the implied relationships φ = D′(θ)b and BD(θ) =
D(θ)Λ. The parameters in Equation (12) can be estimated
directly using nonlinear regression by fitting the following
model to the data:

ŷ = b0 + x′D(θ)φ + x′D(θ)ΛD′(θ)x. (13)

Standard methods of estimation and inference from nonlin-
ear regression (Seber and Wild, 1989, p. 191) can be applied
to any subset of the parameters in Equation (12) after fitting
Equation (13).

Box and Draper (1987, p. 359) introduced the concept
of directly fitting the canonical form of a quadratic re-
sponse surface with nonlinear regression. However, unlike
the model in Equation (13), the parameterizations that they
used were tailored to each individual example and are not
easily generalized to higher dimensions. Although the func-
tion in Equation (13) is easily generalized, it can be ex-
tremely cumbersome when expressed as an algebraic func-
tion of the angles in θ. In order to create this model for
more than two dimensions, a software package, such as
Mathematica©R that handles both symbolic matrix multipli-
cation and nonlinear regression analysis is recommended.

To apply a nonlinear regression algorithm to
Equation (13), starting estimates are required for the
parameters. Accurate starting values for the angles
θ = (θ12, . . . , θk−1,k)′ can be difficult to find, but are not
so important since the parameters are confined to a finite
range. Starting values of π/4 for all angles will work in
most cases. Since they are not important, the signs of the
eigenvectors can be determined during convergence by the
starting estimates and the algorithm. The absolute value of
the least-squares estimates for the first order coefficients,
φ = (φ1, φ2, . . . , φk)′, is known from the relationship,
φ = D′(θ)b. However, the signs of these estimates depend
on the signs of the eigenvectors, which are not known
before convergence. Thus, the best starting values for all
first-order coefficients is zero, halfway between the two
possible values. The eigenvalues of B and the constant b0
from fitting the original model in Equation (1) can be used
as starting values since they do not depend on the signs of
the eigenvectors.

The model reduction for a stationary ridge is easily im-
plemented in the nonlinear model of Equation (13) by set-
ting λj = φj = 0 ∀j ≤ g. However, when these parameters
are set to zero, the model is constant on the g-dimensional
hyperplane at the top of the ridge and thus none of the

(
g
2

)
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500 Ankenman

angles on the ridge can be estimated. Because the rotations
of z = D′(θ)x are done in sequence, it is not easy to de-
termine which rotations are in that g-dimensional space.
However, if any given angle is set to zero, then the Givens
matrix which contains that angle will be the identity matrix
which can be placed anywhere in the sequence of rotations
and is therefore effectively on the top of the ridge. Thus, the(

g
2

)

angles θij, where i and j are less than or equal to g, can be set
to zero. To fit a g-dimensional stationary ridge, the model in
Equation (13) is refit after setting

λj = φj = θij = 0 ∀i < j ≤ g. (14)

For refitting, the previous estimates of the constant, the
nonzero angles, the linear coefficients and eigenvalues can
be used as starting estimates.

To construct a rising ridge model, only a single linear
term, the rise in the ridge, must be added back into the
model. With the g curvature terms removed and a single
linear term in the model, the direction of the gth canonical
axis will be redirected during refitting to coincide with the
vector of steepest ascent on the ridge. Thus φg = φ∇,
the rise in the ridge. There will still be g − 1 dimensions
on the ridge that are orthogonal to the vector of steepest
ascent. The model will be constant in these g − 1 dimen-
sions and thus

(
g − 1

2

)

angles will not be estimable. To fit a g-dimensional rising
ridge, the model in Equation (13) is fit with the following
reductions:

λg = λj = φj = θij = 0 ∀i < j ≤ g − 1. (15)

After refitting the nonlinear stationary and rising ridge
models, the same tests for classification and confirmation
that were described in Section 4 can be performed. Since the
estimates of the angles are explicitly in the nonlinear mod-
els, the degrees of freedom for each model is simply the
number of parameters in that model. These are identical to
the values suggested for degrees of freedom for a stationary
and rising ridge model in Section 4 (see Equations (8) and
(10)).

6. An example

Data from Box and Draper (1987, p. 362) is used as an
example. Table 2 provides the design and the data. The
experiment involved three factors x1, x2, and x3. The goal

Table 2. The data for the small reactor experiment

Run Block x1 x2 x3 y

1 1 −1 −1 1 40.0
2 1 1 −1 −1 18.6
3 1 −1 1 −1 53.8
4 1 1 1 1 64.2
5 1 0 0 0 53.5
6 1 0 0 0 52.7
7 2 −1 −1 −1 39.5
8 2 1 −1 1 59.7
9 2 −1 1 1 42.2

10 2 1 1 −1 33.6
11 2 0 0 0 54.1
12 2 0 0 0 51.0
13 3 −√

2 0 0 43.0
14 3

√
2 0 0 43.9

15 3 0 −√
2 0 47.0

16 3 0
√

2 0 62.8
17 3 0 0 −√

2 25.6
18 3 0 0

√
2 49.7

19 4 −√
2 0 0 39.2

20 4
√

2 0 0 46.3
21 4 0 −√

2 0 44.9
22 4 0

√
2 0 58.1

23 4 0 0 −√
2 27.0

24 4 0 0
√

2 50.7

is to maximize the response y. The experiment was run in
four blocks and thus, in addition to the standard second-
order model in Equation (1), three block parameters are
also estimated. Thus, all models will have an additional
three degrees of freedom. The estimated stationary point
is xs = −B−1b/2 = (25.8, 15.5, 18.5)′ which is well outside
the experimental region so either a stationary or a rising
ridge is a possibility.

After fitting the model in Equation (1), the eigenvector
matrix is found to be

D =




−0.297 0.737 0.612
0.888 0.447 −0.104

−0.350 0.513 −0.784


 .

Table 3. The estimated eigenvalues and their approximate 95%
confidence intervals

95% C.I.
Parameter Estimate Standard error by the DLR method

λ1 1.711 0.543 (0.51, 2.91)
λ2 −0.097 0.543 (−1.29, 1.10)
λ3 −10.489 0.543 (−11.69, −9.29)
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Identifying rising ridge behavior 501

Table 4. The sums of squares for the different models

Equation Regression Degrees of freedom Residual sum of
Model numbers sum of squares used in model squares

Stationary ridge (linear) (7) 2199.02 8 872.89
Rising ridge (linear) (9) 2965.47 10 106.44
Stationary ridge (nonlinear) (13), (14) 2366.27 8 705.64
Rising ridge (nonlinear) (13), (15) 2994.29 10 77.62
Full model (1) 3032.94 13 38.97

The model in Equation (5) is fit with linear regression. The
approximate 95% confidence intervals (without Bonferroni
adjustment) for the eigenvalues are calculated using
Equation (6) and are provided in Table 3. These confidence
intervals suggest that the surface may be a saddle point
since it appears that λ1 > 0, λ2 ≈ 0, λ3 < 0. However, since
λ1 is relatively small, it is reasonable to continue to investi-
gate the possibility that a two-dimensional ridge may exist
in this response surface with a maximum on the plane con-
taining the first and second canonical axes. When fitting the
full model in Equation (5), the first-order coefficients are
φ1 = 1.25, φ2 = 6.81, and φ3 = −6.33. The new rotation
matrix for the rising ridge model in the linear regression
method is then

D∇ =




0.667 0.612
0.600 −0.104
0.441 −0.784


 .

The sums of squares for the different models are shown in
Table 4 and total corrected sum of squares is 3071.91. The
residual sum of squares for any model is the total corrected
sum of squares minus the regression sum of squares for that
model. The classification and confirmation tests are shown
for both linear and nonlinear methods in Table 5.

The conclusion from the linear model is that there is no
stationary ridge, but that a two-dimensional rising ridge
cannot be confirmed since the confirmation test rejects the
rising ridge model when compared to the full model. The
nonlinear method is able to find a rising ridge model that
fits better than the linear method and the confirmation test
suggests that a two-dimensional rising ridge is a reasonable

Table 5. Classification and confirmation F-tests

F-critical
Hypothesis (α = 0.05) FX Conclusion

Classification 3.74 50.40 Reject stationary ridge
(linear)

Confirmation 3.20 3.81 Cannot confirm the
(linear) rising ridge

Classification 3.74 56.64 Reject stationary ridge
(nonlinear)

Confirmation 3.20 2.18 Confirms the rising ridge
(nonlinear)

model for this response surface. The conclusion is that this
surface may be a rising ridge and that further investigation
of the response in the direction of the steepest ascent may
prove worthwhile for increasing the response.

7. Conclusions

After a ridge has been identified in a quadratic response
surface, it is important to determine if the ridge is rising
or stationary. Two methods of fitting stationary and rising
ridge models are proposed, one using linear regression and
the other using nonlinear regression. Using either method,
tests are suggested for classifying and confirming that a
response surface has: (i) no ridge; (ii) a stationary ridge; or
(iii) a rising ridge. The linear regression method is accessible
with any regression program. The nonlinear method is more
difficult to implement, but improves the precision of the
model fitting.
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Appendix

The standard error of the eigenvalues from the DLR method

Suppose that for a given experiment, there is a single
response, y, and k explanatory variables denoted x =
(xi, x2, . . . , xk)′. If there are n observations, the design ma-
trix, XD, is an n × k matrix such that the (i, j) element of XD
is the level of xj in the ith observation. The design matrix
written in the canonical variables z = (z1, z2, . . . , zk)′ is sim-
ply ZD = XDD. The model matrix for fitting Equation (5)
with linear regression is an n × p matrix as follows: Z =
[1, z1, . . . , zk, z12, . . . , z(k−1)k, z11, . . . , zkk], where p =
(k + 1)(k + 2)/2, 1 is a column of n ones, z1, . . . , zk are
the k columns of the rotated design matrix, ZD, and the
other k(k + 1)/2 columns are generated through element-

by-element multiplication of all possible pairs of columns of
ZD. Thus for any r = 1, 2, . . . , k and s = r, r + 1, . . . , k, zrs
is generated by the element-by-element multiplication of zr
and zs . Assuming independent and identically distributed
N(0, σ 2) errors, se(b∗

ii), is the square root of the ith diagonal
element of the lower k × k submatrix of s2(Z′Z)−1, where
s2 is the residual variance. The approximate standard error
for λi is then se(b∗

ii).
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