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ABSTRACT

Sequential bifurcation (SB) is a screening method that
is well suited for simulation experiments; the challenge
is to prove the “correctness” of the results. This paper
proposes Controlled Sequential Bifurcation (CSB), a pro-
cedure that incorporates a two-stage hypothesis-testing
approach into SB to control error and power. A detailed
algorithm is given, performance is proved and an empir-
ical evaluation is presented.

1 INTRODUCTION

Screening experiments are designed to investigate the
controllable factors in an experiment with a view toward
eliminating the unimportant ones. According to the spar-
sity of effects principle, in many cases only a few factors
are responsible for most of the response variation (My-
ers and Montgomery 1995). A good screening procedure
should correctly and efficiently identify important fac-
tors. This is especially important when the system is
complicated and many factors are being considered.

In this paper we focus on factor-screening methods
for discrete-event simulations. Simulation experiments
are significantly different from physical experiments in
that they generally involve a large number of factors, and
it is easier to implement sequential procedures because of
the relatively low cost of switching among settings. Also,
it is possible to implement commom random numbers
(CRN) to reduce the variance of estimated effect in sim-
ulation experiments.

We concentrate on a specific method called Sequen-
tial Bifurcation (SB, Bettonvil and Kleijnen 1997). A se-
quential design is one in which the design points (factor
combinations to be studied) are selected as the experi-
ment results become available. Therefore, as the experi-
ment progresses, insight into factor effects is accumulated
and used to select the next design point or group of design
points.

SB is a group screening procedure in a series of steps.
As with other group screening procedures, it is assumed
that the sign of each factor effect is known, so that groups
contain only factors with effects of the same sign. In each
step, a group of factors is tested for importance. The first
step begins with all factors of interest in a single group
and tests that group’s effect. If the group’s effect is im-

portant, indicating that at least one factor in the group
may have an important effect, then the group is split
into two subgroups. The effects of these two subgroups
are then tested in subsequent steps and each subgroup
is either classified as unimportant or split into two sub-
groups for further testing. As the experiment proceeds,
the groups become smaller until eventually all factors
that have not been classified as unimportant are tested
individually. This method was first proposed for deter-
ministic computer simulations by Bettonvil and Kleijnen
(1997). Later the method was extended to cover stochas-
tic simulations (Cheng 1997). The sequential property
of the method makes it well suited for simulation exper-
iments. Examples have shown that the method is highly
efficient when important factors are sparse and clustered
(Cheng 1997, Bettonvil and Kleijnen 1997), but there is
no performance guarantee in the stochastic case.

In this paper we propose a modified SB proce-
dure, called Controlled Sequential Bifurcation (CSB), for
stochastic simulations. The contribution of CSB is that
it controls the Type I Error and power simultaneously.
A two-stage testing procedure is introduced to guaran-
tee the power of each step; and at the same time the
step-down property of SB implies Type I Error control
for each factor.

The paper is organized as follows: In Section 2 we
define the underlying response model that we will use.
Section 3 describes the procedure and discusses its per-
formance. Section 4 presents an empirical evaluation
comparing CSB to another version of SB designed for
stochastic simulation.

2 RESPONSE MODEL

In this section we introduce the underlying response
model that will guide our new CSB procedure.

2.1 Main-Effects Model

Suppose that there are K factors of interest with effect
coefficients β̃ = {β̃1, β̃2, . . . , β̃K}. The output of interest
from a simulation replication is denoted by Y , and Y is
represented by the following metamodel:

Y = β̃0 + β̃1z1 + β̃2z2 + · · ·+ β̃KzK + ε (1)
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which is a multiple linear regression model with K re-
gression variables and main effects only. The setting of
the factors, z = (z1, z2, . . . , zK), is deterministic and un-
der the control of the experimenter. The error term, ε,
on the other hand, is a random variable; in this paper we
assume it is a Nor(0, σ2(z)) random variable where σ2(z)
is unknown and may depend on z.

We do not assume that the main-effects model holds
across the entire range of the factors z. Rather, we as-
sume that it is a good local approximation for modest
deviations from a nominal level, typically the center of
the design space.

2.2 Determination of Factor Levels

In practice, when we consider whether a change in the
response is worth pursuing, the cost to achieve the change
is critical. Similarly, when we compare the importance
of two different factors we have to make sure that they
are based on the same cost or the comparison has little
meaning. By scaling the effect coefficients with respect
to the cost of changing the factors’ levels we can insure
that the results have a useful interpretation. We describe
one way to do this here.

Let ci be the cost per unit change of factor zi, for
i = 1, 2, . . . ,K. Further, let c∗ = maxi∈D ci, where D is
the set of indices of all of the factors whose levels can only
be changed in discrete units (e.g., number of machines at
a workstation, or number of cashiers at the checkout).
Let ∆0 be the minimum change in the expected response
for which we would be willing to spend c∗, and let ∆1

be a change in the expected response that we would not
want to miss if it could be achieved for only a cost of c∗.
If D = ∅, then let (c∗,∆0) be such that we are willing to
spend c∗ for a ∆0 change in the expected response, and
define ∆1 as before.

Let

δi =

{
c∗/ci, i /∈ D
bc∗/cic, i ∈ D

which is the maximum change in factor i that can be
achieved for a cost of c∗; and let wi = δici/c∗ ≤ 1, which
is the fraction of a full-cost move, c∗/ci, that can actually
be made for factor i. If factor i can be changed contin-
uously (i /∈ D), or i ∈ D but c∗/ci is an integer, then
wi = 1. If i ∈ D and c∗/ci is not an integer, then wi < 1.

For instance, suppose that there are K = 3 factors.
The level of the first can be changed continuously, but
the other two are discrete. If c1 = 300, c2 = 400, and
c3 = 1000, then c∗ = 1000, δ1 = 10/3, δ2 = 2, and δ3 = 1
giving w1 = 1, w2 = 0.8 and w3 = 1.

Recall that the main-effects model is

Y = β̃0 +
K∑

i=1

β̃izi + εi.

Let the nominal (low) level of zi be z0
i and let the high

level be z0
i + δi, for i = 1, 2, . . . , K. Define the trans-

formed variables xi = wi(zi − z0
i )/δi = (ci/c∗)(zi − z0

i ).
Then Y can be expressed as a linear regression on xi,

i = 1, 2, . . . , K, as

Y = β0 +
K∑

i=1

βixi + εi (2)

where the low level of xi is 0, the high level is wi, and
βi = δiβ̃i/wi, for i = 1, 2, . . . ,K. Now each βi, i > 0, has
a practical interpretation: it represents the change in the
expected response when spending c∗ to change the level
of factor i, and this change can be compared with ∆0 and
∆1 without ambiguity. We assume that the sign of each
factor effect is known so that we can set the levels of each
factor to have βi > 0 for all i > 0.

2.3 Objective of the Screening Proce-
dure

In screening experiments, the primary objective is to di-
vide the factors into two groups: those that are unim-
portant, which we take to mean βi ≤ ∆0, and those that
are important, meaning βi > ∆0. Since we can never
make these determinations with certainty in a stochastic
simulation, we instead pursue a screening procedure that
controls the probability of incorrectly classifying each fac-
tor. More specifically, for those factors with effects ≤ ∆0,
we require the procedure to control the Type I Error of
declaring them important to be ≤ α; and for those fac-
tors with effects≥ ∆1 we require the procedure to provide
power for identifying them as important to be ≥ γ. Here
α and γ are user-specified parameters and ∆0 and ∆1 are
defined as in Section 2.2 with ∆1 ≥ ∆0. Those factors
whose effects fall between ∆0 and ∆1 are also considered
important and we want the procedure to have reasonable,
though not guaranteed, power to identify them. Figure 1
is a generic illustration of the desired performance of our
screening procedure.

To illustrate, consider a simulated manufacturing
system where the response is the expected throughput
of the system. The controllable factors may include the
number of machines at each workstation; average pro-
cessing time of each machine; and skill levels of the work-
ers. The practical threshold ∆0 is set as the minimum
change in expected throughput that managers consider
worth pursuing at a cost c∗ of changing the most ex-
pensive factor by one unit. For example, c∗ might be the
cost of purchasing a very expensive machine. In this illus-
tration, screening experiments would be used to identify
each factor that influences the expected throughput by
more than ∆0 when spending c∗ to change that factor.
For each factor, the procedure should have probability
≤ α of declaring it important if it cannot influence the
expected throughput by at least ∆0 at a cost of c∗. The
procedure should also have probability ≥ γ of identify-
ing a factor as important if its influence on the expected
throughput is ≥ ∆1 at a cost of c∗. Here ∆1 is a critical
change in the expected throughput that the managers do
not want to ignore if it can be achieved for a cost of only
c∗. Factors whose effects are neither unimportant nor
critical will be identified with less power than γ.
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Figure 1: Generic Illustration of Desired Performance of
Screening Procedures

3 CONTROLLED SEQUEN-
TIAL BIFURCATION (CSB)

The CSB procedure inherits its basic concepts from the
SB procedure proposed by Bettonvil and Kleijnen (1997)
and from the SB-under-uncertainty procedure proposed
by Cheng (1997). Specifically, like other SB procedures,
the CSB procedure is a series of steps in which groups
of factors are tested. If a group of factors is considered
unimportant, then every factor in the group will be con-
sidered unimportant. If the group is considered impor-
tant, then it is split for further testing. When the algo-
rithm stops, each of the factors will be classified as either
important or unimportant. The unique feature of CSB
is that each step contains a two-stage testing procedure
to insure the desired power. In addition, CSB preserves
the step-down nature of SB so that Type I Error is con-
trolled. The testing procedure is explained in detail in
the following sections.

3.1 Notation

The notation that we use to define CSB is provided below.

There are in total K indexed factors.

Let xi represent the setting of factor i. A replication at
level k is defined as follows:

xi(k) =
{

wi, i = 1, 2, . . . , k
0, i = k + 1, k + 2, . . . ,K

Yj(k) : The jth response at level k

Ȳ (k): Average of all available responses at level k

n0: Number of initial replications made at each level

σ2
k: variance of responses at level k

Dj(k1, k2) = Yj(k2) − Yj(k1), j = 1, 2, . . ., for k2 > k1,
whose expected value is

∑k2
i=k1+1 wiβi; and whose

variance is σ2
k1

+ σ2
k2

.

D̄(k1, k2) = Ȳ (k2)− Ȳ (k1), for k2 > k1.

w(k1, k2) = min{wk1+1, wk1+2, . . . , wk2} is the smallest
weight associated with βk1+1, βk1+2, . . . , βk2 .

S2(k1, k2) =
∑n0

j=1

(
Dj(k1, k2)− D̄(k1, k2)

)2
/(n0 − 1).

Notice that S2(k1, k2) is only determined by the ini-
tial n0 replications.

UA(k1, k2) = ∆0 + t√1−α, n0−1S(k1, k2)/w(k1, k2)
√

nk,
where nk = min{nk1 , nk2} and nki

is the total num-
ber of available responses at factor level ki. The
subscript A = I, II denotes the first or second stage
of the testing procedure, respectively.

LA(k1, k2) = ∆0 − t(1+γ)/2,n0−1S(k1, k2)/w(k1, k2)
√

nk,
where nk = min{nk1 , nk2} and nki is the total num-
ber of available responses at factor level ki. The
subscript A = I, II denotes the first or second stage
of the testing procedure, respectively.

h: A constant such that Pr(T ≤ t√1−α,n0
− h) =

(1 − γ)/2, where T is a t-distributed random vari-
able with n0 − 1 degrees of freedom.

N(k1, k2) = dh2S2(k1, k2)/w2(k1, k2)(∆1 −∆0)
2e

3.2 CSB Procedure

A high-level description of CSB is shown in Figure 2.
The figure illustrates how groups are created, manipu-
lated, tested and classified, but does not specify how data
are generated or what tests are performed. Detailed de-
scriptions of data collection and hypothesis testing follow.
This section is closed by an example.

Data (replications) are obtained whenever new
groups are formed according to the following rule: When
forming a new group containing factors {k1 + 1, k1 +
2, . . . , k2} with k1 < k2, check the number of observa-
tions at level k1 and k2.

If nk1 = 0, then get n0 observations at level k1 and set
nk1 = n0.

If nk2 = 0, then get n0 observations at level k2 and set
nk2 = n0.

If nk1 < nk2 , then make nk2−nk1 additional replications
at level k1 and set nk1 = nk2 .

If nk2 < nk1 , then make nk1−nk2 additional replications
at level k2 and set nk2 = nk1 .

Suppose the group removed from the queue contains
factors {k1 + 1, k1 + 2, . . . , k2} with k1 < k2. The Test
step in Figure 2 tests the following hypothesis to deter-
mine if a group might contain important factors:

H0 :
k2∑

i=k1+1

βi ≤ ∆0 vs. H1 :
k2∑

i=k1+1

βi > ∆0.
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Initialization: Create an empty LIFO queue for
groups. Add the group {1, 2, . . . , K} to the
LIFO queue.

While queue is not empty, do

Remove: Remove a group from the queue.

Test:

Unimportant: If group is unimpor-
tant, then classify all factors in the
group as unimportant.

Important (size = 1): If group is im-
portant and of size 1, then classify
the factor as important.

Important (size > 1): If group is im-
portant and size is greater than 1,
then split it into two subgroups such
that all factors in the first subgroup
have smaller index than those in the
second subgroup. Add each sub-
group to the LIFO queue.

End Test

End While

Figure 2: Structure of CSB

The procedure given below for testing this hypothesis
guarantees power ≥ γ if

∑k2
i=k1+1 βi ≥ ∆1.

1. If D̄(k1, k2)/w(k1, k2) ≤ UI , and min{nk1 , nk2} ≥
N(k1, k2), then classify the group as unimportant.

2. Else if D̄(k1, k2)/w(k1, k2) ≤ LI , then classify the
group as unimportant.

3. Else if D̄(k1, k2)/w(k1, k2) > UI , then classify the
group as important.

4. Else make (N(k1, k2) − nk1)
+ observations at lev-

els k1 and k2 (recall that nk1 = nk2). Then set
nk1 = nk2 = max{N(k1, k2), nk1}. Notice that
S2(k2, k2) and the degrees of freedom do not change,
but D̄(k1, k2) is updated.

(a) If D̄(k1, k2)/w(k1, k2) < UII , then classify the
group as unimportant.

(b) If D̄(k1, k2)/w(k1, k2) ≥ UII , then classify the
group as important.

Notice that E
[
D̄(k1, k2)

]
=

∑k2
i=k1+1 wiβi ≤∑k2

i=k1+1 βi. Therefore testing based on D̄(k1, k2) would
sacrifice power. Thus, we use D̄(k1, k2)/w(k1, k2) because
E

[
D̄(k1, k2)/w(k1, k2)

] ≥ ∑k2
i=k1+1 βi.

As an illustration, consider the case of K = 10 fac-
tors and the first pass through the algorithm. Initially
we make n0 replications at level 0 (all factors at their low
level) and n0 replications at level 10 (all factors at their
high level). The group removed from the queue contains
all factors and w(0, 10) = min{w1, w2, . . . , w10}.

Next we evaluate D̄(0, 10), UI and LI . If
D̄(0, 10)/w(0, 10) ≤ LI , then we conclude that
none of the factors are important, since the sum
of all effects is not important, and the algorithm
stops. If D̄(0, 10)/w(0, 10) > UI , then the factors
are separated into two groups, {β1, β2, β3, β4, β5} and
{β6, β7, β8, β9, β10}, and n0 replications are made at level
5 (xi, i = 1, 2, . . . , 5 are set at their high level and xi,
i = 6, 7, . . . , 10 are set at their low level). Both groups
are added to the queue.

If, on the other hand, D̄(0, 10)/w(0, 10) is between
LI and UI , then we calculate N(0, 10). If N(0, 10) ≤ n0,
then we conclude that all the factors are not impor-
tant and the algorithm stops. If N(0, 10) > n0, then
we collect N(0, 10) − n0 replications at both level 0
and level 10, reevaluate D̄(0, 10), and calculate UII . If
D̄(0, 10)/w(0, 10) ≥ UII , then the factors are separated
into two groups as described above and n0 replications
are made at level 5. Both groups are added to the queue.
Otherwise, all factors will be considered as unimportant
and the algorithm stops.

3.3 Performance of CSB

The performance guarantees for the CSB procedure are
stated in following theorems. For the proofs see Wan,
Ankenman and Nelson (2003).

Theorem 1 If model (2) holds with normally distributed
error, then CSB guarantees that

Pr{Declare factor i important |βi ≤ ∆0} ≤ α

for each factor i individually.

Theorem 2 Let the group containing the factors denoted
{kl + 1, . . . , km} be represented by {kl → km}, 0 ≤ kl ≤
km ≤ K. If model (2) holds with normally distributed
error, then the two-stage test guarantees that

Pr

{
Declare {kl → km} important

∣∣∣∣∣
km∑

i=kl+1

βi ≥ ∆1

}
≥ γ

for each group {kl → km} tested.

In summary, the CSB procedure controls the Type
I Error for each factor individually and guarantees the
power for each step. The procedure does not require an
equal-variance assumption, and is valid with or without
common random numbers. The empirical evaluation will
be discussed in Section 4.

4 EMPIRICAL EVALUATION

In this section, we discuss the numerical results of sim-
ulation experiments to compare the following two proce-
dures:

1. The CSB method proposed in Section 3.

2. Cheng’s method (Cheng 1997), an enhancement of
the SB procedure for stochastic responses that as-
sumes equal variances.
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The idea behind Cheng’s method is to determine
whether a group of two or more factors are unimpor-
tant by constructing a one-sided confidence interval on
the group effect. For a group containing a single fac-
tor, replications are added one-at-a-time until a two-sided
confidence interval on the factor effect shows that the ef-
fect is important or unimportant. When a single factor
is tested, the method employs an indifference parameter
a. In our notation, all the factors with effects smaller
than ∆0 + a can be classified as unimportant. Cheng’s
method does not guarantee to control Type I Error for
each factor or power at any step, and has no concept like
∆1 for a critically important factor.

4.1 Summary of Results

Rather than employ system simulation models in this
test, we chose instead to generate data from a main-
effects model in which we could control the size of the
effects and the variances at different design points. Nor-
mal errors are assumed with mean 0 and standard devi-
ation, σ, equal to m ∗ (1 + I ∗ size of the group effect),
where I is 0 if we are running an equal-variance case, and
1 for an unequal-variance case. Thus, in unequal variance
cases the standard deviation is proportional to the size
of the effect of the group being screened. Neither proce-
dure assumes prior knowledge of the variances. Common
random numbers were not employed.

For each case considered, the CSB procedure is ap-
plied 1000 times and the percentage of time factor i is
declared important is recorded; this is an unbiased esti-
mator of Pr{factor i is declared important}.

To compare CSB to Cheng’s method, we set the
indifference parameter, a, such that the number of repli-
cations required by Cheng’s method is approximately the
same as the number used by CSB for that case. There-
fore we can compare the achieved Type I error and power
of the two methods with equal simulation effort.

The performance of Cheng’s method depends on the
case considered. When the variances are large or unequal,
Cheng’s method loses control of the Type I Error and
power. The CSB method, on the other hand, controls
the Type I Error and power across all cases (although
the number of replications required to achieve this does
differ substantially by case).

In the following subsection we provide some illustra-
tive numerical results that emphasize the key conclusions.

4.2 Unequal-Variance Cases

We set the parameters as in Table 1. We considered two
different settings for the factor effects:

1. In Case 1 we set (β1, β2, . . . , β10) =
(2, 2.44, 2.88, 3.32, 3.76, 4.2, 4.64, 5.08, 5.52, 6),
spanning the range from ∆0 to ∆0 + ∆1. For CSB,
the probability that β1 is declared important should
be smaller than 0.05, but for β6, . . . , β10 it should
be ≥ 0.95.

Letting P (DI) mean “probability of being declared
important,” Figure 3 plots P (DI) against effect size

Table 1: Parameters for Unequal-Variance Cases

Parameter Value
K 10
∆0 2
∆1 4
α 0.05
γ 0.95
σ m∗(1 + size of the group effect)
m 0.1, 1

beta

P
(D

I)

2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CSB..large.var
Cheng..large.var
CSB..small.var
Cheng..small.var

Figure 3: Case 1 with Unequal Variances

for Cheng’s method and CSB with large (m = 1)
and small (m = 0.1) variances. We can see that
when variance is small, the two methods have simi-
lar performance although CSB attains greater power
earlier. When the variance is large, however, Cheng’s
method loses control of both Type I Error and power.

2. In Case 2 we set (β1, β2, . . . , β10) =
(2, 2, 2, 2, 2, 2, 2, 2, 2, 2), so that all effects are
∆0. This set is designed to study the Type I Error
control of the two methods. The other parameters
are the same as in the previous case.

Figure 4 shows the Type I Error control of both
methods. Cheng’s method has large Type I Error
(as high as 0.5) when the variance is large. Even for
the small-variance case, the largest Type I Error is
still more than 0.2 for Cheng’s method. By design,
CSB controls Type I Error to be ≤ α in all cases.

To summarize, CSB has superior performance rel-
ative to Cheng’s method in large and unequal variance
cases. CSB has guaranteed performance with differ-
ent parameter and factor configurations, which makes
it attractive for problems with limited prior knowledge.
Cheng’s method, on the other hand, assumes variance
homogeneity to gain advantages on degrees of freedom
and it can be effective when this assumption is satisfied.
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0
.4

0
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CSB..large.var Cheng..large.var. CSB..small.var. Cheng..small.var.

P
(D

I)

Figure 4: Case 2 with Unequal Variances

5 CONCLUSION

CSB is a new factor-screening method for discrete-event
simulations; it combines a two-stage hypothesis-testing
procedure with the sequential bifurcation method to con-
trol the power at each bifurcation step and Type I Error
for each factor under heterogeneous variance conditions.
CSB is the first factor-screening procedure to provide
these guarantees.
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