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Abstract

Ordinal data are often modeled using a continuous latent response distribution, which is partially

observed through windows of adjacent intervals de¯ned by cutpoints. In this paper we propose the

beta distribution as a model for the latent response. The beta distribution has several advantages

over the other common distributions used, e.g., normal and logistic. In particular, it enables

separate modeling of location and dispersion e®ects which is essential in the Taguchi method of

robust design.

First, we study the problem of estimating the location and dispersion parameters of a single

beta distribution (representing a single treatment) from ordinal data assuming known equispaced

cutpoints. Two methods of estimation are compared: the maximum likelihood method and the

method of moments. Two methods of treating the data are considered: in raw discrete form

and in smoothed continuousized form. A large scale simulation study is carried out to compare

the di®erent methods. The mean square errors of the estimates are obtained under a variety of

parameter con¯gurations. Comparisons are made based on the ratios of the mean square errors

(called the relative e±ciencies). No method is universally the best, but the maximum likelihood

method using continuousized data is found to perform generally well, especially for estimating the

dispersion parameter. This method is also computationally much faster than the other methods

and does not experience convergence di±culties in case of sparse or empty cells.

Next, the problem of estimating unknown cutpoints is addressed. Here the multiple treatments

setup is considered since in an actual application, cutpoints are common to all treatments, and

must be estimated from all the data. A two-step iterative algorithm is proposed for estimating the

location and dispersion parameters of the treatments, and the cutpoints. The proposed beta model

and McCullagh's (1980) proportional odds model are compared by ¯tting them to two real data

sets.

Keywords: Maximum likelihood method; method of moments; mean square error; latent variable

model; proportional odds model; logistic response distribution; incomplete data; ordered categorical

data; Taguchi method.
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1. Introduction

Ordinal data are commonly used in many areas of application, some examples being the

quality of an item or service or performance (poor, fair, good, very good or excellent), seri-

ousness of a defect (minor, major, critical), taste of food (too mild, just right, too spicy) and

extent of agreement (strongly disagree, disagree, neutral, agree, strongly agree). Many tech-

niques are available for analyzing stochastic shifts in ordinal data; for a review see Agresti

(1984). However, serious di±culties arise when inferences are desired on both location and

dispersion e®ects; see Nair (1986) and Hamada and Wu (1990) and the accompanying discus-

sions. Both these e®ects are of interest in Taguchi's (1986) approach to quality improvement

where the goal is not only to have the average product performance on target, but also to

minimize the variation around the target. Taguchi recommends identifying two sets of design

factors: control factors that can be used to minimize the dispersion and adjustment factors

that can be used to bring the location on target. To implement this strategy it is necessary

to be able to measure and analyze the location and dispersion e®ects separately from each

other.

The main cause of di±culty in separating the location e®ects from dispersion e®ects when

the data are ordinal is that the number of categories is usually small (between 3 and 10).

Therefore, when the location parameter is pushed to the limit (either too high or too low),

most of the data fall in the extreme category giving a false impression of reduced variance.

A common approach to the analysis of ordinal data is to assume a continuous latent

response distribution that is observed through windows of ordered intervals with ¯xed, but

unknown cutpoints. This approach is implicit in the proportional odds model (McCullagh,

1980), which can be derived from an underlying logistic response distribution and in other

generalized linear models (McCullagh and Nelder, 1989). These models are typically based

on the assumption of a symmetric continuous latent response having an in¯nite domain.

They also do not separate the location and dispersion e®ects besides failing to take into

account the ¯nite nature of the measurement scale used in ordinal data.

To resolve these di±culties, we propose the beta distribution as a model for the latent

variable. The following three properties of the beta distribution make it especially suitable
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for modeling ordinal data:

1. The beta distribution has a ¯nite domain.

2. The beta distribution can °exibly model a wide variety of shapes including a bell-shape

(symmetric or skewed), U-shape and J-shape.

3. For the beta distribution on the interval [0; 1] with the probability density function

(p.d.f.):

f(xja; b) = ¡(a+ b)

¡(a)¡(b)
xa¡1(1¡ x)b¡1 for x 2 [0; 1]; (1.1)

where a; b > 0, the mean and variance are given by

¹ =
a

a+ b
and ¾2 =

ab

(a+ b)2(a+ b+ 1)
=
¹(1¡ ¹)
a+ b+ 1

= ¹(1¡ ¹)´2; (1.2)

where

´2 =
1

(a+ b+ 1)
: (1.3)

Note that ¹, which may be taken to be the location parameter, a®ects ¾2 through

¹(1 ¡ ¹). In particular, ¾2 ! 0 as ¹ ! 0 or 1, as it should due to the location shift

that pushes data into extreme categories. Also, e®ects on ¾2 of changes in location

and scale are separately quanti¯ed through two terms, ¹(1 ¡ ¹) and ´2, respectively.
Therefore we may regard ´2 as a pure dispersion parameter.

The basic idea here is similar to that in Leon, Shoemaker and Kacker (1987) where the

goal was to ¯nd a performance measure of dispersion that is independent of adjustment

factors (PerMIA), i.e., that is una®ected by changes in location. Box (1988) also made a

similar suggestion that the data be transformed to achieve \separation," i.e., eliminate the

dependence of the variance on the mean. We claim that the beta distribution provides a

suitable underlying metric for ordinal data and ´2 is an appropriate PerMIA.

Our long term goal in the proposed research program is to develop a comprehensive sta-

tistical methodology for analyzing multifactor experiments with ordinal data to identify ad-

justment factors that have signi¯cant e®ects on the location parameter ¹ and control factors

that have signi¯cant e®ects on the dispersion parameter ´2. A key step in this methodology

is to impute continuous beta scores from the count data. Normalizing transformations will
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then be applied to the beta scores, and the resulting data will be analyzed for location and

dispersion e®ects using suitably modi¯ed normal theory techniques that are familiar to many

engineers and are available in commercial packages. To obtain the beta scores, we ¯rst need

to develop a good method for estimating ¹ and ´2. The primary goal of the present paper

is to compare the maximum likelihood method and the method of moments for this purpose

using the raw (discrete) data or smoothed (continuousized) data. How the estimates of ¹

and ´2 will be utilized in the proposed methodology will be the topic of future papers.

One might argue that there is no need to look beyond the maximum likelihood method.

However, there are issues other than statistical e±ciency, such as numerical stability of esti-

mates and convergence, which are equally important in practice, and it is not a priori clear

that one method will have an advantage over the other. In fact, even as far as statistical

e±ciency is concerned, it is not clear that one method will always be superior. Therefore it

is necessary to compare the competing methods in detail so that we can determine which

method should be used under which conditions. We investigate these questions by ¯rst

focusing on a single beta distribution corresponding to a single treatment with known eq-

uispaced cutpoints. After having determined the best method for estimating ¹ and ´2 for

this setup, we then address the problem of estimating unknown cutpoints. In this latter case

we consider the multiple treatments setup since the cutpoints are common to all treatments

and must be estimated from all the data, whereas ¹ and ´2 will be estimated separately for

each treatment. Of course, these two estimation problems are interdependent. Therefore

we propose a two-step iterative method of estimation. We begin with some starting val-

ues for the cutpoints (e.g., equispaced) and estimate ¹ and ´2 (or equivalently a and b) for

each treatment. Using these estimates of (¹; ´2) from each treatment we then estimate the

cutpoints for all treatments. These two steps are iterated until convergence.

The paper is organized as follows. Section 2 gives the formulation of the problem and

the necessary notation. Sections 3 through 6 focus on the estimation of ¹ and ´2 for a

single beta distribution. Section 3 discusses the maximum likelihood and the method of

moment estimation using discrete data. Section 4 extends these methods to continuousized

data, which are obtained from the raw data by spreading the observations in each cell

uniformly. When there are empty or sparse cells, all except one of these methods face
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convergence problems. Section 5 proposes to avoid this di±culty by adding 1/2 (called a

pseudo-observation) to each cell. Section 6 describes a simulation study to compare the

di®erent methods of estimation. Section 7 addresses the problem of estimation of cutpoints.

Section 8 applies the proposed method to a real data example; McCullagh's proportional

odds model is also ¯tted to the same data for comparison purposes. Finally, Section 9 gives

conclusions and recommendations.

2. Problem Formulation and Notation

Let I ¸ 2 denote the number of treatments (combinations of di®erent factor levels).

We ¯rst consider the problem of ¯nding the best method of estimating ¹ and ´2 for each

treatment. For this purpose we begin by assuming known cutpoints and focus on the single

treatment case through Section 6. Suppose that the data from the treatment consist of

a random sample of n items, which are classi¯ed into J ¸ 2 ordered categories (cells)

with nj items in the jth cell and
PJ
j=1 nj = n. As in McCullagh (1980), we assume that

these categorized data are a manifestation of latent continuous random variables (r.v.'s)

X1; X2; : : : ; Xn such that the ith item is observed to fall in the jth cell if and only if cj¡1 ·
Xi < cj where c0 < c1 < c2 < ¢ ¢ ¢ < cJ¡1 < cJ are known cutpoints; a special case of interest
is the equispaced cutpoints: cj = j=J; j = 0; 1; 2; : : : ; J . We assume that the Xi's are i.i.d.

with the beta distribution given by (1.1). The goal is to estimate (¹; ´2) from the vector of

observed cell counts n = (n1; n2; : : : ; nJ).

Let

F (xja; b) = ¡(a+ b)

¡(a)¡(b)

Z x

0
ua¡1(1¡ u)b¡1 du;

denote the cumulative distribution function (c.d.f.) of the beta distribution. For brevity,

we will use the notation Fj = F (cjja; b); j = 0; 1; 2; : : : ; J . Then the cell counts vector

n = (n1; n2; : : : ; nJ) is a realization of a multinomial random vector N = (N1; N2; : : : ; NJ)

with cell probabilities pj = Fj ¡ Fj¡1; j = 1; 2; : : : ; J and PNj = P
nj = n.

Because the beta distribution is parameterized in terms of (a; b), it is more convenient to

¯nd the estimates (ba; bb) ¯rst and then calculate
b¹ = baba+ bb and b́2 = 1ba+ bb+ 1 : (2.1)



5

3. Estimation for Discrete Data

3.1 Maximum Likelihood Method

The standard method for estimation of parameters from incomplete data is the maxi-

mum likelihood method; see, e.g., Sundberg (1974, 1976) and Dempster, Laird and Rubin

(1976). The maximum likelihood estimate of (a; b) maximizes the kernel of the log-likelihood

function:

lnL =
JX
j=1

nj ln pj: (3.1)

We refer to the resulting estimates as MLE-D (maximum likelihood estimates for discrete

data).

Various algorithms can be used to ¯nd (ba;bb). One possibility is to ¯nd (ba; bb) directly
using a suitable nonlinear programming algorithm. The second possibility is to solve the

equations
@ lnL

@a
=

JX
j=1

nj
pj

@pj
@a

= 0 and
@ lnL

@b
=

JX
j=1

nj
pj

@pj
@b

= 0; (3.2)

using either the Newton-Raphson or the scores algorithm. The third possibility is to use

the EM-algorithm of Dempster, Laird and Rubin (1976). Since the beta distribution is a

member of the exponential family, closed form expressions can be obtained for the iterative

steps of the EM-algorithm; the details are omitted for brevity.

In our empirical study all three algorithms for computing the MLE-D of (a; b) experienced

convergence problems when ¹ was close to 0 or 1, and/or when ´2 was small. In these cases

most of the data are concentrated in a few cells. The most satisfactory method was the

nonlinear programming algorithm.

3.2 Method of Moments

To apply the method of moments we begin by assuming that all observations in each cell

are concentrated at the midpoint of that cell. Let mj be the midpoint of cell j:

mj =

8><>:
1
2
(cj¡1 + cj) for general cutpoints

1
2J
(2j ¡ 1) for equispaced cutpoints.

(3.3)
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Then denoting the sample mean and the sample variance of these data by ¹x and s2, respec-

tively, the method of moments estimates of ¹ and ´2 can be easily computed using

b¹ = ¹x = 1

n

JX
j=1

njmj and b́2 = s2b¹(1¡ b¹) =
PJ
j=1 njm

2
j ¡ (

PJ
j=1 njmj)

2=n

(n¡ 1)¹x(1¡ ¹x) : (3.4)

We will refer to the resulting estimates as MME-D (method of moments estimates for discrete

data).

We performed preliminary simulations to evaluate these estimates which showed thatb¹
and b́2 are highly biased. In general, b¹ = ¹x is positively biased for ¹ < 1=2 and negatively

biased for ¹ > 1=2. Due to the assumption that all observations in each cell are concentrated

at the midpoint of that cell, s2 often underestimates ¾2, especially when observations are

clumped into a few cells. The simulation study also showed that in general ¹x(1 ¡ ¹x) over-
estimates ¹(1 ¡ ¹). Therefore b́2 generally underestimates ´2. Even if a modi¯ed method
of moments for bias reduction due to MacKinnon and Smith (1998) and described in Sec-

tion 4.2 is used, a substantial negative bias remains in b́2. This suggests that an improved
method of moments estimates can be obtained by spreading the data in each cell. We refer

to the resulting data as continuousized data. Estimation methods for continuousized data

are given in the next section. Henceforth we will not consider the MME-D method.

4. Estimation for Continuousized Data

Recall that the observed data are discrete cell counts n = (n1; n2; : : : ; nJ). Let fxjk; k =
1; 2; : : : ; nj ; j = 1; 2; : : : ; Jg be the continuousized data obtained by uniform spreading in

each cell:

xjk =

8><>: cj¡1 +
kdj

(nj+1)
for general cutpoints

j¡1
J
+ k

(nj+1)J
for equispaced cutpoints,

(4.1)

where dj = cj ¡ cj¡1.

4.1 Maximum Likelihood Method

Taking fxjk; k = 1; 2; : : : ; nj ; j = 1; 2; : : : ; Jg as data from a beta distribution, the MLE's
of a and b are solutions to the equations (see equations (21.1) and (21.2) in Johnson and
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Kotz (1970)):

Ã(a)¡ Ã(a+ b) =
1

n

JX
j=1

njX
k=1

ln xjk

Ã(b)¡ Ã(a+ b) =
1

n

JX
j=1

njX
k=1

ln(1¡ xjk); (4.2)

where Ã(¢) is the digamma function. These equations can be solved iteratively as suggested
in Johnson and Kotz (1970). We refer to the resulting estimates as MLE-C (maximum

likelihood estimates for continuousized data).

4.2 Method of Moments

In this section we develop a modi¯ed method of moments due to MacKinnon and Smith

(1998) that approximately eliminates the bias. First calculate the sample mean of the xjk:

¹x =
1

n

JX
j=1

njX
k=1

xjk =
1

n

JX
j=1

njmj (4.3)

and the sample variance of the xjk:

s2 =
1

n¡ 1
JX
j=1

njX
k=1

(xjk ¡ ¹x)2

=
1

n¡ 1

24 JX
j=1

njX
k=1

(xjk ¡mj)
2 +

JX
j=1

nj(mj ¡ ¹x)2
35

=
1

n¡ 1

24 JX
j=1

nj(n
2
j ¡ 1)

12d2j(nj + 1)
2
+

JX
j=1

njm
2
j ¡ n¹x2

35
=

1

n¡ 1

24 1
12

JX
j=1

nj(nj ¡ 1)
d2j(nj + 1)

+
JX
j=1

njm
2
j ¡ n¹x2

35 : (4.4)

The basic method of moments uses estimating equations (3.4) with the above values of

¹x and s2. However, the resulting estimates are biased because E( ¹X) 6= ¹ and E(S2) 6= ¾2,
where ¹X and S2 are the r.v.'s corresponding to the observed quantities ¹x and s2 given by

(4.3) and (4.4), respectively. The estimating equations for the modi¯ed method of moments

are

E( ¹X) = ¹x and E(S2) = s2: (4.5)

We solve these equations for ba and bb, and then calculate b¹ and b́2 using (2.1). We refer to
the resulting estimates as MME-C (method of moments estimates for continuousized data).
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To compute the expectations in equations (4.5), we use the expressions

E(Nj) = npj;Var(Nj) = npj(1¡ pj) and Cov(Nj ;Nk) = ¡npjpk;

where the Nj are the r.v.'s corresponding to the observed cell counts nj . The resulting

expectations are functions of a and b through pj = F (cjja; b)¡ F (cj¡1ja; b). First,

E( ¹X) =
1

n

JX
j=1

E(Nj)mj =
JX
j=1

pjmj: (4.6)

Next,

E(S2) =
1

n¡ 1

24 1
12
E

0@ JX
j=1

Nj(Nj ¡ 1)
d2j(Nj + 1)

1A+ E
0@ JX
j=1

Njm
2
j

1A¡ nE( ¹X)2
35

=
1

n¡ 1
·
1

12
E1 + E2 ¡ nE3

¸
; (4.7)

where the three expectations are computed as follows.

To compute E1 we use the following lemma.

Lemma: Let X be a binomial r.v. with sample size n and success probability p (denoted

as X » Bin(n; p)). Then

E

"
X(X ¡ 1)
X + 1

#
= np¡ 2 + 2(1¡ q

n+1)

p(n+ 1)
;

where q = 1¡ p.
Proof:

E

"
X(X ¡ 1)
X + 1

#
=

nX
x=0

"
x(x¡ 1)
x+ 1

#Ã
n

x

!
pxqn¡x

=
1

(n+ 1)p

nX
x=0

x(x¡ 1)
Ã
n+ 1

x+ 1

!
px+1q(n+1)¡(x+1)

=
1

(n+ 1)p

nX
y=1

(y ¡ 1)(y ¡ 2)
Ã
n+ 1

y

!
pyq(n+1)¡y (by putting y = x+ 1)

=
1

(n+ 1)p

h
Ef(Y ¡ 1)(Y ¡ 2)g ¡ 2qn+1

i
(where Y » Bin(n+ 1; p)))

=
1

(n+ 1)p

h
E(Y 2 ¡ 3Y + 2)¡ 2qn+1

i
=

1

(n+ 1)p

h
(n+ 1)pq + (n+ 1)2p2 ¡ 3(n+ 1)p+ 2¡ 2qn+1

i
;
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which upon algebraic simpli¯cation gives the desired result. 2

Using the above lemma, we have

E1 = E

0@ JX
j=1

Nj(Nj ¡ 1)
d2j(Nj + 1)

1A
=

JX
j=1

1

d2j

"
npj ¡ 2 +

2(1¡ qn+1j )

pj(n+ 1)

#
; (4.8)

where qj = 1 ¡ pj . Note that if pj ! 0, the term inside the square brackets approaches 0

using L'Hôpital's rule. This approximation is used for cell probabilities close to 0 to avoid

numerical errors.

Next,

E2 =
JX
j=1

E(Nj)m
2
j = n

JX
j=1

pjm
2
j : (4.9)

Finally,

E3 = E( ¹X
2
)

=
1

n2
E

0@ JX
j=1

Njmj

1A2

=
1

n2

8<:
JX
j=1

m2
jE(N

2
j ) + 2

JX
k=j+1

J¡1X
j=1

mjmkE(NjNk)

9=;
=

1

n2

8<:
JX
j=1

m2
j [npj(1¡ pj) + n2p2j ] + 2

JX
k=j+1

J¡1X
j=1

mjmk[¡npjpk + n2pjpk]
9=;

=
1

n

8<:
JX
j=1

m2
jpj + (n¡ 1)

JX
j=1

m2
jp
2
j + 2(n¡ 1)

JX
k=j+1

J¡1X
j=1

mjmkpjpk

9=;
=

1

n

JX
j=1

m2
jpj +

n¡ 1
n

0@ JX
j=1

mjpj

1A2 : (4.10)

Substituting E1; E2 and E3 from (4.8), (4.9) and (4.10) in (4.7) we get the ¯nal expression

for E(S2).

5. Use of Pseudo-Observations

Both the MLE-D and the MME-C methods may fail to converge when there are sparse

or empty cells. The MLE-C method does not face this problem because once the data are

spread uniformly within each cell, no further use is made of the cell boundaries. A practical
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solution to the lack of convergence is to add 1/2 (referred to as a pseudo-observation) to

each cell count.

Denote the new cell counts by n0j = nj + 1=2 and the resulting total sample size by

n0 =
PJ
j=1 n

0
j = n+J=2. We assume that the pseudo-observations are placed at the midpoints

mj . The actual observations are spread uniformly in each cell as described in Section 4. Let

¹x0 and s02 be the sample mean and the sample variance of the continuousized data including

the pseudo-observations. We can express ¹x0 and s02 in terms of ¹x and s2 as follows:

¹x0 =
1

n0

0@ JX
j=1

njmj +
1

2

JX
j=1

mj

1A = n¹x+ J ¹m=2

n0
; (5.1)

where ¹m =
P
mj=J (for equispaced cutpoints, ¹m = J=2) and

s02 =
1

n0 ¡ 1

24(n¡ 1)s2 + nJ2
4n02

(¹x¡ ¹m)2 +
1

2

JX
j=1

½µ
mj ¡ J ¹m

2n0

¶
¡ n¹x
n0

¾235 : (5.2)

The algorithm for calculating the MLE-D estimates does not need any modi¯cation if

pseudo-observations are added. To calculate the MME-C estimates, it would appear that

the estimating equations should be changed to

E( ¹X
0
) = ¹x0 and E(S 02) = s02; (5.3)

where ¹X
0
and S02 are the random variables corresponding to the observed ¹x0 and s02, respec-

tively. It is not di±cult to derive expressions for E( ¹X
0
) and E(S 02) using (4.3) and (4.4).

However, from (5.1) we see that ¹x0 is a linear function of ¹x and hence E( ¹X 0
) is the same linear

function of E( ¹X). Therefore the equation E( ¹X
0
) = ¹x0 is identical to the equation E( ¹X) = ¹x.

This is the equation that causes convergence problems. To obviate the convergence di±culty

with equations (5.3), we use the following equations:

E( ¹X) = ¹x0 and E(S2) = s02: (5.4)

These equations may result in a slight bias in the estimates, but their solutions are found to

always converge.
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6. Empirical Comparison of the Estimation Methods

6.1 Design of the Simulation Experiment

Three methods of estimation were compared in the simulation experiment: MLE-D,

MLE-C and MME-C. Pseudo-observations were used with MLE-D and MME-C, but not

with MLE-C. Two values of the number of cells were studied: J = 5 and 10. For each

J , equispaced cutpoints cj = j=J; j = 0; 1; : : : ; J (assumed to be known) were chosen to

generate the data. Thus, e.g., for J = 5, we have c0 = 0; c1 = 0:2; c2 = 0:4; c3 = 0:6; c4 =

0:8; c5 = 1. Two values of the sample size, n = 30 and 60, were examined for each value of

J .

For each J and the associated cutpoints, the ¹ values were chosen at the midpoints of the

cells. Thus, for J = 5, we chose ¹ = 0:5; 0:7 and 0.9, and for J = 10, we chose ¹ = 0:55; 0:75

and 0.95. These are in a sense the \worst" cases when ´2 is small because then most of the

data fall in a single cell; the \best" cases would be to choose ¹ equal to one of the cutpoints

because then the data would be distributed in the two adjacent cells even when ´2 is small.

The values ¹ < 0:5 were not studied because the results are similar to those for ¹ > 0:5 due

to symmetry.

For each value of ¹, three values of ´2 were chosen: ´2 = 0:3; 0:1 and 0.03. Note that

´2 < 1=3 implies that a+ b > 2 and hence at least one of a or b is > 1. This means that none

of the simulated beta distributions were U-shaped; all were either J-shaped or bell-shaped.

This choice was made based on the types of data encountered in practice which generally

do not cluster at both ends of the scale. The values of (a; b) were obtained from (¹; ´2) by

solving (1.2) and (1.3), resulting in

a =
¹(1¡ ´2)

´2
and b =

(1¡ ¹)(1¡ ´2)
´2

: (6.1)

6.2 Computational Details and Simulation Results

For each con¯guration of (¹; ´2) or equivalently (a; b), we performed 10,000 simulation

runs. First, the cell probabilities pj = F (cjja; b) ¡ F (cj¡1ja; b); j = 1; 2; : : : ; J were cal-

culated. Each simulation run consisted of generating the multinomial cell count vector
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(n1; n2; : : : ; nJ) with the cell probability vector (p1; p2; : : : ; pJ) and total sample size n.

All three methods of estimation were applied to each generated cell count vector, and

estimates (ba;bb) and (b¹; b́2) were calculated. The penalty-barrier method of nonlinear pro-
gramming (Bazaraa, Sherali and Shetty, 1993) was used to ¯nd the MLE-D (by maximizing

the log-likelihood function (3.1) subject to a; b > 0) as well as to solve the equations (4.2)

for MLE-C and equations (4.5) for MME-C. The results were averaged over 10,000 runs

to ¯nd the bias and variance estimates. The mean square error (MSE) was calculated as

MSE = Bias2 +Variance. The simulation estimates of bias, variance and MSE for the three

methods are summarized in Tables 2-5.

It is interesting to note that the MME-C and MLE-D methods generally underestimate

¹, but always overestimate ´2. The biases in b́2 become very large when ¹ is close to 1 and
´2 is close to 0. The MLE-C method does not exhibit such systematic patterns and its biases

in b́2 are generally much smaller.
The minimum MSE for each con¯guration (¹; ´2) is marked with an asterisk. Note that

no method is uniformly best for all con¯gurations either for estimating ¹ or ´2. However, out

of the nine (¹; ´2) con¯gurations for each (J; n) combination, the MLE-C method has the

smallest MSE's in the following numbers of cases: for J = 5; n = 30, the smallest MSE(b¹) in
four cases and the smallest MSE( b́2) in ¯ve cases, for J = 5; n = 60, the smallest MSE(b¹) in
four cases and the smallest MSE( b́2) in three cases, for J = 10; n = 30, the smallest MSE(b¹)
in six cases and the smallest MSE( b́2) in seven cases, and for J = 10; n = 60, the smallest
MSE(b¹) in three cases and the smallest MSE( b́2) in seven cases.
The methods can be compared through the ratios of their MSE's, referred to as the

relative e±ciencies (RE's). We de¯ne the RE's in terms of the MLE-C method. The RE

of the MLE-C method with respect to (w.r.t.) another method is the ratio of the MSE of

that method to the MSE of the MLE-C method. Thus RE > 1 (or log(RE) > 0) favors the

MLE-C method. The logarithms of the RE of the MLE-C method w.r.t. the MME-C and

MLE-D methods for estimating ¹ and ´2 are plotted in Figures 1 to 4. Each ¯gure is for

a di®erent combination (J; n). The left panel of each ¯gure shows the plots of log(RE) for

estimating ¹, while the right panel shows the plots of log(RE) for estimating ´2. In both

cases the log(RE) values are plotted against ¹ and di®erent plots are made for the three
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values of ´2. The plots of log(RE) w.r.t. the MME-C method are shown with solid lines

and solid plotting symbols, while the plots of log(RE) w.r.t. the MLE-D method are shown

with dotted lines and open plotting symbols. The plotting symbols used are diamonds for

´2 = 0:3, squares for ´2 = 0:1 and triangles for ´2 = 0:03.

We see that most of the log(RE)'s are positive, favoring the MLE-C method. Further-

more, the positive values of log(RE) are much larger than any negative values. In other

words, the potential bene¯ts of the MLE-C method are much greater than any potential

losses w.r.t. the other two competing methods. The MLE-D method is often competitive,

whereas the MME-C method is not preferred in any situation.

7. Maximum Likelihood Estimation of Cutpoints

First let us consider estimation of cutpoints for a single treatment. Taking the partial

derivatives of the log-likelihood (3.1) with respect to the cj and using the fact that pj =

F (cjja; b)¡ F (cj¡1ja; b) we get the following likelihood equations
@ lnL

@cj
= f(cjja; b)

(
nj
pj
¡ nj+1
pj+1

)
= 0 (j = 1; 2; : : : ; J ¡ 1);

where f(cjja; b) is the beta density function (1.1). The solutions to these equations are given
by

pj = F (cjja; b)¡ F (cj¡1ja; b) = nj
n
(j = 1; 2; : : : ; J); (7.1)

where F (c0ja; b) = 0 and F (cJ ja; b) = 1. The MLE-C method (which, as we saw, is the

preferred method for estimating (a; b)) equations can be supplemented with these equations,

and the two sets of equations can be solved iteratively. For example, we can start with an

initial guess of equispaced cutpoints cj = j=J and solve for (a; b) using (4.2). Then using

these estimates of (a; b), the equations (7.1) can be solved for (c1; c2; : : : ; cJ¡1). Two remarks

are in order concerning the implementation of this recursive algorithm.

1. After having computed the estimates of the cj , we need to recompute the continuousized

data values xjk given by (4.1) in order to iterate with respect to the estimates of (a; b)

using (4.2).

2. If some nj = 0 then we get cj¡1 = cj from (7.1). One way to address this di±culty

is to add a pseudo-observation = 1/2 to all cells thus avoiding empty cells. The other
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alternative is to merge this cell with an adjacent nonempty cell. We prefer the second

alternative, especially for multiple treatments, as explained below. Adding pseudo-

observations is less preferable because the MLE-C method for estimating (a; b) does

not require pseudo-observations to achieve convergence.

Now consider I ¸ 2 treatment combinations, each associated with its own beta latent

distribution with parameters (ai; bi); i = 1; 2; : : : ; I. The cutpoints are common to all

treatment combinations. Let nij be the cell count in the jth cell of the ith treatment

combination and let ni =
PJ
j=1 nij be the total number of observations on the ith treatment

combination. The log-likelihood function is

lnL =
IX
i=1

JX
j=1

nij ln pij; (7.2)

where pij = F (cjjai; bi)¡F (cj¡1jai; bi). By taking the partial derivatives of lnL with respect
to (w.r.t.)the cj (1 · j · J ¡ 1), we get the following equations for the MLE's of the cj for
given (ai; bi); i = 1; 2; : : : ; I:

IX
i=1

f(cjjai; bi)
(
nij
pij
¡ ni;j+1
pi;j+1

)
= 0 (j = 1; : : : ; J1): (7.3)

These equations do not have a simple solution as in (7.1). An alternative method of estimat-

ing the cutpoints is by the moments method by equating the expected number of outcomes

in each cell to the observed number of outcomes. The corresponding equations are

IX
i=1

nipij =
IX
i=1

ni[F (cjjai; bi)¡ F (cj¡1jai; bi)] =
IX
i=1

nij (j = 1; : : : ; J ¡ 1): (7.4)

Note that both (7.3) and (7.4) are di®erent generalizations of (7.1).

Both these methods yield cj¡1 = cj if the total count in the jth category,
PI
i=1 nij , is

zero, i.e., no outcomes are observed in this category for any of the treatments. In this case

it seems reasonable to merge this category with an adjacent one since the other option of

adding pseudo-observations to all IJ cells is unattractive.

We found that the method of directly maximizing the log-likelihood function (7.2) w.r.t.

the cj 's for ¯xed (ai; bi) i = 1; : : : ; I gives the best numerical performance, and so was

adopted. The same penalty barrier method described in Section 6.2 was used for direct
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maximization. The constraints 0 < c1 < c2 < ¢ ¢ ¢ < cJ¡1 < 1 were imposed after merging
any categories having zero outcomes with adjacent categories.

8. Example

We ¯tted the proposed beta distribution model to two data sets given in Best and Rayner

(1998) (the ¯rst data set is from Agresti (1990)) using the MLE-C method. The proportional

odds model was also ¯tted to the same data sets for comparison purposes. This model is

given by

ln

Ã
¼ij

1¡ ¼ij

!
=
cj ¡ ¹i
¾i

; i = 1; 2; : : : ; I; j = 1; 2; : : : ; J;

where ¼ij = pi1+ ¢ ¢ ¢+pij is the cumulative probability of response · j for the ith treatment.
Note that both the models have the same number of free parameters, namely 2I location

and dispersion parameters for the I treatments, and J ¡ 1 cutpoints. McCullagh (1986)
suggested that the e®ects of the factors on the ¹i and the ln ¾i can be modeled as linear

models.

McCullagh's PLUM program (1988) was used to ¯t the proportional odds model. The

data sets are given in Tables 6 and 7. The ¯rst data set gives the counts of people in

defense force sta® from di®erent regions of U.S. whose likings for black olives were scored on

a six-point ordinal scale. The second data set gives the counts of Australian and Japanese

consumers from two cities in each country whose likings for Japanese chocolate were scored

on a seven-point ordinal scale. Both data sets have treatments with factorial structures;

however, our objective here is not to assess the e®ects of the factors on the ordinal responses,

but simply to evaluate the goodness of ¯ts of the two models.

Each table gives the observed cell counts as well as the ¯tted cell counts using the two

models. The last column gives the contribution to the overall chi-square goodness of ¯t

statistic:
IX
i=1

JX
j=1

(Observedij ¡ Fittedij)2
Fittedij

from each row i of the table. This chi-square statistic has I(J ¡ 1) ¡ 2I ¡ (J ¡ 1) =
(I ¡ 1)(J ¡ 1)¡ 2I degrees of freedom (d.f.) for both ¯tted models.

The overall chi-square statistics along with their d.f. and p-values are shown in the

following table.
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Beta Distribution Model Proportional Odds Model

Data Set 1 Â2 = 14:381, d.f. = 13, p = 0:348 Â2 = 11:554, d.f. = 13, p = 0:564

Data Set 2 Â2 = 12:413, d.f. = 10, p = 0:258 Â2 = 11:755, d.f. = 10, p = 0:302

We see that both models ¯t reasonably well. The proportional odds model gives somewhat

better overall ¯ts, as well as for individual rows of the two tables in all cases except one.

Thus it is a distinct competitor to the proposed beta distribution model. However, we feel

that the beta distribution model has other advantages to o®er as enumerated in Section 1.

9. Conclusions

The simulation results have shown that although there is not a uniformly best method of

estimation, in a majority of cases the MLE-C method is superior to the other two. In other

cases the MLE-D method is generally the best, but the MLE-C method is not far behind.

The MME-C and the MME-D methods are not serious contenders for estimating either ¹ or

´2.

Besides its statistical e±ciency, the MLE-C method has the following two advantages.

1. It is computationally much faster than the other methods.

2. It does not face any convergence problems even in case of sparse cells. Therefore it

does not need data augmentation by pseudo-observations.

Because of these advantages we recommend the MLE-C method for estimation of the location

and dispersion parameters of the beta distribution model. This method is then combined

with the maximum likelihood method for estimating the cutpoints in an iterative two-step

algorithm.

The beta distribution model and the proportional odds model were both ¯tted to real data

sets. Both models ¯tted reasonably well, but the proportional odds model gave marginally

better ¯ts. The beta distribution model has some other advantages, however. In future

research both models should be compared in terms of their ability to detect location and

dispersion e®ects in multifactor experiments.
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Table 1: Values of (a; b) Corresponding to Selected Values of (¹; ´2)

J ¹ ´2 a b

5 0.5 0.3 1.1667 1.1667

0.1 4.5000 4.5000

0.03 16.167 16.167

0.7 0.3 1.6333 1.6333

0.1 6.3000 2.7000

0.03 22.633 9.7000

0.9 0.3 2.1000 0.2333

0.1 8.1000 0.9000

0.03 29.100 3.2333

10 0.55 0.3 1.2833 1.0500

0.1 4.9500 4.0500

0.03 17.783 14.550

0.75 0.3 1.7500 0.5833

0.1 6.7500 2.2500

0.03 24.250 8.0833

0.95 0.3 2.2167 0.1167

0.1 8.5500 0.4500

0.03 30.717 1.6167
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Table 2: Simulation Estimates of Bias, Variance and Mean Square Error of ¹̂ and ^́2 for

MME-C, MLE-D and MLE-C Methods of Estimation (J = 5; n = 30)

¹ ´2 MME-C MLE-D MLE-C

Bias(¹̂) Var(¹̂) MSE(¹̂) Bias(¹̂) Var(¹̂) MSE(¹̂) Bias(¹̂) Var(¹̂) MSE(¹̂)

0.5 0.3 ¡0:020 23.12 23.12 ¡0:018 22.63 22.63 ¡0:019 21.72 21.72*

0.1 ¡0:007 7.94 7.94 ¡0:006 7.81 7.81* ¡0:004 9.77 9.77

0.03 ¡0:005 2.89 2.89 ¡0:005 2.83 2.83* ¡0:006 3.48 3.48

0.7 0.3 ¡1:401 20.44 22.40 ¡1:472 19.90 22.07* ¡2:239 18.67 23.68

0.1 ¡1:390 7.53 9.46 ¡1:571 7.26 9.73 +0.357 8.10 8.22*

0.03 ¡1:775 2.33 5.48 ¡2:041 2.34 6.50 ¡0:019 3.37 3.37*

0.9 0.3 ¡2:762 11.41 19.04* ¡3:070 11.73 21.15 ¡6:324 9.03 49.03

0.1 +0.066 6.88 6.88* ¡0:626 7.62 8.01 ¡3:055 2.37 11.70

0.03 +4.049 2.20 18.59 +3.671 3.07 16.54 ¡0:694 0.80 1.28*

¹ ´2 Bias(^́2) Var(^́2) MSE(^́2) Bias(^́2) Var(^́2) MSE(^́2) Bias(^́2) Var(^́2) MSE(^́2)

0.5 0.3 +1.214 40.07 41.54 +0.037 35.76 35.76 ¡1:324 13.63 15.38*

0.1 +1.618 5.98 8.60 +1.320 5.48 7.22* +2.251 7.45 12.52

0.03 +1.949 1.36 5.16* +2.259 0.94 6.04 +2.182 1.61 6.38

0.7 0.3 +2.204 48.04 52.93 +0.954 43.11 44.02 ¡4:957 16.59 41.16*

0.1 +3.697 8.63 22.30 +3.235 7.69 18.16* +3.616 5.27 18.35

0.03 +3.189 1.57 11.73 +3.392 1.16 12.66 +2.717 2.90 10.28*

0.9 0.3 +9.875 71.35 168.9 +7.13 86.43 137.2* +17.13 18.40 311.7

0.1 +25.56 56.60 709.7 +22.69 54.96 569.7 ¡2:242 2.68 7.71*

0.03 +47.03 79.02 2291 +42.56 53.20 1864 +2.250 1.08 6.14*

Multiply the bias by 10¡2 and the variance and MSE by 10¡4.

Asterisk (*) represents the minimum MSE for given (¹; ´2) con¯guration (row).
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Table 3: Simulation Estimates of Bias, Variance and Mean Square Error of ¹̂ and ^́2 for

MME-C, MLE-D and MLE-C Methods of Estimation (J = 5; n = 60)

¹ ´2 MME-C MLE-D MLE-C

Bias(¹̂) Var(¹̂) MSE(¹̂) Bias(¹̂) Var(¹̂) MSE(¹̂) Bias(¹̂) Var(¹̂) MSE(¹̂)

0.5 0.3 ¡0:036 12.83 12.83 ¡0:037 12.56 12.56 ¡0:034 11.05 11.05*

0.1 ¡0:010 4.42 4.42 ¡0:009 4.38 4.38* ¡0:008 5.10 5.10

0.03 ¡0:015 1.61 1.61 ¡0:015 1.59 1.59* ¡0:016 1.77 1.77

0.7 0.3 ¡0:756 11.45 12.02 ¡0:789 11.22 11.84* ¡2:311 9.80 15.14

0.1 ¡0:741 4.00 4.55 ¡0:833 3.94 4.63 +0.426 4.13 4.31*

0.03 ¡0:968 1.32 2.25 ¡1:146 1.32 2.63 +0.069 1.81 1.81*

0.9 0.3 ¡1:448 6.43 8.52* ¡1:539 6.24 8.61 ¡6:381 4.68 45.40

0.1 +1.168 4.60 5.96 +0.591 4.78 5.13* ¡3:053 1.23 10.55

0.03 +5.792 1.50 35.05 +5.438 2.03 31.60 ¡0:561 0.46 0.78*

¹ ´2 Bias(^́2) Var(^́2) MSE(^́2) Bias(^́2) Var(^́2) MSE(^́2) Bias(^́2) Var(^́2) MSE(^́2)

0.5 0.3 +0.632 20.59 20.99 +0.036 19.36 19.36 ¡0:204 6.77 6.81*

0.1 +0.818 3.19 3.86 +0.683 3.06 3.52* +2.689 4.24 11.47

0.03 +0.939 0.62 1.50* +1.210 0.48 1.95 +2.328 0.81 6.23

0.7 0.3 +1.149 25.12 26.44 +0.539 23.68 23.97* ¡3:960 8.63 24.31

0.1 +1.917 4.37 8.05 +1.744 4.07 7.11* +4.324 2.68 21.38

0.03 +1.533 0.65 3.00* +1.838 0.51 3.89 ¡1:787 1.53 4.73

0.9 0.3 +5.518 49.76 80.21 +4.801 49.25 72.30* ¡16:46 9.91 281.0

0.1 +17.02 25.70 315.3 +15.07 26.96 253.9 ¡1:787 1.53 4.73*

0.03 +38.79 64.25 1569 +36.59 74.90 1413 +2.345 0.73 6.23*

Multiply the bias by 10¡2 and the variance and MSE by 10¡4.

Asterisk (*) represents the minimum MSE for given (¹; ´2) con¯guration (row).
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Table 4: Simulation Estimates of Bias, Variance and Mean Square Error of ¹̂ and ^́2 for

MME-C, MLE-D and MLE-C Methods of Estimation (J = 10; n = 30)

¹ ´2 MME-C MLE-D MLE-C

Bias(¹̂) Var(¹̂) MSE(¹̂) Bias(¹̂) Var(¹̂) MSE(¹̂) Bias(¹̂) Var(¹̂) MSE(¹̂)

0.55 0.3 ¡0:708 18.44 18.94 ¡0:709 17.73 18.23* ¡0:203 22.30 22.34

0.1 ¡0:722 6.16 6.68 ¡0:877 5.70 6.47* +0.013 8.44 8.44

0.03 ¡0:715 2.01 2.52* ¡0:914 1.83 2.66 ¡0:007 2.74 2.74

0.75 0.3 ¡3:504 14.56 26.83 ¡3:615 13.49 26.56 ¡1:512 17.72 20.00*

0.1 ¡3:461 5.01 16.99 ¡4:348 4.42 23.32 +0.112 6.47 6.48*

0.03 ¡3:579 1.59 14.40 ¡4:698 1.38 23.45 +0.001 2.18 2.18*

0.95 0.3 ¡6:412 4.21 45.32 ¡6:396 4.02 44.93 ¡4:227 5.39 23.26*

0.1 ¡5:263 1.60 29.30 ¡6:145 2.50 40.26 ¡2:472 1.50 7.61*

0.03 ¡3:843 0.55 15.31 ¡4:534 1.70 22.26 ¡0:949 0.46 1.36*

¹ ´2 Bias(^́2) Var(^́2) MSE(^́2) Bias(^́2) Var(^́2) MSE(^́2) Bias(^́2) Var(^́2) MSE(^́2)

0.55 0.3 +1.128 24.15 25.42 +0.114 20.96 20.97 ¡1:622 17.52 20.16*

0.1 +3.561 4.17 16.86 +3.488 3.57 15.73 +0.293 5.26 5.35*

0.03 +4.539 0.53 21.13 +5.210 0.42 27.56 +0.597 0.71 1.07*

0.75 0.3 +4.038 27.26 43.56 +2.927 23.40 31.96* ¡5:592 20.24 51.51

0.1 +8.085 5.39 70.76 +7.115 4.90 55.52 +0.937 5.55 6.42*

0.03 +9.168 0.94 84.98 +8.140 0.59 66.85 +0.823 0.85 1.53*

0.95 0.3 +20.12 28.29 433.3 +18.40 26.77 365.5* ¡20:93 16.42 454.5

0.1 +38.14 25.16 1479 +33.66 31.29 1164 ¡4:687 3.30 25.27*

0.03 +50.93 18.99 2613 +45.48 32.66 2101 +0.104 0.79 0.80*

Multiply the bias by 10¡2 and the variance and MSE by 10¡4.

Asterisk (*) represents the minimum MSE for given (¹; ´2) con¯guration (row).
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Table 5: Simulation Estimates of Bias, Variance and Mean Square Error of ¹̂ and ^́2 for

MME-C, MLE-D and MLE-C Methods of Estimation (J = 10; n = 60)

¹ ´2 MME-C MLE-D MLE-C

Bias(¹̂) Var(¹̂) MSE(¹̂) Bias(¹̂) Var(¹̂) MSE(¹̂) Bias(¹̂) Var(¹̂) MSE(¹̂)

0.55 0.3 ¡0:399 11.03 11.19 ¡0:402 10.55 10.71* ¡0:217 11.45 11.49

0.1 ¡0:405 3.70 3.87 ¡0:495 3.54 3.79* +0.110 4.37 4.37

0.03 ¡0:388 1.20 1.35* ¡0:501 1.15 1.40 ¡0:005 1.41 1.41

0.75 0.3 ¡1:901 8.71 12.33 ¡1:966 8.17 12.04 ¡1:547 9.13 11.52*

0.1 ¡1:884 2.93 6.48 ¡2:404 2.71 8.49 +0.130 3.33 3.34*

0.03 ¡1:943 0.93 4.71 ¡2:576 0.88 7.51 +0.025 1.13 1.13*

0.95 0.3 ¡3:396 2.55 14.08* ¡3:507 2.33 14.63 ¡4:263 2.59 20.76

0.1 ¡2:189 1.06 5.85* ¡3:138 1.36 11.21 ¡2:502 0.81 7.07

0.03 ¡0:569 0.36 0.69* ¡1:462 0.89 3.02 ¡0:873 0.25 1.01

¹ ´2 Bias(^́2) Var(^́2) MSE(^́2) Bias(^́2) Var(^́2) MSE(^́2) Bias(^́2) Var(^́2) MSE(^́2)

0.55 0.3 +0.608 13.68 14.04 +0.065 12.27 12.28 ¡0:789 9.03 9.66*

0.1 +1.893 2.42 6.01 +1.954 2.16 5.98 +0.526 2.84 3.12*

0.03 +2.414 0.31 6.31 +2.886 0.26 8.59 +0.635 0.36 0.76*

0.75 0.3 +2.303 16.84 22.14 +1.742 15.00 18.04* ¡4:821 10.29 33.53

0.1 +4.549 2.82 23.52 +4.097 2.69 19.47 +1.379 2.96 4.87*

0.03 +5.160 0.38 27.00 +4.723 0.30 22.61 +0.880 0.44 1.22*

0.95 0.3 +15.08 25.20 252.7 +14.11 25.23 224.4* ¡20:54 8.16 430.1

0.1 +30.84 19.54 970.6 +26.28 23.35 714.0 ¡4:355 1.97 20.93*

0.03 +45.29 20.51 2072 +38.79 33.65 1538 +0.163 0.46 0.49*

Multiply the bias by 10¡2 and the variance and MSE by 10¡4.

Asterisk (*) represents the minimum MSE for given (¹; ´2) con¯guration (row).
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Table 6: Preference for Black Olives (Olive Data)

Row Type of Response

Count ¡ ¡ 0 + ++ +++ Chi-Square

1 Observed 20 15 12 17 16 28

Fitted (Beta) 18.224 14.049 18.848 17.695 12.782 26.402 3.660

Fitted (Prop. Odds) 19.503 13.036 17.185 16.399 12.395 29.482 3.018

2 Observed 18 17 18 18 6 25

Fitted (Beta) 18.531 14.163 18.647 16.994 11.838 21.827 4.006

Fitted (Prop. Odds) 19.931 14.028 17.996 16.154 11.334 22.557 3.802

3 Observed 12 9 23 21 19 30

Fitted (Beta) 11.511 13.399 20.990 21.537 16.019 30.545 2.235

Fitted (Prop. Odds) 10.750 12.088 20.431 22.598 17.418 30.715 1.531

4 Observed 30 22 21 17 8 12

Fitted (Beta) 29.314 19.199 22.282 17.259 10.038 11.907 0.917

Fitted (Prop. Odds) 30.258 20.986 22.486 15.749 8.740 11.781 0.316

5 Observed 23 18 20 18 10 15

Fitted (Beta) 22.847 16.701 20.749 17.371 10.944 15.389 0.243

Fitted (Prop. Odds) 22.928 17.652 21.275 16.797 10.189 15.158 0.175

6 Observed 11 9 26 19 17 24

Fitted (Beta) 11.296 13.300 20.621 20.638 14.822 25.324 3.320

Fitted (Prop. Odds) 10.224 12.390 21.028 22.291 15.985 24.082 2.713

Row 1: Urban Midwest, Row 2: Urban Northeast, Row 3: Urban Southwest

Row 4: Rural Midwest, Row 5: Rural Northeast, Row 6: Rural Southwest
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Table 7: Liking for Japanese Chocolate (Chocolate Data)

Row Type of Response

Count 1 2 3 4 5 6 7 Chi-Square

1 Observed 2 1 6 1 8 9 6

Fitted (Beta) 1.625 2.755 3.293 2.202 10.042 7.061 6.023 5.035

Fitted (Prop. Odds) 1.529 2.693 3.221 2.083 9.400 7.565 6.511 4.692

2 Observed 1 6 2 2 10 5 5

Fitted (Beta) 2.044 3.136 3.536 2.276 9.658 6.064 4.287 4.168

Fitted (Prop. Odds) 2.036 3.404 3.777 2.287 9.026 6.009 4.462 3.719

3 Observed 0 1 3 4 15 7 1

Fitted (Beta) 0.136 1.223 3.159 2.923 15.503 6.785 1.271 0.662

Fitted (Prop. Odds) 0.148 1.091 3.016 2.978 16.327 6.355 1.084 0.686

4 Observed 1 1 2 3 16 6 2

Fitted (Beta) 0.487 2.014 3.507 2.729 13.053 6.870 2.340 2.549

Fitted (Prop. Odds) 0.300 1.502 3.228 2.781 14.292 7.046 1.851 2.657

Row 1: Sydney, Australia, Row 2: Melbourne, Australia, Row 3: Tokyo, Japan, Row 4: Osaka, Japan


