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A simulation-based methodology is proposed to map the mean of steady-state cycle time (CT) as a function of
throughput (TH) and product mix (PM) for manufacturing systems. Nonlinear regression models motivated by
queueing analysis are assumed for the underlying response surface. To ensure efficiency and control estimation
error, simulation experiments are built up sequentially using a multi-stage procedure to collect data for fitting the
models. The resulting response surface is able to provide a CT estimate for any TH and any PM, and thus allows
the decision maker to instantly investigate options and trade offs regarding their production planning.

Keywords: discrete event simulation; response surface modelling; design of experiments; queueing;
semiconductor manufacturing

1. Introduction

Planning for manufacturing, either at the factory or
enterprise level, requires answering what-if questions
involving (perhaps a very large number of) different
scenarios for product mix (PM), production targets
and capital expansion. Computer simulation is an
essential tool for the design and analysis of complex
manufacturing systems. Often, before a new system is
deployed or changes are made to an existing system, a
simulation model will be created to predict the system’s
performance. Even when no substantial changes are
envisioned, simulation is used to allocate capacity
among production facilities. In either case, simulation
is faster and much more cost effective than experi-
menting with the physical system (when that is even
possible). This is especially true in the semiconductor
industry, which is the motivating application for this
research (see, e.g. Schömig and Fowler 2000).

In semiconductor manufacturing, many man-hours
are invested in developing and exercising simulation
models of wafer fab systems. These models include
critical details that are difficult or impossible to
incorporate into simple load calculations or queueing
approximations. Unfortunately, simulation models can
be clumsy tools for planning or decision-making
because even a few minutes per simulation run
(which is optimistic) is too slow to allow what-if
analysis in real time. In our research, we develop

techniques to support strategic planning from a new

perspective: we combine computing horsepower, adap-

tive statistical methods and queueing theory to make

simulation a much more effective tool than before.
Our objective is to estimate the mean of steady-

state cycle time (CT) as a function of the input decision

variables throughput (TH) and PM. CT, technically is

defined as a random variable representing the time

required for a job or lot to traverse a given routing in a

production system (e.g. Hopp and Spearman 2001). In

the remainder of this article, we will use ‘CT’ to refer to

the mean of this random variable. A semiconductor

manufacturing system can control CT by controlling

two decision variables, PM and release rate at which

lots are started in the factory (lot-start rate or

equivalently, TH rate). Hence, the CT–TH–PM surface

can play an important role in strategic planning of

semiconductor manufacturing including evaluating

the mean of CT for a given TH and PM, determining

the sensitivity of product CTs to changes in TH or PM,

determining feasible THs that satisfy CT constraints,

and finding a PM that maximises revenue subject to

CT and TH constraints.
The proposed methodology is able to generate a

complete CT–TH–PM surface (with the response of

interest being the long-run average CT of products)

like that provided by a tractable queueing model, but

with the fidelity of simulation. In light of the
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comprehensive nature of the CT–TH–PM surface,
we integrate two different analysis approaches to
map the desired response surface: (i) queueing theory
and (ii) metamodelling, namely simulation-based
response surface modelling. The former approximates
system capacity and identifies bottleneck (BN)
resources, which facilitates the definition and normal-
isation of the feasible TH–PM region (Section 2.2).
Furthermore, the queueing analysis leads to the
division of the feasible region into a number of
subregions which allows for the fitting of a smooth
CT–TH–PM surface within each subregion (Section
5.2). Metamodelling, which is the primary focus of this
research, acts on a given simulation model of a
manufacturing system by performing simulation exper-
iments sequentially at selected settings of TH and PM
until a desired precision has been achieved on the
estimation of the response surface. Our CT–TH–PM
model fitting is based on the assumption that the
underlying surface can be captured by the proposed
regression models, the forms of which are motivated
by the analysis of simple queueing systems. Such
a response surface is able to provide a CT esti-
mate for any TH and any PM, and thus allows the
decision maker to investigate options and trade
offs almost instantly without running additional
simulations.

The remainder of this article is organised as
follows. Section 2 describes the research problem in
precise terms and introduces some notation. Section 3
provides an overview of the methodology proposed for
the generation of a CT–TH–PM surface, substantiated
by the technical details presented in Sections 4 and 5.
Section 6 describes the complete multi-stage procedure
for estimating a CT–TH–PM surface via sequential
simulation experiments. Section 7 provides an empir-
ical evaluation of the proposed method.

2. Statement of the problem

As noted, our goal is to approximate the mean cycle
time as a function of the manufacturing system TH and
PM. For the generation of such a CT–TH–PM surface,
we integrate analytical queueing analysis and simula-
tion-based statistical modelling. In this section, we
define most of the notation that will be used in these
two analysis approaches, and state the research
problem in more precise terms.

2.1. Analytical formulation of the product system

To perform the analytical queueing analysis as men-
tioned above, we represent the manufacturing system

as a multi-product queueing network. Suppose that the

system (e.g. wafer fab) consists of M different stations,

and it is designed to process K types of products with

each one following a different deterministic routing.

We define the system in a generic way as follows.

. {sj, j¼ 1, 2, . . . ,M}: the number of parallel

resources at station j.
. {ukj, k¼ 1, 2, . . . ,K; j¼ 1, 2, . . . ,M}: the effective

service rate of each resource at station j for

products of type k.
. {�kj, k¼ 1, 2, . . . ,K; j¼ 1, 2, . . . ,M}: the number

of visits by product type k to station j.

The product flow is described by

. �: the overall release rate of all the products into
the system.

. a¼ (�1,�2, . . . ,�K): the product-mix vector with

each element �i representing the fraction of type

k products in the flow, so that
PK

k¼1 �k ¼ 1,

�k 2 ½0, 1�.
. �k¼�k�: the release rate of product type k to the

system.

Under this formulation, capacity/BN analysis can

be performed as follows. We can easily calculate �j, the
utilisation of station j ( j¼ 1, 2, . . . ,M ). Let �kj¼ �kj/
(sj ukj), then �j ¼ �

PK
k¼1 �k�kj. The maximum utilisa-

tion �max¼maxj �j is called the system utilisation and

is denoted by x in this article. A station, say station

jBN, that reaches �max is called a BN station, that is,

jBN ¼ argmaxj�j ¼ argmaxj
XK
k¼1

�k�kj: ð1Þ

The stability constraint on the system requires

x ¼ �
PK

k¼1 �k�kjBN 5 1, or equivalently,

�5 1=
XK
k¼1

�k�kjBN ¼ u�ðaÞ, ð2Þ

where u�(a) is the system capacity, the upper limit on �
(or overall TH) for stability. Obviously, both capacity

u�(a) and the BN station jBN depend on the system

parameters as well as a.
Our metamodelling of the CT–TH–PM surface

requires an analytical pre-analysis to obtain u�(a) and

identify the BN station as a function of a. The core of

such capacity/BN analysis is the estimation of effective

service rate {ukj, k¼ 1, 2, . . . ,K; j¼ 1, 2, . . . ,M} at

each workstation of the system for any given PM.

Methods for computing the effective service rates

of realistic manufacturing systems are beyond the

scope of this article, and we rely instead on existing

queueing models and approximation methods to
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perform our capacity/BN pre-analysis. We refer inter-
ested readers to Kumar and Kumar (2001), Hopp et al.
(2002), Meng and Heragu (2004), Morrison and
Martin (2007) and Shantikumar et al. (2007).

In this article, we assume that the existing methods
can provide reasonably good capacity/BN analysis.
Nevertheless, as pointed out by Jacobs (2004) and Wu
et al. (2007), queueing models can fall short of
capturing many realistic features of real manufacturing
systems, and this may lead to approximation errors in
the estimated effective service rates. This inaccuracy
will certainly affect our simulation-based CT–TH–PM
modelling. However, we believe that simplified queue-
ing models are more accurate for approximating the
effective service rates rather than they are for estimat-
ing the expected CTs, which will be handled by
simulation in our research. Limited by the scope of
this article, we focus on the metamodelling aspect from
here on. Note that in the case study of Section 7.2, we
used the analytic engine provided by Factory Explorer
(an integrated capacity, cost and discrete-event simu-
lation software package particularly suitable for
modelling wafer fabs) to estimate the system capacity
and identify the BN station(s) as a function of the PM
for a realistic semiconductor manufacturing system,
and obtained highly accurate CT–TH–PM surfaces.

2.2. CT–TH–PM surface

As will become clearer later, after invoking the analytic
engine to perform capacity/BN analysis for the nor-
malisation and partition of the TH-PM region, simu-
lation experiments will be performed to collect data for
the fitting of the desired CT response surface. The
response of interest is the mean of steady-state CT for
products of type k (k¼ 1, 2, . . . ,K ), denoted ck(�, a).
Different types of products may follow different
processing steps, and thus have different CT
distributions. For each type of product, we seek to
estimate its long-run average CT, which depends on
the overall product flow through the system. The
product flow is characterised by start rate/TH � and
PM a, and in our work, we consider � and a as
independent variables that can be controlled by the
production manager (equivalently, the decision vari-
ables are {�k¼ �k�, k¼ 1, 2, . . . ,K}, the start rates of
each product type). As established in Section 5.1, the
stability condition of the system is such that � has to be
less than the system capacity u�(a), which can be
analytically approximated for given values of a. The
constraints on PM a will be discussed in Section 5.1.
Hence, with a prior queueing analysis of the system,
the feasible region for decision variables � and a is

well-defined for the simulation-based CT–TH–PM
model fitting.

For reasons that will become apparent in Section 3,
instead of estimating ck(�, a) we normalise the range of
� across the PM region, and directly estimate ck(x, a)
where x¼ �/u�(a) is the fraction of system capacity in
use and x is on the scale of [0, 1) regardless of the value
of a. Once we have obtained ck(x, a), a simple
transformation will give us ck(�, a). Again, system
capacity u�(a) obtained from queueing analysis is what
makes this transformation possible.

To model the CT–TH–PM surface, the most
straightforward way is to develop a response-surface
model that incorporates x and a as independent
variables. However, our investigation of analytically
tractable queueing network models convinces us that a
general model for ck(x, a) is unlikely to be successful
because the correct form of the model depends on
specifics of the network topology of the factory.
Therefore, we propose a two-step methodology for
the generation of the CT–TH–PM surface, which is
described in the next section.

3. Overview of the methodology

In this section, we provide an overview of the
simulation-based response surface modelling for
the CT–TH–PM surface. Our objective is to estimate
the CT measure at any normalised TH x and for any
feasible PM a. In light of the issues discussed in
Section 2.2, we decided to utilise our success in
estimating CT–TH curves with a fixed PM. We
propose first using simulation to fit CT–TH curves
for a carefully selected collection of PMs, and then
perform model fitting across the a-space. Notationally,
we define:

. ck,x(a): the expected CT of product k at fixed TH
x as a function of PM a.

. ck,a(x): the expected CT of product k for a given
PM a as a function of TH x.

. A¼ {a1, a2, . . . , an}: a collection of n PMs.

Our methodology consists of two steps:

(i) Use the procedure developed in Yang et al.
(2007) to estimate a collection of CT–TH
curves {ck,a(x), k¼ 1, 2, . . . ,K; a2A} over a
user-specified TH range x2 [xL, xU] (05 xL5
xU5 1). We take products of type 1 for
example. Figure 1 shows the CT–TH curves
for product 1 with each curve corresponding
to a different PM vector ai2A (i¼ 1, 2, 3).
Note that by making the independent variable
for each product’s CT–TH curve the fraction
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of system capacity at a given PM, all curves
run from [xL, xU] providing a common scale,
which is the reason why we chose to estimate
the CT response with respect to the normal-
ised TH x rather than the actual TH �. A brief
review of the estimation of CT–TH curves is
given in Section 4.

(ii) As illustrated in Figure 1, for products of type
k (k¼ 1, 2, . . . ,K ) a number of estimated
CT–TH curves can be generated at a selected
set of PMs fbck,aðxÞ, a 2 Ag with x2 [xL, xU]
(the fitted model is written as bck,aðxÞ), and
from these curves we can predict at any TH
x2 [xL, xU] the CTs bck,aðxÞ ¼bck,xðaÞ with
a2A. Based on the ‘data points’ fbck,xðaÞ,
a2Ag denoted as black dots in Figure 1,
model fitting can be performed over the entire
a-space to obtainbck,xðaÞ for a given x. Section
5 provides the detailed methods for the fitting
of CT–PM surface ck,x(a) at a fixed TH x.

As will be illustrated empirically in Section 7, the
method proposed above takes as input a simulation
model representing a realistic manufacturing system,
selects a collection of PMs A and generates via
simulation a number of CT–TH curves
fbck,aðxÞ, k ¼ 1, 2, . . . ,K; a 2 Ag, x2 [xL, xU] (Figure 1
displays such curves for product 1). Based on these
curves, CT–PM fitting can be performed, and hence
CT estimates for any PM at any TH level can be
derived. Next, we discuss the technical details of the
proposed method.

4. Review of the estimation of CT–TH Curves

Estimating CT–TH curves over a collection of PMs A
is the primary step for generating the CT–TH–PM

response surface, which provides the basis for the

estimation of CT across PM space. InYang et al. (2007),

a simulation-based method was proposed for the

generation of CT–TH curves at a fixed PM, which we

briefly review as follows.
A nonlinear regression model (3), which is

motivated by heavy-traffic queueing analysis, was

developed to represent the underlying CT–TH curve

ck,aðxÞ ¼

Pt
‘¼0 c‘x

‘

ð1� xÞp
: ð3Þ

For notational convenience we omit the subscript a for

the model in (3). Our task here is to generate CT–TH

curves {ck,a(x), k¼ 1, 2, . . . ,K} for a fixed PM a2A.
To estimate models (3) efficiently, Yang et al.

(2007) proposed a multi-stage procedure which builds

up simulation experiments until a desired precision has

been achieved for the curve fitting. Specifically, with

PM a fixed, simulation is performed sequentially at

different TH levels {x1, x2, . . .} for data collection. At

a certain TH xi, CT data {Z(k)(xi), k¼ 1, 2, . . . ,K}

(the average CT for all the type k products simulated in

a simulation run) can be obtained from a simulation

replication which is carried out with multiple types of

product flows. Figure 2 gives an example of the xi
versus Z(1)(xi) plots obtained for CT–TH fitting of

product 1 with multiple replications performed at each

xi. Hence, based on a single set of simulation exper-

iments performed at different THs, K data sets

{Z(k)(xi), k¼ 1, 2, . . . ,K} can be obtained, from which

K CT–TH curves {ck,a(x), k¼ 1, 2, . . . ,K} can be fitted.
As will be articulated in Section 6, throughout the

generation of CT–TH–PM surface, we assume that a

user-specified type of product (say type 1) and a certain

TH level x0 are of particular interest to production

planning. Hence in the CT–TH estimation, we control

Figure 2. CT data from simulation replications for product 1
at different THs.

Figure 1. CT–TH curves for product 1 at different PMs.
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the estimation error on the CT estimates bc1,aðx0Þ.
As explained in Yang et al. (2007), the CT estimatorbc1,aðx0Þ obtained from the fitted model (3) is approx-
imately (asymptotically) normally distributed, that is,bc1,aðx0Þ � Normðc1,aðx0Þ,dVar½bc1,aðx0Þ�Þ. Note that
c1,a(x0) is the true unknown CT, and dVar½bc1,aðx0Þ� is
the variance estimate ofbc1,aðx0Þ which can be obtained
from the nonlinear regression (3).

The quality of the curve fitting is evaluated in terms

of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar½bc1,aðx0Þ�Þq
, the precision achieved on bc1,aðx0Þ.

The sequential simulation is performed untilffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar½bc1,aðx0Þ�Þq
� �, ð4Þ

where � is a user-specified parameter. Here we adopt
the stopping rule (4) instead of the relative precision
criterion used in Yang et al. (2007). As mentioned
in Section 3, since the CT estimates obtained from
CT–TH curves serve as ‘data points’ in the CT–PM
modelling, (4) ensures that the variance of these
‘data points’ fbc1,aðx0Þ ¼bc1,x0ðaÞ, a 2 Ag is approxi-
mately �2 across the PM region, which justifies the
constant–variance assumption for the least-squares
fitting of the CT–PM model. Moreover, with the
variance �2 being a known value we are able to derive
valid statistical inference from the CT–PM nonlinear
regression (Section 5.5.3).

5. CT–PM response surface

As outlined in Section 3, once a collection of CT–TH
curves {ck,a(x), k¼ 1, 2, . . . ,K; a2A}, x2 [xL, xU] have
been estimated, the next step is to fit the CT–PM
surface. Namely, for a given system utilisation x, we
estimate ck,x(a) for products of type k (k¼ 1, 2, . . . ,K ).

5.1. The feasible PM Space

Obviously, PM a has to satisfy:XK
k¼1

�k ¼ 1, �k 2 ½0, 1�: ð5Þ

Figure 3(a) illustrates the feasible PM region in a
three-product case defined by constraint (5). In prac-
tice, the PM is usually subject to additional linear
constraints imposed by realistic situations (e.g. lower
bounds on release rates). We use the following nota-
tion to represent the linear constraints on PM

Aa � b, ð6Þ

where A is a matrix of K columns with each row
representing a constraint. Figure 3(b) gives an example
of the more restricted PM region defined by (5) and (6).

5.2. Partitioning the PM space

Production systems are usually constrained by one or
more BN resources. A BN is usually a facility or
resource which most constrains the production flow,
and it plays a key role in determining the overall
performance of the manufacturing system. As we
change the PM, the BN may shift from one resource
to another, which complicates the way that PM affects
the CT. As will be seen in Section 5.3, within an
a-region where no BN shift occurs, ck,x(a) tends to be
smooth and differentiable with respect to a. For the
purpose of modelling the CT–PM surface, we divide
the PM space into a number of subregions with each
one dominated by a different BN station or stations,
and fit the response surface for each subregion
individually.

Suppose the feasible PM region of feasibility is
defined as

� ¼ faja satisfies constraints (5) and (6)g:

Following the definition of the BN station provided by
(1), the subregion

�� ¼ faja 2 � and a mix makes station � a BNg

is given as the collection of a that satisfiesXK
k¼1

�k ¼ 1

Aa � b

�� � �j j ¼ 1, 2, . . . ,M:

ð7Þ

Following up on the three-product example dis-
cussed in Section 5.1, we further suppose that the
system consists of three stations. It can be shown that
for such a system the feasible region displayed in
Figure 3(b) could be divided in three different ways as
shown in Figure 4 depending on the system parame-
ters. As explained in Section 2.1, queueing network
models have been developed to obtain station utilisa-
tion �j ( j¼ 1, 2, . . . ,M ) as a function of PM a. Thus,
the partition of the PM region into constant-BN
subregions can be realised from analytical analysis
prior to the running of any simulation experiments.

(a) (b)

a2

a1 a1

a3 a3a2

Figure 3. Feasible PM space: unconstrained (a) and con-
strained (b).
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For the case study in Section 7.2, we use the analytic

engine in Factory Explorer to divide the PM region for

a wafer fab.
In the remainder of this section, we discuss the

statistical issues related to fitting the CT–PM surface.

5.3. Form of the CT–PM model

To estimate ck,x(a) for product k, we developed a

nonlinear regression model to represent the underlying

CT–PM surface, the form of which is motivated by a

simple open Jackson network.
Following the notation in Section 2.1, we consider

a Jackson network in which each station has a single

server having exponentially distributed service time

with rate uj (independent of product type). Given the

system parameters for this network, the expected CT

for each product type can be derived analytically as a

function of PM a. Since all ck,x(a) (k¼ 1, 2, . . . ,K )

functions have the same form, we consider the CT of

product 1 without loss of generality:

c1,xðaÞ ¼
XM
j¼1

�1j

uj 1� x

PK

k¼1
�k�kj=uj

maxh
PK

k¼1
�k�kh=uh

� �� � a 2 �:

ð8Þ

Note that a station that achieves maxh
PK

k¼1 �k�kh=uh is
a BN station. Within a subregion �� defined by (7)

where station � stays the BN, (8) can be written as

C1,xðaÞ ¼
XM
j¼1

�1j

uj 1� x

PK

k¼1
�k�kj=ujPK

k¼1
�k�k�=u�

� �� � a 2 ��: ð9Þ

It is obvious from (9) that the CT is a continuous and

differentiable function of a within a constant-BN

subregion. This motivates us to separately fit a

regression model to each subregion ��.

Moreover, with simple mathematical manipulation,
(9) can be rewritten as:

c1,xðaÞ ¼
XM
j¼1

PK
k¼1 akj�kPK
k¼1 hkj�k

¼ e0 þ
XM
j¼1

PK�1
k¼1 ekj�k

h0j þ
PK�1

k¼1 hkj�k
,

ð10Þ

where �K is eliminated by noting that
�K ¼ 1�

PK�1
k¼1 �k. All the coefficients akj, hkj, ekj and

e0 depend on system parameters only.
Motivated by (10), we adopt a nonlinear regression

model (11), which will be referred as the CT–PM
model, to approximate the CT–PM surface for product
of type k within a constant-BN region

ck,xðaÞ ¼ �ða, hRÞ ¼ 	 þ
XR
r¼1

f ða, brÞ

¼ 	 þ
XR
r¼1

PK�1
k¼1 bkr�k

b0r þ
PK�1

‘¼1 d‘r�‘
: ð11Þ

We make the following comments regarding (11).

. For notational convenience, we omit the sub-
scripts and use �(a, hR) to represent a CT–PM
surface ck,x(a) at a fixed TH x for product k.

. (�1,�2, . . . ,�K�1) are independent variables in
(11), and �K ¼ 1�

PK�1
k¼1 �k is eliminated from

the model due to linear dependence. For nota-
tional convenience, we use vector a to represent
a PM setting (�1,�2, . . . ,�K) and independent
variables (�1,�2, . . . ,�K-1) interchangeably. One
should bear in mind that in CT–PM modelling,
there are only K� 1 independent PM variables.

. The vector of unknown parameters hR includes
the constant term 	, and the coefficients
br¼ (b0r, b1r, . . . , bK�1,r) where r¼ 1, 2, . . . ,R.

. Model (11) is the sum of R ratio models

f ða, brÞ ¼

PK�1
k¼1 bkr�k

b0r þ
PK�1

‘¼1 d‘r�‘
r ¼ 1, 2, . . . ,R: ð12Þ

. R is an unknown parameter representing the
number of ratio models f (a, br) included in (11).

α1 α1 α1

α2 α2α3 α3 α2 α3

Ω1

(a) (b) (c)

Ω1

Ω2

Ω1

Ω2 Ω3

Figure 4. Division of the feasible PM region into constant BN regions.

Production Planning & Control 55

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
e
l
s
o
n
,
 
B
a
r
r
y
 
L
.
]
 
A
t
:
 
1
4
:
0
9
 
1
7
 
D
e
c
e
m
b
e
r
 
2
0
1
0



The value of integer R depends on the true
CT–PM surface, and the determination of R is
the key model-selection issue for CT–PM fitting
and will be discussed in Section 5.5.4.

. Vectors {dr¼ (d1r, d2r, . . . , dK�1,r), r¼ 1, 2, . . . ,R}
are parameters estimated prior to and indepen-
dent of the fitting of the CT–PMmodel (11), and
they are treated as known values in (11) (see
Section 5.4).

The CT–PM model (11) is almost the same as
formula (10) although it is expected that R is much
smaller than M, the number of stations in the system.
Next, we further examine the geometry of the CT–PM
surface in Section 5.4 and detail a strategy for fitting
the nonlinear response surface model (11) in
Section 5.5.

5.4. Curvature of CT–PM surface

In this section, we discuss the curvature (or the
bending) of the CT–PM surface based on Jackson
networks, which is the queueing model that motivates
our regression model (11). The form of (10) for a
Jackson network clearly suggests an additive model
which is the sum of a number of ratio functions. For
convenience of discussion, we rewrite (10) as follows

c1,xðaÞ ¼ �ðaÞ ¼ e0 þ
XM
j¼1

g1jðaÞ

g2jðaÞ

¼ e0 þ
XM
j¼1

PK�1
k¼1 ekj�k

h0j þ
PK�1

k¼1 hkj�k
, ð13Þ

where all the coefficients depend on system parameters
only. For each ratio function g1j (a)/g2j (a), both the
numerator g1j (a) and denominator g2j (a) are linear
functions of a. Geometrically speaking, g2j (a) is a one-
dimensional projection of the variable vector a¼

(�1,�2, . . . ,�K�1) onto the system parameter vector
hj¼ (h1j, h2j, . . . , hK�1, j). Since the numerator g1j (a) is
linear with respect to a, for response surface (13)
curvature is only induced to the surface along the
projections defined by hj ( j¼ 1, 2, . . . ,M ). Consider a
simple case with M¼ 1: the curvature of �(a) is most
pronounced along vector h1 whereas there is no
curvature in directions orthogonal to h1.

Real manufacturing systems could be composed of
a large number of stations (e.g.M could be on the scale
of hundreds), which implies response curvature on M
directions {hj, j¼ 1, 2, . . . ,M}. However, it is reason-
able to believe that using a substantially smaller
number of, say R, carefully chosen directions, (13)
could be well-approximated by the sum of ratio

functions along those R directions. Identifying the
curvature directions of the CT–PM surface plays an
important role in determining R, the number of ratio
functions incorporated in the CT–PM model, and in
assisting the nonlinear fitting of (11) as will be seen in
Section 5.5. In this article, a method based on a
quadratic polynomial approximation is used for the
identification of curvature directions, namely the
determination of the vectors {dr, r¼ 1, 2, . . . ,R} in
model (11).

Suppose we approximate the CT–PM surface �(a)
by a full quadratic model:

�QCðaÞ ¼ 
0þ a0
þ a0Ba

¼ 
0þ
XK�1
k¼1


k�k þ
XK�1
k¼1


kk�
2
kþ

XK�2
k¼1

XK�1
‘¼kþ1


k‘�k�‘,

ð14Þ

where b¼ (
1,
2, . . . ,
K�1), and B is the (K� 1)�
(K� 1) symmetric matrix

B ¼


11 
12=2 	 	 	 
1,K�1=2


12=2 
22 	 	 	 
1,K�1=2

..

. . .
. ..

.


K�1,1 
K�1,2 	 	 	 
K�1,K�1

0BBBB@
1CCCCA: ð15Þ

It is our empirical experience that a quadratic model,
although inadequate to accurately characterise the
CT–PM surface, provides good enough response
surface approximation to determine curvature direc-
tions. We perform the curvature analysis based on the
full quadratic model (14) following the approach in
Myers and Montgomery (2002).

The curvature of the surface depends on the
second-order coefficient matrix B. Let P0BP¼�

where � is a diagonal matrix containing the eigen-
values of B as main diagonal elements, and P is the
(K� 1)� (K� 1) matrix whose columns are the nor-
malised eigenvectors associated with the eigenvalues
of B. Let dmax be the (K� 1)� 1 eigenvector of B

associated with the maximum absolute eigenvalue
�max. Then dmax represents the projection direction of
a along which the curvature of the surface is most
marked. In model (11), dmax will be assigned to d1, and
sequentially d2, d3, . . . , dR will be determined in the
process of fitting (11) in a progressive manner. The
detailed fitting method is described in Section 5.5.5.

5.5. Estimation of the CT–PM model

Obtaining a well-estimated CT–PM surface is difficult.
For convenience of the discussion, we rewrite the
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CT–PM model introduced in Section 5.3:

�ða, hRÞ ¼ 	 þ
XR
r¼1

f ða, brÞ ¼ 	 þ
XR
r¼1

PK�1
k¼1 bkr�k

b0r þ
PK�1

‘¼1 d‘r�‘
:

ð16Þ

It is worth noting that model (16) falls into the

category of multi-variate rational functions. In the

literature, theories and techniques have been developed

for constructing rational function models of general

form, and we refer the interested reader to Cuyt and

Verdonk (1988, 1989), Lehmensiek and Meyer (2001)

and Cuyt et al. (2006). Here, in light of the particular

form of (16), we developed our own model fitting

strategy which provides a good estimation for the

CT–PM surface within a constant-BN subregion of

PM. Detailed discussions are given in the remainder of

this section.

5.5.1. Identifiability of model parameters

Given the structure of the CT–PM model (16),

obviously there are difficulties associated with the

identifiability of model parameters. There are two

characteristics of the CT–PM model which cause the

non-identifiability: (i) The first one is due to symme-

tries in model (16), which lead to multiple equivalent

parameters. For example, if the ratio functions in (16)

swap places, the parameters would be permutated.

(ii) The second reason is the mutual dependence

among the model parameters. For a ratio function

f (a, br) included in the model, if the parameters in

the numerator equal zero, the parameters in the

denominator can take any values and are thus not

unique.
Determining the curvature directions {dr, r¼ 1,

2, . . . ,R} (with dr being a normalised vector) indepen-

dently of the nonlinear regression fitting essentially

fixes problem (i), and alleviates the non-identifiability

difficulty (ii). In addition, eliminating {dr, r¼ 1,

2, . . . ,R} as unknowns in (16) helps with the ill-

posedness problem in parameter optimisation. Here,

the ill-posedness is due to the fact that the optimisation

objective function is not continuous with respect to the

model parameters to be optimised. The denominator of

each ratio function f (a, br) incorporated in the model

needs to be non-zero over the entire PM subregion ��

being investigated. With dr given, feasibility constraints

on model parameters can be easily derived forcing

the denominator to be at least � (a small positive value)

away from 0. Thus, for the nonlinear fitting,

the unknown parameter b0,r has to satisfy either of

the following constraints:

Constr1 : b0rþ d0ra4 � for any a 2��, b0r

4 ��min
a2��

fd0rag,

Constr2 : b0rþ d0ra5�� for any a 2��, b0r

5���max
a2��

fd0rag:

ð17Þ

Both a and dr are (K� 1)� 1 vectors and d0ra denotes
the inner product of them. Since �� is a simplex region
as illustrated in Figure 4, the minimum and maximum
of d0ra can be easily obtained for given dr.

In our method, we are not seeking to obtain
parameter estimates that may converge to the true
values of the underlying CT–PM surface, which might
be practically impossible to accomplish given the
structure of the model. Rather, we develop a systematic
fitting strategy which leads to a well-estimated

response surface that adequately describes the
CT–PM experiment data.

5.5.2. Least-square fitting of the CT–PM model

Suppose that for product k and fixed TH x, N data
points {(a1, y1), (a2, y2), . . . , (aN, yN)} have been col-

lected within a BN-constant region �� for the CT–PM
fitting. Recall that in CT–PM modelling, the CT
response yi is actually an estimate from the fitted
CT–TH curve bck,ai

ðxÞ, and as established in Section 4
we have yi ¼bck,xðaiÞ ¼bck,ai

ðxÞ � Normðck,ai
ðxÞ, �2Þ.

We assume that

yi ¼ �ðai, hRÞ þ "i i ¼ 1, 2, . . . ,N,

where "i�Norm(0, �2) and �2 is a user-specified preci-
sion target in the CT–TH curve fitting (Section 4).
The independence of errors can be justified by appealing

to the fact that {y1, y2, . . . , yN} are CT estimates
obtained from different CT–TH curves fitted from
independent simulation data sets. With the assumptions
satisfied for nonlinear regression, we use the least-
square method to estimate model (16).

Note that when the nonlinear fitting is performed
on (16), the number of ratio functions R is assumed
given, and the number of data points N is assumed
sufficiently large to allow for the fitting of model (16)
including R ratio functions. The constraints on
unknown parameters are provided in (17). When
performing the constrained nonlinear regression, only
one of the two alternative constraints can be imposed

on the unknown parameter b0r. Let ActiveConstr be a
R� 1 array defined as: ActiveConstr(r)¼ 1 if b0,r is
subject to Constr1; ActiveConstr(r)¼ 2 otherwise.
For a specified ActiveConstr array, the constrained

Production Planning & Control 57

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
e
l
s
o
n
,
 
B
a
r
r
y
 
L
.
]
 
A
t
:
 
1
4
:
0
9
 
1
7
 
D
e
c
e
m
b
e
r
 
2
0
1
0



nonlinear least-squares fitting can be formalised as:

min
hR

XN
i¼1

½yi��ðai,hRÞ�
2

where hR ¼ ð	,b1, . . . ,bRÞ

Subject to: b0,r satisfies constraint of type

ActiveConstrðrÞ for r¼ 1,2, . . . ,R:

ð18Þ

Obtaining good starting values for the unknown
parameters is important to ensure a successful non-
linear optimisation. As will be seen in Section 5.5.5,
where we provide a complete description of the fitting
process, a sequential model-fitting scheme is used to
provide good starting values for (18).

5.5.3. Statistical inference

Under the assumption that the error terms are
normally distributed with known variance �2, we do
not need to resort to a large-sample justification for
statistical inference on the CT–PM model. However, to
apply conventional statistical procedures (e.g. Seber
and Wild 2003, Chapter 5), we have to cope with the
difficulties caused by parameter non-identification.

As pointed out in Section 5.5.1, for a ratio function

f ða, brÞ ¼

PK�1
k¼1 bkr�k

b0r þ
PK�1

‘¼1 d‘r�‘
r ¼ 1, 2, . . . ,R ð19Þ

incorporated in model (16), if b1,r¼ b2,r¼
	 	 	 ¼ bK�1,r¼ 0 then b0r is not identified. When such
identification failure occurs, Phillips (1989) has shown
that the distribution of the estimated parameters is no
longer normal and instead belongs to the family of
‘mixed Gaussian distribution’. Therefore, to use the
conventional method to carry out parameter inference,
we must ensure that a given CT–PM model contains
no irrelevant ratio functions. In Section 5.5.4, model
selection strategies will be described in detail which are
expected to lead to a fully identified CT–PM model. If
the model is indeed identified, valid statistical inference
can be made based on an approximate normal distri-
bution of the model parameters, which is detailed in
Appendix A.1.

5.5.4. Model selection

In the CT–PM fitting, the major model selection issue
is the determination of R, the number of ratio
functions included in the CT–PM model for a given
data set. The complexity of the model is characterised
by the value of R, and a desirable value of R is the
smallest possible integer that is able to generate a good
approximation of the true response surface, taking into

account the trade-off between estimation bias and
variability due to estimation errors.

Suppose that the set of curvature directions in the
current estimated model �ða,bhRÞ is DR¼ {d1,
d2, . . . , dR} with R� 1 being the number of ratio
functions included so far. The question is: can the
approximation of the true CT–PM surface through
�ða,bhRÞ be improved by adding one additional ratio
function f (a, bRþ1) to capture some neglected non-
linearities? If the answer is yes, the data can be
explained more accurately by �ða,bhRþ1Þ; otherwise, we
declare �ða,bhRÞ as the best fitted model. In our fitting
process (Section 5.5.5), we embed three model selection
schemes which are which are performed following the
sequence presented below.

5.5.4.1. Quadratic model-based pre-selection. To
incorporate an additional ratio function f (a, bRþ1),
we propose to first determine its corresponding
curvature direction dRþ1 by performing the curvature
analysis described in Section 5.4. Specifically, we
calculate the estimated residuals
fei ¼ yi � �ða,bhRÞ, i ¼ 1, 2, . . . ,N g, and fit a full quad-
ratic model to {ei, i¼ 1, 2, . . . ,N} to identify the
direction dRþ1 along which curvature is most
pronounced.

There are two situations that may suggest that the
additional function f (a, bRþ1) should be omitted: (i)
dRþ1 turns out to be collinear to any of the normal
vector directions already in DR indicating that this
additional ratio function f (a, bRþ1) would not provide
much information that is not present in �ða,bhRÞ; and
(ii) the absolute value of the eigenvalue �Rþ1 corre-
sponding to dRþ1 is small suggesting little curvature
along the direction of dRþ1. We use the following
criteria for collinearity and curvature checking:

d0Rþ1dr 4 ‘0 r ¼ 1, 2, . . . ,R

�Rþ1
maxr¼1,2,...,R �r

5 c0: ð20Þ

If either condition of (20) is satisfied, we reject model
�ða,bhRþ1Þ. The parameters ‘02 (0, 1) and c02 (0, 1) are
user-specified. In our experiments, we used ‘0¼ 0.98
and c0¼ 0.02. The selected values of ‘0 and c0 are of
limited importance and could be specified in a
conservative manner (i.e. setting ‘0 close to 1 and c0
close to 0) since this quadratic model-based checking
serves only as a pre-screen for the hypothesis testing
below.

5.5.4.2. Hypothesis testing. For model selection
in our nonlinear regression analysis, the two

58 F. Yang et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
e
l
s
o
n
,
 
B
a
r
r
y
 
L
.
]
 
A
t
:
 
1
4
:
0
9
 
1
7
 
D
e
c
e
m
b
e
r
 
2
0
1
0



model specifications that we want to discriminate
between are:

H0 : y ¼ �ða, hRÞ þ ", ð21Þ

H1 : y ¼ �ða, hRÞ þ f ða, bRþ1Þ þ ": ð22Þ

The specic method for testing whether an additional
ratio function should be added to the CT–PM response
model is given in Appendix A.2.

5.5.4.3. Comparison with a reference surface. Another
difficulty involved with estimating a model of the form
(16) is related to ill-posedness. In the nonlinear fitting
(18), constraint (17) is imposed to bind the denomi-
nators of ratio functions f (a, br) (r¼ 1, 2, . . . ,R) at least
� (e.g. 10�5) away from 0 over ��, the entire constant–
BN subregion. Although it rarely occurs in our
CT–PM fitting process (described in Section 5.5.5),
we could obtain estimated parameters (from solving
(18)) that make the denominator of f (a, br) close to " at
some feasible PM points in ��. When this occurs, the
resulting model may fit the design points but deviate
dramatically from the true response surface.

Fortunately, this kind of nonlinear peculiarity can
be easily circumvented by performing a safety check on
the new expanded model �ða,bhRþ1Þ after it survives the
hypothesis test described above. Specifically, we carry
out a simple comparison between �ða,bhRþ1Þ and the
quadratic model b�QCðaÞ defined in (14), which as
mentioned in Section 5.4 is able to provide a reason-
ably good approximation, though not a sufficiently
accurate representation, of the CT–PM surface. Given
a data sample, both models (14) and (16) will be
estimated, and the maximum relative deviation
between these two fitted models over the �� region
will be calculated. If it is unreasonably large, say,

max
a2��

�ða,bhRþ1Þ � b�QCðaÞb�QCðaÞ
4 100%, ð23Þ

we reject �ða,bhRþ1Þ and declare �ða,bhRÞ as the best
fitted model.

5.5.5. CT–PM fitting process

Given a sample {(a1, y1), (a2, y2), . . . , (aN, yN)}, we pro-
pose to fit the CT–PM model in a progressive manner.
We start with the simplest model including only one
ratio function, and then sequentially expand the model
by incorporating one additional ratio function at a
time. Throughout this progressive fitting process,
strategies are embedded to provide good starting
values for the unknown parameters in the nonlinear

regression. Admittedly, the process described below is

fairly complicated, but all the efforts are necessary to

ensure a successful nonlinear fitting
Initially, we set R¼ 0 (the number of ratio

functions included in the CT–PM model is 0); and

the set of curvature directions D¼Ø.

Step 1: (1) Fit the full quadratic model (14) to the

data {(ai, yi), i¼ 1, 2, . . . ,N}, and determine the curva-

ture direction dmax and the corresponding eigenvalue

�max. Denote the estimated quadratic model as b�QCðaÞ.
(2) Set R¼ 1, dR¼ dmax, and D ¼ D

S
dR.

(3) Fit �(a, h1)¼ 	þ f (a, b1), the CT–PM model

with the current value of R¼ 1 and curvature direction

d1. Two different least squares problems (18) will be

solved subjecting b0,1 to Constr1 and Constr2, respec-

tively. Compare the sum of squared error (SSE)

resulting from the two nonlinear fittings. If

SSE15SSE2, set ActiveConstr(R)¼ 1; otherwise,

ActiveConstr(R)¼ 2. For determination of the start-

ing values of the unknown parameters in this nonlinear

fitting, see Appendix A.3.

Step 2: Check to see if there are a sufficient number

of PM points for the fitting of the expanded model

�(a, hRþ1). If N is less than 1þ (Rþ 1)�K (the number

of unknown parameters in �(a, hRþ1)), stop; otherwise,
continue.

(1) From the latest estimated CT–PM model

�ða,bhRÞ, compute the estimated residuals {(ai, ei),

i¼ 1, 2, . . . ,N}, and perform quadratic linear regres-

sion on them to identify the curvature direction dmax

and the corresponding eigenvalue �max. If conditions

(20) are satisfied, then stop and declare �ða,bhRÞ as the
best fitted model from the current data set; otherwise,

continue.
(2) Perform the model selection analysis based on

the hypothesis test described in Section 5.5.4. If the

new expanded model �ða,bhRþ1Þ is rejected, then stop

and declare �ða,bhRÞ as the best fitted model from the

current data set. Otherwise, continue.
(3) Set R¼Rþ 1, dR¼ dmax, and D ¼ D

S
dR.

(4) Fit the partial model E [ei]¼ f (a, bR) to {(ai, ei),

i¼ 1, 2, . . . ,N} with parameter b0R subject to constraint

(17). As in Step 1(3), two different nonlinear fittings will

be performed subjecting b0R to two types of constraints.

Again, if SSE15SSE2, set ActiveConstr(R)¼1; other-

wise, ActiveConstr(R)¼2. Appendix A.3 provides a

way to determine the starting values of the unknown

parameters in this partial fitting.

Step 3: (1) Estimate the CT–PM model �(a, hR) by

solving (18) with the current values of R, curvature

directions D, and ActiveConstr array specified in the
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previous steps. The latest estimates of the unknown
parameters 	, b1, . . . , bR obtained from �ða,bhR�1Þ and
f ða,bbRÞ will be used as the starting values.

(2) Compare �ða,bhRÞ obtained in Step 3(1) with
the quadratic model b�QCðaÞ fitted from Step 1(1), and
check to see if the condition (23) is satisfied. If yes, then
stop and declare �(a, hR�1) as the best fitted model
from the current data set; delete dR from D and set
R¼R� 1. Otherwise, go back to Step 2.

6. Procedure for estimating the CT–TH–PM

response surface

This section is devoted to the construction of the
experiment design and issues related to computational
efficiency. To provide context, a high-level description
of the procedure is provided in Figure 5 for estimating
the CT–TH–PM surface within a constant-BN PM
subregion �� (� is a station that can serve as BN of
the system). The procedure integrates the design of
experiments, simulation and statistical modelling, and
we will refer to this procedure as DSSM procedure in
the remainder of this article.

The inputs/outputs of the procedure are given as
follows.

Inputs: Simulation model of the system being investi-
gated, a TH range of interest [xL, xU], a TH level x0 that
the production is targeting (or is likely to operate at),

the product type (assumed to be type 1) of particular
interest to the user, absolute precision level � for the
estimated CT–TH curves (see Section 4 for the defini-
tion of �), precision level 100�%which is defined as the
relative error on bc1,x0ðaÞða2��), the CT estimates of
particular interest (Section 6.1.3).

Outputs: A set of CT–TH curves {ck,a(x), k¼ 1,
2, . . . ,K; a2A}, x2 [xL,xU] where A is a collection
of PM vectors. Based on these curves, for products of
any type k, we can derive the CT estimates at any TH x
and any PM a.

Assuming that c1,x0
(a), a2�� (the expected CTs at

TH x0 for product 1) are of primary interest to the
user, our goal is to obtain via simulation the CT
estimates bc1,x0 ðaÞða 2 ��) with a specified relative
precision 100�% while still well-estimating the
CT–TH–PM surface for all xL� x� xU and all types
of products.

To generate the CT–TH–PM response surface,
simulation experiments have to be carried out at a
number of TH–PM combinations for data collection.
Our approach is to first select the factor levels in the
PM space, and then for each PM, apply the procedure
proposed by Yang et al. (2007) to decide at what
TH rates the simulation should be carried out.
As illustrated in Figure 5, the experimentation is
initiated with a pilot design A0 consisting of N0 PMs.
For each a2A0, the CT–TH curves {ck,a(x), k¼ 1,

• Select an initial design 0 = { 1, 2, …, N0 } from the candidate set of design points in 
PM space (Section 6.1.1).

• For each PM 0, Simultaneously generate K CT-TH curves )(ˆ xck,a

k,a

1,a

1,a

 with ],[ UL xxx ∈
(k =1, 2, …, K ) by sequentially running simulation experiments until a desired precision 

has been achieved on )(ˆ 0xc (Section 4). 

• Based on the CT–TH curves, estimate )(ˆ
0,1 xc  ( νΩΩΩΩ∈ ), the CT–PM surface at 

TH x0 for type 1 products (Section 5.5.5).   

• Evaluate the precision achieved on the fitted surface )(ˆ
0,1 xc  with νΩΩΩΩ∈  (Section 6.1.3).

Desired precision
achieved?

No

Yes
STOP

• Include an additional design point in PM space (Section 6.1.2).  

• Simultaneously generate K CT-TH curves )(ˆ xc  (k =1, 2,…, K ) for the new PM 

by sequentially running simulation experiments until a desired precision  has 

been achieved on )(ˆ 0xc  (Section 4). 

¯

Figure 5. Flow chart for the procedure.
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2, . . . ,K; x2 [xL, xU]} are generated by running simu-
lation at different THs. Based on these curves, we can
estimate CT for any product type at any TH and PM,
and evaluate the relative error obtained for the CT
estimates. As far as efficiency issues are concerned, we
use the estimation quality ofbc1,x0 ðaÞ, a2�� to drive the
DSSM procedure: the design of simulation experi-
ments aims at achieving good estimation of bc1,x0 ðaÞ,
�2��, and the sequential experimentation is continued
until the desired precision is achieved. Technical details
of the procedure are given in the remainder of this
section.

6.1. Experiment design

When PM is fixed, Yang et al. (2007) developed an
experiment design strategy which, tailored to the
present context, targets efficient estimation of the
CT–TH curve bc1,aðxÞ, a2A, and which sequentially
allocates simulation runs to different levels of TH x
until a desired precision � has been achieved onbc1,aðx0Þ. To estimate the complete CT–TH–PM sur-
face, the design also includes A, the collection of PM
settings at which we fit the CT–PM surface. Since
Yang et al. (2007) has already addressed the design
issues for estimating the CT–TH curves, in this section
we focus on the design in the PM space.

The fitting of the CT–PM surface is based on model
(11) over a constant-BN region ��. Hence, we discuss
the allocation of the PM design points within �� for
the purpose of achieving a well-fitted CT–PM model.
Each subregion �� is a simplex defined by linear
constraints (7), so what we have is a K-component (K is
the number of product types) mixture design problem
within �� for the estimation of c1,x0

(a), a2��, the
CT measures of particular interest.

6.1.1. Initial design

For such constrained mixture designs, Myers and
Montgomery (2002) recommend selecting design
points from a candidate set, say C ¼ fa�1, a

�
2, . . . , a�

N
g,

which provides good coverage of the feasible space.
They claim that the set of candidate points to use for
designing experiments should depend upon the form of
the model the experimenter wishes to fit, and they
recommended three different sets for linear, quadratic
and cubic models based on their practical experience.
Our model (11) does not fall into the category of
polynomials with which they have experimented.
However, our empirical experience with the CT–PM
surface suggests that a quadratic model is able to
provide an approximate fit for the response surface,
although obviously inferior compared to (11). Thus, in

our experiments, we chose to use the set Myers and
Montgomery (2002) recommended for quadratic
models, that is, the candidate set of design should
include the following points of the simplex ��: extreme
vertices, edge centres, constraint plane centroids,
overall centroid and axial points.

Given the constraints (7) that define ��, we can use
the CONVRT and CONAEV algorithms developed by
Piepel (1988) to find the vertices, edge centres, and all
other centroids of the simplex. In our procedure, the
initial design points will be selected as a subset of these
candidate points in C. Let A0 denote the set of initial
design points of size N0 within the constant-BN region
��. We propose some additional requirements on the
initial set of design points:

. To avoid extrapolation, A0 must include all the
Nv extreme vertices of ��.

. The number of initial design points N0 should be
sufficiently large to allow for the fitting of the
full quadratic model given by (14), that is,
N0� 1þ (K� 1)(Kþ 2)/2.

. In addition, we recommend N0� 1þ 2�K so
that the initial sample is large enough to estimate
a CT–PM model (11) including two ratio
functions.

Thus, N0¼max{1þ (K� 1)(Kþ 2)/2, 1þ 2�K}.
The additional N0�Nv non-vertex points are selected
from C using a maxmin criterion which maximises the
minimum distance between any two points.

6.1.2. Design augmentation

As illustrated in Figure 5, we initiate the experiments
with a pilot design in the PM region as discussed in
Section 6.1.1. The design points will then be sequen-
tially added one at a time until the stopping rule is
satisfied. In the DSSM procedure, the design augmen-
tation is again guided by achieving good estimation forbc1,x0ðaÞ, a2��.

We adopt the method in Seber and Wild (2003) to
determine which PM point should be incorporated into
the current design. Given that N design points have
been allocated in the PM region, the (Nþ 1)st

additional design point aNþ1 is selected by minimising
the determinant of the variance–covariance matrix
of estimated unknown parameters (D-optimality
criterion) in model bc1,x0 ðaÞ. For details see,
Appendix A.4.

6.1.3. Stopping criterion

We allow the user to specify two precision levels, �
for the fitted CT–TH curves, and �% for the fitted
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CT–PM surface. As can be seen from the DSSM
procedure (Figure 5), computation allocation is ulti-
mately driven by �%, the desired relative error onbc1,x0ðaÞ, a2��. The sequential simulation is continued
until the following stopping criterion is satisfied:

max
a2��

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar½bc1,x0ðaÞ�q
bc1,x0ðaÞ 5 �%: ð24Þ

Statistical inference issues on the CT–PM modelling
have been discussed in Section 5.5.3, where the
notation �(a, h)¼ ck,x(a) is used to represent a
CT–PM surface at a fixed TH for type k products. It
has been established that bc1,x0ðaÞ is approximately
normally distributed and the calculation of dVar½bc1,x0 ðaÞ�
is derived in Appendix A.1. The stopping rule (24)
requires that the half-width for the confidence interval
on c1,x0

(a) is within �% in a relative sense for any
a2��. The left side of (24) can be easily obtained by

evaluating 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar½bc1,x0ðaÞ�q
=bc1,x0ðaÞ over a dense grid

of a-values within ��.
However, as detailed in Section 5.5.2, the CT–PM

surface is estimated based on the ‘data points’ {(a1, y1),
(a2, y2), . . . , (aN, yN)} obtained from the CT–TH curve
fitting, and we have yi�Norm(c1,x0

(a), �2). The pre-
specified value of � definitely has an impact on the
allocation of simulation effort in our experiments. If �
is large, it can be expected that more design points will
be needed in the PM region in order to satisfy (24), and
hence extra computation in design augmentation and
model refitting will be required. Even worse, with
highly variable sample the resulting fitted model may
vary substantially on a sample-to-sample basis due to
the complexity of the nonlinear model (11).

In light of these issues, we strongly recommend
using a high precision level (small value for �) and a
minimum number of PM design points in the CT–TH–
PM generation. The simple thumb rule adopted in our
experiments is that � is set in such a way that

2�

mina2�bc1,x0 ðaÞ 
 �%=2: ð25Þ

The denominator in (25) could be replaced by a rough
CT estimate within the feasible PM region.

7. Empirical evaluation

In this section, we demonstrate the effectiveness of our
modelling method through empirical evaluation. Two
different systems, an analytically tractable Jackson
network and a real fab model, are explored. The
proposed procedure is able to characterise a system
processing multiple types of jobs with its CT–TH–PM

response surface, however, in both cases considered
here, we restrict the number of different types of jobs
to be three for the sake of presentation: with PM a

being three-dimensional, the partition of the feasible
PM region and the target response surface can be
well-illustrated graphically.

In our experiments, we assume that the PM is not
subject to additional linear constraints (6) imposed by
practical considerations of production planning, which
makes the feasible PM region a triangle in a three-
dimension space as illustrated in Figure 3(a).
Therefore, we are coping with a response surface
over a larger input region, which is more challenging
from the perspective of response surface modelling.

For both cases, user-specified parameters for the
DSSM procedure are given as follows.

. TH range of interest is set as [xL, xU]¼ [0.75,
0.85]. This is motivated by the fact that
semiconductor manufacturers typically run
their facility in a utilisation range of [0.75,
0.85] (Hopp 2007).

. Products of type 1 and TH level of x0¼ 0.8 are
of particular interest to production planning.

. The desired relative error is set at �%¼ 5%,
which is to be achieved on bc1,x0ðaÞ, a2��, the
CT estimates of product 1 at x0¼ 0.8. The
precision � is set following (25).

7.1. A Jackson network model

We consider a three-product and three-station Jackson
network, for which the true CT–TH–PM surface is
known from queueing theory and hence provides a
benchmark to evaluate the numerical results obtained
from our method. The system configuration is specified
in Table 1 following the notation defined in Section
2.1. Here we illustrate the application of the proposed
method on this Jackson network and generate its
CT–TH–PM surface via simulation.

7.1.1. Preliminary queueing analysis of the model

First, analytical queueing analysis is performed to
partition the PM region into the constant-BN

Table 1. Three-station Jackson queueing model.

Station 1 Station 2 Station 3

s1¼ 1 s2¼ 1 s3¼ 1
u1¼ 4 u2¼ 3 u3¼ 2.8
�11¼ 1 �12¼ 2 �13¼ 3
�21¼ 3 �22¼ 2 �23¼ 1
�31¼ 2 �32¼ 1 �33¼ 1
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subregions. Figure 6 shows the division of PM space for

this example. Each station can serve as a BN and the PM

region is divided into three subregions with �� being

dominated by the BN-station � (�¼ 1, 2, 3). In addition,

system capacities u�(a) are derived from analytical

analysis so that TH rates can be normalised to the

scale of [0, 1).
As a digression from applying the proposed method

on the Jackson network for CT–TH–PMgeneration, we

take some effort to examine the true CT–PM surface for

this model. For an open Jackson network, the CT–PM

surface (at a given x) is given by (8). If we fix

�2 :�3¼ 3 : 1, and vary �1 from 0 to 1, we obtain a PM

path as the dotted line in Figure 6. Along this path, we

plot ck,0.8(a), k¼ 1, 2, 3, the CT at TH x¼ 0.8, against

�1, and the resulting CT–PM curves are given in Figure

7. Obviously in Figure 7, the CT–PM curves are smooth

and differentiable except at BN-shift points B1 and B2,

which are also marked in Figure 6. We can change the

ratio of �2 :�3, and plot the CT–PM curves similar to

those obtained in Figure 7. This graphically demon-

strates our conclusion in Section 5.3, whichmotivates us

to model each subregion �� separately.

7.1.2. Applying DSSM procedure on the Jackson
network

Returning to the generation of the CT–TH–PM

surface, now that the PM region has been partitioned

into three constant-BN subregions, the second step is

to apply the DSSM procedure on each subregion and

estimate a smooth CT–TH–PM surface within ��,

�¼ 1, 2, 3. Considering region �1 for example, we next

follow the DSSM procedure and detail the process for

generating the target response surface. The inputs to

the procedure are set up as given in the beginning of

Section 7. In addition, for this toy example, the

CT roughly ranges from 5 to 10. Following the rule

in (25), � is set at 0.07
CTmin� �%/4 with CTmin¼ 5

and �%¼ 5%.
The initial design set A0 in PM space is determined

as in Section 6.1. Specifically, the candidate set of

design points is given in Figure 8(a), and the seven

selected points comprising the initial design A0 are

represented by black dots in Figure 8(b). For each

a2A0, simulation experiments are carried out at

different TH levels and the CT–TH curves {ck,a(x),

k¼ 1, 2, 3} are generated simultaneously for products

of any type (as illustrated in Figure 1).
The simulation procedure is then driven by the

estimation error on bc1,x0ðaÞ, a2�1, the CT estimates

for product 1 at x0¼ 0.8. Based on the fitted curves

fbc1,aðxÞ, k ¼ 1, 2, 3; a 2 A0g, the CT–PM surfacebc1,x0ðaÞ, a2�1 is estimated and then evaluated using

the conventional statistical inference method (Section

5.5.3), and additional PM design points are added

sequentially to the experiment design until the desired

precision is achieved (Section 6.1.3).
Figure 9 shows the evolution of this sequential

procedure. The horizontal axis represents the number

of PM design points included in the experiments as the

procedure progresses, and the vertical axis represents

the corresponding estimation error for bc1,x0 ðaÞ, a2�1.

In Figure 9, each dot denotes

max
a2�1

bc1,x0 ðaÞ � c1,x0 ðaÞ

c1,x0 ðaÞ
, ð26Þ

the maximum relative deviation of the estimatedbc1,x0 ðaÞ
from the true underlying surface evaluated at over 5000

grid points in �1. Each star represents the maximum

relative estimation error obtained from the statistical

Figure 7. True CT–PM curves.

(0, 0, 1)(0, 1, 0)

1α

2α 3α

(1, 0, 0) 

1Ω
2Ω

3Ω
B2

B1

Figure 6. Division of the PM space and a constant-ratio
PM path.

(a) (b)

Figure 8. Initial design.

Production Planning & Control 63

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
e
l
s
o
n
,
 
B
a
r
r
y
 
L
.
]
 
A
t
:
 
1
4
:
0
9
 
1
7
 
D
e
c
e
m
b
e
r
 
2
0
1
0



inference in the procedure, that is,

max
a2�1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar½bc1,x0ðaÞ�q
bc1,x0 ðaÞ : ð27Þ

The procedure is initiated with seven design points, and
is terminated with eight points where the estimated
error (27) satisfies the stopping criterion (24). We
include two further steps with 9 and 10 design points to
provide a more complete picture. As can be seen from
Figure 9, the procedure could underestimate/over-
estimate the deviation of the estimated model from the
true surface, but it does provide a rough idea of the size
of the deviation.

The outputs of the DSSM procedure are the
CT–TH curves fbck,ai

ðxÞ, k ¼ 1, 2, 3; ai 2 Ag. From
these curves, for any a2�1 and any x2 [xL,xU], the
CT estimates can be obtained. The estimation error forbc1,x0ðaÞ is controlled in the procedure to be within
�%¼ 5% while other CT estimates are expected to be
reasonably good. Here the fitted and true CT–PM
surfaces for product 1 at x0¼ 0.8 are given in (28) and
(29), respectively. The maximum deviation of the fitted
model bc1,0:8ðaÞ from the true model c1,0.8(a) is 4%
within the pre-specified precision 5%. Evidently the
fitted model is able to approximate the true response
surface to a desired precision although the estimated
parameters are not the same as the parameters of the
true surface model, as can be seen from comparing (28)
and (29).

bc1,0:8ðaÞ ¼ 5:2562þ
5:9886�1 � 1:1809�2

0:3579� 0:9889�1 þ 0:1487�2

þ
�2:0462�1 þ 0:8385�2

0:4498� 0:9944�1 � 0:1054�2
, ð28Þ

c1,0:8ðaÞ ¼ 5:1780þ
1:1053�1 þ 0:3684�2

0:4514� 0:9995�1 � 0:0322�2

þ
2:0794�1 � 0:4159�2

0:2496� 0:9568�1 � 0:2912�2
: ð29Þ

From the outputs of the procedure, other CT
estimates ck,x(a), a2�1 for k¼ 1, 2, 3 and x2 [xL, xU]
can also be obtained. Based on our experience, the
estimation of c1,0.85(a) appeared to be a most difficult
case where the maximum deviation of the estimated
model bc1,0:85ðaÞ from the true surface is 6.7%. Similar
results have been obtained for the other two subregions
�2 and �3.

Jackson networks consisting of more than three
workstations have also been considered in our experi-
ments, and the DSSM procedure has demonstrated its
ability to provide good CT–TH–PM estimation. It is
worth mentioning that in our experience, increasing the
size of the system hardly introduces additional
difficulties for the procedure to accurately model the
surface.

7.2. A semiconductor manufacturing system

In this section, we apply the proposed method to a
semiconductor wafer fab simulation and characterise
the manufacturing system by its CT–TH–PM surface.
We consider a model describing a real wafer fab,
provided by the Modeling and Analysis for
Semiconductor Manufacturing Lab at Arizona State
University (www.eas.asu.edu/�masmlab/).

The model is able to process three types of jobs:
type 1, type 2 and type 3. Jobs of different types follow
different process steps, and thus have different
expected CTs.

7.2.1. Analytical queueing analysis of the system

We use the analytical engine provided by Factory
Explorer to perform the capacity/BN analysis of the
fab model. As shown in Figure 10, the PM region is

7 8 9 10
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Figure 9. The evolution of the DSSM procedure applied on
the Jackson network.

)0,1,0(2α)0,0,1(1α

)1,0,0(3α

1Ω 2Ω

3Ω

4Ω

Figure 10. Division of PM region for the wafer fab model.
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divided into four constant-BN subregions with each
one defined by a number of linear constraints.

For each PM vector a, Factory Explorer gives an
analytical estimate for system capacity u�(a), which
allows us to normalise the TH levels to the scale of
[0, 1) and to transform the fitted response surfacebcðx, aÞ into bcð�, aÞ (Section 2.2).

7.2.2. Applying the DSSM procedure on the
wafer fab

Again, the inputs to the procedure are set up as given
in the beginning of Section 7. In this case, the CT
measures roughly ranges from 300 to 450 h. Following
the rule in (25), � is set at 4
CTmin� �%/4h with
CTmin¼ 300 and �%¼ 5%.

Since the true underlying surface for the fab is
unknown, grid points evenly distributed over the PM
region and the TH range were selected to check lack of
fit in the fitted model at those locations. At these check
points defined in terms of (x, a), substantial additional
data were collected to obtain the ‘nearly true’ estimates
for expected CTs. About 25 times as much computa-
tional effort as used in the DSSM procedure was
invested in these check points. At each check point,
simulation experiments were performed until the
standard error of the expected CT estimate was
essentially zero.

We present the estimation results for subregion �1.
In our experiments, a total of nine design points were
employed, and the fitted model bc1,0:8ðaÞ (a2�1) is
given as

bc1,0:8ðaÞ ¼ 400:8383þ
84:7793�1 � 34:5376�2

�0:0736� 0:9337�1 þ 0:3581�2

þ
11:6227�1 � 29:7463�2

�0:9403þ 0:3272�1 þ 0:9449�2
: ð30Þ

In �1, 45 PM check points evenly distributed over
the subregion are used, and the CT estimates bc1,0:8ðaÞ
obtained from (30) are compared with the ‘nearly true’
CTs. Figure 11 shows the histogram of the relative
deviations of the CT estimates from their ‘true’ values.
Among these 45 check points, almost all the relative
deviations fall within the range of [�5%, 5%] with a
few slight exceptions.

8. Summary

In a multi-product environment, mapping the expected
CT as a function of TH and PM is difficult due to the
complex nature of the underlying CT–TH–PM surface.
In this article, a new metamodelling methodology,
coupled with preliminary queueing analysis, is

proposed for generating the CT–TH–PM response
surface via sequential simulation experiments. It has
been shown through experiments on Jackson networks
and a real semiconductor manufacturing simulation
that the proposed method provides good estimation
for the CT–TH–PM surface characterising the system
being investigated.
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Appendix A

A.1. Statistical inference on the CT–PM model

The notation used in Section 5 is inherited. Suppose that N
‘data points’ have been obtained for the estimation of
CT–PM model (16) which includes R ratio functions. Using h
to denote all the unknown parameters in the CT–PM model,
we define the additional notation as follows:

. fðbhÞ ¼ ð�ða1,bhÞ,�ða2,bhÞ, . . . ,�ðaN,bhÞÞ0 is a N� 1
vector function of h.

. F:ðbhÞ ¼ @fðbhÞ=@h0 is a N� (1þK�R) first-deriva-
tive matrix. Note that 1þK�R is the number of
unknown parameters in the CT–PM model (16).

. CN ¼ F:ðbhÞ0F:ðbhÞ.

. fa ¼ @�ða,bhÞ=@h is a (1þK�R)� 1 vector.

Assume that the error term in the CT–PM model is
normally distributed with variance �2. Then the estimated
parameters bh is approximately normally distributed with
variance: dVar½bh� ¼ �2C�1: ðA1Þ

The CT estimator at PM a from the fitted CT–PM model is
approximately normally distributed as well, and its estimated
variance is: dVar½�ða,bhÞ� ¼ �2f 0aC�1fa: ðA2Þ

A.2. Hypothesis test-based model selection

For model selection in our nonlinear regression analysis, the
two model specifications that we want to discriminate
between are:

H0 : y ¼ �ða, hRÞ þ ", ðA3Þ

H1 : y ¼ �ða, hRÞ þ f ða, bRþ1Þ þ ": ðA4Þ

The hypothesis test above is equivalent to

H0 : b1,Rþ1 ¼ b2,Rþ1 ¼ 	 	 	 ¼ bK�1,Rþ1 ¼ 0, ðA5Þ

H1 : bk,Rþ1 6¼ 0 for some k ¼ 1, 2, . . . ,K� 1: ðA6Þ

Given the hypothesis (A5) versus (A6), it would be natural to
employ the test based on the approximate normality of the
least-square parameter estimators (bhR,bbRþ1). However, when
H1 is true, as explained in Section 5.5.3, we have the

non-identifiability problem with b0,Rþ1, and hence the
distribution of estimated parameters is no longer approxi-
mately normal.

To circumvent these difficulties, we adopt the method
proposed by Gallant (1987) which is based on the linear
approximation of the additive nonlinear function f (a, bRþ1).
Instead of testing (A6), an approximate alternative hypoth-
esis is employed:eH1 : y ¼ �ða, hRÞ þ z0 � wþ ", ðA7Þ

where w is a (K� 1)� 1 unknown (linear) parameter vector.
The additional regressor z ((K� 1)� 1 vector) is defined as

zk ¼
�keb0,Rþ1 þPK�1
‘¼1 d‘,Rþ1�‘

k ¼ 1, 2, . . . ,K� 1: ðA8Þ

Note that eb0,Rþ1 in the denominator of (A8) is a predeter-
mined value, and hence z is independent of any unknown
parameters. Comparing (A4) and (A7), it can be seen that by
eliminating b0,Rþ1 as an unknown, f (a, bRþ1) can be
approximated by a linear function which is free of the non-
identifiability problem.

To test eH1 against H0, standard procedures for testing
parameter significance can be utilised. Plus, in CT–PM
modelling, we benefit fully from the information on the error
distribution (normal with known variance �2). From

Appendix A.1, the estimated parameters h ¼ ðbhR,wÞ in
model (A7) is approximately normally distributed with
variance �2C�1. Partitioning C�1 according to the partition
of h into ðbhR,wÞ, and we have

C�1 ¼
C11 C12

C21 C22

� �
:

Under H0, the statistic

b
w ¼ bw0ðC22Þ
�1bw=�2

is approximately distributed as the central chi-square
distribution 
2K�1 (bw is a (K� 1)� 1 parameter vector).
Using 
2K�1ðaÞ (e.g. a¼ 0.05) to represent the 100(1� a)th
percentile of the 
2K�1 distribution, the decision rule for
testing eH1 against H0 is given as: H0 is rejected ifb
2w 4
2K�1ðaÞ; otherwise, accept H0.

Gallant (1987) provides theoretical guidance on how to
choose the additional regressors z that maximise the power of
the test when H1 is true. In our case, the choice of z amounts
to the determination of eb0,Rþ1. In our model selection
methods, to alleviate the computational burden, we simply
use the estimated b0,Rþ1 obtained from regressing the

residuals fei ¼ yi � �ða,bhRÞ, i ¼ 1, 2, . . . ,Ng onto PM a
(see Appendix A.3 for specifics).

A.3. Determining starting values for the CT–PM
fitting

As detailed in Section 5.5.5, in the fitting of the CT–PM
surface, model (16) is sequentially expanded by including one
additional ratio function at a time. Given the current
estimated model �ða,bhRÞ, the (Rþ 1)th ratio function is
written as

f ða, bRþ1Þ ¼

PK�1
k¼1 bk,Rþ1�k

b0,Rþ1 þ
PK�1

‘¼1 d‘,Rþ1�‘
: ðA9Þ
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There are two issues to be addressed before we estimate the
expanded model �(a, hRþ1)¼�(a, hR)þ f (a, bRþ1). (i) Would
�ða,bhRþ1Þ represent a significant improvement over �ða,bhRÞ?
(ii) If the answer to (i) is yes, then how to determine the
starting values of bRþ1 for the nonlinear fitting of �(a, hRþ1)?

Question (i) is a model selection issue which is discussed
in Section 5.5.4, where, to perform the hypothesis test
comparing �(a, hR) and �(a, hRþ1), a preliminary estimate of
b0,Rþ1 is needed to formulate the regressors z defined in (A8).
Therefore, to answer both questions (i) and (ii), rough
parameter estimates for f (a, bRþ1) need to be provided before
fitting �(a, hRþ1) is performed, and we propose the following
method to obtain such preliminary estimates.

First, calculate the residuals fei ¼ yi � �ða,bhRÞ,
i ¼ 1, 2, . . . ,Ng, the variability of which is expected to be
explained by f (a, bRþ1):

ei ¼ f ða, bRþ1Þ þ "i ¼

PK�1
k¼1 bk,Rþ1�k

b0,Rþ1 þ
PK�1

‘¼1 d‘,Rþ1�‘
þ "i: ðA10Þ

Multiplying both sides of (A10) by the denominator of
f (a, bRþ1), we have

e�i ¼
XK�1
k¼1

bk,Rþ1�k þ b0,Rþ1ei þ "
�
i , ðA11Þ

where e�i ¼ ei � ð
PK�1

‘¼1 d‘,Rþ1�‘Þ and "�i ¼ "i�
ð
PK�1

‘¼1 d‘,Rþ1�‘Þ. Performing a linear regression analysis on
(A10) will generate parameter preliminary estimates for
f (a, bRþ1).

A.4. Design augmentation

Following the notation defined in Appendix A.1, we write
faNþ1

¼ @f ðaNþ1,bhÞ=@h which is a (1þK�R)� 1 vector.
Given that N design points have been incorporated in the

PM region, the location of the (Nþ 1)th design point aNþ1 is
determined by maximising

CNþ1 ¼
F:ðbhÞ
f 0aNþ1

 ! 0
F:ðbhÞ
f 0aNþ1

 !�����
�����

¼ jCNjð1þ f 0aNþ1
C�1N faNþ1

Þ: ðA12Þ

Since CN does not involve aNþ1, the criterion (A12)
reduces to maximising

f 0aNþ1
C�1N faNþ1

ðA13Þ

with respect to aNþ1. The additional design point aNþ1 can be
easily found by evaluating (A13) over a fine grid of a-values.
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