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Introduction

A special type of data, called sensitivity data, presents a
unique set of problems for those wishing to monitor the per-
formance of a process. Sensitivity data refer to data collected
as a pass or fail of a sample at a certain level or intensity of
exposure to a control variable. Dixon and Mood (1) origi-
nally presented this type of data in reference to testing explo-
sives at different drop heights. The difficulty with the data
arises because a continuous variable, such as the minimum
drop height at which the explosive will detonate, is the mea-
sure of interest but cannot be measured directly because of
the destructive nature of the testing.

Modern quality practices present further problems with
this type of testing because customers expect statistical as-
surance that the product they receive will not be defective.
One common measure, process capability or C,,, measures
the relative distance from the process mean to the nearest
specification limit (2). C,, is measured in units equal to three
times the process standard deviation, so C,, = 1 indicates
that the process mean is three standard deviations from the
closest specification limit. Similarly, C,, = 2 indicates the
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mean is six standard deviations from the closest limit. When
a Normal distribution is assumed, C,, = 1 implies that th

. e
0.00135th quantile of the process distribution lies on the
nearest specification limit and, thus, no more than 3 in 1000
(2 X 0.00135) products are out of specification. This com-
mon quality measure has been used extensively in practice
because it is applicable to many situations and gives a
good indication of the acceptability of incoming product to
customers.

Customers also expect the capability to be monitored over
time to be sure the process quality does not drift. Monitor-
ing low quantiles of a distribution is expensive because it
requires a high number of samples. Thus, capability for con-
tinuous variables is usually monitored by assuming norma]]
distributed data and then using X and R control charts fo);
monitoring changes in the process mean or standard devia-
tion. If either chart gives an out-of-control signal, the process
is investigated, a cause is assigned, and appropriate adjust-
ments are made. When only sensitivity data are available
these types of chart are not applicable because the variab] ,
of interest cannot be directly measured. For example Whee
collecting sensitivity data on a threshold-failure heig’ht thle]
drop heights must be chosen by the experimenter and E,:ach
test results in a pass or fail rather than a numerical readin
Thus, for a small sample, the estimate of the mean failurgé
height may be biased toward the heights chosen for testin
In addition, the range is completely dependent on the ran .
between the test heights chosen. Because a range chart fif-
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sensitivity data measures the distance between experimental
points chosen by the user instead of the sample range of
a continuous variable, an R chart is unusable in this situa-
tion. These problems mean that the X and R charts give the
user little relevant information, so an alternative needs to be
found.

In the next section, the example that led us to this research
is presented with some necessary notation. Then, we provide
theory and methods for constructing a p chart that can be
used as a surrogate for monitoring process capability with
sensitivity data.

Motivation

This research was inspired by a problem encountered in a
plastic blow-molding process for the manufacture of plastic
fluid containers. The measure of interest was the threshold
drop height at which a filled bottle would fail, where failure
is indicated by any leaks in the bottle. This is an obvious
example of sensitivity data because each bottle can only
be dropped from a certain height and the only information
available is whether or not the bottle failed. Once a bottle is
dropped, it cannot be tested or used again, whether or not it
fails. The customers for the bottles had a lower specification
limit for the threshold failure height and wanted both a Coi
for the process and a control chart for monitoring process
capability over time. Thus, there was a need to develop a
control chart for monitoring this process using the sensitiv-
ity data.

As discussed earlier, knowing certain quantiles of the dis-
tribution is equivalent to knowing the C,,, so it seems natural
to devise a way to monitor the quantiles of the distribution.
In addition, the pass—fail nature of the testing indicates that
a p chart might be appropriate. A standard p chart is designed
to monitor the proportion of a sample that fails a test, which
is exactly how sensitivity data must be taken. Thus, devising
a p chart to monitor a quantile of the distribution is an effec-
tive way to monitor changes in the process capability.

Suppose that H_ is the gth quantile of the threshold failure
height distribution of the process. If we drop a number of
bottles from height H,, we can expect (¢)(100%) of them to
break. For a given H,, a p chart can be constructed to track
the proportion of failures at that height for a given sample
size. If the proportion of failures deviates significantly from
g, then the process has gone out of control (i.e., the gth
quantile has changed and, in turn, the process capability
has changed). In the next section, the context of the blow-
molding example is used to present details for the construc-
tion of a p chart to monitor process capability. Although the
work that we present concentrates on the situation where
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there is a lower specification on the sensitivity data, the
method could be adapted to an upper limit or to a nearest
specification limit with some straightforward modifications.

Constructing a p Chart
for Monitoring a Quantile

When using a p chart to monitor the process capability,
the problem to address is what quantile to monitor. Because
most customers require at least a C,, = 1, we would like to
use the 0.00135th quantile. However, to monitor this quan-
tile would require a prohibitively high sample size. Because
about 1 item in 1000 would fail at H 4,55, almost no failures
would occur and too many products would need to be tested.
Instead, a set of typical control chart subgroup sizes (5-15)
is considered. The statistical power of the p chart is used to
choose the best quantile to monitor. 4

Before discussing the selection of g, we assume that
once g is selected, an estimate of H, can be determined
by some initial testing procedure that may use many more
samples than the subgroup size of the p chart. Dixon and
Mood (1) and Little and Thomas (3) provide an “up-and-
down” method for determining the mean and standard devi-
ation of a distribution from sensitivity data. The “up-and-
down” method begins by recording a pass or fail from an
initial height. The height at which the next sample is dropped
is lower if the initial sample fails and higher if the initial
sample passes. The most recent success or failure determines
the heights for all subsequent tests. The result is a series
of tests that tend toward the mean of the threshold-failure
height distribution. This method has been adapted for many
ASTM standards (e.g., Ref. 4). By assuming a distribution
for the process, the quantiles can be determined. Often the
Normal or log-normal distribution is assumed, but in some
cases, other distributions may be applicable. Wu (5,6) also
presents a method for estimating a specified quantile of a
distribution using sensitivity data. Thus, methods are cur-
rently available for obtaining an initial estimate of H,.

Using the blow-molding example for ease of dlscussmn
suppose that all bottles in a subgroup are dropped from the
height H_; then the true proportion of bottles that fail should
be g. We will use a p chart, centered at g, to monitor the
actual proportion p of the bottles that fail at height H, and
determine if the actual proportion differs significantly from
g. Although an estimate of H, can be found for any g, only
certain quantiles are easily monitored due to the relatively
small size of the subgroups used in most control chart ap-
plications. We will choose the value of ¢ to maximize the
power of the p chart with a specified false alarm rate of «.
The number of bottles that will fail in a given subgroup
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will follow a binomial distribution if we assume that all the
threshold-failure heights are independent and identically dis-
tributed. If the gth quantile is to be monitored, then a p chart
with an upper control limit, UCL, will have a false alarm rate
of a if

a = z (’:>q1(1 —_ q)n—i, (l)
i=UCL

where 7 is the size of each subgroup. The upper control limit

will be set to some x/n, where x is an integer less than n.

Thus, if x or fewer of the n products in the subgroup fail

when dropped from height H_, there is no out-of-control sig-

nal. If x + 1 or more products fail, there is an out-of-control

signal. Due to the discrete nature of the data, any control

limit between x/n and (x + 1)/n would have the same effect
as this control limit.

For processes with a lower specification such as a
threshold-failure height, the monitored quantile, H,, will al-
ways be below the median because the procedure should be
sensitive to an increase in the number of failures. Keeping H,
below the median means that, on average, there will be fewer
failures than successes, so an increase in the number of fail-
ures will be signaled more clearly. Also, the quantile of in-
terest for the C,, is below the median, so we will be measur-
ing a quantile relatively close to it. Therefore, we will
consider all values of x up to 3n for each subgroup size.

Once a value for n is chosen based on the difficulty and
cost of the testing, the appropriate control limit x/n can
be determined by comparing the power curves for differ-
ent choices of x. For each x, we can substitute UCL = x/n
into Eq. (1) and then obtain the value ¢ numerically for a
selected av.

Then, the p chart is constructed from a series of sub-
groups of size n selected from the process on a regular basis.
All products are tested at H, (to be estimated from testing
after x is chosen). If more than x failures occur in any sub-
group, the process is said to be out of control.

As mentioned previously, we use the power of the statis-
tical test to determine which quantile, Hq, to monitor for each
subgroup size. The power of the test measures the prob-
ability that the test will detect a given change in conditions.
It is usually displayed as a curve of detection probability ver-
sus change in the process mean assuming that the shape of
the distribution remains unchanged. The units for the change
in mean are such that 1 unit = 1 standard deviation, so the
results are displayed in terms of a standard Normal distribu-
tion. Power curves for changes in the mean for n = 5 to 10
and x = 3n are shown in Figure 1a. Power curves for changes
in the mean for n = 10 to 15 and x = 1 to n are shown in
Figure 2a.
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Figure 1. Power curvesforn =5t010andx = 1to in.

As an example of the calculations made to create these
power curves, consider the case where the sample size is
n = 10 and the maximum number of failures before an out:
of-control condition is signaled is x = 1, as shown by the
bold line on the top graph of Figure la. From Eq. (1) and
using @ = 0.0027, we can calculate that ¢ = 0.0079. We
assume that the threshold-failure height distribution initially
has a Normal distribution with mean u and standard devi-
ation o If the mean drops by Au, the new probability that
any one sample will fail is now

Hy = (= Aw\ (H, -
) -

q*=q>< “+M>, (2)

o ag
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Figure 2. Powercurves forn = 11to15andx = 1tojn.

where @ indicates the cumulative distribution function
(CDF) of the standard Normal distribution. Using ®~!(¢) =
(H, — w)lo = —241, if the mean drops by one standard
deviation, then Au = o, [(H, — u)o + Aulo] = —141;
thus, g* = 0.08. From this, the binomial probability, p, that
more than 1 of 10 samples will fail can be calculated using
the CDF of the binomial distribution,

X

p=1-2

im0

(7) (q*)!(l - q*)n—i, (3)

where x = 1 and n = 10. The probability that the test will
detect this out-of-control condition is calculated to be 0.18.
This is the power of the test for a change in the mean of one
standard deviation. The power curves show the power of the
test for changes in the mean up to 3. For all sample sizes,
the power of the test increases as x is increased to $n. How-
ever, the gains in power for increasing the value of x are rela-
tively small, especially for x = 2.

The threshold-failure heights are assumed to be normally
distributed for the power curves in Figures 1 and 2. Dixon
and Mood (1) suggest using a log-normal distribution for
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Table 1. Power of the Test

CHANGE IN CHANGE IN o CHANGE IN u CHANGEIN o
n x Au=10c Au=15¢ 6=2 §=3 n x Au=100c Au=150c 6=2 6=3
5 *] 0.13 0.40 0.15 0.34 12 1 0.20 0.61 0.38 0.74
2 0.18 0.50 0.08 0.18 *2 032 0.79 0:31 0.63

6 *1 0.14 0.44 0.19 0.42 3 0.41 0.87 0.23 0.49
2 0.20 0.57 0.11 0.25 4 0.46 091 0.16 0.35

3 0.23 0.61 0.06 0.12 5 0.50 0.92 0.10 0.23

7 *1 0.15 0.48 022 0.49 6 0.52 0.93 0.06 0.13
2 023 0.62 0.14 0.32 13 1 0.21 0.63 0.40 0.77

3 0.27 0.68 0.08 0.18 *2 0.33 0.81 0.34 0.67

8 *1 0.17 0.51 0.26 0.55 3 043 0.89 0.26 0.55
2 0.25 0.67 0.18 0.39 4 [ 049 0.92 0.19 0.41

3 0.30 0.74 0.11 0.24 5 0.53 0.94 0.13 0.28

4 033 0.76 0.06 0.12 6 0.55 0.95 0.08 0.18

9 1 0.18 0.54 0.29 0.61 14 1 0.21 0.64 0.43 0.80
*2 0.27 0.71 0.21 0.46 *2 0.35 0.83 0.37 0.71

3 033 0.78 0.14 0.30 3 0.45 0.90 0.29 0.60

4 0.37 0.81 0.08 0.18 4 0.52 0.94 022 0.47

10 1 0.18 0.56 0.32 0.66 5 0.56 0.95 0.15 0.34
*2 0.29 0.74 0.24 0.52 6 0.59 0.96 0.10 0.22

3 0.36 0.82 0.17 0.37 7 0.60 0.96 0.06 0.13

4 0.40 0.85 0.11 023 15 1 0.22 0.66 0.45 0.82

5 042 0.86 0.06 0.13 2 0.36 0.84 0.40 0.75

11 1 0.19 0.59 0.35 0.70 *3 0.47 0.92 0.32 0.65
*2 0.30 0.77 0.28 0.58 4 0.54 0.95 0.25 0.52

3 0.38 0.85 0.20 043 5 0.59 0.96 0.18 0.39

4 0.44 0.88 0.13 0.29 6 0.62 0.97 0.13 0.28

5 0.46 0.90 0.08 0.18 7 0.64 0.97 0.08 0.18

Note: An asterisk indicates the recommended plan for each subgroup size.

drop height distributions because the drop height is bounded
by zero. Some preliminary analysis showed that the results
are fairly robust to skewness in the data. In addition, the log-
normal distribution has a higher tail probability above the
mean than below it. Thus, for the quantiles that we are mea-
suring, the effect of skewness is likely to be small and the
Normal assumption only serves to make the power curves
more conservative.

In addition to comparing the effect of changes in mean
on the power of the procedure, the effect of changes in the
standard deviation was also considered. We compare the
performance of the different control limits when the stan-
dard deviation is inflated by a factor 8, but the mean stays
fixed. Assuming a Normal distribution, the probability of
detecting an increase of & in the standard deviation is
g** = ®[(H, — p)/8c]. As earlier, we use b lg) =
[(H, — p)/o] = —2.41, so if the standard deviation doubles,
then for § = 2, [(H, — u)/6c] = —1.20, and thus g** =

0.114. The power of the test can be calculated from Eq. (3)
to be 0.318.

When changing the mean of a Normal variable, the CDF
of a fixed point can take any value between 0 and 1. How-
ever, when inflating the standard deviation with a fixed
mean, the CDF of a fixed point below the mean cannot ex-
ceed 0.5. This is because at least one-half of the probability
will always be above the mean. Thus, the power of this test
can only reach the limit p = 1 — (0.5)" 2, (}). The power
curves in Figures 1b and 2b compare the various choices for
x with respect to changes in the standard deviation, In con-
trast to the changes in the mean, the power of this test de-
creases as the value of x is increased. Table 1 chooses a few
points from each graph for easy comparison. An asterisk
designates the recommended choices for x for each subgroup
size. Because the gains in power for changes in the mean are
very small above x = 2 or 3, we recommend x = 1, x = 2,
or x = 3 for all values of n between 5 and 15 so that the
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power for detecting changes in the standard deviation is as
high as possible.

Numerical Example

Take as an example the threshold height of dropped plas-
tic bottles mentioned earlier. In this problem, the customer
has a lower specification limit (LSL) for the threshold-failure
height of a filled bottle, such that any bottle dropped at a
height lower than LSL should not break. Assume that the
LSL = 3 ft and the customer wants to maintain a C,, of at
least 1 for the process. Now, suppose that the manufacturer
has done some preliminary testing on the process and has

“found that the process has a mean threshold-failure height of
5 ft with an estimated standard deviation of 0.67 ft, giving
the process a Cpk of (5§ - 3)/3(0.67) = 1.00. The manufac-
turer wants to monitor the process three times an hour to look
for changes, but the tests are expensive, so only six bottles
will be dropped every 20 min. The above-described proce-
dure and the power curves can be used to set up a p chart for
monitoring the process.

The possible values for the lower control limit of the pro-
cess are 0.167, 0.333, and 0.5, corresponding to x = 1, 2,
and 3 failures out of n = 6 bottles tested. Now, we examine
the power curves for n = 6 samples and find that x = 3 is the
best for detecting changes in the mean, but it performs very
poorly for detecting changes in the standard deviation. On
the other hand, x = 1 gives almost as much power for detect-
ing changes in the mean and much more power for detecting
changes in the standard deviation. Therefore, we chose to use
a p chart with a control limit of 0.167, so that if more than
one of the six bottles break, the chart will signal an out-
of-control condition. For this control limit (again selecting
a = 0.0027), the value of g is calculated from Eq. (1) to be
g = 0.0137. Then, using this g value and assuming a Normal
distribution, the drop height, H,, can be calculated from
the standard- Normal curve. Using u = 5 and o = 0.67,
®-'(0.0137) = —2.21 = (H, — 5)/0.67, which gives H, =
3.52 ft. Therefore, we choose to use a drop height of 3.52 ft,
and if more than one of the six bottles tested at this height
fails, the process is considered out of control and may no
longer meet the C,, criterion. The power of the test for this
chart is 0.14 if the mean of the distribution drops to 4.33 ft.
The power is 0.18 if the standard deviation doubles to 1.33 ft.

Another common measure for the effectiveness of a con-
trol chart is the average run length (ARL) before an out-of-
control signal. It is easily calculated because

1

ARL = P(a subgroup gives an out of control signal)’
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When the process is in control, the ARL measures the aver-
age frequency of false alarms and is 1/a, where « is the
probability of type I error that is selected. Because a =
0.0027, we can expect 1 false out-of-control signal every
370 subgroups or every 123 h. When the process goes out
of control, the ARL measures the average number of sub-
groups tested until the out-of-control condition is signaled.
If the mean drops to 4.33 ft (one standard deviation), then
the ARL = 1/Power of the test = 1/0.14 = 7 subgroups. So
we would expect an out-of-control signal in about 2.3 h.
Similarly, if the standard deviation doubles to 1.33 ft, then
we would expect a signal in about 1/0.18 = 5 subgroups or
1.66 h. These calculations can be used to balance the cost of
testing with the cost of producing defective product.

Conclusions

A p chart has been adapted for monitoring the process
capability when sensitivity data are all that are available for
measuring the quantity of interest. The method uses the same
sort of distributional assumptions that most control charts
rely on and is fairly robust to changes in the underlying
distribution. Instead of trying to adapt the “up-and-down”
method (1) to a control chart, this method uses a constant
drop height, making testing simpler and doing away with the
forced step-size choices. In addition, the method has a low
probability of false signals, and by changing subgroup sizes,
it can be adapted to many different requirements for the
power of the testing. Power curves and recommendations for
setting up the p chart for subgroup sizes between 5 and 15
have been provided.
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