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Abstract: The traditional latent class analysis (LCA) uses a mixture model with binary responses on each subject that are
independent conditional on cluster membership. However, in many practical applications, the responses are correlated because
they are observed on the same subject; this is known as local dependence. In this paper, we extend the LCA model to allow
for local dependence in each cluster to improve clustering accuracy. The clustering problem is hard because of its unsupervised
learning nature (the true cluster memberships and even the true number of clusters are unknown), the difficulty of estimating a
correlation matrix for each cluster and the paucity of information in binary data. Therefore, we follow a parametric approach in
which we fit a mixture model whose components follow multivariate Bernoulli distributions (one for each cluster). An extension
of a family of parametric models by Oman and Zucker [1] is adopted for this purpose and the maximum likelihood estimation
method is used for fitting. The Bayesian information criterion (BIC) due to Schwarz [2] is employed to select the number of
clusters. Subjects are classified to clusters using the maximum posterior rule. The proposed method is tested and compared with
the LCA method via simulation and by applying both methods to two real data sets. Significant improvement is demonstrated
relative to the LCA method.  2009 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 3: 3–19, 2010

Keywords: Bayes classification rule; Bayesian information criterion (BIC); data mining; EM algorithm; latent class analysis;
maximum likelihood estimation

1. INTRODUCTION

In this paper, we study the problem of cluster analysis
for multivariate binary data. The problem of cluster analysis
is, of course, well-known, and needs no introduction; see
Refs [3,4] for overviews and Ref. [5] for a recent perspec-
tive. Applications of clustering are numerous. For example,
a common problem in database marketing is segmentation
of customers so that different marketing strategies can be
targeted at different segments.

Much of the work in cluster analysis assumes contin-
uous data. However, the problem of clustering for binary
data arises in many applications including biology, edu-
cation, engineering, marketing, medicine and psychology.
Hoff [6] discusses an example dealing with tumor classifi-
cation. When a cell undergoes tumorigenesis, it accumulates
abnormalities at multiple sites in its genome, which can be
indicated by 1 if the mutation occurs at a particular site and
0 otherwise. These binary outcomes are not independent.
Because different tumors affect different biochemical path-
ways and hence require different types of treatments, it is
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desirable to classify these tumors based on their abnormality
patterns. In marketing, Experian’s behavior data bank has
lifestyle indicators. MRI, Scarbourough and Simmons have
large banks of questions indicating whether a customer has
purchased certain brands, watches certain TV shows, reads
certain newspapers/magazines, etc.

In the education field, Bennett and Jordan [7] conducted
a survey of 468 teachers in which each teacher was asked
38 yes–no type questions (also referred to as items) about
the way they handle their classes. For example, one of
the questions was “Do you usually allow your pupils to
move around the classroom?” The goal in Bennett and
Jordan’s analysis was to group the teachers into clusters
with similar teaching styles (which turn out to be tradi-
tional/disciplinarian teachers and modern/lenient teachers).
Toward this end, Aitkin, Anderson and Hinde [8] used
the latent class analysis (LCA) model, which is a mixture
model of independent Bernoulli distributions; see Refs [4]
(p. 120) and [9] (p. 6). Conditional on the cluster mem-
bership, responses are assumed to be independent (hence
referred to as local independence) and the mixing propor-
tions represent the prior probabilities of the clusters. The
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local independence assumption is clearly not true in this and
many other problems because many questions are related.
For example, in the teaching styles study another ques-
tion was “Do you usually allow your pupils to talk to one
another?” The answers to the two questions by the same
teacher will be positively correlated even if the teacher type
is known. This example is reanalyzed using the proposed
model in Section 8.1.

In Section 8.2, we analyze another example using the
proposed model which aims to cluster newspaper readers
based on their responses to seven questions on whether they
read a particular newspaper on each day of the week. Here
the clusters turn out to be subscribers and non-subscribers.
Once again the responses are highly correlated within each
cluster (with different correlation matrices) and so the LCA
model does not hold. In both these examples, the proposed
model which takes into account the dependencies gives a
significantly better fit to the data than the LCA model.

One can delete the obviously redundant questions with
very highly correlated responses, but it is not always
obvious which responses should be deleted. Also, in less
extreme cases deleting items would be wasteful of informa-
tion. In fact, it would be advantageous to explicitly model
local dependencies and utilize them in clustering the sub-
jects.

In this paper, we follow a parametric mixture model
approach in which local dependencies are modeled using
a new multivariate Bernoulli distribution. This approach
allows us to fit the model to data having general correlation
structures, and exploit the information in the correlations
to obtain improved clustering performance [higher correct
classification rates (CCRs)].

Here are the salient features of the proposed method.

• The method permits relaxing the local independence
assumption implicit in traditional LCA and allows
explicit modeling of the correlation structure within
each cluster. This latter feature enables a better
interpretation of the relationships between variables
within each cluster. Also, a significantly better fit to
the data is obtained compared with the LCA method.

• No assumptions are required other than the specific
correlation model. The method allows for different
correlation matrices (from the same family of models)
for different clusters.

• The computational burden of the method (caused in
large part due to estimation of the different correla-
tion matrices within clusters) limits its applicability
to a rather small number of variables—about 10 to
15. This is a definite drawback if the interest is in
exploratory studies with a large number of variables;

on the other hand, the methodology is highly use-
ful for confirmatory and interpretive purposes for a
relatively small number of variables.

• The method was validated for robustness by testing it
against the violation of the assumed correlation model
using simulated data generated from alternative mod-
els. The method was also tested on real data from two
case studies mentioned earlier.

The outline of the paper is as follows. Section 2 gives
a brief literature review of the approaches used to model
local dependencies. Section 3 generalizes a multivariate
Bernoulli distribution proposed by Oman and Zucker’s [1]
model to handle both positive and negative correlations
between responses. Section 4 states the mixture model that
uses this distribution as its component distribution for each
cluster. Section 5 gives the details of the maximum like-
lihood estimation for the mixture model. Section 6 shows
how the fitted model can be used for clustering and also
discusses the choice of the number of clusters. Section 7
presents simulation results comparing the proposed method
with the traditional LCA method. Section 8 gives two real
data examples to illustrate the application of our proposed
method to practical situations. Some concluding remarks
and directions for future research are outlined in Section 9.
Proofs of theoretical results and computational details of
the algorithm are given in the Appendix.

2. LITERATURE REVIEW

Qu, Tan and Kutner [10] proposed a latent class mixture
model with random effects to handle local dependencies.
In this model the component distribution for each cluster
was assumed to be multivariate probit (MVP). Specifi-
cally, let X1, X2, . . . , Xm denote the manifest Bernoulli
responses and let Y1, Y2, . . . , Ym denote the latent mul-
tivariate standard normal random variables (r.v.’s) with
Xi = I (Yi ≤ z(θi)), where I (·) is an indicator function, i.e.
z(θi) is a threshold on Yi such that Xi = 1 if Yi ≤ z(θi) and
Xi = 0 if Yi > z(θi). Here z(θi) is the θi-quantile of the
standard normal distribution so that Xi is Bernoulli with
success probability θi (denoted by Xi ∼ B(θi)). The MVP
model of Qu et al. [10] effectively assumes a product corre-
lation structure for the Yi’s, i.e. corr(Yi, Yj ) = τij = γ iγ j

where −1 < γ i < 1 for all i. It is easy to show that, since
τij > 0 if both γ i and γ j have the same sign and τij < 0
otherwise, the Xi’s fall into two groups such that the Xi’s
belonging to the same group are positively correlated and
the Xi’s belonging to the different groups are negatively
correlated. Many real data sets do not have this type of
block correlation structure. In addition, the parameter esti-
mation for the MVP model involves evaluations of integrals
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by quadrature or Monte Carlo methods. Repeated evalu-
ations of the integrals required for maximum likelihood
estimation of the unknown parameters are computationally
intensive, especially if the number of variables is large.
Emrich and Piedmonte [11] proposed an MVP model for
generating multivariate Bernoulli data with a general corre-
lation matrix, but their model is even more computationally
intensive not only because there are many more param-
eters to estimate, but also because multivariate integrals
with arbitrary correlations cannot be reduced to univariate
integrals as they can be in the product correlation case; see
Ref. [12] (p. 374).

An alternative approach is to employ a log-linear for-
mulation of the latent class model [13]. This approach
augments the traditional latent class local independence
model, which includes marginal probabilities of responses
conditional on cluster membership, by incorporating joint
response probabilities (also conditional on cluster identity)
for selected pairs of items. These joint response probabil-
ities can be modeled either using direct effects ([14,15])
between selected pairs of items or using additional latent
variables, called Dfactors, that are associated with those
pairs of items. The decision about which two-way interac-
tions to include in the model is based on two-way residual
analyses of the manifest variables after fitting the local inde-
pendence model; more interactions are added iteratively
until all residual correlations decrease to an acceptable
level.The parameter estimation process is relatively fast and
can accommodate many more variables than our proposed
method can. Therefore, this method is well-suited for data
mining (although requirement of more user input for adding
interactions could make the method less automatic) and has
been implemented in a commercial software called Latent
Gold [16].

3. A MULTIVARIATE BERNOULLI
DISTRIBUTION MODEL

Let X = (X1, X2, . . . , Xm) denote a vector of correlated
Bernoulli random variables (r.v. ’s) on a subject. Marginally
each Xi ∼ B(θi). We assume that 0 < θi < 1 for all i.
Prentice [17] showed that, due to the binary nature of the
Xi’s, the correlation coefficient ρij = corr(Xi, Xj ) has a
limited range , −ρ∗

ij ≤ ρij ≤ +ρ∗∗
ij , where

ρ∗
ij = min

[√
θiθj

(1 − θi)(1 − θj )
,

√
(1 − θi)(1 − θj )

θiθj

]
(1)

and

ρ∗∗
ij = min

[√
θi(1 − θj )

θj (1 − θi)
,

√
θj (1 − θi)

θi(1 − θj )

]
. (2)

Because of the limited range of ρij it will be useful to
define the relative correlation coefficient, −1 ≤ rij ≤ 1, as
follows:

rij =
{
ρij /ρ

∗
ij if ρij ≤ 0

ρij /ρ
∗∗
ij if ρij > 0.

(3)

Let x = (x1, x2, . . . , xm) be a realization of the random
vector X = (X1, X2, . . . , Xm). Then x can be character-
ized by its pattern of 1’s and 0’s. We denote a pattern by
P ⊆ M = {1, 2, . . . , m}, where xi = 1 ∀ i ∈ P and xi =
0 ∀ i �∈ P . Each pattern P has a unique index p defined
by:

p = 1 +
m∑

i=1

2i−1xi,

where p ranges from 1 (when all xi = 0) to 2m (when all
xi = 1).

Various distributional models have been proposed for
correlated binary variables. A standard way to induce corre-
lation is through a common latent variable. The MVP model
by Qu et al. [10], mentioned in the previous section, uses a
N(0, 1) latent variable. Al-Osh and Lee [18] use a discrete
(Bernoulli) latent variable, which makes their model rather
restrictive. A more flexible model was proposed by Oman
and Zucker [1] using an arbitrary continuous latent variable.
We adopt their model (referred to as the CLV model) after
extending it to allow for negative correlations as follows.

Let Z0, Z1, . . . , Zm be i.i.d. continuous r.v.’s with a
common known distribution. For convenience and without
loss of generality, we will assume that the common known
distribution is uniform over [0, 1] (denoted as U [0, 1]).
Let V1, V2, . . . , Vm be independent Bernoulli r.v.’s with
parameters β1, β2, . . . , βm, respectively, and let

Ui = ViZ0 + (1 − Vi)Zi. (4)

Here Z0 may be thought of as a subject-specific latent
variable common to all items and the Zi (1 ≤ i ≤ m) as
item-specific latent variables. Local dependencies between
the responses are induced by Z0. The Ui are positively cor-
related U [0, 1] r.v.’s. To allow for negative correlations, we
introduce independent Bernoulli r.v.’s Wi ∼ B(γ i), which
allow either not flipping or flipping the sign of Ui (keeping
its magnitude the same) with probabilities γ i and 1 − γ i ,
respectively. Let

Yi = UiWi + (1 − Ui)(1 − Wi) and Xi = I (Yi ≤ θi) ,

(5)

where I (·) is an indicator function. It is easy to see
that Yi ∼ U [0, 1] and hence Pr(Xi = 1) = θi . Furthermore,

Statistical Analysis and Data Mining DOI:10.1002/sam
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using straightforward calculations the following expression
for ρij can be derived:

ρij =


βiβjρ

∗∗
ij [1 − {γ i(1 − γ j )

+γ j (1 − γ i)}/ max(θi, 1 − θj )] if θi ≤ θj

βiβjρ
∗∗
ij [1 − {γ i(1 − γ j )

+γ j (1 − γ i)}/ max(θj , 1 − θi)] if θi ≥ θj .

(6)

Thus the sign of ρij depends on whether the second term
inside the square bracket is > 1 or < 1. In particular,
ρij ≥ 0 if and only if

γ i(1 − γ j ) + γ j (1 − γ i)

≤


1 − θj if θi ≤ θj , θi + θj ≤ 1 (Region I)
θi if θi ≤ θj , θi + θj ≥ 1 (Region II)
θj if θj ≤ θi, θi + θj ≥ 1 (Region III)
1 − θi if θj ≤ θi, θi + θj ≤ 1 (Region IV)

where the four regions are shown in Fig. 1. As the γ ’s and
the θ ’s can be chosen independently of each other, one can
see that this model does not impose a restrictive structure
on the correlation matrix.

Although the model defined in Eqs. 4 and 5 is simple,
the joint distribution of X = (X1, X2, . . . , Xm) is rather
complicated and is given by (the derivation is given in the
Appendix):

f (p|θ , β, γ )

=
∑
A⊆P

∑
B⊆Q

∑
C⊆A∪B

[θ∗∗(A, B, C) − θ∗(A, B, C)]+

×
 ∏

i∈P \A
θi

∏
i∈Q\B

(1 − θi)



1/2

1/2

1

1

IV

III

II

I

0 qj

ql

Fig. 1 Shaded regions of the (θi , θj ) space where min ρ
(2)
ij > 0.

×
 ∏

i∈A,B

βi

∏
i∈P \A,Q\B

(1 − βi)


×

∏
i∈C

γ i

∏
i∈(A∪B)\C

(1 − γ i)

 , (7)

where

θ∗(A, B, C) = max

{
0, max

i∈B∩C
θi, max

i∈A∩D
(1 − θi)

}
and

θ∗∗(A, B, C) = min

{
1, min

i∈A∩C
θi, min

i∈B∩D
(1 − θi)

}
,

where the sets A, B, C, D are defined in the Appendix.
Note that if all βi = 0 then we get the independence

model: f (p) = ∏
i∈P θi

∏
i∈Q(1 − θi).

The general form of the CLV model has 3m parame-
ters. A model with so many parameters is difficult to fit,
especially when a separate model must be fitted to each
cluster, as we learnt through computational experience.
So we decided to make one of the following simplify-
ing assumptions: (i) all βi ≡ β but the γ i are unrestricted
(CLV1 Model) or (ii) all γ i ≡ γ but the βi are unrestricted
(CLV2 Model). We chose the CLV1 model as it allows a
wider range of correlations to be modeled as shown in the
following proposition.

PROPOSITION 1: Denote ρij for the CLV1 model by
ρ

(1)
ij and that for the CLV2 model by ρ

(2)
ij . Then for

fixed θi, θj , the range of ρ
(1)
ij is the entire feasible range

[−ρ∗
ij , ρ∗∗

ij ], whereas the range of ρ
(2)
ij is [(1/2)(ρ∗∗

ij −
ρ∗

ij ), ρ∗∗
ij ], which is only half as wide. If both θi, θj are

either < 1/2 or > 1/2 then

min ρ
(2)
ij = 1

2
(ρ∗∗

ij − ρ∗
ij ) > 0,

so negative ρij cannot be modeled under the CLV2 model
in this case.

Proof: See the Appendix. �

4. MIXTURE MODEL

Consider N subjects on each of whom m ≥ 2 binary
responses are measured. Let xi = (xi1, xi2, . . . , xim) be the
vector of responses on the ith subject with pattern index
pi (1 ≤ pi ≤ 2m) and let Xi = (Xi1, Xi2, . . . , Xim) be the
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corresponding vector. We want to classify the subjects into
K ≥ 1 disjoint homogeneous clusters, C1, C2, . . . , CK ,
where provisionally we fix K and assume it to be known
(note K = 1 means no clusters). For cluster Ck , denote
the vector of Bernoulli probabilities by θ k = (θ1k, θ2k, . . . ,

θmk). Thus Pr(Xij = 1|i ∈ Ck) = θjk and Pr(Xij = 0|i ∈
Ck) = 1 − θjk (denoted as Xij ∼ B(θjk) conditionally on
i ∈ Ck) for j = 1, 2, . . . , m. Under the independence
model we have

f (pi |θ k) =
m∏

j=1

θ
xij

jk (1 − θjk)
1−xij . (8)

In order to account for local dependence, we replace
f (pi |θ k) for the independence case by the distribution
given by Eq. 7. Here that distribution depends, in addition
to θ k , also on βk = (β1k, . . . , βmk) and γ k = (γ1k, . . . ,

γmk). For the CLV1 model, βk reduces to a scalar quantity
βk. In that case we denote it by f (pi |θ k, βk, γ k).

Let ηk = Pr(i ∈ Ck) be the prior probability of a ran-
domly chosen subject i belonging to cluster Ck where∑K

k=1 ηk = 1. The ηk are also referred to as mixing pro-
portions. Fitting the proposed model involves finding the
maximum likelihood estimates (MLEs) of the ηk and
(θk, βk, γ k) for k = 1, 2, . . . , K by maximizing the log-
likelihood function

ln L =
N∑

i=1

ln

[
K∑

k=1

ηkf (pi |θ k, βk, γ k)

]
.

By utilizing the fact that the contribution to the log-
likelihood from all subjects with the same pattern index
pi = p is the same and hence can be multiplied by the num-
ber of subjects, np , having that pattern index (

∑2m

p=1 np =
N ), the summation over N subjects (which can be quite
large) in the above expression is reduced to a summation
over 2m pattern indexes (which can be relatively small) as
follows:

ln L =
2m∑

p=1

np ln

[
K∑

k=1

ηkf (p|θ k, βk, γ k)

]
. (9)

5. MAXIMUM LIKELIHOOD ESTIMATION OF
THE MIXTURE MODEL

The expectation-maximization (EM) algorithm of Demp-
ster, Laird and Rubin [19] can be used to compute the MLEs
of θjk and ηk in the LCA model where, at each iteration,
closed formulas are available for the current MLEs of the
parameters; see [9](pp. 138–139). For the CLV1 model, the
log-likelihood function (Eq. 9) is more complex and similar

closed formulas for the MLEs do not exist. In fact, from
Eq. 7 we see that Eq. 9 is not even differentiable in θ as
it involves the min and max operations on the θjk . There-
fore we used the nonlinear programming (NLP) approach to
compute the MLEs of the parameters all of which were con-
strained to be between 0 and 1. The computational details
are given in the Appendix.

6. CLUSTERING PROBLEM

6.1. Classification of Observations

The MLEs, η̂k , θ̂k , β̂k, γ̂ k , can be used to compute
the (estimated) posterior probabilities of the observations
belonging to different clusters (also called responsibilities).
Note that all observations having the same index p have
the same posterior probability given by:

η̂k(p) = η̂kf (p|̂θ k, β̂k, γ̂ k)∑K
�=1 η̂�f (p|̂θ k, β̂k, γ̂ k)

. (10)

The Bayes (maximum posterior) rule is used to assign
observations to clusters. Specifically, all observations with
pattern index p are assigned to that cluster Ck which gives
the maximum η̂k(p). This is equivalent to partitioning the
space of 2m patterns into K partitions such that all patterns
in the same partition are assigned to the same cluster.
Hastie, Tibshirani and Friedman [20] refer to this as hard
assignment as opposed to soft assignment in which the
observations are assigned to different clusters in proportion
to their posterior probabilities.

6.2. Number of Clusters

The CLV1 model has 2m + 1 unknown parameters per
cluster (m each of the θjk’s and γjk’s and one βk). Thus
for K clusters there are (2m + 1)K unknown parameters.
In addition, there are K − 1 independent prior probabilities,
ηk’s. Thus there are n = 2(m + 1)K − 1 unknown parame-
ters. In comparison, there are n = (m + 1)K − 1 unknown
parameters in the LCA model (m each of the θjk’s and
K − 1 ηk’s).

Effectively, the data in this problem are the pattern
frequencies, np. There are 2m − 1 independent np’s as they
sum to the fixed total sample size N . In order for the model
to be estimable we must have the number of parameters to
be no more than the number of independent data values,
i.e.

2(m + 1)K − 1 ≤ 2m − 1 ⇐⇒ K ≤ Kmax =
⌊

2m−1

m + 1

⌋
,

(11)
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where Kmax denotes the maximum number of clusters that
can be fitted and �x� denotes the integer part of x. The
following table gives the Kmax values for selected values
of m.

m 3 4 5 6 7 8 9 10
Kmax 1 1 2 4 8 14 25 46

In most applications, Kmax ≤ 4, so m ≥ 6 is sufficient for
clustering purposes.

Determination of the number of clusters is a special
case of the model selection problem. Many criteria have
been proposed in the literature for model selection. We use
Schwarz’s [2] Bayesian information criterion (BIC), which
is defined as:

BIC = 2 ln L − n ln N,

where ln L is the maximized log-likelihood function (Eq.9)
with a given number of clusters, n = 2(m + 1)K − 1 is
the total number of parameters and N is the total sample
size. The goal is to choose the model that maximizes BIC.
This criterion is selected because it takes into account the
effect of the sample size in its penalty function and is
consistent in the sense that if the true model is among the
candidates then the probability of selecting the true model
approaches 1 as N → ∞ as shown by Keribin [21]. Note,
however, that regardless of which criterion is used, the
clusters must be interpretable in the context of the problem.
An interpretable solution is preferable to an optimal solution
when determining the number of clusters.

7. SIMULATION STUDY

In this section, we compare the performance of the
proposed method with the classical LCA method which
uses the independence model. We also assess the robustness
of the proposed method by generating data using a model
different from the CLV1 model.

7.1. Performance Measures

The main performance measure is the CCR, which is the
proportion of observations that are classified to the correct
cluster. The misclassification rate (MCR) equals 1 − CCR.
For binary data there are lower and upper bounds on CCR
(denoted by LCCR and UCCR, respectively) because of the
fact that any hard assignment rule classifies each pattern to
exactly one cluster. So all observations with that pattern
which belong to other clusters are misclassified. One must
also remember that cluster labels are arbitrarily assigned;
what matters is that the observations belonging to the same
cluster are classified together. Therefore CCR must be

computed by taking the maximum over all possible cluster
labelings.

As an example, suppose that there are 50 observations
from each of two clusters which are classified as shown
in Table 1. It would appear that CCR is (15 + 25)/100 =
40%. However, if we switch the labels of classified clus-
ters then we see that CCR is (35 + 25)/100 = 60%. This
suggests that for two clusters, CCR ≥ 0.5. The maximum
achievable upper bound on CCR is found by simply assign-
ing each pattern p to that cluster Ck in which it has the
highest frequency. The following proposition gives general
lower and upper bounds on CCR.

PROPOSITION 2: Let npk denote the true (unknown)
count of observations having pattern p that come from
cluster Ck (

∑K
k=1 npk = np). Then the lower and upper

bounds on CCR are given by

LCCR = 1

K
and UCCR =

∑2m

p=1 maxk npk

N
. (12)

Proof: See the Appendix.

Because of the bounds on CCR, it is convenient to
use a standardized measure, which we call the correct
classification score (CCS), defined as

CCS = CCR − LCCR

UCCR − LCCR
. (13)

Note that CCS falls between 0 and 1, and large values of
CCS are desirable.

To compare the goodness of fit of the CLV1 model
relative to that of the LCA model we propose two measures
analogous to R2 and adjusted R2 (R2

adj) used in multiple
regression. Although these measures are not used in the
simulation studies, they are used in the two examples in
Section 8, and hence are defined here. Let n̂p = ∑K

k=1 n̂pk

be the estimated (fitted) frequency for pattern p by a
particular model where n̂pk is computed by multiplying the
total sample size N by the estimated cluster probability
η̂k and the estimated probability of pattern p conditioned

Table 1. Classification of data into two clusters.

Classified to
Cluster 1 Cluster 2

Cluster 1 15 35 50
Belong to

Cluster 2 25 25 50

40 60

Statistical Analysis and Data Mining DOI:10.1002/sam
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Table 2. Low and high parameter values for the CLV1 model
used in the simulation study.

Parameter

Level θjk βk γ1k γ2k γ3k γ4k γ5k η1

Low 0.4 0.50 0.01 0.01 0.01 0.01 0.01 0.4
High 0.6 0.95 0.50 0.99 0.99 0.99 0.99 0.6

on the event that observation belongs to cluster Ck (these
probabilities are given by Eq. 8 for the independence model
and Eq. 7 for the CLV1 model). Let SSe0 and SSe1 be
the error sums of squares for the independence and CLV1
models, respectively, where

SSe =
2m∑

p=1

(np − n̂p)2

using the appropriate model to compute n̂p. Generally one
has SSe1 ≤ SSe0 as the CLV1 model has more parameters
and the independence model is a special case of the CLV1
model. The error degrees of freedom for the two models are
N − 1 − n = N − K(m + 1) for the independence model
and N − 1 − n = N − 2K(m + 1) for the CLV1 model.
Then

R2 = 1 − SSe1

SSe0
and R2

adj = 1 − SSe1/[N − 2K(m + 1)]

SSe0/[N − K(m + 1)]
.

(14)

While R2 gives the straight percentage reduction in SSe by
the CLV1 model compared to the independence model, R2

adj
adjusts this for the number of parameters in each model via
the corresponding error degrees of freedom.

7.2. Simulation Results

We conducted a simulation study for K = 2 clusters,
m = 5 responses and N = 500, 5000 and 50 000. In each
case, data were generated using two models: (i) the CLV1
model and (ii) the MVP model with product correlation
structure. Data were also generated using the independence
model, which is a special case of both these models. The
data from the independence and the MVP models were used
to test robustness of the proposed method which assumes
the CLV1 model.

The parameters for the CLV1 model were chosen as
follows. There are a total of 23 parameters in this study
(θjk and γ jk for j = 1, . . . , 5, k = 1, 2; β1, β2 and η1).
We chose two levels (high and low) for each parameter as
given in Table 2.

Twenty-four different combinations of these parameter
values were obtained by using a 24-run Plackett-Burman

(PB) design shown in Table 3. The PB design was chosen
because it is based on a two-level (+/−) orthogonal array
with the minimum number of runs (rows) equal to one
more than the number of columns [[22], p. 317]. The run
with low values for all parameters for both clusters was
replaced with the independence model by setting β1, β2 and
all γ ij equal to 0, θ1j = 0.40, θ2j = 0.60 (1 ≤ j ≤ 5) and
η1 = 0.60. The runs in Table 3 are arranged according to
their values for the weighted average (with weights equal to
the cluster mixing proportions) absolute relative correlation
(shown in the last column), which is defined as follows:

|r | =
K∑

k=1

ηk|rk| where |rk| = 1(
m
2

) ∑
i<j

|rijk|,

with rijk being the relative correlation between responses
i and j in cluster k. Note that we use |r| as a single
global measure, but we recognize that no single measure
can capture the extent of correlation in the data.

For each run (i.e. each combination of the parameter set-
tings) we performed 20 replications. For each replication
both the traditional LCA method and the proposed method
were applied. CCR was obtained from which CCS was
computed for each method and for each replication. Finally,
the CCS values for each method were averaged over 20
replications and their standard deviations, s/

√
20, where s

is the sample standard deviation of the CCS values obtained
from 20 replications were computed. Table 4 summarizes
these results. The results for N = 5000 are graphically dis-
played in Fig. 2. This figure shows the plots of the average
CCS values with two standard deviation bars around the
average. The plots of the average CCS values for the tra-
ditional LCA method are marked with circles, while those
for the proposed method are marked with diamonds.

The trends in the CCS results are not very smooth, and
the range of variation at different parameter settings is also
highly variable for both the proposed method and the LCA
method. We believe that this is because the CCS values
do not depend on |r| alone, but also on the differences
between the correlation structures and the θ values of the
two clusters. These differences are difficult to quantify in
terms of a few simple measures. Nevertheless, there are
some general trends as elucidated in the following text.

1. The CCS values for the LCA method show a gen-
eral decreasing pattern with respect to |r |. As |r |
increases, the independence model gives a poorer
fit which results in more misclassifications. On the
other hand, the average CCS values for the pro-
posed method increase for low values of |r| reaching
a plateau for medium values of |r| and then they
decrease for high values of |r |. Only for the inde-
pendence case, the proposed method has a signifi-
cantly lower average CCS value than does the LCA
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Table 3. Plackett-Burman design for data generated from the CLV1 model.

Cluster 1 Cluster 2

θ1 θ2 θ3 θ4 θ5 β γ1 γ2 γ3 γ4 γ5 θ1 θ2 θ3 θ4 θ5 β γ1 γ2 γ3 γ4 γ5 η1 |r|
− − − − − 0 0 0 0 0 0 + + + + + 0 0 0 0 0 0 + 0.000
+ + + + + − + − + + − + + − − + − + − − − − − 0.160
− + − − − − + + + + + + − + + − − + + − − + − 0.161
+ + + − + − + + − − + − − + − + − − − − + + + 0.192
− + − + + − − + + − − − + − − − − + + + + + + 0.208
+ − + − − − − + + + + − + − + + − − + + − − + 0.240
+ + − + − + + − − + + − + − + − − − − + + + − 0.375
− − + − + − − − − + + + + − + − + + − − + + + 0.375
− − + + + + + − + − + − − + + − − + − + − − + 0.412
+ − + + − − + + − − + + − − − − + + + + + − − 0.412
+ + − − + − + − − − − + + + + − + − + + − − + 0.442
− − − + + + + + − + − + − − + + − − + − + − + 0.442
− + + − − + − + − − − + + + + + − + − + + − − 0.443
+ − − + + − − + − + − − − + + + + + − + − + − 0.443
− + − + − − − − + + + + − + − + + − − + + − + 0.489
+ − + − + + − − + + − + − + − − − − + + + + − 0.490
− + + − − + + − − + − − − − − + + + + + − + + 0.579
+ − − − − + + + + + − − + + − − + + − − + − + 0.579
+ − − + − + − − − − + + + + − + − + + − − + + 0.582
− − + + − − + − + − − − + + + + + − + − + + − 0.584
+ + − − + + − − + − + − − − + + + + + − + − − 0.692
− − − − + + + + + − + + + − − + + − − + − + − 0.749
+ + + + − + − + + − − + − − + − + − − − − + + 0.864
− + + + + + − + − + + − + + − − + − + − − − − 0.867

The symbol + denotes the high level and − denotes the low level; 0 denotes zero values for βk, γjk .

method. This is because the proposed method utilizes
the information in the correlations and hence results
in less misclassifications.

The nonmonotone behavior of the CCS of the pro-
posed method as a function of |r| can be explained
as follows. The additional information contributed by
correlations, as they increase from 0, is utilized by the
proposed method thus improving its performance in
an absolute sense. As correlations get larger the net
amount of information in a fixed number of responses
decreases because the responses act as proxies for
each other. However, the proposed method is still
effective in capturing the correlations; so the per-
formance of the method reaches a plateau. Finally
when the correlations get close to 1, the high degree
of dependence between the responses means that the
effective number of responses becomes less than m.
As a result, the CCS values decrease.

2. The standard deviations for the average CCS values
for the LCA method are generally much smaller than
those for the proposed method. The reason is that
the independence model involves fewer parameters
(10 θs plus 1 η for a total of 11 parameters instead

of 23 parameters in the CLV1 model). As a result,
the estimates of these parameters have smaller sam-
pling errors and hence the CCS values have smaller
standard deviations.

3. The CCS values for the CLV1 model method increase
with the sample size. The independence model
method does not exhibit such a monotone behav-
ior with the sample size, and the CCS values appear
to fluctuate randomly around a mean value for each
parameter configuration.

Simulations for the MVP model were conducted in the
same manner as for the CLV1 model. The low and high
parameter values for the MVP model are given in Table 5.

In this case there are 21 parameters. We used the first 21
columns of the 24-run PB design shown in Table 6. The
run with low values for all parameters for both clusters
was replaced with the independence model by setting γ ij =
0, θ1j = 0.40, θ2j = 0.60 (1 ≤ j ≤ 5) and η1 = 0.60. This
run is identical to the corresponding independence model
run for CLV1 data and so was not repeated. The runs in
Table 6 are also arranged according to the |r| values, which
are shown in the last column. Simulation results for the
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Table 4. Estimated CCS values and their standard errorsa for data generated from the CLV1 model.

N = 500 N = 5000 N = 50000

Proposed LCA Proposed LCA Proposed LCA
|r| method method method method method method

.000 .420 (.146) .492 (.243) .461 (.139) .867 (.151) .525 (.251) .984 (.007)

.160 .301 (.240) .364 (.219) .525 (.271) .375 (.066) .829 (.131) .391 (.012)

.161 .365 (.262) .416 (.143) .534 (.228) .449 (.074) .688 (.329) .500 (.055)

.192 .379 (.226) .298 (.192) .522 (.304) .349 (.090) .952 (.107) .374 (.036)

.208 .402 (.229) .341 (.117) .501 (.298) .404 (.042) .940 (.100) .416 (.012)

.240 .419 (.151) .449 (.107) .503 (.284) .459 (.057) .568 (.421) .492 (.075)

.375 .498 (.302) .077 (.059) .990 (.026) .027 (.020) 1.000 (.000) .018 (.011)

.375 .662 (.276) .192 (.137) .986 (.022) .140 (.066) .999 (.002) .112 (.016)

.412 .662 (.202) .064 (.054) .958 (.069) .020 1]15 925 (.011) 1.000 (.000) .015 (.005)

.412 .575 (.268) .214 (.111) .916 (.181) .165 (.024) .999 (.001) .155 (.022)

.442 .866 (.167) .345 (.144) .998 (.004) .186 (.096) 1.000 (.000) .223 (.060)

.442 .615 (.212) .045 (.048) .958 (.038) .026 (.020) .995 (.010) .017 (.007)

.443 .417 (.248) .405 (.177) .903 (.220) .379 (.045) 1.000 (.000) .365 (.017)

.443 .546 (.279) .100 (.059) .929 (.084) .049 (.039) .998 (.003) .038 (.015)

.489 .510 (.290) .147 (.116) .899 (.176) .071 (.043) .814 (.189) .080 (.004)

.490 .702 (.224) .184 (.098) .978 (.090) .141 (.051) .920 (.165) .154 (.008)

.579 .586 (.303) .489 (.156) .625 (.292) .523 (.103) .759 (.299) .545 (.015)

.579 .672 (.267) .218 (.038) .939 (.068) .215 (.014) .986 (.008) .215 (.006)

.582 .825 (.246) .159 (.091) .967 (.119) .034 (.041) .881 (.214) .025 (.007)

.584 .352 (.281) .239 (.080) .537 (.425) .216 (.019) .919 (.238) .216 (.005)

.692 .462 (.318) .268 (.137) .375 (.325) .353 (.093) .724 (.333) .378 (.009)

.749 .444 (.312) .051 (.036) .764 (.197) .023 (.013) .854 (.150) .024 (.004)

.864 .433 (.239) .268 (.065) .593 (.260) .278 (.024) .564 (.271) .276 (.007)

.867 .419 (.238) .053 (.034) .384 (.354) .039 (.016) .682 (.215) .031 (.006)

aThe standard errors are given in parentheses.

MVP model are summarized in Table 7. The results for
N = 5000 are graphically displayed in Fig. 3.

The following interesting results emerge from these sim-
ulations.

1. Once again, the CCS values show nonsmooth behav-
ior for the same reasons as explained before. How-
ever, there are some general trends as elucidated in
the following text.

2. In contrast to the CLV1 data, in this case the CCS
values for the proposed method show a random
fluctuating pattern with a slightly decreasing trend at
high |r| values. On the other hand, the CCS values for
the LCA method display a generally decreasing trend
through the entire range of |r| values. Nevertheless,
the proposed method does not perform significantly
worse than the LCA method for any |r | > 0.368
barring one exception for |r| = 0.536.

3. The CCS values using MVP data for the proposed
method are uniformly and significantly lower than
those for the CLV1 data. Also, in this case, in contrast
to the CLV1 data, the performance of the proposed
method does not improve with the sample size. This

is because the proposed method attempts to fit a
wrong model to the data, so having more data does
not help improve the fit.

8. EXAMPLES

In this section we analyze two real data sets discussed
in the Introduction section. The first data set is from the
teaching style study. We chose six binary questions from
the survey and attempted to classify the 468 teachers into
clusters based on their responses to those six questions. The
second data set comes from a research project at the Media
Management Center at Northwestern University. Among
the many questions asked, we will focus on seven questions
that ask the reader if he/she reads a particular newspaper
on Monday, Tuesday, . . ., Sunday. Here it is obvious that
the responses must be locally dependent.

8.1. Teaching Style Data

We focus attention on the following six questions from
the teaching style data.

Statistical Analysis and Data Mining DOI:10.1002/sam
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Fig. 2 Average correct classification scores (CCS) using the proposed and the LCA methods [data generated using .the CLV1 model;
N = 5000)].

Q.1: Pupils not allowed to move around? (Y=1, N=0)

Q.2: Pupils not allowed to talk? (Y=1, N=0)

Q.3: Pupils expected to be quiet? (Y=1, N=0)

Q.4: Explore concepts (1) or develop numerical skills (0)?

Q.5: Emphasis on separate subject teaching? (Y=1, N=0)

Q.6: Emphasis on integrated teaching? (Y=1, N=0)

The proposed mixture model method with the CLV1 dis-
tribution as well as the LCA method were applied to these
data. The BIC values for K = 1(1)4 clusters for the pro-
posed method are shown in Table 8. We see that BIC is
maximized for K = 2. Hence we selected a two-cluster
model. The classification performance of this model was
compared with that of the LCA method with two clusters.

The estimates of the θk for the two clusters are shown in
Table 9. The relative correlation (see Eq. 3) matrices esti-
mated using the proposed method are shown in Table 10.

First, we note that the estimates of the θk’s obtained by
the two methods are similar, but the differences between the
two clusters are more evident for the LCA method. Further
note that for Cluster 1, θ̂1, θ̂2, θ̂3 and θ̂5 are higher than
those for Cluster 2, while the inequality is reversed for θ̂4

and θ̂6. We see that yes responses to Q.1, Q.2, Q.3 and Q.5
are typical of traditional and disciplinarian teachers, while
yes responses to Q.4 and Q.6 are typical of modern and
lenient teachers. Thus, both the estimation methods clas-
sify teachers into strict and lenient clusters with about 62%
in Cluster 1 and 38% in Cluster 2. Although both methods
give similar percentages in the two clusters, in fact, 101 out
of a total 468 teachers (21.6%) were differentially classified

Table 5. Low and high parameter values for the MVP model used in the simulation study.

Parameter

Level θjk γ11 γ12 γ13 γ14 γ15 γ21 γ22 γ23 γ24 γ25 η1

Low 0.40 0.60 −0.95 0.60 −0.95 0.60 −0.95 0.60 −0.95 0.60 −0.95 0.40
High 0.60 0.95 −0.60 0.95 −0.60 0.95 −0.60 0.95 −0.60 0.95 −0.60 0.60
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Table 6. Plackett-Burman design setting for data generated from the MVP model.

Cluster 1 Cluster 2

θ1 θ2 θ3 θ4 θ5 γ1 γ2 γ3 γ4 γ5 θ1 θ2 θ3 θ4 θ5 γ1 γ2 γ3 γ4 γ5 η1 |r|
− − − − − 0 0 0 0 0 + + + + + 0 0 0 0 0 + 0.000
+ + + + + − + − + + − + + − − + − + − − − 0.368
− − + + + + + − + − + − − + + − − + − + + 0.371
− + − + − − − − + + + + − + − + + − − + + 0.392
− + − + + − − + + − + − + − − − − + + + − 0.425
+ + + − + − + + − − + − − + − + − − − − + 0.438
− + + − − + − + − − − + + + + + − + − + − 0.458
+ − + − + + − − + + − + − + − − − − + + − 0.467
− − − − + + + + + − − + + − − + + − − + + 0.467
− + − − − − + + + + − + − + + − − + + − + 0.472
+ − + − − − − + + + + − + − + + − − + + + 0.474
+ − + + − − + + − − − + − − − − + + + + + 0.495
+ + − + − + + − − + − − + − + − − − − + + 0.502
− + + − − + + − − + + − − − − + + + + + − 0.503
+ + − − + + − − + − − − − − + + + + + − + 0.504
+ − − + + − − + − + − − − + + + + + − + − 0.504
+ − − + − + − − − − + + + + − + − + + − + 0.529
− − + − + − − − − + + + + − + − + + − − + 0.534
− − + + − − + − + − − − + + + + + − + − − 0.536
+ + − − + − + − − − + + + + + − + − + + − 0.568
+ − − − − + + + + + + − + + − − + + − − − 0.573
− − − + + + + + − + + + − − + + − − + − − 0.621
+ + + + − + − + + − + + − − + − + − − − − 0.651
− + + + + + − + − + − − + + − − + − + − + 0.844

The symbol + denotes the high level; − denotes the low level; 0 denotes zero values for γjk . xs

by the two methods. Thus, in terms of classification perfor-
mance, the two methods are significantly different for this
data set. Of course, there is no way to tell which method
classifies the teachers more accurately.

To compare the goodness of fit of the CLV1 model
with the independence model we computed error sums of
squares for the two models which were SSe1 = 127.900
and SSe0 = 2781.708. The error degrees of freedom for
the CLV1 model are 26 − 2 × 2 × (6 + 1) = 36 and for the
independence model are 26 − 2 × (6 + 1) = 50. Therefore
we get

R2 = 1 − 127.9

2781.708
= 95.40% and

R2
adj = 1 − 127.9/36

2781.708/50
= 93.61%.

Thus the CLV1 model gives a much better fit.
Inspecting the estimated relative correlation matrices we

see that, as expected, responses to Q.1, Q.2 and Q.3 are
positively correlated with higher relative correlations in
Cluster 1 than in Cluster 2. Surprisingly responses to Q.1,
Q.2 and Q.3 are negatively correlated with the responses
to Q.5 in Cluster 1, but positively correlated in Cluster 2.
Finally, responses to Q.6 are negatively correlated with the

responses to other questions except Q.4 in both clusters.
The negative relative correlation with the responses to
Q.5 is especially large (−0.899) in Cluster 2 as teachers
who emphasize separate subject teaching are not likely to
emphasize integrated teaching.

8.2. Newspaper Reading Survey

The seven questions in the newspaper reading data are
Q.i: Do you read (a particular) newspaper on day i? where
i = 1 for Monday, . . . , i = 7 for Sunday. This data set
consists of 10 858 responses to a mail survey conducted by
the Newspaper Association of America.

The BIC values for K = 1(1)4 clusters for the proposed
method are shown in Table 11. We see that BIC is maxi-
mized for K = 3. However, the three-cluster solution was
found to be not as readily interpretable as the two-cluster
solution (the results are not reported here for the lack of
space but are available from the second author). First, one of
the clusters had a very low prior probability, and it appeared
to be a combination of the other two dominant clusters.
Second, the estimated correlation matrices using the CLV1
model also were not interpretable. On the other hand, the
two-cluster solution had a nice interpretation, as discussed
in the following text, and so was adopted. The classification
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Table 7. Estimated CCS values and their standard errorsa for data generated from the MVP model.

N = 500 N = 5000 N = 50000

Proposed LCA Proposed LCA Proposed LCA
|r| method method method method method method

.158 .377 (.216) .804 (.098) .563 (.301) .990 (.013) .736 (.296) 1.000 (.000)

.368 .292 (.156) .379 (.165) .310 (.144) .454 (.084) .359 (.164) .486 (.016)

.371 .244 (.171) .299 (.145) .284 (.186) .325 (.091) .275 (.059) .330 (.037)

.392 .305 (.193) .175 (.093) .243 (.141) .148 (.045) .190 (.105) .145 (.012)

.425 .333 (.225) .361 (.072) .324 (.138) .371 (.030) .372 (.009) .383 (.008)

.438 .239 (.171) .402 (.097) .281 (.180) .448 (.038) .432 (.135) .451 (.011)

.458 .324 (.179) .102 (.065) .384 (.244) .045 (.031) .232 (.208) .054 (.010)

.467 .335 (.221) .437 (.081) .426 (.219) .453 (.022) .375 (.082) .461 (.011)

.467 .230 (.153) .182 (.103) .218 (.117) .182 (.046) .231 (.015) .190 (.015)

.472 .342 (.224) .200 (.125) .272 (.094) .212 (.051) .247 (.020) .215 (.020)

.474 .175 (.145) .079 (.071) .099 (.103) .035 (.028) .132 (.179) .030 (.011)

.495 .184 (.192) .159 (.077) .122 (.095) .157 (.025) .108 (.048) .153 (.006)

.503 .307 (.124) .237 (.105) .235 (.115) .244 (.027) .222 (.047) .234 (.008)

.503 .240 (.132) .221 (.091) .198 (.054) .214 (.032) .201 (.011) .218 (.010)

.504 .340 (.180) .145 (.109) .319 (.084) .109 (.043) .260 (.031) .108 (.013)

.505 .201 (.151) .139 (.103) .070 (.053) .108 (.046) .050 (.029) .114 (.012)

.529 .195 (.156) .099 (.072) .147 (.088) .082 (.032) .137 (.012) .077 (.013)

.534 .189 (.141) .171 (.075) .253 (.157) .179 (.042) .131 (.047) .178 (.014)

.536 .287 (.250) .143 (.084) .101 (.057) .160 (.026) .102 (.009) .166 (.008)

.568 .230 (.145) .107 (.067) .268 (.063) .046 (.029) .278 (.007) .027 (.011)

.573 .182 (.121) .114 (.082) .117 (.044) .079 (.037) .130 (.026) .073 (.010)

.621 .246 (.157) .195 (.114) .268 (.087) .174 (.049) .304 (.059) .170 (.013)

.651 .200 (.141) .091 (.072) .179 (.086) .070 (.039) .180 (.052) .053 (.014)

.844 .184 (.157) .112 (.068) .168 (.085) .031 (.025) .101 (.086) .035 (.013)

aThe standard errors are given in parentheses.

performance of this model was compared with that of the
LCA method with two clusters. The marginal probability
estimates are shown in Table 12. The relative correlation
matrices estimated using the proposed method are shown
in Table 13.

The results for the two methods are again similar in this
case. Cluster 1 marginal probabilities are low for weekdays,
but spike to very high values (0.956 using the proposed
method and 0.856 using the LCA method) on Day 7 (Sun-
day). This pattern is consistent with the reading behavior
of non-subscribers who tend to purchase the newspaper on
weekends, especially on Sundays. On the other hand, both
methods give consistently high marginal probabilities for
all seven days for cluster 2 (close to 0.9 using the proposed
method and close to 1 using the LCA method). This pattern
is consistent with the reading behavior of subscribers, who
tend to read the newspaper every day. Thus the two clusters
can be identified as non-subscribers and subscribers. The
percentage of non-subscribers is estimated to be 46% using
the CLV1 model and 51% using the LCA method. Although
the percentages are somewhat different for the two models,
only 690 out of a total 10 858 survey respondents (6.35%)
were differentially classified.

To compare the goodness of fit of the CLV1 model
with the independence model, we computed error sums of
squares for the two models which were SSe1 = 15925.36
and SSe0 = 577169.5. The error degrees of freedom for
the CLV1 model are 27 − 2 × 2 × (7 + 1) = 96 and for the
independence model are 27 − 2 × (7 + 1) = 112. Therefore
we get

R2 = 1 − 15925.36

577169.5
= 97.74% and

R2
adj = 1 − 15925.36/96

577169.5/112
= 96.78%.

Thus the CLV1 model gives an even better fit to these data.
Looking at the relative correlation matrices in Table 13,

we see that according to the proposed method, the news-
paper reading responses over all days of the week are
highly correlated for the subscriber group, but for the non-
subscriber group, relative correlations are much smaller for
weekdays. Especially note that the Sunday response is nega-
tively correlated with all other weekdays. This makes sense
as non-subscribers generally do not read the newspaper on
weekdays, but often purchase and read it on Sundays. This
insight into the relative correlation structure of the data for

Statistical Analysis and Data Mining DOI:10.1002/sam



Tamhane et al: Cluster Analysis of Multivariate Binary Data 15

.000 .368 .371 .392 .425 .438 .458 .467 .467 .472 .474 .495 .502 .503 .504 .504 .529 .534 .536 .568 .573 .621 .651 .844
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
or

re
ct

 C
la

ss
if

ic
at

io
n 

Sc
or

e 
(C

C
S)

Proposed
LCA

Average Absolute Relative Correlation ( | r | )

Fig. 3 Average correct classification scores (CCS) using the proposed and the LCA methods [data generated using the MVP model;
N = 5000)].

Table 8. BIC values for teaching survey data for the proposed
method.

K

1 2 3 4

−3172.67 −3136.77a −3155.49 −3178.0

a The maximum BIC value.

each cluster would not be possible without explicit model-
ing of the correlations in the proposed method.

9. SUMMARY AND CONCLUSIONS

In this paper, we have given a model-based method for
clustering of multivariate binary responses. The multivari-
ate Bernoulli distribution used in the mixture model is an

Table 10. Estimated relative correlation matrices for two clus-
ters using the proposed method for teaching style data.

R̂1 =


1.000 0.956 0.602 −0.090 −0.433 −0.017

1.000 0.605 −0.089 −0.620 −0.015
1.000 −0.160 −0.100 −0.099

1.000 −0.351 0.291
1.000 −0.533

1.000



R̂2 =


1.000 0.233 0.219 −0.304 0.375 −0.291

1.000 0.164 −0.179 0.138 −0.136
1.000 −0.160 0.188 −0.185

1.000 −0.123 0.007
1.000 −0.899

1.000



Table 9. Estimates of the θ ’s and η’s for two clusters using the proposed and the LCA methods for teaching style data.

Method Cluster θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 θ̂6 η̂

Proposed 1 0.846 0.770 0.675 0.342 0.846 0.277 0.62
2 0.638 0.571 0.555 0.362 0.429 0.622 0.38

LCA 1 0.858 0.764 0.711 0.285 0.967 0.098 0.61
2 0.630 0.596 0.520 0.459 0.243 0.918 0.39
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Table 11. BIC values for newspaper survey data for the pro-
posed method.

K

1 2 3 4

−54822.8 −51903.3 −51673.6a −51677.9

aThe maximum BIC value.

extension of Oman and Zucker’s [1] model. The proposed
clustering method generalizes the traditional LCA which
assumes local independence.

The maximum likelihood method is used to estimate the
model parameters for all clusters and the mixing proportions
(prior probabilities). Commercial optimization software is
used for parameter estimation. Application of the proposed
method to two real data sets indicates that the method is
practicable at least for a small number of variables and gives
interpretable results. The resulting clusters can be assigned
meaningful labels (e.g. subscribers and non-subscribers in
the newspaper survey example). Although, the proposed
and the LCA methods both give fairly similar results,
the proposed method also gives estimates of the relative
correlation matrices for the two clusters, which give insight
into the relationships between the response variables as seen
from the two examples.

Clearly, much remains to be done in this problem.
First, as noted before, we need to compare the proposed
approach with the log-linear model approach implemented
in Latent Gold. Faster computational methods need to
be developed to handle larger values of m. Increasing
the number of responses, m, allows better discrimination
between a fixed number of clusters or fitting more clusters
to the data. However, because the number of patterns grows
exponentially with m, it would be virtually impossible to
handle very large values of m (although for sparse data the
number of actual patterns may be much less than 2m, which
may help lighten the computational burden); incidentally,
this problem affects the computing time of any method,
even those that do not take into account correlations such as
the LCA method. Therefore some method of prescreening
the variables is needed in order to reduce a large number
of responses to a manageable number before the proposed
method can be applied.

Table 13. Estimated relative correlation matrices for two clus-
ters using the proposed method for newspaper survey data.

R̂1 =



1.000 0.275 0.249 0.263 0.204 0.151 −0.277
1.000 0.292 0.267 0.180 0.056 −0.335

1.000 0.225 0.163 −0.029 −0.300
1.000 0.218 0.206 −0.266

1.000 0.299 −0.175
1.000 −0.038

1.000



R̂2=



1.000 0.944 0.935 0.938 0.929 0.863 0.840
1.000 0.988 0.992 0.982 0.914 0.886

1.000 0.981 0.972 0.904 0.877
1.000 0.975 0.908 0.880

1.000 0.899 0.872
1.000 0.812

1.000



Also, the problem of determination of optimum number
of clusters needs further research. Our current recommenda-
tion is to use the BIC criterion subject to the requirement of
interpretability of the resulting clusters. Finally, most real
data sets involve a combination of binary and continuous
(as well as categorical and ordinal) responses, and it would
be desirable to develop clustering methods to deal with
such hybrid data sets. In conclusion, this is a fertile area
for research with diverse potential applications to clustering
and data mining.
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Table 12. Estimates of the θ ’s and η’s for two clusters using the proposed and the LCA methods for newspaper survey data.

Method Cluster θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 θ̂6 θ̂7 η̂

Proposed 1 0.147 0.067 0.215 0.132 0.249 0.289 0.956 0.46
2 0.888 0.888 0.889 0.888 0.891 0.820 0.858 0.54

LCA 1 0.117 0.045 0.175 0.110 0.239 0.259 0.856 0.51
2 0.991 0.997 0.997 0.997 0.993 0.906 0.953 0.49
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APPENDIX

Computational Details
We used the algorithm KNITRO-4.0 by Ziena Optimiza-

tion, Inc. [23] for parameter estimation. The algorithm is
described in Byrd, Hribar and Nocedal [24]. It requires only
the gradient of the objective function at each step and not
the Hessian matrix. Gradients w.r.t. the θjk at points of non-
differentiability were computed by taking an average of the
gradients on both sides of those points.

No NLP algorithm can guarantee a global maximum
solution for an arbitrary objective function such as ours.
Therefore we tried n different starting combinations of the
values of n parameters whose MLEs have to be found and
applied the algorithm for each starting combination. The
best solution that yielded the largest log-likelihood function
was taken to be the global maximum. Instead of choosing
the n starting combinations at random we chose them in a
systematic manner by using an n × n Latin square. Because
the goal here is to cover the parameter space as uniformly
as possible so as not to miss the global maximum, we used
the simplest Latin square obtained by cyclically permuting
the levels of the factors in each of the n runs.

The parameter estimation process was implemented in
Microsoft Visual C++ environment with Knitro executable
in a dynamic link library. The program was run on a
single PC with 2.99 GHz CPU speed and 512 MB of
RAM. Because of the high computational demand in the
simulation studies, distributed computing was employed
across several PCs. The example data and the C++ codes
for simulation and parameter estimation can be obtained
by contacting the second author or visiting his research
website: http://www.ie.miami.edu/qiu/research.html.

Derivation of the Joint Distribution of X in Eq. 7
Consider a pattern P with index p. Let Q = M \ P , i.e.

Xi = 1 ∀ i ∈ P and Xi = 0 ∀ i ∈ Q. Then

f (p|θ , β, γ ) = Pr{Yi ≤ θi ∀ i ∈ P ; Yi > θi ∀ i ∈ Q}
=

∑
A⊆P

∑
B⊆Q

Pr{Z0Wi + (1 − Z0)(1 − Wi)

≤ θi ∀ i ∈ A; Z0Wi + (1 − Z0)(1 − Wi)

> θi ∀ i ∈ B; ZiWi + (1 − Zi)(1 − Wi)

≤ θi ∀ i ∈ P \ A; ZiWi + (1 − Zi)(1 − Wi)

> θi ∀ i ∈ Q \ B}
×

∏
i∈A,B

βi

∏
i∈P \A,Q\B

(1 − βi),
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where θ = (θ1, . . . , θm), β = (β1, . . . , βm) and γ =
(γ1, . . . , γm). Let C = {i ∈ A ∪ B : Wi = 1} and D = {i ∈
A ∪ B : Wi = 0}. Then it is readily seen that θ∗(A, B, C) ≤
Z0 ≤ θ∗∗(A,B,C). Therefore the probability pertaining to
Z0 is [θ∗∗(A,B,C) − θ∗(A,B,C)]+.

Next note that for i ∈ P \ A, if Wi = 1 then Zi ≤ θi and
if Wi = 0 then Zi > 1 − θi ; in either case the probability
pertaining to Zi is θi . Similarly, for i ∈ Q \ B, if Wi = 1
then Zi > θi and if Wi = 0 then Zi ≤ 1 − θi ; in either case
the probability pertaining to Zi is 1 − θi . Putting all these
pieces together, we get the final expression for the joint
distribution of X as Eq. 7.

Proof of Proposition 1
For the CLV1 model, we assume βj ≡ β for all j . Hence

Eq. (6) becomes

ρ
(1)
ij =


β2ρ∗∗

ij [1 − {γ i(1 − γ j )

+γ j (1 − γ i)}/ max(θi, 1 − θj )] if θi ≤ θj

β2ρ∗∗
ij [1 − {γ i(1 − γ j )

+γ j (1 − γ i)}/ max(θj , 1 − θi)] if θi ≥ θj .

To explore the full range of ρ
(1)
ij , let β = 1. The minimum

value of γ i(1 − γ j ) + γ j (1 − γ i) is 0 and the maximum

value is 1. Therefore max ρ
(1)
ij attains the upper bound ρ∗∗

ij .

Now we show that min ρ
(1)
ij attains the lower bound −ρ∗

ij .
The values of ρ∗

ij and ρ∗∗
ij are different in the four regions

of the (θi, θj )-space (see Fig. 1):
Region I: θi ≤ θj , θi + θj ≤ 1 (i.e. max(θi, 1 − θj ) =

1 − θj )
Region II: θi ≤ θj , θi + θj ≥ 1 (i.e. max(θi, 1 − θj ) = θi)
Region III: θi ≥ θj , θi + θj ≥ 1 (i.e. max(θj , 1 − θi) =

θj )
Region IV: θi ≥ θj , θi + θj ≤ 1 (i.e. max(θj , 1 − θi) =

1 − θi).
In region I, we have

ρ∗
ij =

√
θiθj

(1 − θi)(1 − θj )
and ρ∗∗

ij =
√

θi(1 − θj )

θj (1 − θi)
. (A.1)

Therefore

min ρ
(1)
ij = ρ∗∗

ij

[
1 − 1

max(θi, 1 − θj )

]

=
√

θi(1 − θj )

θj (1 − θi)

[
1 − 1

1 − θj

]

= −
√

θiθj

(1 − θi)(1 − θj )

= −ρ∗
ij .

Thus ρ
(1)
ij attains the lower bound.

Next, for the CLV2 model, we assume γj ≡ γ for all j .
Hence Eq. 6 becomes

ρ
(2)
ij =


βiβjρ

∗∗
ij [1 − {2γ (1 − γ )}/

max(θi, 1 − θj )] if θi ≤ θj

βiβjρ
∗∗
ij [1 − {2γ (1 − γ )}/

max(θj , 1 − θi)] if θi ≥ θj .

To explore the full range of ρ
(2)
ij , let βi = βj = 1. The

minimum value of γ (1 − γ ) is 0 and the maximum value
is 1/4. Hence in region I we have

min ρ
(2)
ij = ρ∗∗

ij

[
1 − 1

2 max(θi, 1 − θj )

]
and

max ρ
(2)
ij = ρ∗∗

ij .

Thus ρ
(2)
ij attains the upper bound. Furthermore, using the

bounds Eq. A.1, we have

min ρ
(2)
ij = ρ∗∗

ij − 1

2(1 − θj )

√
θi(1 − θj )

θj (1 − θi)

= ρ∗∗
ij − 1

2

√
θi

θj (1 − θi)(1 − θj )

= ρ∗∗
ij − 1

2
(ρ∗

ij + ρ∗∗
ij )

= 1

2
(ρ∗∗

ij − ρ∗
ij ).

Therefore

min ρ
(2)
ij > 0 ⇐⇒ ρ∗∗

ij > ρ∗
ij ⇐⇒

√
θi(1 − θj )

θj (1 − θi)

>

√
θiθj

(1 − θi)(1 − θj )
⇐⇒ θj < 1/2.

A similar proof can be given for the other three regions
with the following results:
Region I: min ρ

(2)
ij > 0 ⇐⇒ θj < 1/2

Region II: min ρ
(2)
ij > 0 ⇐⇒ θi > 1/2

Region III: min ρ
(2)
ij > 0 ⇐⇒ θj > 1/2

Region IV: min ρ
(2)
ij > 0 ⇐⇒ θi < 1/2.

These four subregions are shown shaded in Figure 1.
We see that they can be summarized simply as both

θi, θj are < 1/2 or > 1/2 thus proving the
proposition. �
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Proof of Proposition 2
First consider the upper bound UCCR. In order to

maximize the number of observations that are correctly
classified, one must assign each pattern p to that cluster
which yields the maximum number of observations having
that pattern. This proves the upper bound UCCR.

Next consider the lower bound LCCR. Consider a 2m ×
K table in which the patterns are the rows and the clusters
are the columns. The entries in the table are npk , which are
the number of observations having pattern p that come from
cluster Ck . There are K! possible assignments of cluster
labels. Let σ = (σ (1), σ (2), . . . , σ (K)) be a permutation
of the cluster labels. Then for this permuted assignment of
the cluster labels to the patterns, the CCR is

CCRσ = 1

N

2m∑
p=1

K∑
k=1

npσ(k)I
(
p ∈ Cσ(k)

)
, (A.2)

where I
(
p ∈ Cσ(k)

) = 1 if pattern p is classified to cluster
Cσ(k) and 0 otherwise. As a pattern p can be assigned to
exactly one cluster, only one of the indicator variables,
I

(
p ∈ Cσ(k)

)
, equals 1 for k = 1, 2, . . . , K and others

equal zero.
The K! permutations can be divided into (K − 1)!

groups, each consisting of K permutations, such that if
two permutations σ1 and σ2 belong to the same group
then σ1(k) �= σ2(k) for k = 1, . . . , K . For example, for
K = 3, the six permutations divide into two groups: G1 =
{(1, 2, 3), (2, 3, 1), (3, 1, 2)} and G2 = {(1, 3, 2), (2, 1, 3),

(3, 2, 1)}. Within each group CCRσ sum to 1. To see this
first consider a numerical example for K = 3 and m =
2. Label the four patterns, (0, 0), (1, 0), (0, 1), (1, 1) as
1, 2, 3, 4. Then

∑4
p=1

∑3
k=1 npk = N . Suppose a clustering

rule classifies pattern 1 to cluster 1, pattern 2 to cluster 2,
and patterns 3 and 4 to cluster 3. Then CCR for this rule is

CCR1 = n11 + n22 + n33 + n43

N
.

But the cluster labels can be permuted to (2, 3, 1) or
(3, 1, 2) in the group G1. CCR for these two permutations
are, respectively,

CCR2 = n12 + n23 + n31 + n41

N
and

CCR3 = n13 + n21 + n32 + n42

N
.

Hence,

CCR1 + CCR2 + CCR3 =
∑4

p=1

∑3
k=1 npk

N
= 1.

More generally, let σ1, σ2, . . . , σK denote K permuta-
tions in one of these groups. Then

K∑
j=1

CCRσj
= 1

N

2m∑
p=1

K∑
k=1

K∑
j=1

npσj(k)
I

(
p ∈ Cσj(k)

)
.

Now for each k there is exactly one j for which I (p ∈
Cσj(k)

) = 1; for all other j , I (p ∈ Cσj(k)
) = 0. Denote the

corresponding σj(k) = �. Furthermore, for each such (j, k)

combination we have a distinct value of � and hence � runs
through 1 to K . Substituting this simplification in the above
expression we get

K∑
j=1

CCRσj
= 1

N

2m∑
p=1

K∑
�=1

np� = 1.

Therefore there is at least one assignment, σj , of cluster
labels in each group such that CCRσj

≥ 1/K . Hence the
lower bound on CCR is 1/K . �
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