
High Frequency Trade Prediction with Bivariate Hawkes Process1

John Carlsson, Mao-Ching Foo, Hui-Huang Lee, Howard Shek
Stanford University
10 June 2007

Summary

In this project, we used a bivariate Hawkes process to model conditional arrival intensities of buy
and sell orders of liquid stocks. We then look into simple trading strategies using MLE parameters of
the model. For some of the stocks to which we have �tted the model and applied the strategy, we seem
to be able to extract signi�cant positive trading gain2 .

1 Introduction

In the �rst part of the report, we introduce both the univariate and the bivariate Hawkes processes,
with sketch proofs. Simulations of these processes are then carried out to illustrate the self-excitation
and cross-excitation features of the model. Next, we introduce the MLE procedure for parameter
estimation, �rst with some background theory and then followed by application - both on simulated
process and on actual tick data from TAQ on select stocks. Second part of the report explore a simple
trading strategy based on the �tted model.

2 Hawkes Process

2.1 Univariate case

Here we model the intensity �t of the counting process by the particular form of Hawkes process that
satis�es the following SDE

d�t = � (� (t)� �t) dt+ �dNt
The solution for �t can be written (see Appendix A)

�t = �1 + �

Z t

0

e��(t�u)dNu (1)

where we can think of �1 as the long run "base" intensity, i.e. the intensity if there have been no past
arrival.
The linkage between the intensity and the underlying counting process Nt is via the Doob-Meyer

decomposition and the two �ltrations Ht � Ft, one for the intensity and the other for the jump time

Ht = � f�s : s � tg

and
Ft = � fNs : s � tg

Then it can be shown [1]

E
h
ei�(Ns�Nt)

���Fti = e�	(�)(As�At)

where 	(�) = 1 � ei� and Mt = Nt � At is a Ft-adapted martingale. Hence, conditional on the
realization of the compensator At =

R t
0
�udu i.e. on Ht, the process is non-homogenous Poisson with

1This report forms part of the coursework requirements for MS&E444. Code and data are available upon request by
contacting the authors at: johnnyc@stanford.edu, maoching@stanford.edu, huihuang@stanford.edu, shek@stanford.edu.
The authors would like to acknowledge our appreciation for guidance from Professor Kay Giesecke and course TA
Benjamin Armbruster.

2Note we assumed: no transaction cost, no canonical impact of trade order, no short sell limit, transaction at trade
price
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deterministic intensity

E [Nt+�t �Ntj Ft] = E [At+�t �Atj Ft]

lim
�t!0

1

�t
E [Nt+�t �Ntj Ft] = lim

�t!0

1

�t
E [E [At+�t �AtjHt _ Ft]j Ft]

= lim
�t!0

1

�t
E

"Z t+�t

t

�udu

�����Ft
#

= �tjFt

For a more thorough treatment of doubly stochastic processes, refer to [2].

2.2 Simulation of univariate Hawkes process

We can simulate this self-a¤ected intensity process by the usual thinning method [6]. Below shows
part of a simulated univariate intensity process. Note the clustering of intensity as a result of the
self-excitation feature of the Hawkes process.
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Simulated univariate Hawkes process with (�; �; �) = (0:3; 0:6; 1:0)

To obtain the compensator �, we integrate the intensity piecewiseZ T

0

� (u)jHudu =

Z T

0

�du+

Z T

0

X
ti<u

�e��(u�ti)dNdu

= �T � �
�

mX
i=0

e��(ti+1�ti)

Below we plot the compensator for the simulated Hawkes process using the above formula
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Theorem 1 Time Change Theorem. Given a point process with a conditional intensity function
�tjHt. De�ne the time-change

� =

Z T

0

�ujHudu

where the �ltration Ht = � f0 < t1 < t2; :::; ti � tg. Assume that �t <1 a.s. 8t 2 (0; T ], then �t is a
standard Poisson process.

By application of the time change theorem above, we test the goodness of �t of the time-changed
simulated process to that of a standard Poisson process. The QQ plot below validates both our
compensator and the simulation code.
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2.3 Bivariate Case

A linear bivariate self-a¤ected process with cross-excitation can be expressed, by modifying (1), to give(
�1 (t) = �1 +

R t
0
�11 (t� s) dN1 (s) +

R t
0
�12 (t� s) dN2 (s)

�2 (t) = �2 +
R t
0
�21 (t� s) dN1 (s) +

R t
0
�22 (t� s) dN2 (s)

(2)

Consider the parameterization of
�ij (s) = �ije

��is

We can then rewrite (2) as(
�1 (t) = �1 +

P
ti<t

�11e
��1(t�ti) +

P
tj<t

�12e
��1(t�tj)

�2 (t) = �2 +
P

ti<t
�21e

��2(t�ti) +
P

tj<t
�22e

��2(t�tj)

2.4 Simulation of bivariate Hawkes process

We can simulate this cross-a¤ected intensity process again by the usual thinning method [6]. Below
shows part of a simulated bivariate intensity process. Note the induced jumps between the two processes
and the decay after each jumps.
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To obtain the compensator �1, we integrate the intensity piecewise to giveZ T

0

�1 (u)jHudu =

Z T

0

�1du+

Z T

0

X
ti<u

�11e
��1(u�ti)dN1du+

Z T

0

X
tj<u

�12e
��1(u�tj)dN2du

= �1T �
�11
�1

mX
i=0

e��1(ti+1�ti) � �12
�1

mX
i=1

supfj<i+1gX
supfj<ig

e��1(ti+1�tj)
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We can expressZ T

0

X
ti<t

�11e
��1(u�ti)dN1du

=

Z
ft0�u<t1g

�11e
��1(u�ti=0)du+

Z
ft1�u<t2g

�11

�
1 + e��1(ti=1�ti=0)

�
e��1(u�ti=1)du

+

Z
ft2�u<t3g

�11

�
1 +

�
1 + e��1(ti=1�t0)

�
e��1(ti=2�ti=1)

�
e��1(u�ti=2)du+ :::

=
�11
��1

� �
e��1(ti=1�ti=0) � 1

�
+
�
1 + e��1(ti=1�ti=0)

� �
e��1(ti=2�ti=1) � 1

�
+
�
1 +

�
1 + e��1(ti=1�ti=0)

�
e��1(ti=2�ti=1)

� �
e��1(ti=3�ti=2) � 1

�
+ :::

�
Similarly we haveZ T

0

X
tj<u

�12e
��1(u�tj)dN2du

=

Z
fti=0�u<ti=1;ti=1�tj=k<ti=2g

n
�12e

��1(u�tj=k) + �12

�
1 + e��1(tj=k+1�tj=k)

�
e��1(u�ti=0) + :::

o
du

+

Z
fti=1�u<ti=2;ti=1�tj=k<ti=2g

�
�12

�
1 + e��1(tj=k+1�tj=k)

�
e��1(u�ti=1)

+�12
�
1 +

�
1 + e��1(tk+1�tj=k)

�
e��1(tk+2�tj=k+1)

�
e��1(u�t1) + :::

�
du+ :::

and similarly for �2. Below we plot the compensator for the simulated Hawkes process using the above
formula
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By application of the time change theorem, we can again test the goodness of �t of the time-changed
simulated process to that of a standard Poisson process. The QQ plot validate both our compensator
and the simulation code.
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QQ plot for simulated bivariate Hawkes process
for arrival of type 1 event
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QQ plot for simulated bivariate Hawkes process
for arrival of type 2 event

2.5 Maximum likelihood estimation

The log-likelihood function for our bivariate process can be written [5]

LT (�1; �2; �1; �2; �11; �12; �21; �22) = L
(1)
T (�1; �1; �11; �12) + L

(2)
T (�2; �2; �21; �22)

The �rst term of RHS can be expressed as

L
(1)
T (�1; �1; �11; �12) = �

Z T

0

�1 (t) dt+

Z T

0

log �1 (t) dN1 (t)

= �
Z T

0

0@�1 +X
ti<t

�11e
��1(t�ti) +

X
tj<t

�12e
��1(t�tj)

1A dt
+

Z T

0

log

0@�1 +X
ti<t

�11e
��1(t�ti) +

X
tj<t

�12e
��1(t�tj)

1A dN1 (t)
Therefore we have (See Appendix B)

L
(1)
T (�1; �1; �11; �12) = ��1T �

�11
�1

nX
i=1

�
1� e��1(T�ti)

�
� �12
�1

mX
j=1

�
1� e��1(T�tj)

�
+

nX
i=2

log (�1 + �11R11 (i) + �12R12 (i))

Similarly, we also have

L
(2)
T (�2; �2; �21; �22) = ��2T �

�21
�2

nX
i=1

�
1� e��2(T�ti)

�
� �22
�2

mX
j=1

�
1� e��1(T�tj)

�
+

mX
j=2

log (�2 + �21R21 (j) + �22R22 (j))

where
R22 (j) = e

��2(tj�tj�1) (1 +R22 (j � 1))

R21 (j) = e
��2(tj�tj�1) (R21 (j � 1)) +

X
fi0:tj�1�ti0<tjg

e��2(tj�ti0 )
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To validate our MLE procedure, we simulate 10,000 time units of the bivariate process. We then feed
the resulting arrival times into the MLE program, run using a suitable optimization routine. The
following table shows that our MLE routine converges to the true parameters.

parameter True Estimate
�1 0.3 0.3011
�2 0.1 0.0998
�1 1.2 1.2261
�2 1.0 1.0547
�11 0.6 0.6006
�12 0.9 0.9266
�21 0.2 0.2089
�22 0.5 0.5377

3 Empirical Model Fitting

3.1 Data Classi�cation and Cleaning

Data from TAQ database have two major de�ciencies, to which we have to �nd work around in
order to minimize impact on model estimation. The �rst de�ciency is that recorded trade times are
descretised in whole seconds, which means that multiple trades within the same second share the same
timestamp. One solution we proposed here is to redistribute trades with same timestamps uniformly
between recorded. The second de�ciency stems from the fact that trades do not come classi�ed into
buy and sell orders, only trade prices and volumes are recorded. Following the classic approach to
rectify this problem, we �rst used the Lee and Ready tick test [4] to classify our data. One alternative
solution we proposed here is to only use and classify orders that lead to an actual change in traded
price, this "thinned classi�cation" seem to yield better model �t, as shown below for DELL

QQ plot for DELL based on thinned
classi�cation

QQ plot for DELL based on Lee&Ready
classi�cation

To account for intra-day seasonality, where there is a noticeable change in base intensity at the
open and the close, we can either �t a time varying base intensity or simply truncate the data to only
look at trades that happened one hour after the open and one hour before the close. Here we adopt
the latter approach.
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4 Example Trading Strategy

4.1 Simple Buy Sell Signal Based on Intensity Ratio3

We tested, on a number of stocks, the naive strategy of holding long one share of the stock if the
ratio of the buy vs sell intensity reaches a threshold of 8 and shorting one share of the stock if the
ratio drops below 1=8, hold the position for 10 seconds, then liquidate. Below, we plot the stock price
together with trading P&L using this strategy
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QQ-plot for DELL with MLE parameters
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3Note this strategy is based on thinned classi�cation
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QQ-plot for ORCL with MLE parameters
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The table below summarizes this simple trading strategy. We see that for the three stocks we
investigated, all showed signi�cant gain vs. a simple buy and hold strategy.

YHOO DELL ORCL
Total Number of trades 2765 3569 3843
Number of buys 1535 2262 1856
Number of sells 1230 1327 1987
Buy and hold return 2.00% -0.57% -0.70%
Strategy return 3.39% 4.03% 4.02%

5 Conclusion

In this work, we looked at the goodness of �t of a bivariate Hawkes model to classi�ed tick-data from
TAQ database for a number of liquid stocks. We have shown that, at least for the names we studied,
the model seems to describe the underlying buy and sell order arrival times well. Then based on the
MLE �tted model, we tested a naive trading strategy which showed signi�cant return compared to
just a simple buy and hold strategy.

6 Appendix

6.1 Appendix A: Univariate Hawkes Process

d�t = � (� (t)� �t) dt+ �dNt
The solution for �t takes the form

�t = c (t) +

Z t

0

�e��(t�u)dNu

where

c (t) = c (0) e��t + �

Z t

0

e��(t�u)� (u) du

Verify by Ito formula on e�t�t

e�t�t = c (0) + �

Z t

0

e�u� (u) du+

Z t

0

�e�udNu

�e�t�tdt+ e
�td�t = �e�t� (t) dt+ �e�tdNt

��tdt+ d�t = �� (t) dt+ �dNt

d�t = � (� (t)� �t) dt+ �dNt
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consider the limit limt�!1 c (t)

lim
t!1

c (t) = lim
t!1

�
c (0) e��t + {

Z t

0

e��(t�u)� (u) du

�
= lim

t!1
�

Z t

0

e��(t�u)� (u) du

= lim
t!1

�e��t
Z t

0

e�u� (u) du

= lim
t!1

�

R t
0
e�u� (u) du

e�t

(apply L�Hospital) = lim
t!1

�
e�t� (t)

�e�t

= lim
t!1

� (t)

= �1

Treating � (t) as a constant � (t) = �1, then we have

c (t) = c (0) e��t + �

Z t

0

e��(t�u)� (u) du

= c (0) e��t + ��1e
��t

Z t

0

e�udu

= c (0) e��t + �1e
��t �e�t � 1�

= �1 + e��t (c (0)� �1)

Notice that if we set c (0) = �1 then the process is simply

�t = �1 + �

Z t

0

e��(t�u)dNu

where we can think of �1 as the long run "base" intensity, i.e. the intensity if there have been no past
arrival.

6.2 Appendix B: Bivariate MLE

Since the parameters are bounded, so by Fubini�s theorem we have

L
(1)
T (�1; �1; �11; �12) = �

0@Z T

0

�1dt+
X
ti<t

Z T

0

�11e
��1(t�ti)dt+

X
tj<t

Z T

0

�12e
��1(t�tj)dt

1A
+

Z T

0

log

0@�1 +X
ti<t

�11e
��1(t�ti) +

X
tj<t

�12e
��1(t�tj)

1A dN1 (t)
= ��1T �

�11
�1

nX
i=1

�
1� e��1(T�ti)

�
� �12
�1

mX
j=1

�
1� e��1(T�tj)

�

+
nX
i=2

log

0@�1 + �11 iX
i0=1

e��1(ti�ti0 ) + �12

iX
j0=1

e��1(ti�tj0)

1A
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We can recursively express

R11 (i) =
iX

i0=1

e��1(ti�ti0 )

= e��1(ti�t0) + e��1(ti�t1) + :::+ e��1(ti�ti�1)

= e��1(ti�ti�1)e��1(ti�1�ti�2):::e��1(t1�t0) + e��1(ti�ti�1)e��1(ti�1�ti�2):::e��1(t2�t1) + ::::+ e��1(ti�ti�1)

= e��1(ti�ti�1)
�
e��1(ti�1�ti�2):::e��1(t1�t0) + e��1(ti�1�ti�2):::e��1(t2�t1) + ::::+ 1

�
= e��1(ti�ti�1)

 
1 +

i�1X
i0=1

e��1(t�ti0 )

!
= e��1(ti�ti�1) (1 +R11 (i� 1))

Now let j� = sup fj0 : tj0 < tig, again we can recursively express

R12 (i) =
iX

j0=1

e��1(ti�tj0)

= e��1(ti�t0) + e��1(ti�t1) + :::+ e��1(ti�tj��1) + e��1(ti�tj�)

= e��1(ti�t0) + e��1(ti�t1) + :::+ e��1(ti�tj��1) +
X

fj0:ti�1�tj0<tig
e��1(ti�tj0)

= e��1(ti�ti�1)e��1(ti�1�ti�2):::e��1(t1�t0) + e��1(ti�ti�1)e��1(ti�1�ti�2):::e��1(t2�t1)

+e��1(ti�ti�1)e��1(ti�1�tj��1) +
X

fj0:ti�1�tj0<tig
e��1(ti�tj0)

= e��1(ti�ti�1)
�
e��1(ti�1�ti�2):::e��1(t1�t0) + e��1(ti�1�ti�2):::e��1(t2�t1) + e��1(ti�1�tj��1)

�
+

X
fj0:ti�1�tj0<tig

e��1(ti�tj0)

= e��1(ti�ti�1) (R12 (i� 1)) +
X

fj0:ti�1�tj0<tig
e��1(ti�tj0)
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