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Abstract Estimation of the mean of the lognormal distribution has received much attention in
the literature beginning with Finney (1941). The problem is of significant practical importance
because of the ubiquitous use of log-transformation. In this paper we consider estimation of a
parametric function associated with the lognormal distribution of which the mean, median and
moments are special cases. We generalize various estimators from the literature for the mean
to this parametric function and propose a new simple estimator. We present the estimators in
a unified framework and use this framework to derive asymptotic expressions for their biases
and mean square errors (MSEs). Next we make asymptotic and small sample comparisons via
simulations between them in terms of their MSEs. Our proposed estimator outperforms many
of the previously proposed estimators. A numerical example is given to illustrate the various
estimators.
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1 Introduction

Logarithmic transformation is the most commonly used transformation in practice to symmetrize and nor-

malize right-skewed data. It is also used to linearize multiplicative and power relationships in regression.

The implicit assumption made is that the response variable follows the lognormal distribution, so that after

log-transformation it is normally distributed.

How to estimate the mean of the lognormal distribution is an old problem dating back to Finney (1941),

who considered it for the independent and identically distributed (i.i.d.) setting; also see Oldham (1965). It

arises more commonly in regression settings where it has been studied in the econometric literature starting

with Goldberger (1968), who considered it for estimating the Cobb-Douglas production function. There has

been much later work reviewed in the book by Crow and Shimizu (1988). More recent papers are by Shen

et al. (2006) and Shen and Zhu (2008).

Let Z1, . . . , Zn be i.i.d. random variables each having a lognormal distribution with mean η and variance

τ2. Then Y1 = lnZ1, . . . , Yn = lnZn are i.i.d. normal with mean µ and variance σ2 where η and τ2 are

related to µ and σ2 as follows:

η = exp(µ+ σ2/2) and τ2 = η2
[
exp(σ2)− 1

]
.

Let Z and T 2 denote the sample mean and variance of the Zi’s, and Y and S2 denote the sample mean and

variance of the Yi’s. Although Z is an unbiased estimator of η, it is not efficient besides being sensitive to
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extreme observations, which are common with lognormal data because of their long right hand tail. On the

other hand, the naive estimator exp(Y ) is biased since E[exp(Y )] = exp(µ+ σ2/2n) < η for n > 1. Finney

(1941) derived an efficient unbiased estimator of η using the sufficient statistics Y and S2 which is in the

form of an infinite series in S2.

In this paper we consider a more general parametric function of µ and σ2 than η. We review various

estimators proposed in the literature for the mean by first generalizing them to this parametric function and

present them in a unified framework. We also propose a simple estimator which has a smaller MSE than

most of the other competing estimators as shown by asymptotic analyses and simulations for small samples.

The paper is organized as follows. In Section 2 we state the problem. Section 3 gives a review of competing

estimators including our proposed estimator. Section 4 gives asymptotic MSE comparisons between the

competing estimators. Section 5 gives simulation comparisons. Section 6 gives a numerical example. The

paper ends with some concluding remarks in Section 7. Mathematical derivations of the asymptotic MSE

expressions for selected estimators are given in the appendix.

2 Problem Statement

Consider a general parametric function:

θ = exp(aµ+ bσ2/2), (1)

where a and b are known constants. If θ is the kth moment of the lognormal distribution then a = k and

b = k2 for k = 1, 2, . . .. We shall study in detail the cases k = 1 corresponding to the mean η, k = 2

corresponding to the second moment and a = 1, b = 0 corresponding to the median exp(µ).

After log-transformation of the data, suppose we have available an estimator µ̂ of µ such that µ̂ ∼
N(µ, d2σ2) where d2 > 0 is a known constant. We also have available an estimator S2 of σ2 with m degrees

of freedom (d.f.) which is distributed as σ2χ2
m/m independent of µ̂. In the i.i.d. case, µ̂ = Y , d2 = 1/n and

S2 is the sample variance with m = n− 1 d.f.

We shall consider estimators of the form

θ̂ = exp(aµ̂)f(S2), (2)

where f(·) is a nonnegative function. If θ̂ is desired to be an unbiased estimator then we must have

E(θ̂) = E[exp(aµ̂)]E[f(S2)] = exp(aµ+ a2d2σ2/2)E[f(S2)] = θ,

from which it follows that f(S2) must satisfy

E[f(S2)] = exp{(b− a2d2)σ2/2}. (3)

We can think of f(S2) as a bias correction factor. Several estimators discussed below are of the form:

θ̂ = exp(aµ̂)g(cS2/2). (4)

In other words, f(S2) = g(cS2/2) where g(·) is a nonnegative function and c > 0 is a constant.
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3 Review of Estimators

3.1 Estimators of the Form (4)

Simple Adjustment Estimator: A simple choice for g(cS2/2) is exp(c0S
2/2) where c0 = b − a2d2. We

denote the corresponding estimator by

θ̂0 = exp(aµ̂) exp(c0S
2/2). (5)

It has been used by many authors including Meulenberg (1965) and Kennedy (1981) in econometrics.

Finney’s Estimator: Finney (1941) derived the formula

E
[
S2p exp(cS2)

]
=

Γ(m/2 + p)

Γ(m/2)

(
2σ2

m

)p(
1− 2cσ2

m

)−m/2−p
, (6)

where c > 0 is a constant. Next he introduced a function

g1(t) = 1 +
t

1!
+

m

(m+ 2)

v2

2!
+

m2

(m+ 2)(m+ 4)

t3

3!
+ · · ·

= 1 +
t

1!
+

ν

(ν + 1)

v2

2!
+

ν2

(ν + 1)(ν + 2)

t3

3!
+ · · · , (7)

where ν = m/2. Using result (6), he showed that

E[g1(cS2/2)] = exp(cσ2/2) (8)

from which follows that his estimator

θ̂F = exp(aµ̂)g1(c0S
2/2). (9)

is unbiased. Note that if m→∞ then g1(t)→ exp(t) and so g1(c0S
2/2)→ exp(c0S

2/2) and hence θ̂F → θ̂0

almost surely.

Shen (1998) showed that Finney’s estimator is the minimum variance unbiased estimator (MVUE) which

follows from the Lehmann-Scheffé theorem since it is a function of the complete sufficient statistic (µ̂, S2).

Shen also derived Finney’s estimator using the Rao-Blackwell theorem.

Evans and Shaban’s Estimator: While Finney’s estimator is MVUE, Evans and Shaban (1974, 1976)

derived an approximately minimum MSE estimator:

θ̂ES = exp(aµ̂)g1(c1S
2/2), (10)

where c1 = b − 3a2d2. Replacing c0 in Finney’s estimator by c1 introduces a small bias in exchange of

reduction in variance with overall reduction in MSE.

Rukhin’s Estimator: Rukhin (1986) modified Evans and Shaban’s estimator for further improved MSE

performance by replacing c1 by c2 = cν/(ν + 1):

θ̂R = exp(aµ̂)g1
(
c2S

2/2
)
. (11)
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Thus θ̂F, θ̂ES and θ̂R all use the same g1(cS2/2) function for different choices of c.

Our Proposed Estimator: Our proposed estimator is of the form θ̂0 defined in (5) except that instead of

setting c = c0 we choose c to give an unbiased estimator of θ. Putting p = 0 in (6) (which gives the moment

generating function of S2 ∼ σ2χ2
m/m), we get

E
[
exp(cS2/2)

]
=

(
1− cσ2

m

)−m/2
.

Equating this to exp(c0σ
2/2) to satisfy (3), solving for c and replacing σ2 in the solution by S2 we get

c =
m

S2

[
1− exp

{
−c0S2

m

}]
. (12)

Although c is not a constant as required in (4), by choosing a suitable g(·) function we can express our

proposed estimator in the form (4) as follows:

exp(cS2/2) = exp

{
m

S2

[
1− exp

{
−c0S2

m

}]
S2

2

}
= exp

{
−ν
[
exp

(
−c0S

2

2ν

)
− 1

]}
= exp

{
−ν
[
exp

(
− t
ν

)
− 1

]}
= g2(t), (13)

where t = c0S
2/2. Thus our proposed estimator is

θ̂GT = exp(aµ̂)g2(c0S
2/2). (14)

By expanding the exponential function in (12) for m large, we obtain the following first-order approxi-

mation:

c ≈ m

S2

[
c0S

2

m

]
= c0;

thus θ̂GT → θ̂0 as m→∞ almost surely.

Just as the MSE of Finney’s estimator was improved by Evans and Shaban by replacing c0 by c1 and

further by Rukhin by replacing c1 by c2 = c1ν/(ν + 1), we can expect to improve the MSE of our proposed

estimator by replacing c0 by c2. We have verified this by asymptotic analyses of their MSEs. The details

are available from the authors. We will denote our original proposed estimator by θ̂GT(c0) and this improved

version of it by θ̂GT(c2).

3.2 Estimators of More General Form (2)

Shen et al. (2006) proposed the minimum MSE estimator for the i.i.d. setting in which case d2 = 1/n. Later,

Shen and Zhu (2008) extended this minimum MSE estimator to the regression setting under the assumption

that d2 = O(1/n); they also derived the minimum bias estimator.

The regression setting is as follows. Let Z = (Z1, . . . , Zn)′ be a vector of independent lognormally

distributed responses and Y = (Y1, . . . , Yn)′ be the corresponding vector of normally distributed log-
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transformed responses. Let X be an n × (p + 1) matrix of predictors and β = (β0, β1, . . . , βp)
′ be a

(p + 1) × 1 vector of unknown regression coefficients. Assume the general linear model E(Y ) = Xβ un-

der the usual normality, independence and homoscedasticity assumptions. Let β̂ = (β̂0, β̂1, . . . , β̂p)
′ be

the least squares (LS) estimator of β. Suppose we want to estimate E(Y |x) = µ = x′β for some spec-

ified predictor vector x = (1, x1, . . . , xp)
′. The LS estimator µ̂ = x′β̂ is normally distributed with mean

µ and variance d2σ2 where d2 = x′(X ′X)−1x = O(1/n). Further let SSE be the error sum of squares

and S2 = SSE/[n − (p + 1)] ∼ σ2χ2
m/m where m = n − (p + 1). Then the Shen et al. estimator of

η = E(Z|x) = E[exp(Y |x)] is given by

η̂(k) = exp(µ̂) exp

(
SSE

2(n− k)

)
= exp(µ̂) exp

(
n− (p+ 1)

n− k
S2

2

)
, (15)

where k is a coefficient to be determined. Shen and Zhu (2008) determined k to approximately minimize

the bias or MSE of the estimator; the resulting k is a function of S2. Hence [n − (p + 1)]/(n − k) is not a

constant as required in (4).

Shen and Zhu (2008) showed that the bias of η̂(k) up to the order O(1/n) is given by

Bias[η̂(k)] = η

[
nd2 + k − (p+ 1) +

σ2

2

]
σ2

n
+ o

(
1

n

)
(16)

and the MSE of η̂(k) up to the order O(1/n2) is given by

MSE[η̂(k)] = η2
[
1 +

σ2

2
+
σ2

4n
(k2 + 6nd2 − 2(p− 1) + 3σ2)− 1 + p2

−6nd2(p+ 1) + 7n2d2 + (1− 3p+ 7nd2)σ2 +
7σ2

4

]
+ o

(
1

n2

)
. (17)

If k is chosen to minimize Bias[η̂(k)] and the unknown σ2 in the minimizing value of k is replaced by S2

then we get Shen and Zhu’s (2008) minimum bias estimator:

η̂MB = exp(µ̂) exp

(
mSSE

2m[n− (p+ 1) + nd2] + SSE

)
.

If k is chosen to minimize MSE[η̂(k)] and the unknown σ2 in the minimizing value of k is replaced by S2

then we get Shen and Zhu’s (2008) minimum MSE estimator:

η̂MM = exp(µ̂) exp

(
mSSE

2m[n− (p− 1) + 3nd2] + 3SSE

)
.

We now extend these estimators to our more general setting. We replace the restriction d2 = O(1/n) by

d2 = O(1/ν). Let

θ̂(k) = exp(aµ̂) exp

(
bν

ν − k
S2

2

)
. (18)

The bias of θ̂(k) up to the order O(1/ν) equals

Bias[θ̂(k)] =
θσ2

2ν

[
νa2d2 +

b2σ2

4
+ bk

]
+ o

(
1

ν

)
(19)
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and the MSE of θ̂(k) up to the order O(1/ν2) equals

MSE[θ̂(k)] =
θ2σ2

ν

[
νa2d2 +

b2σ2

4

+
b2σ2

4ν

{
k2 +

(
2 +

3

2
bσ2 +

6νa2d2

b

)
k + bσ2 +

7ν2a4d2

b2
+

7

16
b2σ4 +

7

2
νa2d2σ2

}]
+ o

(
1

ν2

)
. (20)

The asymptotic expansions (16) and (17) derived by Shen and Zhu (2008) for the bias and MSE of η̂(k)

are slightly different from the ones given above because Shen and Zhu considered the expansions in terms

of 1/n whereas the above expansions are in terms of 1/ν. This results in η̂MB and η̂MM not being the exact

special cases of their generalized versions given below.

Shen and Zhu’s Minimum Bias Estimator: The bias expression (19) is minimized by choosing

k = −νa
2d2

b
− bσ2

4
. (21)

Substituting this value of k in (18) and replacing σ2 by S2 gives Shen and Zhu (2008) generalized minimum

bias estimator:

θ̂MB = exp(aµ̂) exp

(
2b2νS2

4ν (b+ a2d2) + b2S2

)
. (22)

Shen and Zhu’s Minimum MSE Estimator: The MSE expression (20) is minimized by choosing

k = −1− 3bσ2

4
− 3νa2d2

b
. (23)

Substituting this value of k in (18) and replacing σ2 by S2 gives Shen and Zhu (2008) generalized minimum

MSE estimator:

θ̂MM = exp(aµ̂) exp

(
2νb2S2

4ν (b+ 3a2d2) + 4b+ 3b2S2

)
. (24)

4 Asymptotic MSE Comparisons Between Estimators

Derivations of the asymptotic expansions of the MSEs of the estimators under the assumption d2 is fixed

are given in the appendix. We derived similar expansions under the assumption d2 = O(1/ν) but they were

found to be not very accurate and so we have chosen not to report them. Therefore no asymptotic MSE

expressions are provided for θ̂MB and θ̂MM, which are derived under that assumption.

4.1 Comparison Between Unbiased Estimators θ̂F and θ̂GT(c0)

We first compare θ̂F with θ̂GT(c0) in terms of their asymptotic MSEs because both are designed to be unbiased

estimators of θ (of course, θ̂GT(c0) is unbiased only in large samples since we have replaced σ2 by S2 in (12)).

The formulae for their asymptotic MSEs up to the order O(1/ν2) are as follows, where for convenience we

have put δ = a2d2σ2 > 0:

MSE(θ̂F) = θ2eδ
[(

1− e−δ
)

+
c20σ

4

4

1

ν
+
c40σ

8

32

1

ν2
+ o

(
1

ν2

)]
(25)
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and

MSE(θ̂GT(c0)) = θ2eδ
[(

1− e−δ
)

+
c20σ

4

4

1

ν

+

{
c40σ

8

32
−
(

1− e−δ
)(c0σ4

4
+
c30σ

6

8

)}
1

ν2
+ o

(
1

ν2

)]
. (26)

Then we have the following theorem.

Theorem 1. Up to the order O(1/ν2), MSE(θ̂GT(c0)) < MSE(θ̂F) iff (b− a2d2)σ2 > −2.

Proof. The above inequality holds iff

−
(

1− e−δ
)(c20σ4

4
+
c30σ

6

8

)
< 0⇐⇒ c20σ

4

4
+
c30σ

6

8
> 0⇐⇒ c0σ

2 > −2.

This completes the proof of the theorem.

If b ≥ a2d2 then the inequality c0σ
2 > −2 is obviously satisfied. This is the case in many applications

since d2 is small. For example, for estimating the mean η in the i.i.d. case, we have a = 1, b = 1 and

d2 = 1/n so that b ≥ a2d2 for all n ≥ 1. Thus our proposed estimator has a smaller MSE than Finney’s

classical estimator up to order O(1/ν2) in most cases of practical interest.

4.2 Comparison Between Biased Estimators

We now make comparisons between selected biased estimators which are designed to minimize MSE. We do

not include all estimators discussed above in order to keep the comparisons to a manageable level. Toward

this end, we chose Rukhin’s estimator θ̂R from the class of estimators θ̂ = exp(aµ̂)g1(cS2/2). Similarly we

chose the improved version θ̂GT(c2) of our proposed estimator. Finally, we chose Shen and Zhu’s estimator

θ̂MM defined in (24) as it minimizes MSE. We also included in our comparison θ̂0 defined in (5) as a benchmark

for comparison to show how much improvement is obtained by other estimators.

The MSEs of θ̂0, θ̂R and θ̂GT(c2) up to the order 1/ν2 under the assumption that d2 is fixed are given by

the following expressions:

MSE(θ̂0) = θ2eδ

[(
1− e−δ

)
+

(
1− e−δ

2

)
c20σ

4

2

1

ν

+

{(
1− e−δ

4

)
c30σ

6

3
+

(
1− e−δ

8

)
c40σ

8

8

}
1

ν2
+ o

(
1

ν2

)]
, (27)

MSE(θ̂R) = θ2e−δ
[(
eδ − 1

)
+
c21σ

4

4

1

ν
+

(
−c

2
1σ

4

4
− c31σ

6

4
+
c41σ

8

32

)
1

ν2
+ o

(
1

ν2

)]
, (28)

MSE(θ̂GT(c2)) = θ2e−δ
[(
eδ − 1

)
+
c21σ

4

4

1

ν
+

(
−c

2
1σ

4

4
− c31σ

6

4
+
c41σ

8

32

)
1

ν2
+ o

(
1

ν2

)]
. (29)

The corresponding asymptotic expression for the MSE of θ̂MM is not available since it assumes that d2 =

O(1/ν). These MSEs are compared in the following theorem.

Theorem 2. Up to the order O(1/ν2) we have the following inequalities among the asymptotic MSEs of the

estimators:

MSE(θ̂0) ≥ MSE(θ̂R) = MSE(θ̂GT(c2)) (30)
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if b− 3a2d2 ≥ 0.

Proof. To show that MSE(θ̂0) ≥ MSE(θ̂R), first note that the leading term of (27) is ≥ the leading term of

(28) since

eδ
(

1− e−δ
)
≥ e−δ

(
eδ − 1

)
⇐⇒ eδ + e−δ ≥ 2,

with equality holding iff δ = 0. Similarly, the first-order term of (27) is ≥ the first-order term of (28) since

eδ

(
1− e−δ

2

)
≥ e−δ

2
⇐⇒

(
eδ − 1

)(
2eδ + 1

)
≥ 0,

for all δ ≥ 0 and
c20σ

4

2
≥ c21σ

4

2
⇐⇒ c20 ≥ c21 if b− 3a2d2 ≥ 0,

which holds for large enough n. For example, for estimating the mean η in the i.i.d. case where a = b = 1

and d2 = 1/n, the above condition reduces to n ≥ 3. Also note that this is a sufficient — not a necessary

condition. This together with the previous inequality assures that the desired inequality holds for the first-

order terms virtually for all n. The second-order terms, being negligible in comparison, can be ignored.

The equality MSE(θ̂R) = MSE(θ̂GT(c2)) follows since their asymptotic expansions are identical up to the

order O(1/ν2). The following simulations show that, in fact, θ̂GT(c2) has a smaller MSE than θ̂R in almost

all cases.

5 Simulation Comparisons Between Estimators

5.1 Simulation Results

In this section we report the results of simulations for the MSEs of the four estimators of θ. We performed

simulations for three parametric functions: median (a = 1, b = 0), mean (a = 1, b = 1) and second moment

(a = 2, b = 4). Four combinations of (µ, σ) were investigated for µ = 0, 1 and σ = 1, 2.

In each replication we generated µ̂ ∼ N(µ, σ2/n) and S2 ∼ σ2χ2
n−1/(n − 1) independent of each other

for given (µ, σ) and n = 10, 20, 50. A total of N = 109 replications were performed in each case. Next

we computed all four estimators of θ in each case. Finally, we computed the mean and variance of all N

replications of each estimator from which we computed the MSEs. For the second moment we report
√

MSE

to be on the same scale as the MSEs for the mean and median. The results are given in Table 1 for the

median, in Table 2 for the mean and in Table 3 for the second moment. For a given parametric function

(median, mean or the second moment) and for each combination of µ, σ and n, the smallest MSE is shown

in bold.

We see that in the case of the median, either θ̂R or θ̂GT(c2) has the smallest MSE while in the case of the

second moment, either θ̂GT(c2) or θ̂MM has the smallest MSE. On the other hand, in the case of the mean,

θ̂MM has the smallest MSE in all cases that were studied. Overall, θ̂MM has the smallest MSE in 20 out of 36

cases, θ̂GT(c2) has the smallest MSE in 14 out of 36 cases and θ̂R has the smallest MSE in 10 out of 36 cases

(the total number of wins exceeds the number of cases because of the ties). In a head-to-head comparison,

θ̂R beats θ̂GT(c2) in 2 cases, θ̂GT(c2) beats θ̂R in 26 cases and in the remaining 8 cases they are tied. Even in

the two cases where θ̂R beats θ̂GT(c2), the difference in their MSEs is only 0.0001, which is not statistically

significant. Thus, θ̂GT(c2) is preferred over θ̂R. Between θ̂GT(c2) and θ̂MM, the preferred estimator depends

on the parametric function to be estimated. For estimating the median, θ̂GT(c2) is preferred, while for
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estimating the mean, θ̂MM is preferred. For estimating the second moment if σ is small, θ̂MM is preferred,

while if σ is large, θ̂GT(c2) is preferred. However, these MSEs are much larger in magnitude compared to the

MSEs of the estimators of the median and mean; thus none of the estimators is very useful for estimating

the second moment. Finally we note that θ̂0 has the highest MSE in all cases, often by orders of magnitude

and so should not be used.

Table 1: Simulated MSE for Estimating the Median (a = 1, b = 0)
µ = 0

σ = 1 σ = 2

θ̂ n = 10 n = 20 n = 50 n = 10 n = 20 n = 50

θ̂0 0.1058 0.0514 0.0202 0.5084 0.2229 0.0834

θ̂R 0.0991 0.0493 0.0198 0.3842 0.1887 0.0774

θ̂GT(c2) 0.0991 0.0493 0.0198 0.3839 0.1887 0.0774

θ̂MM 0.1189 0.0545 0.0207 0.7827 0.2815 0.919
µ = 1

θ̂0 0.7820 0.3794 0.1493 3.7564 1.6471 0.6160

θ̂R 0.7319 0.3642 0.1466 2.8387 1.3944 0.5720

θ̂GT(c2) 0.7320 0.3642 0.1466 2.8368 1.3945 0.5720

θ̂MM 0.8783 0.4030 0.1530 5.7835 2.0800 0.6790
The smallest MSE for each combination of µ, σ and n is shown in bold.

Table 2: Simulated MSE for Estimating the Mean (a = 1, b = 1)
µ = 0

σ = 1 σ = 2

θ̂ n = 10 n = 20 n = 50 n = 10 n = 20 n = 50

θ̂0 0.4830 0.2215 0.0843 2504.57 109.61 20.043

θ̂R 0.3078 0.1740 0.0762 27.085 19.919 10.631

θ̂GT(c2) 0.3067 0.1736 0.0761 25.003 18.545 10.428

θ̂MM 0.3008 0.1701 0.0752 24.613 17.053 0.2659
µ = 1

θ̂0 3.5686 1.6364 0.6227 19142 809.99 148.10

θ̂R 2.2745 1.2859 0.5629 200.15 147.18 78.556

θ̂GT(c2) 2.2659 1.2830 0.5626 184.75 137.02 77.006

θ̂MM 2.2224 1.2568 0.5555 181.87 126.00 68.467
The smallest MSE for each combination of µ, σ and n is shown in bold.

5.2 Accuracy of Asymptotic Expansions of MSE

It is of interest to assess the accuracy of the asymptotic expansions of the MSEs of the estimators by

comparing them to their respective simulation estimates. We do not report the results for θ̂MM since the

asymptotic expansion for its MSE is not available when d2 is fixed (which is the case here with d2 = 1/n).

The results for the median, mean and the second moment are given in Tables 4, 5 and 6, respectively.

We calculated the percentage errors between the asymptotic expansions and the respective simulation

estimates. The main conclusions are as follows. In general, the expansions of the MSEs of the estimators

are accurate (errors < 10%) for the median and mean, but not so accurate for the second moment. The

9



Table 3: Simulated
√

MSE for Estimating the Second Moment (a = 2, b = 4)
µ = 0

σ = 1 σ = 2

θ̂ n = 10 n = 20 n = 50 n = 10 n = 20 n = 50

θ̂0 50.046 10.470 4.4769 9.229× 1016 1.018× 1010 255986

θ̂R 5.2044 4.4631 3.2606 3934 6163 5175

θ̂GT(c2) 5.0002 4.3063 3.2293 2940 2810 3051

θ̂MM 4.9611 4.1295 3.0440 2967 2944 2772
µ = 1

θ̂0 369.79 77.372 33.080 6.483× 1017 7.505× 1010 1.8228× 106

θ̂R 38.455 32.980 24.093 29660 45424 38159

θ̂GT(c2) 36.947 31.821 23.862 21726 20763 22543

θ̂MM 36.658 30.513 22.492 21921 21754 20486
The smallest

√
MSE for each combination of µ, σ and n is shown in bold.

Table 4: Asymptotic MSE for Estimating the Median (a = 1, b = 0)

µ = 0
σ = 1 σ = 2

θ̂ n = 10 n = 20 n = 50 n = 10 n = 20 n = 50

θ̂0 0.1058 0.0513 0.0202 0.5084 0.2229 0.0834

θ̂R, θ̂GT(c2) 0.0980 0.0493 0.0198 0.3878 0.1887 0.0774
µ = 1

θ̂0 0.7820 0.3794 0.1493 3.7563 1.6470 0.6160

θ̂R, θ̂GT(c2) 0.7315 0.3642 0.1466 2.8657 1.3946 0.5720

Table 5: Asymptotic MSE for Estimating the Mean (a = 1, b = 1)

µ = 0
σ = 1 σ = 2

θ̂ n = 10 n = 20 n = 50 n = 10 n = 20 n = 50

θ̂0 0.4726 0.2203 0.0842 234.28 70.059 18.629

θ̂R, θ̂GT(c2) 0.3013 0.1726 0.0761 23.951 19.266 10.580
µ = 1

θ̂0 3.4922 1.6277 0.6221 1731.1 517.67 137.65

θ̂R, θ̂GT(c2) 2.2260 1.2756 0.5620 176.98 142.35 78.179
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Table 6: Asymptotic
√

MSE for Estimating the Second Moment (a = 2, b = 4)

µ = 0
σ = 1 σ = 2

θ̂ n = 10 n = 20 n = 50 n = 10 n = 20 n = 50

θ̂0 15.306 8.3701 4.3161 119951 42486 14282

θ̂R, θ̂GT(c2) 4.8940 4.3893 3.2527 5410 6462 4976
µ = 1

θ̂0 113.10 61.847 31.892 886322 313930 105528

θ̂R, θ̂GT(c2) 36.162 32.433 24.035 39972 47748 36771

expansions are more accurate when σ and b are small (e.g., for estimating the median for which b = 0 versus

for estimating the second moment for which b = 4) and n is large. Here the n-values used, 10, 20 and 50,

are not large, which partly explains the inaccuracies in asymptotic expansions.

6 Numerical Example

We give a numerical example to illustrate the different values that the various estimators take for actual

data. For this purpose instead of using real data we did a systematic comparison using simulated normal

data (which when exponentiated yield lognormal data) with µ = 1 and σ = 1, 2, 3. We used two different

sample sizes, n = 25 and n = 50. Thus we focused on the effects of σ and n on the differences between the

various estimators. The results are summarized in Table 7.

Table 7: Estimates of η Using Different Estimators for Numerical Example
(µ, σ) (1, 1) (1, 2) (1, 3) (1, 1) (1, 2) (1, 3)
η 4.4817 20.09 244.7 4.4817 20.09 244.7

n = 25 n = 50

Y 1.022 1.443 3.067 1.158 0.982 2.336
Z 4.299 39.412 410.73 4.441 13.558 157.31

exp(Y ) 2.7787 4.2334 21.477 3.1836 2.6698 10.340

θ̂0 4.5028 27.57 388.2 4.5588 21.71 336.2

θ̂F 4.4643 24.56 300.4 4.5475 20.08 274.2

θ̂ES 4.2941 21.38 245.0 4.4823 18.55 241.5

θ̂R 4.1547 18.99 205.8 4.4230 17.23 214.8

θ̂GT(c2) 4.1518 18.69 196.8 4.4225 17.11 209.2

θ̂MB 4.4634 24.13 285.3 4.5476 19.94 267.2

θ̂MM 4.1334 16.31 144.7 4.4116 15.16 153.1

The values of µ, σ and the associated η = exp(µ + σ2/2) are listed at the top of each column. The

estimates of η can be compared with the true values of η. The following observations may be made based

on this example.

1. The naive estimator exp(Y ) underestimates the mean η. Another naive estimator Z is highly variable,

especially as σ increases. Although unbiased, it overestimates η for n = 25 and underestimates η for

n = 50.
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2. The simple adjustment estimator θ̂0 overestimates η in all cases.

3. All other estimators are fairly stable and are close to the true η for σ = 1. As σ increases, the

differences between the estimators become more pronounced. The two estimators θ̂GT(c2) and θ̂MM,

which generally had the smallest MSE in analytical and simulation comparisons underestimate η in all

cases.

4. The effect of increasing n is generally to reduce the biases.

7 Conclusions

We have compared a number of estimators for the parametric function (1) and showed using asymptotic MSE

and small sample simulation comparisons that the two best estimators are Shen and Zhu’s (2008) minimum

MSE estimator (as generalized to our setting) and our proposed estimator with Rukhin’s (1986) constant

c2. For estimating the mean, Shen and Zhu’s estimator is preferred, while our estimator is preferred for

estimating the median. For estimating the second moment, all of the estimators perform rather poorly, but

Shen and Zhu’s estimator is preferred when σ is small, while our estimator is preferred when σ is large. The

simple adjustment estimator should not be used as its MSE is usually much larger in small samples.

We have focused on the point estimation of θ. There has been also much work done on confidence interval

estimation of θ which is reviewed in Chapter 3 of Crow and Shimizu (1988). A key reference is a paper by

Land (1972). We will report our results on this problem in a separate paper.

Appendix

To derive the asymptotic expansions of the expected values and MSEs of the estimators we make use of the
following basic expansions.

Result 1. The bias correction factors g1(t) and g2(t) from (7) and (13) and their squares are given up to
the order 1/ν2 by

g1(t) = et
[
1− t2

2

1

ν
+

(
t2

4
+
t3

2
+
t4

8

)
1

ν2
+ o

(
1

ν2

)]
, (A.1)

g2(t) = et
[
1− t2

2

1

ν
+

(
t3

6
+
t4

8

)
1

ν2
+ o

(
1

ν2

)]
, (A.2)

g21(t) = e2t
[
1− t2

ν
+

(
t2 +

4t3

3
+
t4

2

)
1

ν2
+ o

(
1

ν2

)]
, (A.3)

g22(t) = e2t
[
1− t2

ν
+

(
t3

3
+
t4

2

)
1

ν2
+ o

(
1

ν2

)]
. (A.4)

Proof of Result 1. To emphasize the dependence of g1(t) and g2(t) on ν we will denote them by g1(t, ν)
and g2(t, ν), respectively. By starting from the power series representation for g1(t, ν) given by (7), we get

g1(t, ν) = 1 + t+
ν

ν + 1

t2

2!
+

ν2

(ν + 1)(ν + 2)

t3

3!
+ · · ·

= 1 + t+
1

1 + x

t2

2!
+

1

(1 + x)(1 + 2x)

t3

3!
+ · · ·

= 1 + t+

∞∑
j=2

[
j−1∏
i=1

(1 + ix)

]−1
tj

j!
,
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where we have put x = 1/ν. We regard this last expression as a continuous extension g̃1(t, x) of g1(t, ν)
which we treat as a continuous differentiable function of x for x ∈ (0, 1). We can then expand g̃1(t, x) around
x = 0 in Taylor series. First we have

g̃1(t, x)|x=0 = 1 +
t

1!
+
t2

2!
+
t3

3!
+ · · · = et.

Next to evaluate the derivatives of g̃1(t, x) with respect to x, denote the coefficient of tj/j! in the infinite
series for g̃1(t, x) by

fj(x) =

[
j−1∏
i=1

(1 + ix)

]−1
so that ln fj(x) = −

j−1∑
i=1

ln(1 + ix).

We have

d ln fj(x)

dx
= −

j−1∑
i=1

i

1 + ix
. (A.5)

Therefore

dfj(x)

dx
= fj(x)

d ln fj(x)

dx
= −

[
j−1∏
i=1

(1 + ix)

]−1 j−1∑
i=1

i

1 + ix

and

dfj(x)

dx

∣∣∣∣
x=0

= −
j−1∑
i=1

i =
j(j − 1)

2
. (A.6)

Hence
dg̃1(t, x)

dx

∣∣∣∣
x=0

= −
∞∑
j=2

j(j − 1)

2

tj

j!
= −

∞∑
j=2

t2

2

tj−2

(j − 2)!
= − t

2

2
et.

Next to evaluate the second derivative of fj(x) we use the formula

d2fj(x)

dx2
= fj(x)

d2 ln fj(x)

dx2
+

1

fj(x)

[
dfj(x)

dx

]2
. (A.7)

From (A.5) we get

d2 ln fj(x)

dx2
=

j−1∑
i=1

i2

(1 + ix)2
.

Hence

d2 ln fj(x)

dx2

∣∣∣∣
x=0

=

j−1∑
i=1

i2 =
j(j − 1)(2j − 1)

6
.

Substituting this expression along with fj(0) = 1 and dfj(x)/dx|x=0 = j(j− 1)/2 from (A.6) in (A.7) we get

d2fj(x)

dx2

∣∣∣∣
x=0

=
j(j − 1)(2j − 1)

6
+
j2(j − 1)2

4
=
j(j − 1)(j + 1)(3j − 2)

12
.

Therefore

d2g̃1(t, x)

dx2

∣∣∣∣
x=0

=

∞∑
j=2

j(j − 1)(j + 1)(3j − 2)

12

tj

j!

=

∞∑
j=2

(j + 1)(3j − 2)

(j − 2)!

tj

12
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=

∞∑
j=2

3j(j − 1)

j!

tj+2

12
+

∞∑
j=1

16j

j!

tj+2

12
+

∞∑
j=0

12

j!

tj+2

12

=
1

4

∞∑
j=2

tj+2

(j − 2)!
+

4

3

∞∑
j=1

tj+2

(j − 1)!
+

∞∑
j=0

tj+2

j!

=
t4

4

∞∑
j=0

tj

j!
+

4t3

3

∞∑
j=0

tj

j!
+ t2

∞∑
j=0

tj

j!
= et

(
t4

4
+

4t3

3
+ t2

)
.

So the final expansion for g̃1(t, x) is

g̃1(t, x) = et
[
1− t2

2
x+

(
t4

4
+

4t3

3
+ t2

)
x2

2
+ o(x2)

]
or equivalently,

g1(t, ν) = et
[
1− t2

2

1

ν
+

(
t4

8
+

2t3

3
+
t2

2

)
1

ν2
+ o

(
1

ν2

)]
.

Next we find the expansion for g2(t, ν). From (13) we see that

exp{−ν[exp(−t/ν)− 1]} = exp

{
−ν
[
1− t

ν
+

t2

2ν2
− t3

6ν3
− 1 + o

(
1

ν3

)]}
= exp

{
t− t2

2

1

ν
+
t3

6

1

ν2
+ o

(
1

ν2

)}
= et exp

{
− t

2

2

1

ν
+
t3

6

1

ν2
+ o

(
1

ν2

)}
= et

[
1− t2

2

1

ν
+

(
t3

6
+
t4

8

)
1

ν2
+ o

(
1

ν2

)]
.

The expressions (A.3) and (A.4) are readily obtained by squaring the expressions for g1(t, ν) and g2(t, ν)
given in (A.1) and (A.2), respectively, and keeping only the terms up to the order 1/ν2. �

Next we state another result that will be useful in the following.

Result 2. (
1− cσ2

2ν

)−ν
= ecσ

2/2

[
1 +

c2σ4

8

1

ν
+

(
c3σ6

24
+
c4σ8

128

)
1

ν2
+ o

(
1

ν2

)]
. (A.8)

Proof of Result 2. Let γ = cσ2/2. Then

ln
(

1− γ

ν

)−ν/γ
= −ν

γ
ln
(

1− γ

ν

)
= −ν

γ

[
−γ
ν
− γ2

2ν2
− γ3

3ν3
+ o

(
1

ν3

)]
= 1 +

γ

2ν
+

γ2

3ν2
+ o

(
1

ν2

)
.

Hence (
1− γ

ν

)−ν/γ
= exp

(
1 +

γ

2ν
+

γ2

3ν2
+ o

(
1

ν2

))
= e1 exp

(
1 +

γ

2ν
+

γ2

3ν2
+ o

(
1

ν2

))
= e

[
1− γ

2ν
+

γ2

3ν2
+

1

2

(
− γ

2ν

)2
+ o

(
1

ν2

)]
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= e

[
1 +

γ

2ν
+

11γ2

24ν2
+ o

(
1

ν2

)]
.

It follows that (
1− γ

ν

)−ν
= eγ

[
1 +

γ

2ν
+

11γ2

24ν2
+ o

(
1

ν2

)]γ
= eγ

[
1 +

γ2

2ν
+

11γ3

24ν2
+
γ(γ − 1)

2

( γ
2ν

)2
+ o

(
1

ν2

)]
= eγ

[
1 +

γ2

2

1

ν
+

(
γ3

3
+
γ4

8

)
1

ν2
+ o

(
1

ν2

)]
.

Substituting back γ = cσ2/2 leads to the desired result. �

Next we state a result about the expected values of some functions of S2. We already have noted Finney’s
result (8).

Result 3. For a given constant c we have

E
[
g2
(
cS2/2

)]
= ecσ

2/2

[
1−

(
c2σ4

8
+
c3σ6

16

)
1

ν2
+ o

(
1

ν2

)]
, (A.9)

E
[
g21
(
cS2/2

)]
= ecσ

2

[
1 +

c2σ4

4

1

ν
+
c4σ8

32

1

ν2
+ o

(
1

ν2

)]
, (A.10)

E
[
g22
(
cS2/2

)]
= ecσ

2

[
1 +

c2σ4

4

1

ν
+

(
−c

2σ4

4
− c3σ6

8
+
c4σ8

32

)
1

ν2
+ o

(
1

ν2

)]
. (A.11)

Proof of Result 3.
First consider (A.9). From (A.2) we get

E
[
g2(cS2/2)

]
= E

[
ecS

2/2

{
1− c2S4

8

1

ν
+

(
c3S6

48
+
c4S8

128

)
1

ν2
+ o

(
1

ν2

)}]
.

The expected values of ecS
2/2, S4ecS

2/2, S6ecS
2/2 and S8ecS

2/2 are obtained from (6) by substituting p =
0, 2, 3 and 4. Thus we get

E
[
g2(cS2/2)

]
=

(
1− cσ2

2ν

)−ν [
1− c2

8ν

Γ(ν + 2)

Γ(ν)

(
σ2

ν

)2(
1− cσ2

2ν

)−2
(A.12)

+
c3

48ν2
Γ(ν + 3)

Γ(ν)

(
σ2

ν

)3(
1− cσ2

2ν

)−3
+

c4

128ν2
Γ(ν + 4)

Γ(ν)

(
σ2

ν

)4(
1− cσ2

2ν

)−4
+ o

(
1

ν2

)]
.

Now for p = 2, 3, 4, we have

Γ(ν + p)

Γ(ν)

(
σ2

ν

)p(
1− c0σ

2

2ν

)−p
= σ2p (ν + p− 1) · · · νΓ(ν)

νpΓ(ν)

(
1− c0σ

2

2ν

)−p
= σ2p

(
1 +

p− 1

ν

)
· · ·
(

1 +
1

ν

)[
1 + p

c0σ
2

2ν
− p(p+ 1)

2

(
c0σ

2

2ν

)2

+o

(
1

ν2

)]
. (A.13)

Keeping the terms only up to the order 1/ν2 we see that the second term inside the square brackets in (A.12)
equals

−c
2σ4

8ν

(
1 +

1

ν

)[
1 +

cσ2

ν
+ o

(
1

ν

)]
= −c

2σ4

8ν

[
1 +

cσ2

ν
+

1

ν
+ o

(
1

ν

)]
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= −c
2σ4

8

1

ν
−
(
c3σ6

8
+
c2σ4

8

)
1

ν2
+ o

(
1

ν2

)
.

Next the third term inside the square brackets in (A.12) equals

c3σ6

48ν2

(
1 +

1

ν

)(
1 +

2

ν

)[
1 +

3cσ2

2ν
+ o

(
1

ν

)]
=
c3σ6

48

1

ν2
+ o

(
1

ν2

)
.

Finally, the fourth term inside the square brackets in (A.12) equals

c4σ8

128

1

ν2
+ o

(
1

ν2

)
.

Using Result 2, adding these terms and simplifying we get the final expression in (A.9).
Next consider (A.10). From (A.3) and Result 2 we have

E
[
g21(cS2/2)

]
= E

[
ecS

2

{
1− c2S4

4

1

ν
+

(
c2S4

4
+
c3S6

6
+
c4S8

32

)
1

ν2
+ o

(
1

ν2

)}]
=

(
1− cσ2

ν

)−ν [
1− c2

4ν

Γ(ν + 2)

Γ(ν)

(
σ2

ν

)2(
1− cσ2

ν

)−2
+

c2

4ν2
Γ(ν + 2)

Γ(ν)

(
σ2

ν

)2(
1− cσ2

ν

)−2
+
c3

6ν2
Γ(ν + 3)

Γ(ν)

(
σ2

ν

)3(
1− cσ2

ν

)−3
+

c4

32ν2
Γ(ν + 4)

Γ(ν)

(
σ2

ν

)4(
1− cσ2

ν

)−4
+ o

(
1

ν2

)]

= ecσ
2

[
1 +

c2σ4

2

1

ν
+

(
c3σ6

3
+
c4σ8

8

)
1

ν2
+ o

(
1

ν2

)][
1− c2σ4

4

1

ν
+

(
−c

3σ6

3
+
c4σ8

32

)
1

ν2
+ o

(
1

ν2

)]
= ecσ

2

[
1 +

c2σ4

4

1

ν
+
c4σ8

32

1

ν2
+ o

(
1

ν2

)]
.

Finally consider (A.11). From (A.4) and Result 2 we have

E
[
g22
(
cS2/2

)]
= E

[
ec0S

2

{
1− c20S

4

4

1

ν
+

(
c30S

6

24
+
c40S

8

32

)
1

ν2
+ o

(
1

ν2

)}]
=

(
1− cσ2

ν

)−ν [
1− c2

4

Γ(ν + 2)

Γ(ν)

(
σ2

ν

)2(
1− cσ2

ν

)−2
1

ν

+

{
c3

24

Γ(ν + 3)

Γ(ν)

(
σ2

ν

)3(
1− cσ2

ν

)−3
+
c4

32

Γ(ν + 4)

Γ(ν)

(
σ2

ν

)4(
1− cσ2

ν

)−4}
1

ν2
+ o

(
1

ν2

)]

=

(
1− cσ2

ν

)−ν [
1− c2σ4

4

1

ν
−
(
c2σ4

4
+
c3σ6

2

)
1

ν2
+
c3σ6

24

1

ν2
+
c4σ8

32

1

ν2
+ o

(
1

ν2

)]
= ecσ

2

[
1 +

c2σ4

2

1

ν
+

(
c3σ6

3
+
c4σ8

8

)
1

ν2
+ o

(
1

ν2

)]
×
[
1− c2σ4

4

1

ν
−
(
c2σ4

4
+

11c3σ6

24
− c4σ8

32

)
1

ν2
+ o

(
1

ν2

)]
= ecσ

2

[
1 +

c2σ4

4

1

ν
+

(
−c

2σ4

4
− c3σ6

8
+
c4σ8

32

)
1

ν2
+ o

(
1

ν2

)]
.

This completes the proof of Result 3. �

Derivations of MSE Expressions Under the Assumption d2 Is Fixed

Derivation of (25) for MSE(θ̂F).
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Since θ̂F is an unbiased estimator of θ, from (A.10) in Result 3

MSE(θ̂F) = E(θ̂2F)− θ2 (since θ̂F is unbiased)

= E [exp(2aµ̂)] · E
[
g22(c0S

2/2)
]
− θ2

= e2aµ+δ · ec0σ
2

[
1 +

c20σ
4

4

1

ν
+
c40σ

8

32

1

ν2
+ o

(
1

ν2

)]
− θ2

= θ2eδ
[
1− e−δ +

c20σ
4

4

1

ν
+
c40σ

8

32

1

ν2
+ o

(
1

ν2

)]
.

Derivation of (26) for MSE(θ̂GT).

First we derive the expected value of θ̂GT from (A.9) in Result 3

E(θ̂GT) = E [exp(aµ̂)] · E
[
g2(c0S

2/2)
]

= eaµ+δ/2 · ec0σ
2/2

[
1−

(
c20σ

4

8
+
c30σ

6

16

)
1

ν2
+ o

(
1

ν2

)]
= θ

[
1−

(
c30σ

6

16
+
c20σ

4

8

)
1

ν2
+ o

(
1

ν2

)]
.

Next we evaluate E(θ̂2GT) by using (A.11) in Result 3

E(θ̂2GT) = E[exp(2aµ̂)] · E[g22(c0S
2/2)]

= e2aµ+δ · ec0σ
2

(
1 +

c20σ
4

4

1

ν
+

(
−c

2
0σ

4

4
− c30σ

6

8
+
c40σ

8

32

)
1

ν2
+ o

(
1

ν2

))
= θ2eδ

[
1 +

c20σ
4

4

1

ν
−
(
c20σ

4

4
+
c30σ

6

8
− c40σ

8

32

)
1

ν2
+ o

(
1

ν2

)]
.

Substituting these expressions in

MSE(θ̂GT) = E(θ̂2GT)− 2θE(θ̂GT) + θ2,

ignoring the terms of order higher than 1/ν2 and simplifying we get the final result (26).

Derivation of (27) for MSE(θ̂0).

First we get an expression for E(θ̂0). Using Result 2 it follows that

E(θ̂0) = E [exp(aµ̂)]E
[
exp(c0S

2/2)
]

= eaµ+a
2d2σ2/2

(
1− c0σ

2

2ν

)−ν
(from (6))

= eaµ+δ/2ec0σ
2/2

[
1 +

c20σ
4

8

1

ν
+

(
c30σ

6

24
+
c40σ

8

128

)
1

ν2
+ o

(
1

ν2

)]
(from (A.8)).

Putting c0 + a2d2 = b and exp(aµ+ bσ2/2) = θ we get

E(θ̂0) = θ

[
1 +

c20σ
4

8

1

ν
+

(
c40σ

8

128
+
c30σ

6

24

)
1

ν2
+ o

(
1

ν2

)]
.
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Next consider

E(θ̂20) = E
(
e2aµ̂

)
E
[
exp(c0S

2)
]

= e2aµ+2a2d2σ2

(
1− c0σ

2

ν

)−ν
= θ2eδ

[
1 +

c20σ
4

2

1

ν
+

(
c30σ

6

3
+
c40σ

8

8

)
1

ν2
+ o

(
1

ν2

)]
.

Substituting these two expressions in

MSE(θ̂0) = E(θ̂20)− 2θE(θ̂0) + θ2,

ignoring the terms of order higher than 1/ν2 and simplifying we get the final result (27).

Derivation of (28) for MSE(θ̂R).
Using (8) we can write

E(θ̂R) = E[exp(aµ̂)]E[g1(c2S
2/2)]

= exp(aµ+ a2d2σ2/2) exp(c2σ
2/2)

= exp(aµ+ δ/2) exp(c1σ
2/2) exp(−c1σ2/2(ν + 1))

= exp(aµ+ bσ2/2) exp(−bσ2/2 + δ/2 + (b− 3a2d2)σ2/2) exp(−c1σ2/2(ν + 1))

= θ exp(−δ) exp(−c1σ2/2(ν + 1)).

Expanding the second exponential in terms of 1/ν we get

exp

{
c1σ

2

2(ν + 1)

}
= 1− c1

2

σ2

ν + 1
+
c21
8

σ4

(ν + 1)2
+ o

(
1

(ν + 1)2

)
= 1− c1

2

σ2

ν
+
c1
2

σ2

ν2
+
c21
8

σ4

ν2
+ o

(
1

ν2

)
= 1− c1

2

σ2

ν
+

(
c1σ

2

2
+
c21σ

4

8

)
1

ν2
+ o

(
1

ν2

)
.

Hence

E(θ̂R) = θe−δ
[
1− c1

2

σ2

ν
+

(
c1σ

2

2
+
c21σ

4

8

)
1

ν2
+ o

(
1

ν2

)]
.

Next derive an expression for E(θ̂2R). From (A.10), we have

E(θ̂
2

R) = E[exp(2aµ̂)]E[g21(c2S
2/2)]

= e2aµ+2δec2σ
2

[
1 +

c22σ
4

4

1

ν
+
c42σ

8

32

1

ν2
+ o

(
1

ν2

)]
= e2aµ+2δec1σ

2

e−
c1σ

2

ν+1

[
1 +

c21σ
4

4

(
1− 1

ν + 1

)2
1

ν
+
c41σ

8

32

(
1− 1

ν + 1

)4
1

ν2
+ o

(
1

ν2

)]

= θ2e−δ
[
1− c1σ

2

ν + 1
+

c21σ
4

2(ν + 1)2
+ o

(
1

ν2

)][
1 +

c21σ
4

4

1

ν
− c21σ

4

4

2

ν + 1

1

ν
+
c41σ

8

32

1

ν2
+ o

(
1

ν2

)]
= θ2e−δ

[
1− c1σ

2

ν
+

(
c1σ

2 +
c21σ

4

2

)
1

ν2
+ o

(
1

ν2

)][
1 +

c21σ
4

4

1

ν
+

(
−c

2
1σ

4

2
+
c41σ

8

32

)
1

ν2
+ o

(
1

ν2

)]
= θ2e−δ

[
1−

(
c1σ

2 − c21σ
4

4

)
1

ν
+

(
c1σ

2 − c31σ
6

4
+
c41σ

8

32

)
1

ν2
+ o

(
1

ν2

)]
.
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Then

MSE(θ̂R) = E(θ̂
2

R)− 2θE(θ̂R) + θ2

= θ2e−δ
[
1−

(
c1σ

2 − c21σ
4

4

)
1

ν
+

(
c1σ

2 − c31σ
6

4
+
c41σ

8

32

)
1

ν2
+ o

(
1

ν2

)]
− 2θ2e−δ

[
1− c1

2

σ2

ν
+

(
c1σ

2

2
+
c21σ

4

8

)
1

ν2
+ o

(
1

ν2

)]
+ θ2

= θ2e−δ
[
eδ − 1 +

c21σ
4

4

1

ν
+

(
−c

2
1σ

4

4
− c31σ

6

4
+
c41σ

8

32

)
1

ν2
+ o

(
1

ν2

)]
.

Derivation of (29) for MSE(θ̂GT(c2)).
Using (A.9) we can write

E(θ̂GT(c2)) = E[exp(aµ̂)]E[g2(c2S
2/2)]

= eaµ+a
2d2σ2/2ec2σ

2/2

[
1−

(
c22σ

4

8
+
c32σ

6

16

)
1

ν2
+ o

(
1

ν2

)]
= eaµ+

a2d2σ2

2 e
c1σ

2

2 e−
c1σ

2

2(ν+1)

[
1−

(
c21σ

4

8

(
1− 1

ν + 1

)2

+
c31σ

6

16

(
1− 1

ν + 1

)3
)

1

ν2
+ o

(
1

ν2

)]

= θe−δ
[
1− c1

2

σ2

ν
+

(
c1σ

2

2
+
c21σ

4

8

)
1

ν2
+ o

(
1

ν2

)][
1−

(
c21σ

4

8
+
c31σ

6

16

)
1

ν2
+ o

(
1

ν2

)]
= θe−δ

[
1− c1σ

2

2

1

ν
+

(
c1σ

2

2
− c31σ

6

16

)
1

ν2
+ o

(
1

ν2

)]
.

Next derive an expression for E(θ̂
2

GT(c2)). From (A.11), we have

E(θ̂
2

GT(c2)) = E[exp(2aµ̂)]E[g22(c2S
2/2)]

= e2aµ+2δec2σ
2

[(
1 +

c22σ
4

4

1

ν
+

(
−c

2
2σ

4

4
− c32σ

6

8
+
c42σ

8

32

)
1

ν2
+ o

(
1

ν2

))]
= θ2e−δ

[
1− c1σ

2

ν + 1
+

c21σ
4

2(ν + 1)2
+ o

(
1

ν2

)]
×
[
1 +

c21σ
4

4

1

ν
− c21σ

4

4

2

ν + 1

1

ν
+

(
−c

2
1σ

4

4
− c31σ

6

8
+
c41σ

8

32

)
1

ν2
+ o

(
1

ν2

)]
= θ2e−δ

[
1− c1σ

2

ν
+

(
c1σ

2 +
c21σ

4

2

)
1

ν2
+ o

(
1

ν2

)][
1 +

c21σ
4

4

1

ν
+

(
−3c21σ

4

4
− c31σ

6

8
+
c41σ

8

32

)
1

ν2
+ o

(
1

ν2

)]
= θ2e−δ

[
1−

(
c1σ

2 − c21σ
4

4

)
1

ν
+

(
c1σ

2 − c21σ
4

4
− 3c31σ

6

8
+
c41σ

8

32

)
1

ν2
+ o

(
1

ν2

)]
.

Then

MSE(θ̂GT(c2)) = E(θ̂
2

GT(c2))− 2θE(θ̂GT(c2)) + θ2

= θ2e−δ
[
1−

(
c1σ

2 − c21σ
4

4

)
1

ν
+

(
c1σ

2 − c21σ
4

4
− 3c31σ

6

8
+
c41σ

8

32

)
1

ν2
+ o

(
1

ν2

)]
− 2θ2e−δ

[
1− c1σ

2

2

1

ν
+

(
c1σ

2

2
− c31σ

6

16

)
1

ν2
+ o

(
1

ν2

)]
+ θ2

= θ2e−δ
[
eδ − 1 +

c21σ
4

4

1

ν
+

(
−c

2
1σ

4

4
− c31σ

6

4
+
c41σ

8

32

)
1

ν2
+ o

(
1

ν2

)]
.
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