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Abstract: In this article we obtain some new results and extensions of the OLS and

GLS tests proposed by O’Brien (1984) for the one-sided multivariate testing problem. In

particular, we empirically obtain an accurate small sample approximation to the critical

point of the OLS test. Next we show that a competing test proposed by Laüter (1996) is

less powerful in general than the OLS test. Lastly, we extend the OLS and GLS tests to the

heteroscedastic setup where the control and treatment populations have different covariance

matrices.
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1. Introduction

Most clinical trials are conducted to compare a treatment group with a control group

on multiple endpoints. Often, the treatment is expected to have a positive effect on all

endpoints. O’Brien (1984) proposed two global tests, known as the ordinary least squares

(OLS) and generalized least squares (GLS) tests, to demonstrate such an overall treatment

effect. In this article we obtain some new results and extensions of these tests.
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Section 2 gives the notation, the problem formulation and the assumptions. Section

3 deals with the homoscedastic case. First it gives a review of the OLS and GLS tests,

including an improved approximation to the small sample critical value of the OLS test.

Next it gives a power comparison between the OLS test and a test proposed by Läuter.

Section 4 derives extensions of the OLS and GLS tests to the heteroscedastic case. Section 5

gives some concluding remarks. Appendix gives derivations of asymptotic power expressions

of the OLS and Läuter’s tests required for the power comparison in Section 3.

2. Notation and Preliminaries

Suppose that there are two independent treatment groups with n1 and n2 subjects on each

of whom m ≥ 2 endpoints are measured. Treatment 1 is the test treatment and treatment 2

is the control. Let xijk denote the measurement on the kth endpoint for the jth subject in

the ith treatment group. For treatment group i, assume that xij = (xij1, xij2, . . . , xijm)′, j =

1, 2, . . . , ni, are independent and identically distributed (i.i.d.) random vectors from an m-

variate normal distribution with mean vector µi = (µi1, µi2, . . . , µim)′ and covariance matrix

Σi (i = 1, 2). In the homoscedastic case, we assume Σ1 = Σ2 = Σ (say). The elements of Σ

are

σkk = Var(xijk) and σk` = Cov(xijk, xij`) (1 ≤ k < ` ≤ m).

The corresponding correlation matrix will be denoted by R with elements

ρk` = Corr(xijk, xij`) =
σk`√
σkkσ``

(1 ≤ k < ` ≤ m).

In the heteroscedastic case, the elements of Σi will be denoted by σi,k` (1 ≤ k ≤ ` ≤ m).

The corresponding correlation matrices will be denoted by Ri = {ρi,k`} (i = 1, 2).

Let δ = µ1−µ2 = (δ1, δ2, . . . , δm)′ denote the vector of mean differences. To establish an

overall treatment effect, a global null hypothesis of no difference is tested against a one-sided

alternative:

H0 : δ = 0 vs. H1 : δ ∈ O+, (2.1)

where 0 is the null vector and

O+ = {δ|δ ≥ 0, δ 6= 0}
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is the positive orthant.

Let xi· = (xi·1, xi·2, . . . , xi·m)′ denote the vector of sample means of the ni subjects from

the ith group and let Σ̂i denote the sample covariance matrix from the ith group with

νi = ni− 1 degrees of freedom (d.f.) (i = 1, 2). In the homoscedastic case, we use the pooled

estimate of Σ given by Σ̂ = {(n1 − 1)Σ̂1 + (n2 − 1)Σ̂2}/(n1 + n2 − 2) with n1 + n2 − 2 d.f.

Denote the elements of Σ̂ by σ̂k` (1 ≤ k ≤ ` ≤ m).

3. Homoscedastic Case

3.1 OLS and GLS Tests

O’Brien (1984) considered a simplified version of the hypothesis testing problem (2.1)

obtained by restricting the mean difference vector δ = µ1−µ2 to a ray: λ(
√

σ11, . . . ,
√

σmm)′

where λ ≥ 0. In other words, if δk/
√

σkk = λk denotes the standardized treatment effect

for the kth endpoint then O’Brien assumed that λk = λ ≥ 0 for all k. In that case the

hypothesis testing problem (2.1) simplifies to

H0 : λ = 0 vs. H1 : λ > 0. (3.1)

O’Brien solved this problem by using a univariate regression framework that models the

standardized responses as

yijk =
xijk√
σkk

=
µk√
σkk

+
λ

2
Iijk + εijk (i = 1, 2; 1 ≤ j ≤ ni; 1 ≤ k ≤ m), (3.2)

where µk = (µ1k + µ2k)/2, Iijk = +1 if i = 1 and −1 if i = 2, and εijk ∼ N(0, 1) r.v.’s with

correlations

Corr(εijk, εi′j′`) = ρk` if i = i′ and j = j′, Corr(εijk, εi′j′`) = 0 otherwise.

Note that the vectors yij = (yij1, yij2, . . . , yijm)′ are independent, each with correlation ma-

trix R = {ρk`}.

Assuming that R is known, O’Brien showed that the OLS estimate of λ and its standard

deviation (SD) equal

λ̂OLS =
j ′(y1· − y2·)

m
= y1·· − y2·· and SD(λ̂OLS) =

1

m

√(
n1 + n2

n1n2

)
(j ′Rj),
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where j is a vector of all 1’s of an appropriate dimension. Therefore the OLS statistic with

R replaced by the sample correlation matrix R̂ equals

tOLS =
λ̂

ŜD(λ̂)
=

√
n1n2

n1 + n2

j ′(y1· − y2·)√
j ′R̂j

 =
j ′t√
j ′R̂j

, (3.3)

where t is a vector of the t-statistics,

tk =

√
n1n2

n1 + n2

(
x1·k − x2·k√

σ̂kk

)
=

√
n1n2

n1 + n2

(y1·k − y2·k) (1 ≤ k ≤ m) (3.4)

for comparing the treatment and control groups on the individual endpoints. Each tk is

marginally t-distributed under H0k with n1 + n2 − 2 d.f.

Since the errors εijk in the regression model (3.2) are correlated, one may prefer the

generalized least squares (GLS) estimate of λ, which is also its maximum likelihood estimate

(MLE). Assuming that R is known, O’Brien showed that

λ̂GLS =
j ′R−1(y1· − y2·)

j ′R−1j
and SD(λ̂GLS) =

√√√√(n1 + n2

n1n2

)(
1

j ′R−1j

)
.

The test statistic using this GLS estimate with the estimated correlation matrix R̂ substi-

tuted in place of R equals

tGLS =
λ̂

ŜD(λ̂)
=

√
n1n2

n1 + n2

j ′R̂
−1

(y1· − y2·)√
j ′R̂

−1
j

 =
j ′R̂

−1
t√

j ′R̂
−1

j
. (3.5)

Both the OLS and GLS statistics are standardized weighted sums of the individual t-

statistics for the m endpoints. The OLS statistic uses equal weights, while the GLS statistic

uses unequal weights determined by the sample correlation matrix R̂. If some endpoint is

highly correlated with the others then the GLS statistic gives a correspondingly lower weight

to its t-statistic. The convergence of tGLS to the standard normal distribution is slower than

that of tOLS because of the use of the estimated correlation matrix R̂ both in the calculation

of λ̂GLS and in ŜD(λ̂GLS). Also, the simulation study by Reitmeir and Wassmer (1996) has

shown that the powers of the OLS and GLS tests are comparable when used to test subset

hypotheses in closed testing procedures. Finally, the linear combination of the tk-statistics

used in the GLS test can have some negative weights, which can lead to anomalous results;

this problem does not occur with the OLS test. For all these reasons, the OLS test is

preferred.
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The exact small sample null distribution of tOLS is intractable. O’Brien (1984) proposed to

approximate it by a t-distribution with n1 +n2−2m d.f. For large sample sizes, the standard

normal (z) distribution may be used as an approximation; however, this approximation is

liberal. The t-approximation is exact for m = 1 and conservative for m > 1 if the d.f. is

small. For example, for n1 = n2 = 10 and m = 8, which gives ν = 4, the type I error rate is

around 0.025 when nominal α = 0.05. Therefore we investigated a better approximation to

the d.f. of the t-distribution obtained by empirically matching the second moment with the

actual distribution of tOLS (generated via simulation). The resulting approximation is given

by

ν = 0.5(n1 + n2 − 2)(1 + 1/m2).

This approximation is exact for m = 1. For large m, we get ν ≈ (n1 +n2)/2− 1. Simulation

results in Table 1 indicate that this approximation controls the type I error probability very

accurately. Note that these simulations are for the case of uncorrelated endpoints. For

correlated endpoints the approximation is on the conservative side.

3.2 Comparison of the OLS Test with Läuter’s SS Test

Läuter (1996) proposed a class of test statistics for the hypotheses (2.1) having the

property that they are exactly t-distributed with n1 + n2 − 2 d.f. under H0. Recall that

xi· = (xi·1, xi·2, . . . , xi·m)′ denotes the vector of sample means for the ith group (i = 1, 2) and

let

x·· =
n1x1· + n2x2·

n1 + n2

= (x··1, x··2, . . . , x··m)′

denote the vector of overall sample means. Define the total cross-products matrix by

V =
2∑

i=1

ni∑
j=1

(xij − x··)(xij − x··)
′ = (n1 + n2 − 2)Σ̂ +

2∑
i=1

ni(xi· − x··)(xi· − x··)
′.

Let w = w(V ) be any m-dimensional vector of weights depending solely on V such that

w 6= 0 with probability 1. Using the results from the theory of spherical distributions (Fang

and Zhang 1990), Läuter (1996) showed that

tw =

√
n1n2

n1 + n2

 w′t√
w′Σ̂w





6

Table 1: Simulated Type I Error Probability of the OLS Test Using the Proposed Approxi-

mation for the Degrees of Freedom of the t-Distribution

m

n1 n2 2 4 6 8 10

5 5 0.048 0.051 0.047 0.049 0.049

10 10 0.051 0.048 0.050 0.050 0.052

15 15 0.052 0.047 0.050 0.047 0.051

20 20 0.047 0.049 0.050 0.048 0.053

25 25 0.051 0.048 0.046 0.051 0.051

5 10 0.052 0.050 0.052 0.052 0.050

5 15 0.049 0.049 0.050 0.050 0.053

5 20 0.054 0.047 0.051 0.050 0.051

10 15 0.049 0.052 0.049 0.047 0.052

10 20 0.051 0.052 0.051 0.049 0.053

All simulations are for the case of uncorrelated endpoints.
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is exactly t-distributed with n1 +n2− 2 d.f. under H0. Various choices for w were discussed

by Läuter, Kropf and Glimm (1998). We will focus on the standardized sum (SS) statistic

(denoted by tSS) for which w = (1/
√

v11, 1/
√

v22, . . . , 1/
√

vmm)′, where

vkk =
2∑

i=1

ni∑
j=1

(xijk − x··k)
2

is the kth diagonal element of V .

The SS test statistic can be expressed as the t-statistic for comparing the treatment and

control groups based on the sum of the standardized observations for each patient:

yij =
m∑

k=1

xijk√
vkk

(i = 1, 2; 1 ≤ j ≤ ni).

Thus

tSS =

√
n1n2

n1 + n2

(
y1· − y2·

σ̂y

)
where

yi· =
1

ni

ni∑
j=1

yij (i = 1, 2) and σ̂y =

√√√√∑2
i=1

∑ni
j=1(yij − yi·)

2

n1 + n2 − 2
.

The OLS statistic is the sum of the tk-statistics (3.4), which are obtained by standardiz-

ing the individual endpoints by their pooled within group sample standard deviations. On

the other hand, the SS statistic is obtained by standardizing the data on each endpoint by

its pooled total group sample standard deviation and then computing an overall t-statistic.

Because the total pooled standard deviation overestimates the true standard deviation since

it includes the between treatment group difference, the power of the SS test would be ex-

pected to be adversely affected. We now show this in a special case by comparing the powers

of the two tests when n1 = n2 = n (say) and n →∞.

The limiting null and non-null distributions of tOLS and tSS are normal, and their asymp-

totic powers for α-level tests can be expressed as follows (for derivations, see the Appendix).

Let

ak =
1√
2σkk

and bk =
1√

(2 + λ2
k/2)σkk

(1 ≤ k ≤ m),

where λk = δk/
√

σkk as defined before. Then

PowerOLS = Φ

(
−zα +

a′δ√
a′Σa

√
n

2

)
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and

PowerSS = Φ

(
−zα +

b′δ√
b′Σb

√
n

2

)
,

where a = (a1, a2, . . . , am)′, b = (b1, b2, . . . , bm)′ and zα is the (1 − α)th quantile of the

standard normal distribution,.

Therefore

PowerOLS ≥ PowerSS ⇐⇒ a′δ√
a′Σa

≥ b′δ√
b′Σb

. (3.6)

It is easy to show that

a′δ√
a′Σa

=

∑m
k=1 λk√∑m

k=1

∑m
`=1 ρk`

and
b′δ√
b′Σb

=

∑m
k=1 λk/

√
1 + λ2

k/4√∑m
k=1

∑m
`=1 ρk`/

√
(1 + λ2

k/4)(1 + λ2
`/4)

,

where ρk` = 1 if k = `. Comparison of the powers of the two tests reduces to comparison of

the two expressions above.

Consider the case λ1 > 0 and λk = 0 for k > 1. Then we have

a′δ√
a′Σa

=
λ1√∑m

k=1

∑m
`=1 ρk`

and

b′δ√
b′Σb

=
λ1/

√
1 + λ2

1/4√∑m
k=2

∑m
`=2 ρk` + 2

∑m
k=2

(
ρ1k/

√
1 + λ2

1/4
)

+ 1/(1 + λ2
1/4)

.

Simple algebra shows that inequality (3.6) is strict in this case. Thus, if only one endpoint

has a positive treatment effect then the OLS test is more powerful to detect this effect than

the SS test. In fact,

lim
λ1→∞

b′δ√
b′Σb

= lim
λ1→∞

λ1/
√

1 + λ2
1/4√∑m

k=2

∑m
`=2 ρk` + 2

∑m
k=2

(
ρ1k/

√
1 + λ2

1/4
)

+ 1/(1 + λ2
1/4)

=
2√∑m

k=2

∑m
`=2 ρk`

< ∞.

Therefore the asymptotic power of the SS test is strictly less than 1 when λ1 → ∞. This

undesirable property of the SS test has been noted by Frick (1996).

Next consider the case λk = λ > 0 for all k, which is the assumption underlying the OLS

test. Here we have
a′δ√
a′Σa

=
b′δ√
b′Σb

=
mλ√∑m

k=1

∑m
`=1 ρk`

,
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Table 2: Simulated Powers of the OLS and SS Tests

m = 4 m = 8

ρ δ OLS SS OLS SS

0.0 (0.4,0,0,0) 0.255 0.245 0.412 0.398

(0.4,0.4,0,0) 0.643 0.632 0.874 0.870

(0.4,0.4,0.4,0) 0.911 0.909 0.995 0.994

(0.4,0.4,0.4,0.4) 0.991 0.990 1.000 1.000

(0.4,0.4,0.2,0.2) 0.908 0.905 0.995 0.995

0.5 (0.4,0,0,0) 0.152 0.147 0.164 0.158

(0.4,0.4,0,0) 0.349 0.341 0.373 0.370

(0.4,0.4,0.4,0) 0.601 0.596 0.635 0.635

(0.4,0.4,0.4,0.4) 0.812 0.811 0.847 0.846

(0.4,0.4,0.2,0.2) 0.599 0.595 0.628 0.626

and therefore PowerOLS = PowerSS. It is interesting to note that in this case the OLS test

has high power. On the other hand, in the previous case, where a single endpoint has a

treatment effect, the OLS test has low power and the SS test has even lower power.

Table 2 gives simulation results for powers of the OLS and SS tests for some selected cases.

We see that the OLS test is always at least as powerful as the SS test, but the difference in

their powers is not very large. More extreme differences occur if there is a large treatment

effect in a single endpoint (in which case, as noted above, the SS test is strictly less powerful

than the OLS test). For example, for n = 10, m = 8, δ1 = 2.0 and δk = 0 for 2 ≤ k ≤ 8, the

OLS power = 0.899 and the SS power = 0.739 if the endpoints are uncorrelated, while the

corresponding powers are 0.405 and 0.268, respectively, if the endpoints are equicorrelated

with common ρ = 0.5. We conjecture that this dominance of the OLS test over the SS test

is uniform for all configurations, but we do not have a proof of this conjecture.
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4. Heteroscedastic Case

4.1 OLS Test

Pocock, Geller and Tsiatis (1987) proposed an ad-hoc extension of O’Brien’s GLS test to

the heteroscedastic case as follows. Assume that Σ1 and Σ2 are known. Then the statistic

for comparing the treatment with the control on the kth endpoint is

zk =
x1·k − x2·k√

σ1,kk/n1 + σ2,kk/n2

(1 ≤ k ≤ m). (4.1)

Let z = (z1, z2, . . . , zm)′ and R̄ = (n1R1 + n2R2)/(n1 + n2). In analogy with (3.5), Pocock

et al. proposed the statistic

zGLS =
j ′R̄

−1
z√

j ′R̄
−1

j
.

Unfortunately, this statistic does not have the standard normal distribution under H0 as

claimed by Pocock et al. because the covariance (correlation) matrix of z is not R̄, but

Γ = {γk`} with elements

γk` =
σ1,k`/n1 + σ2,k`/n2√

(σ1,kk/n1 + σ2,kk/n2)(σ1,``/n1 + σ2,``/n2)
(1 ≤ k < ` ≤ m).

In the following we correctly derive the OLS and GLS tests in the heteroscedastic case.

We use the following definition for the standardized treatment effect:

λk =
δk√

σ1,kk + σ2,kk

(1 ≤ k ≤ m).

As in O’Brien (1984), assume that λk = λ ≥ 0 for all k. To test the hypotheses (3.1),

standardize the observations as

yijk =
xijk√

σ1,kk + σ2,kk

(i = 1, 2; 1 ≤ j ≤ ni; 1 ≤ k ≤ m).

Then yij = (yij1, yij2, . . . , yijm)′ are independently distributed as N(ξi,Γi) where ξi has the

elements

ξik =
µik√

σ1,kk + σ2,kk

(1 ≤ k ≤ m)
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and Γi has the elements

γi,k` =
σi,k`√

(σ1,kk + σ2,kk)(σ1,`` + σ2,``)
(i = 1, 2; 1 ≤ k ≤ ` ≤ m).

Note that ξ1k− ξ2k = λ for all k. Also note that Γ1 and Γ2 are not correlation matrices, and

Γ = Γ1 + Γ2 if n1 = n2.

The hypotheses (3.1) can be tested by using a univariate regression framework analogous

to (3.2):

yijk = ξk +
λ

2
Iijk + εijk (i = 1, 2; 1 ≤ j ≤ ni; 1 ≤ k ≤ m), (4.2)

where ξk = (ξ1k + ξ2k)/2, Iijk = +1 if i = 1 and −1 if i = 2, and εij = (εij1, εij2, . . . , εijm)′ are

independently distributed as N(0,Γi).

Let β = λ/2 and let θ = (β, ξ1, . . . , ξm)′ be the vector of unknown parameters. Then the

above model can be written as

y = Dθ + ε,
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where 

y111

y112

...

y11m

...

y1n11

y1n12

...

y1n1m

y211

y212

...

y21m

...

y2n21

y2n22

...

y2n2m


︸ ︷︷ ︸

y

=



1 1 0 · · · 0

1 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1
...

1 1 0 · · · 0

1 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1

−1 1 0 · · · 0

−1 0 1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 1
...

−1 1 0 · · · 0

−1 0 1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 1


︸ ︷︷ ︸

D

×



β1

ξ1

ξ2

...

ξm


︸ ︷︷ ︸

θ

+



ε111

ε112

...

ε11m

...

ε1n11

ε1n12

...

ε1n1m

ε211

ε212

...

ε21m

...

ε2n21

ε2n22

...

ε2n2m


︸ ︷︷ ︸

ε

(4.3)

The OLS estimator of β is the first component of θ̂ = (D′D)−1D′y. Now,

D′D =

 (n1 + n2)m (n1 − n2)j
′

(n1 − n2)j (n1 + n2)I

 ,

where j is an m-dimensional vector of 1’s and I is an identity matrix of dimension m. The

first row of (D′D)−1 required to compute β̂ equals(
n1 + n2

4n1n2m
,
−(n1 − n2)j

′

4n1n2m

)
.

Also,

D′y =

 j ′(n1y1· − n2y2·)

n1y1· + n2y2·

 ,
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where y1· and y2· are the vectors of sample means of the standardized data. Hence,

β̂ =
[
(D′D)−1D′y

]
1

=
j ′(y1· − y2·)

2m
.

So the OLS estimate of λ and its standard deviation equal

λ̂ = 2β̂ =
j ′(y1· − y2·)

m
and SD(λ̂) =

{j ′(Γ1/n1 + Γ2/n2)j}
1/2

m
.

Then the OLS test statistic, using the estimated covariance matrices, is

tOLS =
λ̂

ŜD(λ̂)
=

j ′(y1· − y2·){
j ′(Γ̂1/n1 + Γ̂2/n2)j

}1/2
, (4.4)

where Γ̂i = {γ̂i,kl} and

γ̂i,k` =
σ̂i,k`√

(σ̂1,kk + σ̂2,kk)(σ̂1,`` + σ̂2,``)
.

This statistic is asymptotically standard normal under H0.

Let

tk =
(x1·k − x2·k)√

σ̂1,kk/n1 + σ̂2,kk/n2

(1 ≤ k ≤ m) (4.5)

be the t-statistics for comparing the treatment and control groups on the individual end-

points. They are marginally approximately t-distributed under H0k with d.f. estimated by

the Welch-Satterthwaite formula:

νk =
(σ̂1,kk/n1 + σ̂2,kk/n2)

2

σ̂2
1,kk/n

2
1(n1 − 1) + σ̂2

2,kk/n
2
2(n2 − 1)

(1 ≤ k ≤ m).

For n1 = n2 = n, analogous to (3.3), the tOLS test statistic simplifies to

tOLS =
λ̂

ŜD(λ̂)
=

j ′t

(j ′Γ̂j)1/2
, (4.6)

where Γ̂ = Γ̂1 + Γ̂2 is the sample estimate of the correlation matrix Γ = Γ1 + Γ2 between

the numerators of the tk statistics.

4.2 GLS Test

Next we obtain the generalized least squares (GLS) estimate of λ. The GLS estimate of

θ is given by (D′V −1D)−1D′V −1y, where V is the covariance matrix of the ε’s, which has
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a block diagonal structure given by

V =



Γ1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · Γ1 0 · · · 0

0 · · · 0 Γ2 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · Γ2


. (4.7)

Then

D′V −1D =

 n1j
′Γ−1

1 j + n2j
′Γ−1

2 j n1j
′Γ−1

1 − n2j
′Γ−1

2

n1Γ
−1
1 j − n2Γ

−1
2 j n1Γ

−1
1 + n2Γ

−1
2

 .

The first row of (D′V −1D)−1 required to compute β̂ equals(
1

d
,
−j ′C

d

)
,

where

C = (n1Γ
−1
1 − n2Γ

−1
2 )(n1Γ

−1
1 + n2Γ

−1
2 )−1 and d = j ′

[
(I −C)Γ−1

1 /n1 + (I + C)Γ−1
2 /n2

]
j.

Then

D′V −1y =

 j ′
(
n1Γ

−1
1 y1· − n2Γ

−1
2 y2·

)
n1Γ

−1
1 y1· + n2Γ

−1
2 y2·


and

β̂ =
[
(D′V −1D)−1D′V −1y

]
1

=
2j ′ (Γ1/n1 + Γ2/n2)

−1 (y1· − y2·)

d
.

So the GLS estimate of λ and its standard deviation equal

λ̂ =
4j ′ (Γ1/n1 + Γ2/n2)

−1 (y1· − y2·)

d
and SD(λ̂) =

4
{
j ′ (Γ1/n1 + Γ2/n2)

−1 j
}1/2

d
.

Hence the GLS test statistic, using the estimated covariance matrices, is

tGLS =
λ̂

ŜD(λ̂)
=

j ′
(
Γ̂1/n1 + Γ̂2/n2

)−1
(y1· − y2·){

j ′
(
Γ̂1/n1 + Γ̂2/n2

)−1
j
}1/2

. (4.8)

This statistic is also asymptotically standard normal under H0. However, because it uses es-

timates of the covariance matrices in the weights, it has a slower convergence to the standard

normal.
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Our simulations show that use of the standard normal critical points in performing the

tOLS or tGLS tests give too high type I error rates for small sample sizes (n1, n2 < 50).

Unfortunately, better small sample approximations are not available at this time.

In the case of equal sample sizes, analogous to (3.5), this reduces to

tGLS =
j ′Γ̂

−1
t

(j ′Γ̂
−1

j)1/2
(4.9)

with t and Γ̂ defined as above. We see that, as in the homoscedastic case, under equal

sample sizes, both methods are based on a weighted sum of the t-statistics for testing each

endpoint individually. The OLS statistic uses equal weights, while the GLS statistic uses

unequal weights determined by the two covariance matrices.

5. Concluding Remarks

In this paper we presented some refinements and extensions of the OLS and GLS tests.

These tests are thus made more widely applicable. In future research it would be useful

to find a good small sample approximation to the critical points of tOLS and tGLS in the

heteroscedastic case. Also, it would be desirable to settle the truth/falsity of the conjecture

made in Section 3.2 that asymptotically the OLS test is uniformly more powerful than the

SS test.
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Appendix: Derivation of the Power Expressions for Läuter’s SS Test and

O’Brien’s OLS Test

Let

yi· =
1

ni

ni∑
j=1

m∑
k=1

xijk√∑2
i=1

∑ni
j=1(xijk − x··k)2

=
m∑

k=1

xi·k√
SSTkk

,

where SSTkk = vkk is the corrected total sum of squares for the kth endpoint. Then Läuter’s

SS test statistic equals

tSS =
y1· − y2·

ŜD(y1· − y2·)
.

Thus the SS test statistic is a standardized version of

y1· − y2· =
m∑

k=1

x1·k − x2·k√
SSTkk

.

In contrast, the OLS test statistic is a standardized version of

z1· − z2· =
m∑

k=1

x1·k − x2·k√∑2
i=1

∑ni
j=1(xijk − xi·k)2

=
m∑

k=1

x1·k − x2·k√
SSEkk

,

where SSEkk is the pooled error sum of squares for the kth endpoint. Note that the OLS

statistic uses the within group sum of squares to scale each endpoint, while the SS statistic

uses the total sum of squares.

We next examine the asymptotic distribution of each test statistic. Assuming n1 = n2 = n

for simplification, note that

un =
√

n(x1· − x2·) ∼ MVN(
√

nδ, 2Σ).

Now consider Läuter’s test. First, for large n,

E(SSTkk) = E

∑
i,j

(xijk − xi·k)
2

+ E

∑
i,j

(xi·k − x··k)
2


= 2(n− 1)σkk + σkk +

nδ2
k

2

≈ nσkk

(
2 + λ2

k/2
)
,

where λk = δk/
√

σkk. We know that

ck,n =

√
n

SSTkk

p−→ ck =
1√

(2 + λ2
k/2)σkk

for k = 1, . . . ,m.
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Let cn = (c1,n, . . . , cm,n) and c = (c1, . . . , cm). Then by Slutsky’s Theorem,

n
m∑

k=1

(x1·k − x2·k)√
vkk

= c′nun
L−→ N

(√
nc′δ, 2c′Σc

)
and therefore,

y1· − y2· =
c′nun

n
L−→ N

(
c′δ√

n
,
2c′Σc

n2

)
.

Thus, under H1,

tSS

L−→ N

(
c′δ
√

n√
2c′Σc

, 1

)
.

Next consider O’Brien’s test. Since

E(SSEk) ≈ 2nσkk,

for large n, we know that

dk,n =

√
n

SSEk

p−→ dk =
1√
2σkk

for k = 1, . . . ,m.

Let dn = (d1,n, . . . , dm,n) and d = (d1, . . . , dm). Then by Slutsky’s Theorem,

d′nun
L−→ N

(√
nd′δ, 2d′Σd

)
,

and therefore

z1· − z2· =
d′nun

n
L−→ N

(
d′δ√

n
,
2d′Σd

n2

)
.

Thus, under H1,

tOLS

L−→ N

(
d′δ
√

n√
2d′Σd

, 1

)
.

The asymptotic power of the Läuter test is

PowerSS = P (tSS > zα|δ)

= 1− Φ

(
zα −

c′δ
√

n√
2c′Σc

)

= Φ

(
−zα +

c′δ
√

n√
2c′Σc

)
.

Similarly, the asymptotic power of the O’Brien test is

PowerOLS = P (tOLS > zα|δ)

= 1− Φ

(
zα −

d′δ
√

n√
2d′Σd

)

= Φ

(
−zα +

d′δ
√

n√
2d′Σd

)
.


