Quasi-Monte Carlo Applications

• John R. Birge
• University of Michigan

Outline

• Other applications
• Results
• Option Model
• Error results
• Basic analysis

In Option Pricing

John R. Birge
University of Michigan

Quasi-Monte Carlo Applications

• Other applications
• Results
• Option Model
• Error results
• Basic analysis

In Option Pricing

John R. Birge
University of Michigan
Motivation

- Error result for standard Monte-Carlo
- Validity of pseudo-random generators
- Really random? Collinear patterns possible
Error Results for Quasi-Monte Carlo

• Result for Halton sequence
• General result - Irrationals
Expected Error Analysis

- Expected error:
- Mean zero/FORM of multi-dimensional Wiener Process
- Function distribution model
- Wozniakowski, Traub

Expected Error Analysis
Implications

- **Form of functions**
 - Bounded variation
 - Unit hypercube
 - "Randomly" generated

- **Validity**
 - In applications, unlikely to hold

- **BUT** - can you use a specific function form?
Option Models

- "Derivative" securities
 - Call: Buy a share at a given price at specific time
 » If by a specific time - American (European)
 - Put: Sell a share at a given price at specific time
 - Straddle: Buy or sell

- Why?
 - Reduce risk (hedge)
 - Speculate
 - Arbitrage

- Original analysis - L. Bachelier (1900 - Brownian motion)
Valuing an Option

- (European) Call Option on Share assuming:
 - Buy at K at time T; Current time: t; Share price: S_t
 - Volatility: σ; Risk-free rate: r_f; No fees; Price follows Ito process

Valuing option (Black/Scholes):
- Assume risk neutral world (annual return=r_f independent of risk)
- Find future expected value and discount back by r_f

Share Price, S_T
Strike, K

\[
\text{Call value at } t = C_t = e^{-r_f(T-t)} \left[\mathbb{E} \left((S_T-K)^+ \right) \right]
\]

- Volatility: σ; Risk-free rate: r_f; No fees; Price follows Ito process
- Buy at K at time T; Current time: t; Share price: S_t

(European) Call Option on Share assuming:
Black-Scholes Difficulty

- American options
 - Decision at all t - exercise or not?
 - Analysis difficult
 - Sample paths (Monte Carlo)

Alternative?

American options
Monte Carlo Method for Option Valuation

• General form

• Procedure

• Typical dimensions
 – 30-180 stocks
 – 365+ for mortgages (each holder has option to exercise)
Methods Considered

- Pseudo-Schrage
- Quasi-Irrationals
 - Halton
 - Sobol
 - Faure
 - Irrationals
 - Schrage
 - Sobol
Examples

- Exercise (strike) price - 30
- Current price -
- Volatility -
- Expiration date -

Examples
Sample times

- Sobol
- Faure
- Halton
- Irrationals
- Pseudo
Stopping Rule Results
Other applications
Conclusions