Stochastic Programming
Models in Design

John R. Birge
University of Michigan

OUTLINE

• Models
 • General - Farming
 • Structural design
 • Design portfolio
 • General
• Approximations
• Solutions
• Revisions
European Farming

Decision:
• How to plant 500 acres with wheat, corn and sugar beets?

<table>
<thead>
<tr>
<th>Wheat</th>
<th>Beets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn</td>
<td></td>
</tr>
</tbody>
</table>

• Issues: Livestock needs, quotas, costs, yields, prices

Farm Parameters

- **Livestock requirements**
 - 200 Tons of wheat
 - 240 Tons of corn

- **Prices**
 - Wheat: $170/ton to sell/ $238/ton to buy
 - Corn: $150/ton to sell/ $210/ton to buy
 - Beets: $36/ton up to 6000 ton (quota); $10/ton if over

- **Planting costs**
 - Wheat: $150/acre; Corn: $230/acre
 - Beets: $260/acre

- **Yields (means)**
 - Wheat: 2.5 tons/acre; Corn: 3 tons/acre
 - Beets: 20 tons/acre
Deterministic Farmer’s Problem

Formulation

\[
\begin{align*}
\text{Min} & \quad 150 x_1 + 230 x_2 + 260 x_3 + 238 a_1 - 170 v_1 + 210 a_2 - 150 v_2 -36 v_3 - 10 v_4 \\
\text{s.t.} & \quad x_1 + x_2 + x_3 \leq 500 \quad \text{(acres)} \\
& \quad 2.5 x_1 + a_1 - v_1 \geq 200 \quad \text{(wheat)} \\
& \quad 3 x_2 + a_2 - v_2 \geq 240 \quad \text{(corn)} \\
& \quad 20 x_3 - v_3 - v_4 \geq 0 \quad \text{(beets)} \\
& \quad v_3 \leq 6000 \quad \text{(quota)}
\end{align*}
\]

SOLUTION: WHEAT CORN BEETS

ACRES (xi)= 120 80 300
YIELD = 300 240 6000
PROFIT = $118,600 per season

Scenario Solutions

Random Factor: Weather
 • Yield variations: +/- 20% of the mean

Scenario Approach
 • A - Optimistic - Assume +20%
 • B - Pessimistic - Assume -20%

SOLUTION: WHEAT CORN BEETS

ACRES (xi)= 183 67 250
YIELD = 550 240 6000
PROFIT = $167,667 per season

ACRES (xi)= 100 25 375
YIELD = 200 60 6000
PROFIT = $59,950 per season

Tight constraints
STOCHASTIC PROGRAM

- **ASSUME**: Plant without knowing future
 - Suppose each scenario equally likely (prob. = 1/3 each)
 - Place in single mathematical program
- **GOAL**: maximize expected profits
 - (risk neutral)
- **FORMULATION:**

\[
\begin{align*}
\text{Min } & 150x_1 + 230x_2 + 380x_3 + \frac{1}{3} \sum_{i=1,2} (238a_{1i} - 170v_{1i} + 210a_{2i} - 150v_{2i} - 36v_{3i} - 10v_{4i}) \\
\text{s.t. } & x_1 + x_2 + x_3 \leq 500 \text{ (acres)} \\
& (1+0.2(2-i))2.5x_1 + a_{1i} - v_{1i} \geq 200 \text{ (wheat)} \\
& (1+0.2(2-i))3x_2 + a_{2i} - v_{2i} \geq 240 \text{ (corn)} \\
& (1+0.2(2-i))20x_3 - v_{3i} - v_{4i} \geq 0 \text{ (beets)} \\
& v_{3i} \leq 6000 \text{ (quota)} \\
& x_1, x_2, x_3, a_{1i}, a_{2i}, v_{1i}, v_{2i}, v_{3i}, v_{4i} \geq 0
\end{align*}
\]

Axle Design Example

Figure 1. An axle of length \(l\), diameter \(d\), with a central load \(P\).

- Random: \(d(\hat{d})\)
- Density

\[
f_{d}(d) = \begin{cases}
\frac{100}{0.9d}(d - 0.9\hat{d}) & \text{if } 0.9\hat{d} \leq d < \hat{d}; \\
\frac{100}{1.1d - d}(1.1d - d) & \text{if } \hat{d} \leq d \leq 1.1\hat{d}; \\
0 & \text{otherwise.}
\end{cases}
\]

(2.4.1)

- Decision: \(d \leq d_{\text{max}}\) and \(l \leq l_{\text{max}}\)
- Selling price:

\[
s(1 - e^{-0.1l}),
\]

(2.4.2)

- Manufacturing cost:

\[
\frac{c(l\pi\hat{d}^2)}{l}.
\]

(2.4.3)
• Stress constraint: \[
\frac{l}{h^2} \leq 39.27. \quad (2.4.4)
\]

• Deflection constraint: obtain: \[
\frac{l^3}{h^4} \leq 63169. \quad (2.4.5)
\]

• Nonlinear recourse function: \[
Q(t, d, d) := \min_y \left\{ \frac{l}{h^2} - y \leq 39.27, \frac{l^3}{h^4} - 300y \leq 63169 \right\}, \quad (2.4.6)
\]

• Expected recourse function: \[
Q(t, d) = \int_d Q(t, d, d)f_d(d)dd. \quad (2.4.7)
\]

Full Problem

\[
\max \text{ (total revenue per item } - \text{ manufacturing cost per item} - \text{ expected future cost per item).} \quad (2.4.9)
\]

\[
\max z(l, d) = s(1 - e^{-0.1l}) - c\left(\frac{ln\frac{(l/2)^3}{4}}{l^3}\right) - Q(t, d),
\]

\[
s. t. \quad 0 \leq l \leq l_{max}, 0 \leq d \leq d_{max}. \quad (2.4.10)
\]

Stochastic Solution

\[
l_{max} = 35, d_{max} = 1.25, s = 10, c = .025, w = 1
\]

\[
l^* = 33.6, d^* = 1.063, z^* = z(l^*, d^*) = 8.94
\]

Deterministic Solution

\[
l^{Det} = 35.0719, d^{Det} = 0.963, z^{Det}(l^{Det}, d^{Det}) = 9.07, z(l^{Det}, d^{Det}) = 5.88
\]

\[
\text{Value of the Stochastic Solution}
\]

\[
z^* - z(l^{Det}, d^{Det}) = 3.06
\]
Example for Yacht Design

- Yacht velocity prediction program - A. Philpott
 - Determines velocity based on input parameters
 - Can be optimized for various conditions
 - Includes design parameters
- Stochastic variables
 - Wind velocity
 - Angle to wind
 - Hydrodynamic resistance

Deterministic Problem - Example

- Decision variables:
 - Length: Long, medium, short
- Conditions:
 - Wind: Strong or light
- Outcomes:

<table>
<thead>
<tr>
<th>Wind</th>
<th>Length</th>
<th>Prob. of Win</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>L</td>
<td>0.8 -Optimal /Strong</td>
</tr>
<tr>
<td>Strong</td>
<td>M</td>
<td>0.6</td>
</tr>
<tr>
<td>Strong</td>
<td>S</td>
<td>0.2</td>
</tr>
<tr>
<td>Light</td>
<td>L</td>
<td>0.2</td>
</tr>
<tr>
<td>Light</td>
<td>M</td>
<td>0.6</td>
</tr>
<tr>
<td>Light</td>
<td>S</td>
<td>0.8 -Optimal /Light</td>
</tr>
</tbody>
</table>
Deterministic Value

- Suppose equal likelihood on conditions
- Prob. of win:
 - If Long, \((1/2)(0.8) + (1/2)(0.2) = 0.5\)
 - If Short, \((1/2)(0.8) + (1/2)(0.2) = 0.5\)
 - If Medium, \((1/2)(0.6) + (1/2)(0.6) = 0.6\)
- Note: Deterministic is not optimal, also no deterministic opt. value is opt. overall
- Value of Stochastic Solution = 0.6 - 0.5 = 0.1

Portfolio Problem

- Suppose two boats possible
- Suppose choice given previous conditions,
 - If strong now, then \(P(\text{Strong at race}) = 0.8\)
 - If light now, then \(P(\text{Light at race}) = 0.8\).
- Prob. of win =
 - If Strong now, choose Long, \(P(\text{Win/Lo and St}) = (0.8)(0.8) + (0.2)(0.2) = 0.68\)
 - If Light now, choose Short, \(P(\text{Win/Sh and Li}) = 0.68\)
 - If Light or Strong now, choose Medium, \(P(\text{Win/Medium}) = 0.6\)
Portfolio Observations

- Portfolio allows:
 - Increased prob. of win
 - Use of learning about uncertainty
 - Partial hedging
- Note: Change in solution structure
- Difficulties in probability evaluation and integration with yacht design problem

General Multistage Model

- FORMULATION:
 \[
 \begin{align*}
 \text{MIN} & \quad E \left[\sum_{t=1}^{T} f_t(x_t, x_{t+1}) \right] \\
 \text{s.t.} & \quad x_t \in X_t \\
 & \quad x_t \text{ nonanticipative} \\
 & \quad P(h_t(x_t, x_{t+1}) \leq 0) \geq a \text{ (chance constraint)}
 \end{align*}
 \]

EXAMPLES:

- FARM: Linear functions, continuous variables
- AXLE: Nonlinear plus continuous variables
- YACHT: Nonlinear objective, integer variables
DYNAMIC PROGRAMMING VIEW

- **STAGES**: t=1,...,T
- **STATES**: $x_t \rightarrow B x_t$ (or other transformation)
- **VALUE FUNCTION**:
 - $\Psi_t(x_t) = E[\psi_t(x_t, \xi_t)]$ where
 - ξ_t is the random element and
 - $\psi_t(x_t, \xi_t) = \min f_t(x_t, x_{t+1}, x_t) + \Psi_{t+1}(x_{t+1})$
 - s.t. $x_{t+1} \in X_{t+1}(\xi_t)$ x_t given
- **SOLVE**: iterate from T to 1
- **PROBLEM**: How to find $E[\psi_t(x_t, \xi_t)]$?
 - ξ_t may have high dimension

ALTERNATIVES FOR FINDING Ψ_t

- **DIRECT NUMERICAL INTEGRATION**
 - Possible only if very small or special structure
 - Not applicable to general, large problems
- **SIMULATION**
 - Limited convergence rate ($1/\sqrt{n}$ error for n samples)
 - Difficult estimates of confidence intervals on solutions
- **BOUNDING APPROXIMATIONS**
 - Find $\Psi_t^{l,k}$ and $\Psi_t^{u,k}$ such that:
 - $\Psi_t^{l,k} \leq \Psi_t \leq \Psi_t^{u,k}$
 - $\lim_k \Psi_t^{l,k} = \Psi_t = \lim_k \Psi_t^{u,k}$
 - where limit is “epigraphical”
BOUNDING APPROXIMATIONS

- **GOALS**
 - Maintain solvable system
 - Ensure solution value within bounds
 - Convergence of bounds

- **BASIC IDEA**
 - Use convexity/duality
 - Construct feasible:
 - Dual solutions
 - Lower bounds
 - Primal solutions
 - Upper rounds

- **CONVERGENCE**
 - No duality gap
 - Improving refinements

DISCRETIZATIONS

- **SIMPLIFY THE DISTRIBUTION**
 - Replace P by P^k which has finite support:

 ![Diagram](image)

 MAIN PROCEDURES:
 - Lower: Jensen (mean)
 - Upper: Edmundson-Madansky (extreme points)
BOUND IMPROVEMENTS

- PARTITIONING
 - SPLIT ξ (SUPPORT OF RANDOM VECTOR) INTO SUBREGIONS
 - MAKE FUNCTION ψ AS LINEAR AS POSSIBLE ON EACH SUBREGION

ENFORCE SEPARABILITY:
- FIND SEPARABLE RESPONSES TO ALL RANDOM PARAMETER CHANGES

SOLVING AS LARGE-SCALE MATHEMATICAL PROGRAMS

- ORIGIN:
 - DISCRETIZATION LEADS TO MATHEMATICAL PROGRAM BUT LARGE-SCALE
 - USE STANDARD METHODS BUT EXPLOIT STRUCTURE

- DIRECT METHODS
 - TAKE ADVANTAGE OF SPARSITY STRUCTURE
 • SOME EFFICIENCIES
 - USE SIMILAR SUBPROBLEM STRUCTURE
 • GREATER EFFICIENCY - DECOMPOSITION

- SIZE
 - UNLIMITED (INFINITE NUMBERS OF VARIABLES)
 - STILL SOLVABLE (CAUTION ON CLAIMS)
DECOMPOSITION METHODS

BENDERS IDEA
- FORM AN OUTER LINEARIZATION OF Ψ_t

ADD CUTS ON FUNCTION:

LINEARIZATION AT ITERATION k

USE AT EACH STAGE TO APPROXIMATE VALUE FUNCTION
- ITERATE BETWEEN STAGES UNTIL ALL MIN = Ψ_t

DECOMPOSITION IMPLEMENTATION

NESTED DECOMPOSITION
- LINEARIZATION OF VALUE FUNCTION AT EACH STAGE
- DECISIONS ON WHICH STAGE TO SOLVE, WHICH PROBLEMS AT EACH STAGE

LINEAR PROGRAMMING SOLUTIONS
- USE OSL FOR LINEAR SUBPROBLEMS
- USE MINOS FOR NONLINEAR PROBLEMS

PARALLEL IMPLEMENTATION
- USE NETWORK OF RS6000S
- PVM PROTOCOL
RESULTS

- SCAGR7 PROBLEM SET

![Graph showing log (CPUs) vs log (no. of variables)]

- PARALLEL: 60-80% EFFICIENCY IN SPEEDUP
- OTHER PROBLEMS: SIMILAR RESULTS
 - ONLY < ORDER OF MAGNITUDE SPEEDUP WITH STORM
 - TWO-STAGES - LITTLE COMMONALITY IN SUBPROBLEMS
 - STILL ABLE TO SOLVE ORDER OF MAGNITUDE LARGER PROBLEMS

SOME OPEN ISSUES

- MODELS
 - IMPACT ON METHODS
 - RELATION TO OTHER AREAS
- APPROXIMATIONS
 - USE WITH SAMPLING METHODS
 - COMPUTATION CONSTRAINED BOUNDS
 - SOLUTION BOUNDS
- SOLUTION METHODS
 - EXPLOIT SPECIFIC STRUCTURE
 - MASSIVELY PARALLEL ARCHITECTURES
 - LINKS TO APPROXIMATIONS
CRITICISMS

- **UNKNOWN COSTS OR DISTRIBUTIONS**
 - Find all available information
 - Can construct bounds over all distributions
 - Fitting the information
 - Still have known errors but alternative solutions
- **COMPUTATIONAL DIFFICULTY**
 - Fit model to solution ability
 - Size of problems increasing rapidly (over 20 million variables)

CONCLUSIONS

- **STOCHASTIC PROGRAMS CAN BE:**
 - Linear, nonlinear, integer programs
 - Continuous or discrete r.v.’s
 - Of significant value (VSS) over deterministic models
 - Integration into design problems
 - Portfolios to Hedge
- **RANDOMNESS =>**
 - Value of modeling
 - Difficulty in evaluating objectives
 - Motivation for approximation
- **SOLUTIONS**
 - Decomposition for linear problems
 - Speedups of orders of magnitude