Formula Sheet

1 Time Value of Money

1.1 Future Value
The future value of x after n periods of growth at (annual) interest rate a compounded m times per year is

$$x(1 + r)^n$$

where $r = a/m$ is the per-period interest rate.

The effective annual interest rate is

$$i = (1 + a/m)^m - 1.$$

The future value of x after t years of growth at annual growth rate d is

$$x(1 + d)^t.$$

1.2 Present Value
In the following, r is the per-period discount rate, d is the annual discount rate, and there are m periods per year.

The present value of y to be received n periods later is

$$y(1 + r)^{-n} = \frac{y}{(1 + r)^n}.$$

The present value of y to be received t years later is

$$y(1 + d)^{-t} = \frac{y}{(1 + d)^t}.$$

The relationship between r and d is

$$d = (1 + r)^m - 1 \quad \text{and} \quad r = (1 + d)\frac{1}{m} - 1.$$
1.3 Present Value: Perpetuities and Annuities

When the discount rate is \(r \) per period, an annuity making \(n \) payments of \(C \), each one period apart, starting in one period:

\[
\frac{C}{r} (1 - (1 + r)^{-n}).
\]

Present value of a perpetuity of \(C \) per period, starting in one period:

\[
\frac{C}{r}.
\]

2 Inflation

When \(p \) is a nominal cost that grows at rate \(h \) per year, the nominal cost after \(t \) years is

\[
p(1 + h)^t.
\]

When \(i \) is an inflation rate and \(p \) is a nominal cost occurring at time \(u \), the real cost as measured in time \(s \) dollars is

\[
p(1 + i)^{s-u}.
\]

The real cost, as measured in base-\(b \) dollars, of an actual cost \(A \) at time \(t \), is

\[
R = A(1 + f)^{b-t},
\]

where \(f \) is the annual rate of inflation. If the actual cost of something at time \(t \) is \(A_t \), and its actual cost changes at an annual rate \(g \), then its actual cost at time \(u \) is

\[
A_u = A_t(1 + g)^{u-t}.
\]

The relationship between the inflation rate \(f \), the actual discount rate \(d_A \), and the real discount rate \(d_R \) is

\[
(1 + f)(1 + d_R) = 1 + d_A.
\]
3 Probability

If A and B are two events, then Bayes’ rule is

$$\Pr[A|B] = \frac{\Pr[A \text{ and } B]}{\Pr[B]} = \frac{\Pr[B|A] \Pr[A]}{\Pr[B]}$$

Let X be a random variable. If there are n total scenarios with probabilities p_1, \ldots, p_n, and X_i is the value of X in scenario i, then the mean of X is

$$E[X] = \sum_{i=1}^n p_i X_i.$$

Regardless of how many scenarios there are, the variance

$$\text{Var}[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

and the standard deviation $\sigma[X] = \sqrt{\text{Var}[X]}$.

Let Y be another random variable. The covariance between X and Y is

and the correlation between X and Y is

$$\rho(X,Y) = \frac{\text{Cov}[X,Y]}{\sigma[X]\sigma[Y]}.$$

A linear combination of X and Y, where v and w are constants, has mean and variance

$$E[vX + wY] = vE[X] + wE[Y] \quad \text{and} \quad \text{Var}[vX + wY] = v^2\text{Var}[X] + 2vw\text{Cov}[X,Y] + w^2\text{Var}[Y].$$

If w_1, \ldots, w_m are constants and X_1, \ldots, X_m are random variables, then the linear combination $\sum_{j=1}^m w_j X_j$ has mean and variance

$$E \left[\sum_{j=1}^m w_j X_j \right] = \sum_{j=1}^m w_j E[X_j] \quad \text{and} \quad \text{Var} \left[\sum_{j=1}^m w_j X_j \right] = \sum_{j=1}^m w_j^2 \text{Var}[X_j] + 2 \sum_{j=1}^m \sum_{k<j} \text{Cov}[X_j, X_k].$$

4 Bonds

A coupon payment of a bond with face value F, coupon rate c and m coupon payments per year is

$$Fc/m.$$

If the yield (quoted annually) is y for a bond making m coupon payments per year, the corresponding per-period discount rate is (because of the yield quotation convention)

$$r = y/m.$$

The price of a bond with face value F, coupon rate c, m coupon payments per year, next coupon payment in 1 period, n coupon payments remaining, and yield y is

$$F(1+r)^{-n} + \frac{Fc}{r}(1 - (1+r)^{-n}).$$
5 Capital Asset Pricing Model

Let \(r_f \) be the risk-free rate and \(R_M \) be the return of the market portfolio. Also let \(r_m = E[R_M] \) be the expected return of the market portfolio and \(\sigma_M = \sigma[R_M] \) be the standard deviation of the market portfolio’s return.

The beta of an asset whose return is \(R \) equals the covariance of its returns with the market portfolio’s return \(R_M \), divided by the variance of the market portfolio’s return:

\[
\beta = \frac{\text{Cov}[R_M, X]}{\sigma_M^2}.
\]

Capital Asset Pricing Model: the expected return of this asset is

\[
r = r_f + \beta(r_m - r_f).
\]

This equation is also known as the Security Market Line.

Capital Market Line:

\[
r = r_f + \frac{r_m - r_f}{\sigma_M} \sigma
\]

where \(r \) is the expected return and \(\sigma \) is the standard deviation of a portfolio that lies on this line.

6 Weighted Average Cost of Capital

A company’s (before-tax) WACC is

\[
r_d \frac{D}{V} + r_e \frac{E}{V}
\]

where

- \(r_d \) is the required return on debt,
- \(D \) is the value of the company’s debt,
- \(r_e \) is the required return on equity,
- \(E \) is the company’s market capitalization, and
- \(V = D + E \) is the company’s total market value.