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ABSTRACT 

New model fusion techniques based on spatial-random-process modeling are developed 

in this work for combining variable-fidelity data from simulations and experiments. 

Existing works in variable-fidelity modeling generally assume a hierarchical structure in 

which the levels of fidelity of the simulation models can be clearly ranked. In contrast, 

we consider the nonhierarchical situation in which one wishes to incorporate multiple 

models whose levels of fidelity are unknown or cannot be differentiated (e.g., if the 

fidelity of the models changes over the input domain). We propose three new 

nonhierarchical multi-model fusion approaches with different assumptions or structures 

regarding the relationships between the simulation models and physical observations. 

One approach models the true response as a weighted sum of the multiple simulation 

models and a single discrepancy function. The other two approaches model the true 

response as the sum of one simulation model and a corresponding discrepancy function, 

and differ in their assumptions regarding the statistical behavior of the discrepancy 

functions, such as independence with the true response or a common spatial correlation 

function. The proposed approaches are compared via numerical examples and a real 

                                                             
* S. Chen and Z. Jiang contributed equally to this work. 

† Corresponding author. Tel.: 847-491-7019; Fax: 847-491-3915; E-mail: weichen@northwestern.edu. 

mailto:weichen@northwestern.edu


2 

engineering application. Furthermore, the effectiveness and relative merits of the 

different approaches are discussed. 

KEY WORDS: multi-model fusion; multi-fidelity modeling; spatial random process; 

nonhierarchical model fidelity; computer experiments 

 

1. INTRODUCTION 

Complex computer simulation models are commonly built to explore the underlying 

mechanisms of real physical processes, but conducting a large number of simulation runs 

at many input combinations to obtain an extensive coverage of the input space is usually 

unaffordable due to high computational cost. A more feasible alternative to simulating a 

single high-fidelity model is building several models at different lower levels of fidelity, 

such as intermediate-fidelity physics-based computer-aid engineering (CAE) models, 

intermediate-fidelity non-physics-based surrogate models, and low-fidelity simplified 

handbook equations. In addition to lower computational costs, such lower-fidelity models 

usually have merits in capturing some fundamental features of the true physics and 

providing useful information for predicting the responses at the input sites where no 

high-fidelity simulations or physical experiments are conducted due to limitations of time 

or resources. It is generally beneficial to incorporate the lower-fidelity data together with 

the high-fidelity data to create an accurate and yet efficient predictive model, a process 

that we refer to as model fusion. Existing model fusion methods generally assume the 

fidelity levels of the simulation models can be clearly ranked, and they apply a 

hierarchical treatment. However, information about the ranking of the model fidelities is 

not always available, due to either a lack of prior knowledge, or a fidelity level that 

changes over the input space (which we refer to as range-dependent model fidelity). 

Hence, it is of significant interest to develop a more generic model fusion technique for 

combining information from multiple models with no clear ranking of model fidelities. 

Both differentiable and non-differentiable model fidelities widely exist in 
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simulation-based engineering design. An example of models with clear levels of fidelity 

is a finite element simulation for the vehicle crashworthiness design which can be run 

using different resolutions of the grid. Furthermore, a sophisticated physical process often 

can be modeled using different physical laws and solved using different numerical 

techniques, such as the aircraft design of aerodynamic components for which the 

simulations may differ in terms of the reduced physical order (e.g., Euler model vs. 

potential flow model) or numerical solver (e.g., finite difference method vs. finite 

element analysis). On the other hand, models with unknown/non-differentiable fidelities 

could be for a climate system, where the models are developed from different research 

groups to understand and predict its behavior, but they are based on disparate theories or 

mechanisms to incorporate the physics and chemistry of the atmosphere, ocean and land 

surface. In such a situation, the levels of fidelity of different computer models may 

appear to be similar (unless a large amount of experimental/simulation data have been 

collected); or the fidelities of simulation models may change over the input space, as the 

modeler’s knowledge on some input regions may be scanty. 

Model fusion has received an increasing amount of attention. Early work [1-4] has 

been focused on bi-model fusion where a single low-fidelity simulation model is 

integrated with the high-fidelity data for response predictions. A set of high-fidelity data 

often include responses from high-fidelity industry-standard CAE simulations and/or 

physical experiments. The most popular framework for bi-model fusion is proposed by 

Kennedy and O’Hagan [5] and has been widely adopted in a great deal of previous works 

in the literature [6-12]. Till now extensive research efforts have been devoted to 

developing multi-model fusion techniques as well to combining high-fidelity data with 

multiple sources of low-fidelity data for building an accurate and yet efficient predictive 

model. Some works have extended the preceding bi-model fusion approach with a 

hierarchical updating framework [13-20]. The higher-fidelity model is always 

approximated by adding its next lower-fidelity model with a discrepancy function. 
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Sequentially, the highest-fidelity surrogate model for prediction can be built as the sum of 

the lowest-fidelity model and all the discrepancy functions. Another category of 

approaches represents the models and discrepancies using stochastic expansion methods 

[21, 22] from a numerical analysis point of view. Eldred et al. [23, 24] proposed to use 

non-intrusive polynomial chaos and stochastic collocation methods to build a surrogate 

model for the difference between the low-fidelity and high-fidelity models. Xiu et al. [25, 

26] employed a greedy procedure based on the information from the lower-fidelity model 

to collect “important” samples for the higher-fidelity simulations, and then applied the 

stochastic collocation method to construct an approximate mapping rule between the 

lower-fidelity and higher-fidelity spaces. 

However, all these aforementioned multi-model fusion approaches commonly assume 

that the fidelity levels of the simulation models can be clearly identified and preliminarily 

ranked. In the presence of the non-differentiable model fidelity situations, we develop 

three new nonhierarchical multi-model fusion approaches, which are more flexible to 

handle various complex model fidelity scenarios. The proposed approaches are 

constructed based on the spatial-random-process (SRP) modeling which flexibly captures 

the nonlinearity of the models and inherently quantifies the interpolation uncertainty due 

to the lack of data. Different assumptions and mechanisms are assigned to the distinct 

approaches for acquiring the relationships between simulation models and physical 

observations. The first approach employs a weighted-sum structure to combine the 

simulation models and adds a single discrepancy function for final prediction. The second 

approach assigns an individual discrepancy function, independent of the true physical 

process, for each simulation model. In the third approach, a fully correlated 

multi-response SRP structure with a common spatial correlation function is adopted for 

the simulation models and their discrepancy functions altogether. 

The remainder of the paper is organized as follows: In Section 2, we briefly review 

basic concept in SRP modeling and some fundamental ideas of the existing hierarchical 
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multi-model fusion techniques. Section 3 provides a detailed description of the three 

proposed nonhierarchical multi-model fusion approaches. In Section 4, the proposed 

approaches are applied to several numerical examples and a real engineering application, 

with two validation metrics computed to compare their effectiveness and relative merits. 

Conclusions and possible extensions of our approaches are presented in Section 5. 

 

2. BACKGROUND FOR MODEL FUSION 

The goal of this section is to briefly introduce the basic concept of SRPs and review 

the existing hierarchical frameworks for multi-model fusion using SRPs. 

 

2.1 Basic Concept of Spatial Random Processes (SRPs) 

An SRP is a collection of random variables distributed over some spatial or temporal 

domain [27, 28], and it has been widely used to emulate the various forms of functions, 

especially sophisticated computer models with expensive computation. A Gaussian 

process (GP) is one of the most popular SRPs, due to its many desirable properties. In a 

GP, any finite collection of the random variables follows a multivariate normal 

distribution. In our work, we apply it to build surrogate models for the functional 

responses of interest. Let x = [x1, …, xp] ∈ ℝp be a p-dimensional set of input variables, 

and y : ℝp → ℝ a functional response. A GP model can be built to represent y(x), 

  ( ) ~ ( ), ( , ) ,y m V x x x x   (1) 

where m(x) is the mean function usually expressed as h(x)T, with h(x) denoting a 

column vector of pre-specified polynomial functions (i.e., constant, linear, quadratic, etc.), 

and  a column vector of to-be-determined regression coefficients; V(x,x') = 2R(x,x') is 

the covariance function, representing the spatial covariance between any two inputs x and 

x' of the process, with  denoting the prior standard deviation and R(x,x') the spatial 

correlation function. One popular choice for R(x,x') in the computer experiment literature 
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[29-33] is the Gaussian correlation function 

   2

1
( , ) exp ,

p

k k kk
R x x


   x x   (2) 

where = [1, 2, …, p]
T is a vector of spatial correlation parameters (aka scale or 

roughness parameters) used to represent the rate at which the correlation between y(x) 

and y(x') decays to zero as x and x' diverge. Note that Eq. (2) implies a 

covariance-stationary GP model, which we assume in all examples in this paper, although 

the mean can vary spatially. However, all of our approaches can be applied directly to 

nonstationary covariance models, as well. 

The collection of unknown parameters = {, , }, referred to as hyperparameters, 

characterizes the GP model. After observing a set of data d = [y(x1), y(x2), …, y(xn)]
T at 

input settings xi (i = 1,…, n), the maximum likelihood estimation (MLE) method is 

typically employed to estimate the hyperparameters  by maximizing the likelihood (or 

the log-likelihood) function using a numerical optimization algorithm. Subsequent to 

estimating , a prediction of y(xp) at any new input setting xp that is not yet tested can be 

obtained. The detailed equations for calculating the posterior mean prediction ˆ( )py x  

and its corresponding mean square error ˆMSE ( )py  x  are summarized in [28, 30, 34]. 

It should be noted that the sense in which the response variable must be Gaussian in 

order to use GP modeling is quite different than the sense in which a random sample of 

observations must be Gaussian in order to assume normality in classical statistics. In 

GP-based response surface metamodeling, we only observe a single response variable y 

as a function of the input variables x. The primary assumption behind GP-based modeling 

is that this response surface function can be viewed as a single realization of a Gaussian 

process. Fig. 1 below shows three such realizations of a GP for the case of a 

one-dimensional input domain. Given a single observed response surface for any 

particular application, it is virtually impossible to check whether the Gaussian assumption 

of the GP model is satisfied; but for similar reasons, neither does it matter. Single 
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realizations of a GP can have widely different characteristics and appearances (the quite 

different realizations in Fig. 1 were all generated using the same covariance function, and 

would have differed more dramatically in appearance if different covariance functions 

were used). Consequently, a single GP realization can closely resemble practically any 

actual engineering response surface, if the appropriate covariance function is chosen or 

fitted, which partly accounts for the widespread usage of GP models for engineering 

response surface metamodeling. 

 
Fig. 1 Three different realizations of a GP 

 

2.2 Existing Hierarchical Multi-model Fusion Approaches 

To represent the relationships between simulation models with different levels of 

fidelity, much prior works (e.g., [13-16, 35]) on multi-model fusion employ the 

hierarchical model 

 { } { 1}

1 1( ) ( ) ( ) ( 2,..., ),m i m i

i iy y i Q 

   x x x   (3) 

where ym{i}(x) denotes the simulation model response at the ith fidelity level. Higher i 

corresponds to higher fidelity level, thus ym{1}(x) is the lowest-fidelity model and ym{Q}(x) 

the highest. The parameter i-1, referred to as the scaling factor, captures the strength of 

the relationship between ym{i}(x) and ym{i-1}(x), and i-1(x) represents the discrepancy 

between ym{i}(x) and i-1y
m{i-1}(x).  

In order to handle more complex discrepancies between higher- and lower-fidelity 
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models (e.g., if the model discrepancy is highly nonlinear over the entire input space), 

Qian et al. [19, 20] introduced a non-constant scaling factor i-1(x) that depends on x and 

is modeled as a polynomial or GP, but such treatment can be computationally prohibitive, 

especially when Q is large. Most work (e.g., [9-12, 17, 18, 36]) assumes a unit scaling 

factor i-1 = 1 for each i to simplify the calculation. When physical experiments ye(x) are 

affordable and considered to be the highest-fidelity data, it can be handled via a similar 

hierarchical model but with an additional random error term  to represent the 

experimental variability, i.e., 

 

{ }

{1}

1

( ) ( ) ( )

( ) ( ) .

e m Q

Q

Qm

ii

y y

y

 

 


  

  

x x x

x x
  (4) 

ym{1}(x) and all i(x) are represented as GP models. Derivations and further details 

regarding the preceding can be found in many of aforementioned references (e.g., [13]).  

As Q grows, likely so will the amount of collected data required to fit the models. In 

light of this, Osio and Amon [4] considered an alternative multi-stage approach to 

mitigate the computational burden. They first performed bi-model fusion using only the 

data from the models with the lowest two levels of fidelity to obtain a surrogate model for 

the second lowest fidelity model. They next combined this surrogate model with the data 

from the third lowest fidelity model to obtain a new surrogate model for the third lowest 

fidelity model. Proceeding sequentially, they built updated surrogate models in a 

hierarchical manner, the primary benefit of which is a reduction in the computational 

costs. 

In some situations, the accuracy of computer simulations can be controlled with 

real-valued tuning parameters, such as the step size when solving the partial differential 

equations (PDEs) or the mesh density in finite elements analysis (FEA). Tuo et al. [37] 

proposed to incorporate the tuning parameters t as additional input variables for 

simulation models ym(x,t), although they implicitly represent different levels of model 

fidelity. 
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3. NONHIERARCHICAL MULTI-MODEL FUSION APPROACHES 

Denote all Q computer simulation model responses as a row vector ym(x) = [ym{1}(x), 

ym{2}(x), …, ym{Q}(x)], and also denote their corresponding discrepancies as (x) = 

[{1}(x), {2}(x), …,{Q}(x)]. It is important to note that for the nonhierarchical situation 

that we consider in this paper, information about model fidelity is assumed unavailable. 

Consequently, in contrast to the hierarchical situation of Eqs. (3) and (4), for the 

nonhierarchical situation here the ordering of the simulation models is arbitrary, and the 

superscripts {1}, …,{Q} no longer serve as the model fidelity level indicators. However, 

in our work we still assume there is one high-fidelity data source, and it will usually be 

physical experimental measurement, which is denoted by ye(x) and is associated with a 

random observational error ~(0). Alternatively, when physical experiments are not 

affordable or available, ye(x) could also represent response data from high-fidelity 

simulation models (in which case the experiment error  is set to zero).  

For the ith computer model, suppose we have collected a set of 
iM  simulation 

response observations { } { } { } { } { } { } { }

1 2[ ( ), ( ), ..., ( )]
i

m i m i m i m i m i m i m i T

My y yd x x x  at input sites 

{ } { } { } { }

1 2[ , , ..., ]
i

m i m i m i m i T

MX x x x . Also suppose a set of N experimental observations 

1 2[ ( ), ( ), ..., ( )]e e e e e e e T

Ny y yd x x x  has been obtained at input sites 

1 2[ , , ..., ]e e e e T

NX x x x . Previous literature [31, 38, 39] suggested a space-filling 

experimental design for the input sites in Xm{i} and Xe. Let d = [(dm{1})T, …, (dm{Q})T, 

(de)T]T denote all the collected data from all simulation models and experiments together. 

The aim of multi-model fusion is to integrate these data and make predictions for ye at L 

untested input sites Xp = [x1
p, x2

p, …, xL
p]T.  

In the GP model, the collected data d together with the to-be-predicted responses ye(Xp) 

follow a multivariate normal distribution 
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 ~ , ,
( )

T

p

e p
p p py

    
             

d
H V Td

β
H T VX

  (5) 

where  is a column vector of unknown regression coefficients; H and Vd are the 

polynomial and covariance matrices for d, respectively, and Hp and Vp are the 

polynomial and covariance matrices for ye(Xp), respectively. Tp denotes the covariance 

matrix between ye(Xp) and d. If we are able to find a reasonable formulation to construct 

all these matrices H, Hp, Vd, Vp, Tp [analogously to what previous research has done in 

Eqs. (1) and (2) by using parametric forms for m(x) and V(x,x') and a model to relate the 

various types of collected data], and if we are able to estimate the values of the necessary 

hyperparameters, then the final prediction of ye(Xp) and its corresponding mean square 

error (MSE) can be easily obtained by 

 

 

   

1

1

1 1

ˆ ˆˆ ( ) ,

ˆMSE ( )

,

e p

p p

e p T

p p p

T
T T T T T T

p p p p

y

y





 

  

    

  

d

d

d d

X H β T V d Hβ

X V T V T

H H V T W H H V T

  (6) 

where 1ˆ T  dβ WH V d  is an estimate of , and  
1

1T


 dW H V H . 

Therefore, the key consideration in multi-model fusion is what formulation we should 

choose for the overarching model to represent the relationships between the data from 

each of the individual simulation models and from the physical experiments; the specific 

nature of the response predictor depends heavily on this choice of formulation, as seen 

from Eq. (6). In light of this, we develop, investigate, and compare three new 

nonhierarchical multi-model fusion approaches as described in the following subsections. 

 

3.1 Model Formulations and Assumptions 

3.1.1 Approach 1: Weighted-Sum, WS 

Consider the true physical response yt(x) = ye(x), i.e., which represents the 

experimental response ye(x) but without the observational error . In this approach we 
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model yt(x) as a linear combination of simulation models ym(x) together with a single 

discrepancy function (x), i.e., 

 ( ) ( ) ( ) ( )t e my y     x x y x ρ x ,  (7) 

where = [{1}, …, {Q}]T is a column vector of unknown weight parameters that will be 

estimated from the data, with each entry corresponding to one simulation model. (x) is a 

residual function that captures the discrepancy between the weighted sum ym(x) and 

yt(x). Notice that (x) is different than the elements of (x), which are the individual 

discrepancy functions for each simulation model.  

Following the work of Kennedy and O’Hagan [5], and analogous to the models in Eqs. 

(3) and (4), we assume in this approach that the simulation models ym(x), the residual 

discrepancy function (x) and the experimental error  are a priori independent, i.e. that 

Cov(ym{i}(x), (x')) = 0, Cov(ym{i}(x), ) = 0, and Cov((x), ) = 0 for all x, x', and i ∈ 

[1,2, …, Q]. These independence assumptions will simplify many calculations in this 

approach.  

 

3.1.2 Approach 2: Parallel Combination, PC 

In this approach, we represent yt(x) as the sum of a simulation model ym{i}(x) and its 

corresponding discrepancy function {i}(x), separately for each simulation model: 

 { } { }( ) ( ) ( ) ( ) ( 1,..., ).t e m i iy y y i Q     x x x x   (8) 

We propose two variations, (a) and (b), of this approach with different assumptions to 

represent the relationships between the simulation models and discrepancy functions. 

(a) Discrepancy Independent of the True Response (DIT) 

We define the DIT assumption as each model discrepancy {i}(x) is independent of the 

true physical process yt(x), i.e. Cov({i}(x), yt(x')) = 0, for all x, x', and i ∈ [1, 2, …, Q]. 

There is a closely-related alternative to the DIT assumption that one may be tempted to 

consider, which, for the reasons discussed below, is not appropriate in this approach. 

Specifically, in the co-kriging literature [16, 35, 40-43] with a single computer model, it 
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is common to assume that the simulation model ym(x) is independent of the discrepancy 

function (x). For our model formulation as Eq. (8), if we had assumed that Cov(ym{i}(x), 

{j}(x')) = 0 (for all x, x', and i, j ∈ [1, 2, …, Q]), this would imply that for any i ≠ j, 

 
   

   

{ } { } { } { } { } { }

{ } { } { } { }

0 Cov ( ), ( ) Cov ( ), ( ) ( ) ( )

Cov ( ), ( ) Cov ( ), ( ) .

m i j m i m i i m j

m i m i m i m j

y y y y

y y y y

       

  

x x x x x x

x x x x
  (9) 

Since i and j are interchangeable, so are x and x', we yield that Cov(ym{i}(x), ym{i}(x')) =  

Cov(ym{i}(x), ym{j}(x')) = Cov(ym{j}(x), ym{j}(x')), which implies that any two simulation 

models are perfectly correlated (i.e., their correlation coefficient is 1) and with the same 

variance. In other words, this assumption yields that all Q models are identical and only 

differ from each other by a constant. This is obviously an unreasonable assumption for 

engineering applications (if the computer models are identical up to a constant, they are 

essentially the same model, which defeats the purpose of having multiple models). Even 

if we relax the foregoing assumption so that only Cov(ym{i}(x), {i}(x')) = 0 for all i ∈ 

[1,2, …, Q] (i.e., a model is only independent of its corresponding discrepancy function 

but not the other discrepancy functions), this will result in an indefinite covariance matrix 

Vd in Eq. (5), which can result in a physically-impossible negative prediction MSE. 

In light of the preceding, our assumption that all model discrepancy functions are 

independent of the true physical process is more appropriate. Model discrepancy arises 

from the modeling process and is different with respect to various simulation models, 

while the true physical process stays the same regardless of the models. 

(b) Common Spatial Correlation (CSC) 

In this variant of the PC approach, we do not make any independency assumptions 

between the simulation models, their discrepancy functions, and the true physical process. 

Rather, a fully correlated multi-response GP (MRGP) structure is adopted for all 

simulation models and the discrepancy functions, which is expected to provide more 

flexibility for integrating different responses from computer simulations and 

experimental observations, because all relationships between them are modeled and 
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empirically estimated from the data. To simplify the implementation, all simulation 

models and their discrepancy functions are assumed to share the same spatial correlation 

function [i.e., the same R(x,x'), as defined right after Eq. (1)]. This would often be a 

reasonable assumption, as the spatial correlation function represents the spatial 

roughness/smoothness of the response surface, and all responses (true physics, simulation, 

and their differences) are modeling the same physical phenomenon and, hence, may be 

expected to have similar roughness/smoothness.  

 

3.2 SRP Modeling for Different Responses 

3.2.1 Approach 1: WS 

An MRGP model is fit to the simulation responses. Based on the previous work [40, 41, 

43], the prior for this MRGP model can be denoted as: 

   ( ) ~ ( ) , ,m m T m m mRy h B Σ ,  (10) 

where hm(x) is the polynomial basis vector defined as Section 2.1 associated with a 

matrix of unknown regression coefficients Bm = [m{1}, m{2}, …,m{Q}], where m{i} = 

[m{i}, m{i}, …,p
m{i}]T, for polynomial regression of the mean function of the 

simulation models. The prior covariance function is assumed to be the product of a 

non-spatial Q×Q covariance matrix m and a spatial correlation function Rm(x,x'), the 

parameters for both of which must be estimated from the data. That is, the covariance 

between two models at two input sites is { } { }Cov[ ( ), ( )]m i m jy y x x  , ,m m

i j R  Σ x x , where 

,

m

i jΣ  is the covariance between the ith and jth simulation model responses at the same 

spatial location (x = x'). We adopt the Gaussian correlation function of Eq. (2), 

parameterized by the roughness parameters m. Thus, the MRGP hyperparameters for all 

the simulation models are m = {Bm, m, m}.  

The residual discrepancy function (x) is also represented as a GP model: 

   2( ) ~ ( ) , ,T R  

 h β .  (11) 
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Similarly, the hyperparameters of the discrepancy function GP model are = {, , 

}. According to Eq. (7) and the a priori independency assumption between ym(x), (x) 

and  (Sec. 3.1.1), the priors for the simulation MRGP model and the residual 

discrepancy GP model are combined to form the prior for the experimental response GP 

model:  

       2( ) ~ ( ) ( ) , , , ,e m T m T T m my R R I  

   h B ρ h β ρ Σ ρ ,  (12) 

where I(x,x') is the indicator function defined as 1 when x=x' and 0, otherwise. Let = 

{m, , , } denote the collection of the unknown hyperparameters, estimation of 

which is discussed in Section 3.3. 

Based on the assumptions of model formulation as Eq. (7), the covariance of the 

experimental response and the ith simulation model response is 

 
   

   

{ }Cov ( ), ( ) Cov ( ) ( ) , ( )

Cov ( ) , ( ) , ,

e m i m m

i

m m T m m

i i

y y e

e e R

    

  

x x y x ρ x y x

y x ρ y x ρ Σ x x
  (13) 

where ei is a column unit vector, whose ith entry is one and other entries are zero. 

Similarly, the covariance of the ith and the jth simulation model responses is 

    { } { }Cov ( ), ( ) , ,m i m j T m m

i jy y e e R x x Σ x x   (14) 

where ,

T m m

i j i je e Σ Σ  is simply the (i,j)th entry of the simulation MRGP m
Σ . 

 

3.2.2 Approach 2(a): PC-DIT 

In this approach, we model the true physical process as a GP with hyperparameters t 

= {t, t, 
t} and the discrepancy functions as an MRGP with hyperparameters = {B, 

, }, 

 
  

  

2( ) ~ ( ) , , ,

( ) ~ ( ) , , .

t t T t t

t

T

y R

R   

h β

δ h B Σ
  (15) 

The hyperparameters in t and  are defined similarly to  and m in Eqs. (11) and 

(10), respectively, of the WS approach. Rt(x,x') and R(x,x') are the Gaussian correlation 
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functions for the true physical process GP model and the discrepancy MRGP model, 

respectively. Combining Eqs. (8) and (15), the GP model for the experimental response is 

     2( ) ~ ( ) , , , .e t T t t

ty R I h β   (16) 

Let {t, , } denote the collection of yet-to-be-estimated hyperparameters. 

Based on Eq. (8) and the DIT assumption, we can derive the covariance formulations 

between the experiment, the simulation models, and their corresponding discrepancies, 

which are required in the subsequent hyperparameter estimation and response prediction, 

as follows. For all i, j ∈ [1, 2, …, Q], 
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  (17) 

where ,i j


Σ  is the (i,j)th entry of the discrepancy MRGP , representing the covariance 

between the ith and jth model discrepancies. 

 

3.2.3 Approach 2(b): PC-CSC 

We collectively denote the responses from all simulation models and their 

discrepancies as a(x) = [ym{1}(x), …, ym{Q}(x), {1}(x), …,{Q}(x)] = [ym(x), (x)]. Note 

that according to Eq. (8), all the model discrepancy functions apart from {1}(x) can be 

expressed as: 

 { } {1} {1} { }( ) ( ) ( ) ( ), ( 2,..., ).i m m iy y i Q    x x x x   (18) 

Therefore, some elements of a(x) are redundant (completely determined by other 

elements), so we only need to consider a subset c(x) = [ym(x), {1}(x)] of a(x). The 

complete set a(x) can be recovered from 
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  (19) 

where I and 1 are the identity matrix and a matrix of ones, respectively, whose 

dimensionalities are denoted by their subscripts. 

The reduced set of responses c(x) can be modeled as an MRGP 

   ( ) ~ ( ), , ,c c cRc m Σ   (20) 

where mc(x) = [hm(x)TBm, h(x)T{1}] is the mean function, and c is the non-spatial 

covariance matrix defined as previously. Rc(x,x') is the common Gaussian correlation 

function we assign to both the simulation models and their discrepancy functions. 

From Eqs. (19) and (20), the complete set of responses a(x) also follows an MRGP 

model 

      ( ) ~ ( ) , , ( ), , ,c T c T c a a cR Ra m G GΣ G m Σ   (21) 

and from Eqs. (8) and (21), the GP model for the experimental response is 

      {1} {1}

1,1 1, 1 1, 1( ) ~ ( ) ( ) , 2 , , .e m T m T a a a c

Q Q Qy R I       h β h β Σ Σ Σ   (22) 

Let = {Bm, , c, c, } denote the collection of unknown hyperparameters in this 

approach.  

Based on Eq. (8) and the CSC assumption, we can derive the covariance formulations 

between the experiment and the simulation models as well as the discrepancy functions, 

which are required in the subsequent hyperparameter estimation and response prediction. 

For all i ∈ [1, 2, …, Q], we have 
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  (23) 

 

3.3 Estimation of Hyperparameters for SRP Models 
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  Because all simulation models and experiment are modeled as GPs, the joint Gaussian 

distribution for the collected data d from their responses can be expressed as, 

  ~ , ,
d

d Hβ V   (24) 

which is contained in Eq. (5). Each of , H and Vd are constructed as functions of the 

to-be-estimated hyperparameters , details of which for the different approaches can be 

found in Appendix A. The MLEs of  are obtained by maximizing the log-likelihood 

function 

       11 1 1 ˆ ˆ\ log log constant,
2 2 2

T

l      d dβ d W V d Hβ V d Hβ   (25) 

using numerical optimization, e.g., a genetic algorithm or simulated annealing. Notice 

that in the right-hand-side of Eq. (25), we have used the closed-form expression 

1ˆ T  dβ WH V d  for the MLE of  [see Eq. (6)]. 

 

3.4 SRP-Based Response Predictions 

After estimating all the hyperparameters, we can predict the experimental response 

ye(Xp) at any new input site Xp via Eq. (6), using the MLEs of . Details regarding how to 

construct the matrices required in Eq. (6) can be found in Appendix B. 

We can also predict the model discrepancy (Xp) [or (Xp) in the WS approach] at the 

untested input site Xp analogous to how we predicted the experimental response ye(Xp). 

That is, we first express the joint Gaussian distribution of d and (Xp) as [analogous to 

Eq. (5)] 
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~ , ,
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T
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p
p p p

     
               

d
d H V T

β
Hδ X T V

  (26) 

where vec(∙) is the vectorized matrix (by stacking its columns). pH  and pV  are the 

polynomial and covariance matrices for (Xp), respectively. pT  denotes the covariance 

matrix between (Xp) and d. Details of these matrices for the different approaches can be 
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found in Appendix C. Then, the posterior mean prediction of (Xp) and its MSE are given 

by [analogous to Eq. (6)] 
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  (27) 

Note that once the unknown hyperparameters  are estimated, the computational cost of 

response prediction is negligible, using the analytical expressions in Eqs. (6) and (27). 

Therefore, our proposed approaches are also applicable in other domains, such as design 

optimization and uncertainty analysis. 

 

4. CASE STUDIES 

In this section, three numerical examples and a six-dimensional engineering 

application (Sec. 4.4) are investigated to test the performance of the three proposed 

nonhierarchical multi-model fusion approaches. The numerical examples feature different 

scenarios, such as “clearly different model fidelities” (Sec. 4.1), “similar model fidelities” 

(Sec. 4.2), and “range-dependent model fidelities” (Sec. 4.3). Their mathematical 

expressions can be found in Appendix D. For the purpose of illustration, all examples 

comprise of two simulation models and the highest fidelity data from experiments. 

To compare the effectiveness and relative merits of the proposed approaches, we 

perform a validation test in each case study using two metrics: (1) root-mean-square error 

(RMSE) for assessing the accuracy of the mean prediction of the updated model, and (2) 

u-pooling for measuring the overall model prediction capability in a manner that 

considers its ability to quantify the effects of both interpolation uncertainty and 

experimental variability. RMSE is one of the most popular validation metrics to assess 

the mean predictive capability of a model, but it does not assess the model’s ability to 

accurately quantify the uncertainty in the predictions which is important for 
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understanding how close the predicted value is to the true value. With our proposed 

multi-model fusion approaches, there are both interpolation uncertainty associated with 

lack of data that can be quantified using the SRP prediction error (i.e., MSE) and the 

measurement error introduced by experimental observations. To account for the 

uncertainties in both the updated model and the experiments, the u-pooling metric [44-46] 

is widely used to measure the overall prediction performance of different approaches. 

The u-pooling metric was developed based on the idea of the area metric [44, 47] to 

measure the agreement between entire distributions of model predictions and uncertain 

experimental observations when the data is sparse at multiple validation sites. Based on 

the probability integral transform (PIT), an u-value ui for each experimental observation 

ye(xi) is calculated using the cumulative distribution function (CDF) of the prediction 

distribution ( )
i

mF
x  at the validation site xi as 

 ( ( ))
i

m e

i iu F y
x

x   (28) 

Subsequently, a distribution of all the u-values u can be characterized using the empirical 

CDF. As stated in [44], if the prediction distribution is identical to the actual experimental 

distribution, then the u values should follow a standard uniform distribution within [0, 1]. 

By calculating the area difference of the empirical distribution of u and that of the 

standard uniform distribution, the u-pooling metric can quantify the mismatch or 

dispersion of the distributions of responses from both simulated prediction and 

experimental test in a global sense. The value of the u-pooling metric is between 0 and 

0.5; a larger area difference indicates less agreement, and hence a less accurate simulation 

model. 

 

4.1 Numerical Example 1: Clearly Different Model Fidelities 

  This one-dimensional example is used to demonstrate the effectiveness of our proposed 

multi-model fusion approaches for the situation where the fidelity levels of the simulation 
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models are clearly different, which is a common assumption for the existing hierarchical 

approaches in the literature. We consider it as a baseline test example. The low-fidelity 

model 1 with 5 samples (green triangles) and the high-fidelity model 2 with another 5 

samples (blue squares) are shown in Fig. 2(a). Additionally, four (4) experimental 

observations (red dots) are collected. The true physical response is plotted as a reference. 

Note that if the input locations for one simulation model are spaced tightly in some input 

regions, the covariance matrix Vd might be nearly singular. This can be addressed by 

using the design of experiment (DOE) methods to avoid the clustering of input locations, 

or by adding a small nugget effect in the model to allow the invertibility of Vd [48]. In 

our examples, the input locations for simulating each model are randomly chosen to be 

space-filling within the whole input space. 

 

Fig. 2 An example with differentiable model fidelities. True physics and collected data 

are shown in (a). Validation points*, the mean prediction, and the 95% prediction interval 

(PI) after multi-model fusion using (b) WS approach, (c) PC-DIT approach, and (d) 
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PC-CSC approach are plotted. 

* For illustration, we only plot evenly 20 out of 100 total validation points. 

 

The results from the three proposed multi-model fusion approaches are shown in Fig. 

2(b)~(d). For validation and comparison, 100 additional experimental data are chosen 

evenly in the input space. From visual comparison, all three approaches handle this 

example well. They provide similar mean predictions for the experimental responses, and 

most of the validation points are located within the 95% prediction interval (PI) with only 

a few exceptions. The PC-DIT approach performs a little better in both of the edge 

regions with relatively larger MSE that seems to represent the randomness of the 

experimental response better. 

For a rigorous and quantitative comparison, the RMSE and u-pooling metrics for 

different approaches are listed in Table 1. 

 

Table 1: Metrics for example 1 with differentiable model fidelities 

Approach WS PC-DIT PC-CSC 

RMSE 0.3448 0.3600 0.3697 

u-pooling 0.0639 0.0505 0.0724 

 

The WS approach excels slightly on mean prediction with the smallest RMSE value, but 

its u-pooling metric is worse than the PC-DIT approach. The PC-CSC approach has the 

worst mean (RMSE) and overall (u-pooling) prediction performances. But in 

consideration of the small difference between the metric values, all three multi-model 

fusion approaches perform almost equally well in this example. 

 

4.2 Numerical Example 2: Similar Model Fidelities 

The second example is one-dimensional as well, but the fidelity levels of the 

simulation models cannot be explicitly identified, as shown in Fig. 3(a), thus the existing 

hierarchical multi-fidelity modeling approaches are infeasible in this situation. The 
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collected data contain three (3) samples (green triangles) from the model 1, seven (7) 

samples (blue squares) from the model 2, and three (3) additional experiment 

observations (red dots).  

 

 

Fig. 3 An example with similar model fidelities. True physics and known data are 

collected in (a). Validation points*, the mean prediction, and the 95% PI after multi-model 

fusion using (b) WS approach, (c) PC-DIT approach, and (d) PC-CSC approach are 

plotted. 

* For illustration, we only plot evenly 20 out of 100 total validation points. 

 

  The final predictions for experiment response using the three proposed approaches, 

shown in Fig. 3(b)~(d) illustrate that they work well to address the 

lack-of-fidelity-identification situation as their mean predictions match well with the true 

physical response in most of the input region. The validation points are all bounded 

within the 95% prediction intervals of the three approaches. 

-1.5

-1

-0.5

0

0.5

1

1.5

x

y (
x )

 

 

0 /2  3/2 2

True Physics

Model 1 Data

Model 2 Data

Exp. Training Data

-1.5

-1

-0.5

0

0.5

1

1.5

x

ye (x
)

 

 

0 /2  3/2 2

Exp. Validation Data
*

Mean Prediction

95% PI(a) (b) 

-1.5

-1

-0.5

0

0.5

1

1.5

x

ye (x
)

 

 

0 /2  3/2 2

Exp. Validation Data
*

Mean Prediction

95% PI

-1.5

-1

-0.5

0

0.5

1

1.5

x

ye (x
)

 

 

0 /2  3/2 2

Exp. Validation Data
*

Mean Prediction

95% PI(c) (d) 



23 

 

Table 2: Metrics for example 2 with similar model fidelities 

Approach WS PC-DIT PC-CSC 

RMSE 0.1530 0.1636 0.1573 

u-pooling 0.0805 0.0786 0.0924 

 

100 additional experiment observations distributed evenly in the input space are used 

for confirmation (see Table 2). In terms of the mean prediction, the WS approach 

outperforms slightly, but the similar RMSE values indicate no statistically significant 

difference between the three approaches. The WS and PC-DIT approaches achieve the 

same distribution agreement between model predictions and experiments with similar 

u-pooling metric values, and they both perform slightly better than the PC-CSC approach, 

which provides slightly worse predictions around the left edge of the input region, as 

shown in Fig. 3(d). 

 

4.3 Numerical Example 3: Range-Dependent Model Fidelities 

  In this one-dimensional example, there are 5 simulation observations from each model 

and 4 experimental observations, as shown in Fig. 4(a). The fidelity levels of the 

simulation models change dramatically over the input space, such that model 1 performs 

better within the left region [0, 5], while model 2 is much more trustworthy within the 

right region [5, 10]. Thus we cannot differentiate the level of fidelity in a global sense for 

each model. Such problems with range-dependent model fidelity hamper the feasibility of 

the existing hierarchical approaches for multi-model fusion.  

  Fig. 4(b)~(d) show the final predictions of the experiment response using our three 

proposed approaches, respectively. It can be judged visually that the PC-DIT approach 

performs best with accurate mean prediction and small MSE over the whole input space. 

The PC-CSC approach produces satisfactory mean prediction as well, but it fades a little 

with relatively larger MSE at both edge regions of the input space. All validation points 

are bounded within the 95% PIs of the PC-DIT and PC-CSC approaches. Although small 
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MSE can be achieved using the WS approach, it suffers from large discrepancies in mean 

prediction, as shown in Fig. 4(b) that some validation points are out of the 95% PI. 

 

Fig. 4 An example with range-dependent model fidelities. True physics and collected data 

are shown in (a). Validation points*, the mean prediction, and the 95% PI after 

multi-model fusion using (b) WS approach, (c) PC-DIT approach, (d) PC-CSC approach, 

(e) WS approach with 0.01<, and (f) WS approach with 0.01< are plotted. 

* For illustration, we only plot evenly 20 out of 100 total validation points. 
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  The RMSE and u-pooling metrics of the three proposed approaches are computed and 

listed in the first three columns in Table 3, respectively, with 100 evenly distributed 

validation points. From their small RMSE and u-pooling metrics, we can find that the 

PC-DIT and PC-CSC approaches are able to handle this range-dependent model fidelity 

case well. The RMSE metric of the WS approach is relatively large, indicating a worse 

mean prediction performance than the other two approaches, which is consistent with the 

preceding visual comparison. However, its u-pooling metric is slightly better, because it 

overestimates the mean prediction in the left input region while underestimates it in the 

right region. This results in a relatively more uniform u in the u-pooling calculation. 

 

Table 3: Metrics for example 3 with range-dependent model fidelities 

Approach 
WS with 

0.01< 
PC-DIT PC-CSC 

WS with 

0.01< 

WS with 

0.01< 

RMSE 0.5692 0.3329 0.3542 0.3598 0.2996 

u-pooling 0.0797 0.0952 0.0966 0.1035 0.0823 

 

It should be noted that the WS approach fades with unsatisfactory predictions in such a 

range-dependent model fidelity case. In order to overcome this difficulty, we tested a 

smaller prior upper bound for the roughness parameter  of the residual discrepancy 

function (x) when estimating the MLEs (originally the prior range of  is set to be 

0.01<). The experiment predictions from the WS approach but with smaller prior 

ranges as 0.01< and 0.01<are shown in Fig. 4(e) and (f), respectively. Their 

corresponding RMSE and u-pooling metrics are listed in the last two columns in Table 3. 

The metric values, after reducing the prior upper bound of , are fairly small and 

competitive with those of the PC-DIT and PC-CSC approaches. Hence, the smaller 

discrepancy roughness strategy works effectively to mitigate the adverse effect from the 

global-sense weight parameter estimations in the WS approach.  

The predictions of the residual discrepancy function (x) from the WS approach with 
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0.01< and 0.01<are shown in Fig. 5(a) and (b), respectively. It can be found 

that the discrepancy with smaller prior upper bound for  is quite smooth, which meets 

with our expected performance. For this example, both simulation models overall play 

approximately equal roles in the multi-model fusion and predict the experiment response 

well in different halves of the input space. Thus close global-sense weight parameters 

would be estimated, which result in large discrepancy at both edge regions of the input 

space and smaller discrepancy in the central region, as shown in Fig. 5(b). Therefore, 

assigning a priori knowledge of smaller roughness parameter is anticipated to capture this 

smooth discrepancy and to improve the prediction performance of multi-model fusion 

using the WS approach. 

 

Fig. 5 The mean prediction and 95% PI of the residual discrepancy function (x) after 

multi-model fusion using the WS approach with (a) 0.01<, and (b) 0.01< are 

plotted. 

 

4.4 Engineering Application: Fluidized-Bed Process 

A top-spray fluidized bed microencapsulation processing unit is frequently used in the 

food industry to tune the effect of functional ingredients and additives. An important 

thermo-dynamic response of food producer’s interest is the steady-state outlet air 

temperature T2. Dewettinck et al. [49] investigated a physical experiment and several 

associated computer simulation models for predicting the steady-state thermodynamic 

operation point of a Glatt GPC-1 fluidized-bed unit. Reese et al. [1] proposed a recursive 
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Bayesian hierarchical linear model to simultaneously analyze the combined data from 

both experiment tests and computer simulations. Qian and Wu [19] analyzed the same 

data using their proposed Bayesian hierarchical Gaussian process model. 

Several factors can potentially affect the steady-state thermo-dynamic operating points, 

including relevant process variables such as the fluidization air velocity (Vf), the air 

temperature from the pump (Ta), the coating solution flow rate (Rf), the coating solution 

temperature (Ts), the coating solution dry matter content (Md), the atomization air 

pressure (Pa), and some other existing ambient variables such as the room temperature (Tr) 

and the room humidity (Hr).  

Dewettinck et al. collected the physical experiment responses T2, exp under 28 different 

process conditions of particular interest using distilled water as the coating solution (i.e., 

Md =0), and setting its temperature Ts at 20oC. As a consequence, six factors (Hr, Tr, Ta, Rf, 

Pa, Vf) with different values are considered in the analyses. Apart from performing 

physical experiments, Dewettinck et al. also developed several computer simulation 

models to predict the steady-state outlet air temperature for each process condition, but 

there exist major differences among those simulation models. Previous works [1, 19, 49] 

detailed the data about six input variables, and their responses from the experiment tests 

and computer simulations under the 28 different conditions. Qian and Wu [19] considered 

the data from only one computer model (T2,2) and physical experiment (T2,exp), while we 

incorporate additional data from a less accurate computer model (T2,1) in our work. We 

will show that incorporating lower-fidelity data from T2,1 improves the final prediction. 

  Eight specific physical experiment runs T2, exp (i.e., runs 4, 15, 17, 21, 23, 25, 26, and 

28 as in Qian and Wu’s work) are reserved to form the dataset for model validation. All 

28 T2,1 and T2,2 runs as well as the remaining 20 T2, exp runs are used in the training of the 

multi-model fusion. Fig. 6(a), (c) and (e) show the error-bar plots of the resulting 

predictions of the eight reserved validation points after our proposed nonhierarchical 

multi-model fusions, against the experimentally observed steady-state outlet air 
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temperatures. The 95% PI for each point is shown in the figure as well. The predictions 

of our three approaches are fairly close to the observed values and with very small PIs. 

Most validation points are almost located on the y = x (green dash) line, except for the 

fifth observation from the left side deviating a little in each approach.  

 

Fig. 6 Observed versus predicted steady-state outlet air temperatures and 95% PIs (left 

column), as well as their u-pooling metric plots (right column) using WS approach 
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(upper), PC-DIT approach (middle), and PC-CSC approach (lower). 

 

Table 4: Metrics for engineering application example 

Approach WS PC-DIT PC-CSC Qian and Wu’s  

RMSE 0.7402 0.6884 0.6925 / 

u-pooling 0.1210 0.0706 0.1410 / 

SRMSE 0.0177 0.0163 0.0169 0.020 

 

The RMSE and u-pooling metrics for our proposed multi-model fusion approaches are 

computed in Table 4. The close values of RMSE indicates that the approaches work 

equally well in the mean prediction of the steady-state outlet air temperature, while the 

PC-DIT approach excels a lot in terms of the overall prediction performance with much 

smaller u-pooling metric than the other two approaches. The u-pooling metric plots of our 

proposed approaches are shown in Fig. 6(b), (d), and (f). 

Finally, in order to compare the prediction accuracy of our proposed approaches with 

that of Qian and Wu’s approach [19], the standardized root mean square errors (SRMSEs) 

for our three approaches are also provided in Table 4 for this application example. It is 

found that the multi-model fusion can efficiently improve prediction performance 

because the SRMSEs of all our three proposed approaches are smaller than that of Qian 

and Wu’s approach. This result comes as no surprise, because our proposed multi-model 

fusion approaches integrate additional data (i.e., simulation data from T2,1) for response 

predictions. Although less accurate, the computer model T2,1 still can provide some useful 

information to guide the prediction in a better manner. This benefit will be more distinct 

when the less accurate responses come from the input sites where no more accurate data 

are available. In general, the proposed multi-model fusion approaches that use more data 

tend to perform better, unless the additional data are totally wrong and heavily mislead 

the prediction. However, in most circumstances, the modelers can easily distinguish the 

seriously biased models by prior knowledge and/or preliminary data analyses and then 

exclude them in the model fusion.  
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5. CONCLUSIONS 

In this work, three different nonhierarchical multi-model fusion approaches are 

proposed, based on SRP modeling, to integrate the low-fidelity data from multiple 

alternative or competing simulation models, as well as the high-fidelity data from either 

experimental or industry-standard simulation observations, for building an accurate and 

yet computationally efficient predictive model. Each proposed approach imposes 

different assumptions and structures to capture the relationships between the simulation 

models and the high fidelity observations. The WS approach achieves final prediction as 

a weighted sum of simulation models and a single residual discrepancy function; the 

other two PC approaches assign the model discrepancy associated with each simulation 

model, PC-DIT assuming independency between the model discrepancy and the true 

physics, while PC-CSC adopting a fully correlated multi-response SRP structure with a 

common spatial correlation function for the simulation models and their discrepancies. To 

illustrate and compare the effectiveness of different proposed approaches, three numerical 

examples with different model fidelity characteristics are tested, as well as one real 

engineering application concerning the steady-state thermodynamics of the fluidized-bed 

process. For validating the accuracy of the multi-model fusion approaches, two model 

validation metrics are computed, with RMSE assessing the accuracy of the mean 

prediction and u-pooling measuring the overall model prediction performance 

considering the uncertainties in both model predictions and experimental observations at 

multiple validation sites.  

The proposed nonhierarchical approaches are more flexible than the existing 

hierarchical multi-fidelity approaches to handle various kinds of sophisticated scenarios 

for multi-model fusion, such as clearly different model fidelities, similar model fidelities, 

and range-dependent model fidelities. Although there are slight differences between the 

three approaches in the mean prediction or MSE, in general, all of them perform 

equivalently well with close metric values as demonstrated in the numerical examples. 
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From the comparative study of our approaches with the existing approach in the real 

engineering application, the incorporation of more data (even though low-fidelity) in 

multi-model fusion improves the prediction performance. Note that although we refer to 

our proposed approaches as “nonhierarchical”, they can also be used in situations with 

hierarchical levels of model fidelity. However, they would not utilize any knowledge of 

the fidelity levels when fusing the data from multiple-fidelity models. 

One additional observation about the WS approach is that it is sensitive to the prior 

ranges of hyperparameters for their estimations via the MLE method. It may suffer from 

inferior prediction in the situation with range-dependent model fidelity because its 

global-sense weight parameter will induce a relatively large but smooth residual 

discrepancy. However, this can be mitigated by assigning a smaller prior upper bound for 

the roughness parameter of discrepancy function.  

  The proposed nonhierarchical multi-model fusion approaches are widely applicable to 

many examples and phenomena from structural optimization, fluid analysis, electrical 

design, financial prediction, and other fields. Nevertheless there are still some avenues 

for future research that can be envisioned for our proposed approaches. First, Kennedy 

and O’Hagan’s modular Bayesian method [5] or Higdon et al.’s full Bayesian method [6] 

can be applied in our approaches to incorporate the calibration of unknown model 

parameter in the simulation. Second, following the idea from Goldstein and Rougier [50], 

and Xiu et al. [25], one could extend our approaches to the situation in which the 

simulation models and/or experiment have different input variables because of the model 

physics reduction or approximation. Third, one could incorporate additional information 

(if available), such as the prior knowledge of the fidelities of different models and/or 

multiple responses from models and experiments (i.e., vectorial responses), to further 

improve the predictive capability of our proposed approaches. 
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APPENDIX A: , H and Vd for Hyperparameters Estimation 

(a) Approach 1: WS 
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Note: We are using a compact notation here such that Hm(Xm{i})T denotes the matrix 
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Mh x h x h x  for all i ∈ [1, 2, …, Q], and similarly for other terms as 

well. 

(b) Approach 2(a): PC-DIT 
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(c) Approach 2(b): PC-CSC 
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APPENDIX B: Hp, Tp and Vp for Experiment Prediction 

For notational simplicity we omit the hat operator “^” for MLEs. 

(a) Approach 1: WS 
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where ⨂ denotes the Kronecker product. 

(b) Approach 2(a): PC-DIT 
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(c) Approach 2(b): PC-CSC 
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APPENDIX C: 
pH , 

pT  and 
pV  for Discrepancy Prediction 

(a) Approach 1: WS 
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(c) Approach 2(b): PC-CSC 
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APPENDIX D: Mathematical Expressions for Numerical Examples 

(1) Numerical Example 1: 

 2( ) sin( ) 0.2 ( 5) 16 0.5,ty x x x x       (D1) 
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 ( ) ( ) 0.2 , ~ (0,1),e ty x y x      (D2) 

 {1}( ) ( 0.5)( 4)( 9) 20 2,my x x x x       (D3) 

 {2}( ) sin( ) 0.2 0.5,my x x x     (D4) 

(for all responses, x ∈ [0, 10]). 

(2) Numerical Example 2: 

 ( ) sin( ),ty x x   (D5) 

 ( ) ( ) 0.1 , ~ (0,1),e ty x y x      (D6) 

 {1} 2( ) sin( ) 0.1( ) ,my x x x      (D7) 

 {2} 2( ) 1.2sin( ) 0.1( ) 0.2,my x x x       (D8) 

(for all responses, x ∈ [0, 2]). 

(3) Numerical Example 3: 

 ( ) 2sin( 5),ty x x   (D9) 

 ( ) ( ) 0.2 , ~ (0,1),e ty x y x      (D10) 

 {1}( ) ( 5)( 12) 30,my x x x x     (D11) 

 {2}( ) ( 2)( 5)( 10) 30,my x x x x      (D12) 

(for all responses, x ∈ [0, 10]). 
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