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When we use simulation to estimate the performance of a stochastic system, the simulation often contains

input models that were estimated from real-world data; therefore, there is both simulation and input uncer-

tainty in the performance estimates. In this paper, we provide a method to measure the overall uncertainty

while simultaneously reducing the influence of simulation estimation error due to output variability. To reach

this goal, a Bayesian framework is introduced. We use a Bayesian posterior for the input-model parame-

ters, conditional on the real-world data, to quantify the input-parameter uncertainty; and we propagate this

uncertainty to the output mean using a Gaussian process posterior distribution for the simulation response

as a function of the input-model parameters, conditional on a set of simulation experiments. We summarize

overall uncertainty via a credible interval for the mean. Our framework is fully Bayesian, makes more effec-

tive use of the simulation budget than other Bayesian approaches in the stochastic simulation literature,

and is supported with both theoretical analysis and an empirical study. We also make clear how to interpret

our credible interval and why it is distinctly different from the confidence intervals for input uncertainty

obtained in other papers.
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1. Introduction

Stochastic simulation is used to characterize the behavior of complex, dynamic systems that are

driven by random input processes. The distributions of these input processes are often estimated

from real-world data. Thus, there are at least two sources of uncertainty in simulation-based esti-

mates: input estimation error—due to only having a finite sample of real-world data—and simula-

tion estimation error—due to only expending a finite amount of simulation effort. Of course, the

logic of the simulation model itself may also be wrong, but that is not the focus of this paper. See

Chapter 5 in Nelson (2013) for a comprehensive description of simulation errors.

There are already robust methods for quantifying the simulation estimation error. A formal

quantification of input estimation error, however, is rarely obtained, and no simulation software

routinely does it. Since input estimation error can overwhelm simulation error (Barton et al. 2014),

ignoring it may lead to unfounded confidence in the assessment of system performance, which

could be the basis for critical and expensive decisions. Thus, it is desirable to quantify the overall

impact of simulation and input uncertainty on system performance estimates. Although we focus

on the system mean response, our methods can be extended to other performance estimates, such

as variances and probabilities.

In this paper we address problems with univariate, parametric input models that are mutually

independent, and with input-model parameters estimated from a finite sample of real-world data,

denoted generically by zm. This implies that the input models are uniquely specified by their

parameters, denoted generically by θθθ. Let µ(θθθ) be the true simulation mean response given param-

eters θθθ; that is, µ(·) is an unknown function that maps parameters of the input distributions into

the expected value of the simulation output. If θθθc denotes the unknown true parameters, then the

goal of the simulation is to estimate the true mean response µc ≡ µ(θθθc). We want to quantify the

overall estimation uncertainty about µc, while simultaneously reducing the uncertainty introduced

during the propagation from inputs to outputs.

There are various methods proposed in the literature to quantify the uncertainty due to esti-

mating input-model parameters, which we call input uncertainty ; see Barton (2012) for a review.
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The methods can be divided into frequentist and Bayesian approaches. The frequentist approaches

start with a point estimate of the input-model parameters, θ̂θθ, which is a function of real-world data

zm. Since the real-world data are one of many possible random samples, the uncertainty about θ̂θθ

is quantified by its sampling distribution. The input-parameter uncertainty is then propagated to

the output mean through direct simulation or a metamodel, either of which introduces additional

uncertainty. For any fixed θθθ, let µ̂(θθθ) be a point estimate of the system mean response. One way to

summarize the overall estimation uncertainty for µc is to invert the sampling distribution of µ̂(θ̂θθ)

and get a (1−α)100% confidence interval (CI), denoted by [CL,CU ], such that

Pr{µc ∈ [CL,CU ]}= 1−α.

What difficulties arise when we use the frequentist approaches? First, it may not be possible to

obtain the sampling distribution of θ̂θθ. Thus, asymptotic results are often invoked to approximate it;

two of these are the normal approximation and the bootstrap. Their validity requires large samples

of real-world data. However, “large” is relative and it depends on the input models and the values

of the parameters. Thus, the finite-sample performance of these approximations could vary for

different stochastic systems. In addition, it is difficult for the frequentist methods to incorporate

prior information about the input-model parameters.

A Bayesian approach avoids some of these issues while raising others. Bayesians represent the

uncertainty in our belief about θθθc via a random vector ΘΘΘ. 1 Before collecting any real-world data,

our belief is quantified by its prior distribution πΘΘΘ(θθθ). After observing the real-world data zm,

our belief is updated using the assumed parametric distribution family of the data and Bayes’

rule to yield a posterior distribution denoted by pΘΘΘ(θθθ|zm). The posterior of ΘΘΘ corresponds to the

sampling distribution of θ̂θθ in the frequentist approaches in that both of them characterize the

input-parameter uncertainty. However, Bayesians have a fundamentally different perspective on

quantifying uncertainty, and answer different questions; correctly and consistently capturing this

perspective is one motivation for our work.
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The distribution πΘΘΘ provides a convenient way to account for prior information about the input-

model parameters, if we have any. If not, a non-informative prior can be used. There is no need

to rely on a large-sample asymptotic approximation to the sampling distribution. When the real-

world sample size is small, then the variance of the posterior distribution will be large. However,

evaluation of the posterior distribution can be difficult, so computational approaches, such as

Markov Chain Monte Carlo (MCMC), may be needed.

In this paper we take a Bayesian approach to quantify the uncertainty about µc. To that end, we

let ΘΘΘ be a random variable whose distribution represents our knowledge of θθθc. Similarly, we letM(·)

be a random function (also called a random field) whose distribution represents our knowledge of

µ(·). The domain ofM(·) is the same as that of µ(·), which is the natural space of feasible values for

the input parameters θθθ for the input distributions in use. The distribution of M(·) is characterized

through the joint distribution of any finite collection {M(θθθ1),M(θθθ2), . . . ,M(θθθp)}, which will be

Gaussian in our case. See Chapter 1 in Adler (2010) for the existence of the distribution of a

random field. To reduce the uncertainty about ΘΘΘ and M(·), we employ real-world input data and

simulation experiments, respectively, along with Bayes’ rule. To represent the overall estimation

uncertainty for µc, we want to make statements about the composite random variable U ≡M(ΘΘΘ).

Bayesian quantification of the uncertainty about ΘΘΘ is completely standard. Our interest is in

uncertainty about U . If the response function µ(·) were known, then the impact of input uncertainty

on the system mean response could be characterized by an induced posterior distribution for U :

FU(u|zm, µ(·))≡Pr{µ(ΘΘΘ)≤ u|zm} with ΘΘΘ∼ pΘΘΘ(θθθ|zm). (1)

From this we could construct a (1− α)100% credible interval (CrI) for U , denoted by [QL,QU ],

which contains 1−α of the probability content: FU(QU |zm, µ(·))−FU(QL|zm, µ(·)) = 1−α. Since

there is not a unique CrI meeting this requirement, we use a two-sided, equal-tail-probability

(1−α)100% CrI for illustration in this paper. Our approach can also be extended to other criteria,

e.g., the highest posterior density CrI. Notice that the CrI depends not only on the data zm, but

also on the prior distribution πΘΘΘ, which means different analysts with the same data could have
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different, but completely valid, CrIs. Further, the quality of the CrI is not based on “coverage,”

but rather on whether it correctly reflects the remaining uncertainty about U after accounting for

available information via Bayes’ rule.

In reality µ(·) is unknown so we have to estimate the mean response; this introduces additional

uncertainty. For this reason we refer to [QL,QU ] derived from (1) as the “perfect fidelity” CrI that

we could obtain without observing more real-world data, because the input uncertainty is propa-

gated to the output mean using the true mean response without introducing any additional error;

it provides the standard against which we compare our method and other Bayesian approaches in

the simulation literature.

There are two central contributions of the paper: First, we provide a fully Bayesian framework

to quantify uncertainty about U along with a method to realize a CrI based on it. Second, we

show that our Bayesian framework makes effective use of the computational budget as measured by

closeness of our CrI to the perfect fidelity CrI. Our framework represents uncertainty about the

input parameters ΘΘΘ via a posterior distribution conditional on the real-world data, and uncertainty

about the mean simulation response via a posterior distribution on M(·) conditional on a designed

simulation experiment; together they provide a posterior distribution and corresponding CrI for

U .

The next section describes other Bayesian approaches to input uncertainty. This is followed by

a formal description of the problem of interest. In Section 4, we study a tractable M/M/∞ queue

to gain insights about the value of metamodeling, which is key to reducing simulation estimation

error. Based on these insights, we introduce a fully Bayesian framework capturing both input and

metamodel uncertainty to provide a posterior distribution for U in Section 5. We then propose a

computational procedure to construct the CrI for U . Results from an empirical study of a more

practical problem are reported in Section 6, and we conclude the paper in Section 7.
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2. Background

In the simulation literature various Bayesian approaches for analyzing system performance have

been proposed. To facilitate the review, we represent the simulation output on independent repli-

cation j when the input parameter is θθθ by

Yj(θθθ) = µ(θθθ)+ ϵj(θθθ)

where ϵj(θθθ) is a mean-zero, finite-variance random variable representing the output variability of

the simulation.

Suppose that θθθc is known so that we can generate independent and identically distributed (i.i.d.)

simulation outputs {Y1(θθθ
c), Y2(θθθ

c), . . . , Yn(θθθ
c)}. Andradóttir and Bier (2000) consider a direct appli-

cation of Bayes’ rule to obtain a posterior distribution for E[Y (θθθc)] when the distribution family

of Y (θθθc) is assumed known.

Of course, θθθc is typically unknown but estimable from real-world data. The Bayesian model aver-

age (BMA) method proposed by Chick (2001) starts with priors on both the input model families

and the values of their parameters. Given real-world data zm, he constructs posterior distributions,

draws B random samples from these posterior distributions, and runs a single simulation replica-

tion using each sampled input model. These simulation outputs provide an empirical estimate of

the posterior distribution of Y (ΘΘΘ) given zm; that is, the predictive distribution of the simulation

output given the observed input-model data. This empirical distribution is used to form a point

estimate and CI for E [Y (ΘΘΘ)|zm] = E [µ(ΘΘΘ)|zm]. Notice that E [µ(ΘΘΘ)|zm] depends on the posterior

distribution pΘΘΘ(θθθ|zm) and the particular real-world sample zm, and is not equal to µc in general.

Stated differently, Chick (2001) is interested in a point and interval estimate for the expected sim-

ulation response, averaged over the uncertain input parameters, rather than a CrI for the mean

response at the true parameters. Our focus on a posterior distribution of U is a distinguishing

feature of this paper.

The Bayesian simulation-replication algorithms of Zouaoui and Wilson (2003, 2004) also focus

on estimation of E [µ(ΘΘΘ)|zm] using direct simulation. Zouaoui and Wilson (2003) accounts for
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input-parameter uncertainty, similar to this paper, while Zouaoui and Wilson (2004) accounts for

both parameter and input-model-family uncertainty, as in Chick (2001). A key difference from

Chick (2001) is that Zouaoui and Wilson make multiple simulation replications at each posterior

distribution sample of the input models so as to separate the two sources of uncertainty: the input

uncertainty and the simulation estimation error. Like Chick (2001), Zouaoui and Wilson provide

CIs for E [µ(ΘΘΘ)|zm]. When the simulation error is negligible, which would occur if a large number

of replications were made at each posterior input-model sample, then their percentile CI for this

parameter using a random-effects model could be interpreted as an approximation of the perfect

fidelity CrI for U . However, as we show later, their CI when interpreted as a CrI is typically wider

than necessary.

It is worth noting that in Zouaoui and Wilson (2003) the authors also derive a hierarchical

Bayesian framework that could be used to estimate a Bayesian CrI for E [µ(ΘΘΘ)|zm] (which, again,

in not equal to µc in general). This framework is built on a number of homogeneity assumptions,

including constant-variance normal distributions for Y and µ(ΘΘΘ). We will provide a valid CrI for

U without these conditions.

Another Bayesian method for simulation output analysis was proposed by Chick (1997). Here the

goal is to characterize the posterior distribution of the simulation output as a function of the input

model parameters, rather than to propagate uncertainty about those parameters to the process

mean. Suppose that the distribution of the response Y depends only on its mean (and perhaps

some nuisance parameters), and a functional form of the relationship is known, say µ(θθθ) = g(θθθ;βββ);

however, the coefficients βββ are unknown. Let B denote a random vector that characterizes the

uncertainty in our belief about βββ. Starting with a prior distribution for B and simulation outputs

yD at a collection of input-parameter settings θθθ, denoted by D, Bayes’ rule is used to obtain a

posterior distribution pB(βββ|yD). Then, for any fixed θθθ, averaging over the metamodel parameter

uncertainty provides a predictive distribution for the simulation response Y (θθθ). Our approach also

characterizes simulation uncertainty using a Bayesian metamodel but with less assumed structure.
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Also, we combine our Bayesian metamodel with a characterization of uncertainty about ΘΘΘ to obtain

a measure of uncertainty about U .

In the study of Ng and Chick (2006), the input-parameter uncertainty is approximated by an

asymptotic posterior normal distribution, and it is propagated to the output mean via a first-order

metamodel in the input parameters. However, this asymptotic approximation is not appropriate

when the uncertainty about ΘΘΘ is large and µ(·) is highly nonlinear.

Work outside the stochastic simulation literature that is closely related to ours appears in Oakley

and O’Hagan (2002) and Oakley (2004). They consider uncertainty quantification in deterministic

computer experiments when the values of some parameters are unknown or variable. The uncer-

tainty about these parameters is represented by ΘΘΘ∼GΘΘΘ(θθθ) with GΘΘΘ(·) representing some known

distribution for the input distribution parameters. The function µ(·) itself is unknown and each

evaluation is expensive. Their goal is to estimate some property of the distribution of µ(ΘΘΘ). The

prior belief about µ(·) is characterized by a stationary Gaussian process (GP), denoted by M(·);

see, for instance Sacks et al. (1989). Then given some simulation outputs µµµD, which denotes the

system responses at design points D, Bayes’ rule is applied to obtain the posterior distribution

pM(·|µµµD) for M(·). This provides a metamodel to propagate the parameter uncertainty to the

output response. Thus, there are two sources of uncertainty: parameter and metamodel. Inference

about the impact from these two sources are treated separately in Oakley and O’Hagan (2002)

and Oakley (2004). Specifically, they first generate many sample paths from the GP posterior,

say M (i)(·), i = 1,2, . . . , I. Then, to quantify the impact of parameter uncertainty, they compute

the response statistic of interest for each fixed GP sample path M (i)(·) individually by plugging

all of the samples from GΘΘΘ into each sample path. Differing from their problem, we characterize

uncertainty about the input distribution parameters by a Bayesian approach, our evaluation of

µ(θθθ) has simulation noise, and we are interested in the combined effect of input-parameter and

metamodel uncertainty.

The Bayesian framework introduced in the present paper carries both input and metamodel

uncertainty to the output mean estimator. In each case uncertainty is represented by a posterior
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distribution: the input uncertainty by the posterior pΘΘΘ(θθθ|zm), and the metamodel uncertainty by

a GP posterior pM(·|yD). This combined approach implies a fully Bayesian posterior for U , and

based on it we can construct a CrI. Further, the metamodel makes effective use of the simulation

budget, so that our CrI is closer to the perfect fidelity CrI [QL,QU ] than an interval obtained by

direct simulation.

Our approach completes and extends the prior work. Compared with the Bayesian metamodel

approach in Chick (1997), we use Bayesian posteriors to characterize both input and metamodel

uncertainty without assuming a parametric form of µ(·). Compared with BMA in Chick (2001),

our approach focuses on the posterior and a CrI for U instead of a point estimate of E[µ(ΘΘΘ)|zm].

Again, µc and E[µ(ΘΘΘ)|zm] are not the same when there is a finite amount of real-world data and

the underlying system mean response is a nonlinear function of the inputs. Compared with the

Bayesian simulation-replication algorithm in Zouaoui and Wilson (2003), which also focuses on a

point estimate and a CI for E[µ(ΘΘΘ)|zm], our framework leads to a fully Bayesian CrI quantifying the

overall uncertainty about U while simultaneously reducing the influence of simulation estimation

error relative to direct simulation. And compared with the asymptotic approximation in Ng and

Chick (2006), our method is appropriate even when the quantity of real-world data is not large.

Finally, previous Bayesian treatments of input uncertainty in stochastic simulation do not include

the stochastic simulation error in the Bayesian formulation, or if they do then they make strong

assumptions.

Perhaps the most important point to make is that our focus is on a Bayesian treatment of

µc = µ(θθθc), the mean simulation response at the correct input parameter values. We believe that

this is the parameter that simulation analysts want: the true mean response independent of their

prior distributions or observed data. However, they may well want a Bayesian quantification of U

which characterizes the uncertainty in our belief about µc using all available information: prior and

real-world data on the inputs, and prior and simulation data on the response. The framework in

this paper provides a provably valid path to attain this objective.
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3. Problem Statement and Proposed Approach

Suppose that the stochastic simulation output is a function of random numbers and L independent

input distributions F ≡ {F1,F2, . . . ,FL}. For instance, in the M/M/∞ simulation in Section 4,

{F1,F2} are the interarrival-time and service-time distributions; in the clinic simulation in Section 6,

{F1,F2, . . . , F6} correspond to interarrival-time distributions, bed occupancy times, and patient

class probabilities. To simplify notation, we do not explicitly represent the random numbers that

drive the simulation.

The output from the jth independent replication of a simulation with input distribution F can

be written as

Yj(F ) = µ(F )+ ϵj(F )

where µ(F ) denotes the unknown output mean and ϵj(F ) represents the simulation error with

mean zero. Notice that the simulation output depends on the choice of input distributions. The true

“correct” input distributions, denoted by F c ≡ {F c
1 ,F

c
2 , . . . ,F

c
L}, are unknown and are estimated

from real-world data. We assume F c exists.

In this paper, we also assume that the distribution families are known, but not their parameter

values. Let an hℓ× 1 vector θθθℓ denote the parameters for the ℓ-th input distribution. By stacking

θθθℓ with ℓ= 1,2, . . . ,L together, we have a d×1 dimensional parameter vector θθθ⊤ ≡ (θθθ⊤1 ,θθθ
⊤
2 , . . . ,θθθ

⊤
L)

with d ≡
∑L

ℓ=1 hℓ. Since the parameters uniquely specify the input models, we can equivalently

treat µ(·) as a function of the input-model parameters. Thus, we rewrite the simulation response

as

Yj(θθθ) = µ(θθθ)+ ϵj(θθθ). (2)

We assume that the unknown true parameters θθθc are fixed. However, they are estimated by a

random sample of real-world observations. Let mℓ denote the number of i.i.d. real-world obser-

vations available from the ℓth input distribution Zℓ,mℓ
≡

{
Zℓ,1,Zℓ,2, . . . ,Zℓ,mℓ

}
with Zℓ,i

i.i.d∼ F c
ℓ ,

i= 1,2, . . . ,mℓ. Let Zm = {Zℓ,mℓ
, ℓ= 1,2, . . . ,L} be the collection of samples from all L input dis-

tributions in F c, where m= (m1,m2, . . . ,mL). The real-world data are a particular realization of



Xie, Nelson, and Barton: A Bayesian Framework for Quantifying Uncertainty in Stochastic Simulation
Article submitted to Operations Research; manuscript no. OPRE-2013-10-562 11

Zm, denoted zm. Given a finite sample of real-world data, and a finite simulation budget N , we

want to produce a Bayesian CrI for U .

Standard Bayesian inference about θθθc represents uncertainty by a random vector ΘΘΘ with prior

distribution πΘΘΘ(θθθ). For simplification, we assume πΘΘΘ(θθθ) is such that pΘΘΘ(θθθ|zm) is a density. After

obtaining zm, our belief is updated by Bayes’ rule: the data make some values of the parameters

more likely than others and some less likely through weighting by the corresponding likelihood,

pΘΘΘ(θθθ|zm)∝ πΘΘΘ(θθθ) · pZm(zm|θθθ)

where pZm is the assumed likelihood function of zm given the parameters. Thus, uncertainty about

the input-model parameters is quantified by the posterior pΘΘΘ(θθθ|zm). Under some regularity con-

ditions (Section 4.2 Gelman et al. (2004)), the effect of the prior will disappear when we have

enough data, but an appropriate prior can reduce the input-parameter uncertainty. Notice that

we have abused notation by lumping the parameters, priors and likelihoods of all L distributions

together. Since these distributions are assumed independent they would more naturally be treated

individually.

If µ(·) is known, then the impact of input uncertainty can be characterized by an induced

posterior distribution FU(·|zm, µ(·)). Further, the uncertainty can be quantified by a two-sided

(1−α)100% CrI [qα/2(zm, µ(·)), q1−α/2(zm, µ(·))], where

qγ(zm, µ(·))≡ inf{q : FU(q|zm, µ(·))≥ γ}

with γ = α/2,1−α/2. In our terminology, this is the perfect fidelity two-sided, equal-tail-probability

CrI. When we cannot directly evaluate FU(·|zm, µ(·)), we can obtain a Monte Carlo estimate of

this CrI, [q̂α/2(zm, µ(·)), q̂1−α/2(zm, µ(·))].

1. For b= 1 to B

(a) Generate ΘΘΘb ∼ pΘΘΘ(θθθ|zm).

(b) Compute µb = µ(ΘΘΘb).
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2. With γ = α/2,1−α/2, set q̂γ(zm, µ(·)) = µ(⌈Bγ⌉) where µ(b) denotes the bth smallest response

in the set {µb, b= 1,2, . . . ,B}.

Since µ(·) is typically unknown, a straightforward approach is to use simulation to estimate

µ(ΘΘΘb). Specifically, in Step 1b we could use n simulation replications to estimate µ(ΘΘΘb) by Ȳ (ΘΘΘb)≡

n−1
∑n

j=1 Yj(ΘΘΘb). Notice that the input processes and the simulation noise are mutually indepen-

dent. We can then approximate FU(·|zm, µ(·)) by

FȲ (ΘΘΘ)(y|zm)≡Pr{Ȳ (ΘΘΘ)≤ y|zm}

and approximate the perfect fidelity CrI for U by
[
q̄α/2(zm), q̄1−α/2(zm)

]
where

q̄γ(zm)≡ inf
{
q : FȲ (ΘΘΘ)(q|zm)≥ γ

}
with γ = α/2,1−α/2. The corresponding Monte Carlo estimate is

[̂̄qα/2(zm), ̂̄q1−α/2(zm)
]
≡
[
Ȳ(⌈Bα/2⌉), Ȳ(⌈B(1−α/2)⌉)

]
,

where Ȳ(b) denotes the bth smallest response in the set
{
Ȳb = Ȳ (ΘΘΘb), b= 1,2, . . . ,B

}
. We refer to

this as the direct simulation method. It is essentially the approach of Chick (2001) and Zouaoui

and Wilson (2003).

We estimate the input uncertainty through posterior samples {ΘΘΘ1,ΘΘΘ2, . . . ,ΘΘΘB}. The order statis-

tics of the estimated responses at these samples are used to estimate the α/2 and 1−α/2 quantiles

of the simulation response distribution. To obtain quantile estimates without substantial mean

squared errors (MSE), B needs to be large enough that observations in the tails of the distribu-

tion are likely when α = 0.1,0.05,0.01, the traditional values. A typical recommendation is that

B should be at least one thousand. Since at each sample ΘΘΘb the simulation estimator Ȳ (ΘΘΘb)

is more variable than µ(ΘΘΘb), we expect
[̂̄qα/2(zm), ̂̄q1−α/2(zm)

]
to be stochastically wider than

[q̂α/2(zm, µ(·)), q̂1−α/2(zm, µ(·))]. Given a tight computational budget, n will be small and the impact

from the simulation estimation error could be substantial.
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The direct simulation approach ignores any relationship between the mean response at different

θθθ values. However, a relationship typically exists, and this information can be exploited to make

more effective use of the simulation budget. Further, if we treat the unknown response function

µ(·) in a Bayesian manner, then we can obtain a CrI for U that correctly reflects input-parameter

and simulation uncertainty; the direct approach does not incorporate the simulation uncertainty

into the Bayesian formulation.

We will let a random function M(·) represent our uncertainty about µ(·). Our prior belief about

this function is modeled by a stationary GP prior πM . Given simulation outputs yD, the belief

is updated to a posterior distribution for M(·), denoted by pM(·|yD). The computational cost of

generating yD is N . Notice that since we assume µ(·) is continuous, both πM and pM(·|yD) are

measures on the space of continuous functions. Properties of this space depend on the correlation

structure of the GP; see Adler (2010), Theorem 3.4.1 for conditions that insure continuity. Then,

instead of using direct simulation to estimate the mean response at each sample ΘΘΘb ∼ pΘΘΘ(θθθ|zm),

we use M(ΘΘΘb) to propagate the input uncertainty to the output mean. Our formal posterior on

M(·) accounts for metamodel uncertainty, where “metamodel uncertainty” results from a finite

amount of simulation effort (design points and replications per design point). Notice that the input

processes, simulation noise and GP are mutually independent.

Within this framework, the posterior distribution for U is

FU(u|zm,yD)≡Pr{U ≤ u|zm,yD}=Pr{M(ΘΘΘ)≤ u|zm,yD}. (3)

Based on this posterior, we construct the CrI
[
qα/2(zm,yD), q1−α/2(zm,yD)

]
where

qγ(zm,yD)≡ inf {q : FU(q|zm,yD)≥ γ}

with γ = α/2,1 − α/2. Based on B posterior samples, a Monte Carlo estimate of this CrI is

[q̂α/2(zm,yD), q̂1−α/2(zm,yD)]. We describe the experiment more precisely in the next section.

Our objective in this paper is to provide a Bayesian framework that quantifies the overall uncer-

tainty about U . Furthermore, given a fixed computational budget, we want to reduce the uncer-

tainty introduced when propagating the input-parameter uncertainty to the output mean. Since
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[qα/2(zm, µ(·)), q1−α/2(zm, µ(·))] is the perfect fidelity two-sided, equal-probability CrI, we want our

estimated CrI
[
q̂α/2(zm,yD), q̂1−α/2(zm,yD)

]
to be close to it, and closer than what can be obtained

with the direct simulation method.

4. Value of Metamodeling

In this section we use a tractable M/M/∞ queue to motivate employing a metamodel instead of

direct simulation to propagate input-parameter uncertainty to the output mean. The value of this

simple setting is that it clearly illustrates how the benefits from metamodeling arise. Our Bayesian

framework to accomplish this more generally is presented in the next section.

Suppose we are interested in estimating the steady-state mean number of customers in an

M/M/∞ queue when the unknown true arrival rate is θc = 1 and the known mean service time is

5. Thus, the true mean response is µc = µ(θc) = 5θc = 5. In this stylized example each replication of

the simulation generates one observation of the number of customers in the queue in steady state,

which is Poisson(5θ).

We observe m “real-world” interarrival times zm = {z1, z2, . . . , zm}, which are actually exponen-

tially distributed with rate θc. We know the distribution is exponential but pretend that we do

not know θc. A non-informative prior is used: πΘ(θ)∝ 1/θ. Therefore, the corresponding posterior

pΘ(θ|zm) is Gamma(m,
∑m

i=1 zi) (Ng and Chick 2006). If the response surface function µ(θ) = 5θ

were known, then the induced posterior distribution for U would be Gamma(m,
∑m

i=1 zi/5). Thus,

given the real-world data, the perfect fidelity posterior distribution FU(·|zm, µ(·)) is computable

for this simple example.

4.1. Direct Simulation

We first explore using direct simulation to propagate the input uncertainty to the output mean. In

this setting, “direct simulation” means the following:

1. Observe “real-world” data zm = {z1, z2, . . . , zm} i.i.d. Exponential(θc).

2. Form the posterior distribution pΘ(θ|zm) which is Gamma(m,
∑m

i=1 zi).
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3. For b= 1 to B

(a) Generate Θb ∼Gamma(m,
∑m

i=1 zi).

(b) Generate Yj(Θb), j = 1,2, . . . , n that are i.i.d Poisson(5Θb).

(c) Form Ȳ (Θb) = n−1
∑n

j=1 Yj(Θb).

Next b

4. Use Ȳ (Θb), b= 1,2, . . . ,B, to estimate FȲ (Θ)(·|zm) as an approximation for FU(·|zm, µ(·)).

Here we will obtain the distribution FȲ (Θ)(·|zm) analytically rather than via Step 4. Let C(θ)≡

nȲ (θ) =
∑n

j=1 Yj(θ). Since Yj(Θ)|Θ∼Poisson(5Θ), we have C(Θ)|Θ∼Poisson(5nΘ). And we know

that Θ|zm ∼Gamma(m,
∑m

i=1 zi) is the posterior distribution of Θ given the data. From this we

derive the distribution of Ȳ (Θ) when n simulation replications are averaged for each posterior

sample from Gamma(m,
∑m

i=1 zi). Using standard methods we can show that

C ≡C(Θ)|zm ∼NegBin

(
m,

∑m

i=1 zi
5n+

∑m

i=1 zi

)
.

Therefore, FȲ (Θ)(·|zm) is the distribution of C/n which is computable.

We compare FU(·|zm, µ(·)) and FȲ (Θ)(·|zm) in the left panels of Figure 1, where we plot the cdfs

from 10 macro-replications with real-world sample sizes m= 10 and 100, total simulation budget

N = 1000, and B = 1000 samples from the posterior distribution of Θ. Recall that N =Bn. In each

macro-replication, we first generatem real-world data points zm, and then, conditional on the data,

we compute the cdfs rather than do simulation. The solid lines are realizations of FU(·|zm, µ(·))

and the dashed lines correspond to FȲ (Θ)(·|zm).

The solid lines are the perfect fidelity posterior distributions, given the real-world data. Their

spread indicates the effect of different possible real-world samples. As m increases from 10 to 100,

the input uncertainty decreases and FU(·|zm, µ(·)) becomes more concentrated around the true

response µ(θc) = 5.

Since FȲ (Θ)(·|zm) includes simulation variability, the difference between FȲ (Θ)(·|zm) and

FU(·|zm, µ(·)) indicates the impact of simulation estimation error. The left two plots in Figure 1

indicate that as m increases from 10 to 100, there is less impact from input uncertainty so that
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Figure 1 Ten posterior cdfs for each method corresponding to ten samples of real-world data, wherem is the quan-

tity of real-world data in each sample. Solid lines give the induced posterior FU (·|zm, µ(·)), dashed lines

give the direct simulation approximation FȲ (Θ)(·|zm) and the metamodel approximation FU (·|zm,yD)

with N = 1000.

the simulation uncertainty dominates. Notice that as m increases we need even greater simulation

effort to remain close to the perfect fidelity posterior distribution for U .

4.2. Metamodeling

Assume that we know µ(θ) = βθ for theM/M/∞ example but not the value of the slope parameter

β.

1. Observe “real-world” data zm = {z1, z2, . . . , zm} i.i.d. Exponential(θc).

2. Form the posterior distribution pΘ(θ|zm) which is Gamma(m,
∑m

i=1 zi).

3. Choose a design point θ0. Expend the entire simulation budget to obtain the outputs yD ≡

{yj(θ0), j = 1,2, . . . ,N}. Notice Yj(θ0)∼Poisson(βθ0). Without loss of generality, let θ0 = 1.
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4. For the metamodel parameter β, suppose we have a flat prior πB(β)∝ 1. By Bayes’ rule, the

posterior is

pB(β|yD)∝ πB(β) · p(yD|β)∝ β
∑N

j=1 yje−βN .

Thus, B|yD ∼Gamma(
∑N

j=1 yj +1,N).

5. For b= 1 to B

(a) Generate Θb ∼Gamma(m,
∑m

i=1 zi).

(b) Generate Bb ∼Gamma(
∑N

j=1 yj +1,N).

(c) Compute Mb =BbΘb.

Next b

6. Use Mb, b= 1,2, . . . ,B, to approximate FU(·|zm, µ(·)).

Again, we will derive the distribution of Mb analytically. Let U =BΘ. Then we have

FU(u|zm,yD) =

∫ ∞

0

Pr(Bθ≤ u|zm,yD) ·Pr(Θ= θ|zm)dθ

=

∫ ∞

0

Pr(B ≤ u/θ|zm,yD) ·
(
∑m

i=1 zi)
mθm−1e−θ

∑m
i=1 zi

(m− 1)!
dθ

=

∫ ∞

0

1− e−
u
θN

∑N
k=1 yk∑
j=0

1

j!

(u
θ
N
)j ·

(
∑m

i=1 zi)
mθm−1e−θ

∑m
i=1 zi

(m− 1)!
dθ

We compare FU(·|zm, µ(·)) and FU(·|zm,yD) in the right panels of Figure 1, where we plot the

cdfs from 10 macro-replications, real-world sample sizes m= 10 and 100, total simulation budget

N = 1000, andB = 1000 samples from the posterior distribution of Θ. The solid lines are realizations

of FU(·|zm, µ(·)) and the dashed lines correspond to FU(·|zm,yD). Figure 1 shows that given the

same simulation budget, FU(·|zm,yD) is much closer to FU(·|zm, µ(·)) than FȲ (Θ)(·|zm) is for either

quantity of real-world data. This illustrates the power of using an appropriate metamodel rather

than direct simulation.

The example reveals the following insight: Given a finite computational budget, to reduce the

impact from the simulation estimation error we should exploit prior information about µ(·) when

we build a metamodel to propagate the input uncertainty to the output mean. Our prior belief

about the output mean response surface may be as strong as a global parametric trend or as weak
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as local smoothness and continuity. As we show in Section 5, Bayesian metamodeling provides

a convenient method to combine different types of information from prior beliefs and simulation

results and it also naturally characterizes the metamodel uncertainty.

5. A Bayesian Framework

In this section we introduce a Bayesian framework that provides a posterior distribution for the

system mean response U given input-model data and a designed simulation experiment. We also

show how to sample from this posterior distribution to obtain a CrI for U . Thus, if we start with

appropriate priors for the input distribution parameters and system mean response surface, our

algorithm provides a rigorous Bayesian characterization of the impact from input and simulation

uncertainty and a CrI for U .

5.1. A Bayesian Output Metamodel

In this paper, we focus on cases where the parameters θθθ take continuous values in open or closed

intervals, e.g., location and scale parameters. We assume that the simulation mean response µ(·)

is a continuous function of θθθ and model the simulation output Y by

[Yj(θθθ)|ΘΘΘ= θθθ] = f(θθθ)⊤βββ+W (θθθ)︸ ︷︷ ︸
M(θθθ)

+ϵj(θθθ). (4)

This model encompasses three sources of uncertainty: input-parameter uncertainty ΘΘΘ; mean

response uncertainty M(θθθ); and the simulation output uncertainty ϵj(θθθ). They are assumed mutu-

ally independent. We discuss each in turn.

The input-parameter uncertainty begins with a prior distribution πΘΘΘ(θθθ) for ΘΘΘ; the uncertainty

is reduced by observing real-world data zm, as represented by the posterior distribution pΘΘΘ(θθθ|zm).

For the simulation uncertainty we use a normal approximation ϵ(θθθ)∼N(0, σ2
ϵ (θθθ)). Since the out-

put is often an average of a large number of more basic outputs, this approximation is appropriate

for many simulation settings. We are not directly interested in σ2
ϵ (θθθ).

Uncertainty about the mean response surface is modeled by a stochastic process M(·) which

includes two parts: f(θθθ)⊤βββ and W (θθθ). The trend f(θθθ)⊤βββ captures global spatial dependence, where
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f(θθθ) is a p×1 vector of known basis functions and βββ is a p×1 vector of unknown trend parameters.

The first element of f(θθθ) is usually 1. If there is no prior information about a parametric trend—

which is often the case, including our empirical study in Section 6—then we use f(θθθ)⊤βββ = β0.

Our prior on the remaining local spatial dependence is a mean-zero, second-order stationary GP,

denoted by W (·). Specifically, W (θθθ) ∼ GP(0, τ 2r(θθθ,θθθ′)), where τ 2r(θθθ,θθθ′) = Cov[W (θθθ),W (θθθ′)], so

that τ 2 is the marginal process variance and r(·, ·) is a correlation function. Based on our previous

study (Xie et al. 2010), we use the product-form Gaussian correlation function

r(θθθ,θθθ′) = exp

(
−

d∑
j=1

ϕj(θj − θ′j)
2

)
(5)

for the empirical evaluation in Section 6. Let ϕϕϕ= (ϕ1, ϕ2, . . . , ϕd) be the vector of correlation param-

eters.

If, in addition, we select the prior for βββ to be Gaussian, B ∼ N(b,ΩΩΩ) with b and ΩΩΩ having

appropriate dimensions, then the overall prior uncertainty for M(·) is a GP

M(θθθ)∼GP(f(θθθ)⊤b, f(θθθ)⊤ΩΩΩf(θθθ′)+ τ 2r(θθθ,θθθ′))

with parameters (τ 2,ϕϕϕ) (Rasmussen and Williams 2006). This flexible metamodel provides a con-

venient way to include various types of prior information about µ(·): global parametric information

can be represented by choosing the basis functions f(θθθ) and the prior over B; and local spatial

dependence information can be included through the covariance function τ 2r(·, ·).

To reduce uncertainty about M(·) we choose an experiment design consisting of pairs D ≡

{(θθθi, ni), i = 1,2, . . . , k} at which to run simulations, where (θθθi, ni) denotes the location and the

number of replications, respectively, at the ith design point. The simulation outputs at D are

yD ≡ {(y1(θθθi), y2(θθθi), . . . , yni(θθθi)); i= 1,2, . . . , k} and the sample mean at design point θθθi is ȳ(θθθi) =∑ni
j=1 yj(θθθi)/ni. Let the sample means at all k design points be ȳD = (ȳ(θθθ1), ȳ(θθθ2), . . . , ȳ(θθθk))

T . Since

the use of common random numbers is usually detrimental to prediction (Chen et al. 2012), the

outputs at different design points should be independent and the variance of ȳD is represented by

a k× k diagonal matrix C=diag{σ2
ϵ (θθθ1)/n1, σ

2
ϵ (θθθ2)/n2, . . . , σ

2
ϵ (θθθk)/nk}.
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Given the simulation results at design points yD, we update our belief about µ(·). Let F ≡

(f(θθθ1), f(θθθ2), . . . , f(θθθk)), a p× k matrix. Let ΣΣΣ be the k× k local spatial covariance matrix of the

design points with ΣΣΣij = τ 2r(θθθi,θθθj) and let ΣΣΣ(θθθ, ·) be the k × 1 local spatial covariance vector

between each design point and a fixed prediction point θθθ. If the parameters (τ 2,ϕϕϕ) and C are

known, then the posterior distribution of M(·) is the GP

Mp(θθθ)≡M(θθθ)|yD ∼GP(mp(θθθ), σ
2
p(θθθ)) (6)

where mp(·) is the minimum MSE linear unbiased predictor

mp(θθθ) = f(θθθ)⊤β̂ββ+ΣΣΣ(θθθ, ·)⊤(ΣΣΣ+C)−1(ȳD −F⊤β̂ββ), (7)

and the corresponding marginal variance is

σ2
p(θθθ) = τ 2 −ΣΣΣ(θθθ, ·)⊤(ΣΣΣ+C)−1ΣΣΣ(θθθ, ·)+ η⊤[ΩΩΩ−1 +F (ΣΣΣ+C)−1F⊤]−1η (8)

where β̂ββ = [ΩΩΩ−1 + F (ΣΣΣ + C)−1F⊤]−1[F (ΣΣΣ + C)−1ȳD +ΩΩΩ−1b] and η = f(θθθ) − F (ΣΣΣ + C)−1ΣΣΣ(θθθ, ·)

(Rasmussen and Williams 2006). The posterior covariance structure can also be expressed, but it

is messy and not needed in our work.

This metamodel includes some commonly used predictors as special cases. If we put a point

mass prior on τ 2 = 0, then it becomes a parametric regression model on the space spanned by the

basis functions f(·). If, on the other hand, ΩΩΩ−1 is a matrix of zeros, which is equivalent to no prior

information over the global trend, then the posterior for M(·) becomes the stochastic kriging (SK)

metamodel of Ankenman et al. (2010).

By combining the effect of input-parameter and metamodel uncertainty, we can derive the pos-

terior distribution of U =M(ΘΘΘ). Denote the support of pΘΘΘ(θθθ|zm) by A. Therefore, conditional on

zm and yD, the posterior distribution of U is

FU(u|zm,yD) = Pr{U ≤ u|zm,yD}

=

∫
A

Pr{M(ΘΘΘ)≤ u|ΘΘΘ= θθθ,yD}pΘΘΘ(θθθ|zm)dθθθ

=

∫
A

Φ

(
u−mp(θθθ)

σp(θθθ)

)
pΘΘΘ(θθθ|zm)dθθθ (9)
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where Φ(·) denotes the cdf of the standard normal distribution.

Since the parameters (τ 2,ϕϕϕ) and C are unknown, maximum likelihood estimates are typically

used for prediction, and the sample variance is used as an estimate of the simulation variance at

design points C; see Ankenman et al. (2010). By inserting these into Equations (7) and (8), we can

obtain the estimated mean m̂p(θθθ) and variance σ̂2
p(θθθ). The estimated posterior ofM(θθθ) is Gaussian

with mean m̂p(θθθ) and variance σ̂2
p(θθθ). Then, by inserting these into Equation (9), we can get the

estimated posterior distribution of U . In the next section we sample from this posterior distribution

to estimate a two-sided, equal-tail-probability (1− α)100% CrI [q̂α/2(zm,yD), q̂1−α/2(zm,yD)] for

U .

5.2. Procedure to Construct a CrI

Typically we cannot evaluate (9); but sampling from it is relatively easy:

0. Provide priors on ΘΘΘ and B.

1. Identify a design space E of θθθ values over which to fit the metamodel. This is done empirically,

by finding the smallest ellipsoid E that covers a large percentage of random samples from the

posterior distribution pΘΘΘ(θθθ|zm) using the method of Barton et al. (2014). The design space is driven

by pΘΘΘ(θθθ|zm) because the purpose of the metamodel is to map values of θθθ into a mean simulation

response, and the likelihood of these values is governed by pΘΘΘ(θθθ|zm). As the amount of real-world

data increases, the posterior pΘΘΘ(θθθ|zm) becomes more concentrated and therefore E shrinks as it

should.

2. To obtain an experiment design D = {(θθθi, ni), i= 1,2, . . . , k}, use a Latin hypercube sample

to embed k design points into the design space E, and assign equal replications to these points to

exhaust N . The choice of k is addressed in Barton et al. (2014), and the use of equal replications

is the only sensible allocation in a one-stage design.

3. Run simulations at the design points to obtain outputs yD. Compute the sample averages

ȳ(θθθi) and sample variances s2(θθθi) of the simulation outputs, for i= 1,2, . . . , k. Fit the metamodel to

calculate the posterior mean m̂p(θθθ) and the variance σ̂2
p(θθθ) using {ȳ(θθθi), s2(θθθi),θθθi, i= 1,2, . . . , k};

see Ankenman et al. (2010).
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4. For b= 1 to B

(a) Sample ΘΘΘb ∼ pΘΘΘ(θθθ|zm).

(b) Sample Mb ∼N
(
m̂p(ΘΘΘb), σ̂

2
p(ΘΘΘb)

)
.

Next b

5. Report an estimated CrI:

[
q̂α/2(zm,yD), q̂1−α/2(zm,yD)

]
≡
[
M(⌈B α

2 ⌉),M(⌈B(1−α
2 )⌉)

]
(10)

where M(1) ≤M(2) ≤ · · · ≤M(B) are the sorted values.

Step 4 generates B samples {M1,M2, . . . ,MB} from the posterior distribution of U according to

Equation (9), providing the estimated CrI in (10) whose precision improves as B increases. Beyond

the N simulation replications, the additional computational burden depends on how difficult it is

to execute Step 4a. When we use standard parametric families and conjugate or non-informative

priors—as in the next section—sampling from the posteriors is typically fast. Otherwise, we need

to resort to some computational approaches such as MCMC to generate samples from pΘΘΘ(θθθ|zm).

Notice that the sampling procedure in Step 4 is similar to that used for estimating a conditional

expectation in Lee and Glynn (1999) and Steckley and Henderson (2003).

In this paper, we use a Monte Carlo approach to estimate percentiles of the posterior distribution

FU(·|zm,yD). Other methods, such as randomized quasi-Monte Carlo, might also be employed

for the integration in Equation (9) and could yield smaller error (Lemieux 2009). However, these

methods may lose their effectiveness when the dimension of the integral becomes large, as it often

will (Caflisch 1998). For example, the critical care facility simulated in Section 6, a relatively

small system, already has θθθ with dimension equal to 12. Further, quasi-Monte Carlo is not as

versatile as Monte Carlo, and this may be an issue when the posterior pΘΘΘ(θθθ|zm) is not a standard

distribution and we need to use computational methods such as MCMC to generate samples from

ΘΘΘ. The combination of quasi-Monte Carlo with MCMC for general situations is still under study;

see Caflisch (1998) and Owen and Tribble (2005).
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The estimated CrI in Equation (10) characterizes the impact from both input and metamodel

uncertainty. If desired, the variance decomposition in Xie et al. (2014) can be used to assess their

relative contributions and guide a decision maker as to where to put more effort: If the input

uncertainty dominates, then get more real-world data (if possible); if the metamodel uncertainty

dominates, then run more simulations; if neither dominates, then both activities are necessary to

reduce the overall uncertainty about U .

Theorem 1. Suppose the parameters θθθ take continuous values and the simulation mean response

surface µ(·) is a continuous function of θθθ. Suppose also that the input processes Zℓj, the simulation

noise ϵj(θθθ) and GP M(θθθ) are mutually independent, and the parameters (τ 2,ϕϕϕ) and C are known.

Then, given zm and yD,

1. the posterior distribution for U is continuous;

2. as B→∞, the empirical distribution based on samples {Mb, b= 1,2, . . . ,B} provides a uni-

formly consistent estimator of the posterior distribution of U ; and

3. limB→∞[q̂α/2(zm,yD), q̂1−α/2(zm,yD)]
a.s.
= [qα/2(zm,yD), q1−α/2(zm,yD)].

Proof. Since FU(u|zm,yD) is a weighted sum of normal distributions by Equation (9), the pos-

terior distribution for U is continuous. By the Glivenko-Cantelli Theorem in Van Der Vaart (1998),

the empirical distribution of {M1,M2, . . . ,MB} with Mb
i.i.d.∼ FU(·|zm,yD) converges uniformly to

FU(·|zm,yD) almost surely (a.s). Since FU(u|zm,yD) is continuous, by applying Lemma 21.2 in Van

Der Vaart (1998), as B→∞ the quantile estimate q̂γ(zm,yD)
a.s.→ qγ(zm,yD) for γ = α/2,1−α/2.

�

Remark: In the result above we assumed that the parameters (τ 2,ϕϕϕ,C) are known; this is a

common assumption in the kriging literature because including the effect of parameter estimation

error makes the posterior distribution of M(·) mathematically and computationally intractable.

To apply our method in practice (including the empirical study in Section 6) we form the plug-in
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estimators obtained by inserting τ̂ 2, ϕ̂ϕϕ and Ĉ into the relevant expressions. This, too, is common

practice.

Ignoring the error in (τ 2,ϕϕϕ,C) leaves open the possibility that we could underestimate the

metamodel uncertainty. However, based on our experience with SK this will not be the case provided

we have an adequate experiment design, such as the one developed in Barton et al. (2014) which we

use here. A similar observation about parameter insensitivity in the presence of a good experiment

design was made by Gano et al. (2006).

Nevertheless, if one is concerned then it is possible to apply diagnostic tests such as those

described in Bastos and O’Hagan (2009) and Meckesheimer et al. (2002) to evaluate how well the

fitted Gaussian process represents the metamodel uncertainty. Yet another approach is to start with

prior distributions on the hyperparameters (τ 2,ϕϕϕ,C) and thereby include them in the hierarchical

Bayesian framework. However, this necessitates a computationally expensive simulation to evaluate

the posterior distribution in Step 4b. As our results in the next section illustrate, we have not

found this to be necessary.

6. Empirical Study

In this section we use the critical care facility described in Ng and Chick (2001) to illustrate the

performance of our Bayesian assessment of uncertainty. The structure of the facility is shown in

Figure 2. The performance measure is the steady-state expected number of patients per day that

are denied entry to the facility. Patients arrive to either the Intensive Care Unit (ICU) or Coronary

Care Unit (CCU), and then either exit the facility or go to Intermediate Care (IC), which is a

combination of intermediate ICU (IICU) and intermediate CCU (ICCU). Each unit has a finite

number of beds. If a patient cannot get an ICU or CCU bed, then they are turned away. If a

patient is supposed to move to IC but there is no bed available, then they stay put; when a bed in

IC becomes available, the first patient on the waiting list moves in.

The critical care facility includes six input processes. The arrival process is Poisson with arrival

rate λ= 3.3/day (exponentially distributed interarrival times). The stay durations at all four units
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Figure 2 Critical care facility.

follow lognormal distributions. Specifically, the ICU stay duration has mean 3.4 days and standard

deviation 3.5 days; the CCU stay duration has mean 3.8 days and standard deviation 1.6 days;

the IICU stay duration has mean 15.0 days and standard deviation 7.0 days; and the ICCU stay

duration has mean 17.0 days and standard deviation 3.0 days. Recall that the density function of

the lognormal is

f(x|ζ,σ2) =
1

x
√
2πσ

exp

[
−(lnx− ζ)2

2σ2

]
.

There is a one-to-one mapping between input parameters (ζ,σ2) and the first two moments of the

stay time (ζL, σ
2
L): mean ζL = eζ+σ

2/2 and variance σ2
L = e2ζ+σ

2
(eσ

2 − 1). The routing probabilities

follow a multinomial distribution with parameters p1 = 0.2, p2 = 0.55, p3 = 0.2 and p4 = 0.05. Thus,

θθθ= (λ, ζICU, σ
2
ICU, ζCCU, σ

2
CCU, ζIICU, σ

2
IICU, ζICCU, σ

2
ICCU, p1, p2, p3, p4)

⊤

and θθθc is this vector with each element taking the value listed above. Later, when we fit a metamodel

for µ(θθθ), we drop p2 since it equals 1− p1 − p3 − p4 and is redundant. The number of beds is 14 in

ICU, 5 in CCU and 16 in IC; the IICU and ICCU share the same bed resources.

The goal is to estimate the remaining uncertainty about U , the steady-state expected number of

patients per day denied entry, after accounting for all available information: prior and real-world
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data on the inputs, and prior and simulation data on the response. To evaluate our method, we

pretend that the 12 input-model parameters are unknown and estimated from m i.i.d. observations

from each of the six true distributions; this represents obtaining “real-world data.”

For the interarrival-time process we use the non-informative prior πΘ(λ)∝ 1/λ. Given m interar-

rival times z1,m = {z1,1, z1,2, . . . , z1,m}, the posterior distribution pΘ(λ|z1,m) is Gamma(ψ =m,δ =∑m

i=1 z1,i), where ψ and δ denote the shape and rate parameters.

For the stay time at ICU we use a non-informative prior πΘΘΘ(ζ, ν) ∝ 1/ν, where (ζ, ν) denotes

the mean and precision ν = 1/σ2 of the logarithm of stay times. Given m real-world observations

z2,m = {z2,1, z2,2, . . . , z2,m}, the posterior is

pΘΘΘ(ζ, ν|z2,m)∝
(mν)1/2√

2π
exp

[
−mν

2
(ζ − ζm)

2
]

︸ ︷︷ ︸
p(ζ|ν,z2,m)=N(ζm,1/(mν))

· δψm
m

Γ(ψm)
νψm−1 exp(−δmν)︸ ︷︷ ︸

p(ν|z2,m)=Gamma(ψm,δm)

(11)

where ζm =
∑m

i=1 ln(z2,i)/m, ψm = (m − 1)/2 and δm =
∑m

i=1[ln(z2,i) −
∑m

i=1 ln(z2,i)/m]2/2 (Ng

and Chick 2001). Thus, based on Equation (11), we can generate samples from the posterior

pΘΘΘ(ζ, ν|z2,m) as follows:

1. Generate ν from Gamma(ψm, δm);

2. Conditional on ν, generate ζ from N(ζm,1/(mν)).

Similarly, we can derive the posterior distributions for the stay-time parameters at the remaining

units.

For the routing process, the probabilities p1, p2, p3, p4 are estimated from the routing decisions

from m patients z6,m = {z6,1, z6,2, . . . , z6,m}. The cumulative numbers of patients choosing the four

different routes are denoted by x1, x2, x3, x4 with xj =
∑m

i=1 I(z6,i = j) and
∑4

j=1 xj =m, where I(·) is

the indicator function. With a flat prior, the posterior pΘΘΘ(p1, p2, p3, p4|z6,m) follows a Dirichlet(x1+

1, x2 +1, x3 +1, x4 +1) distribution (Gelman et al. 2004).

The simulation of the critical care facility starts with an empty system. The first 500 days of

start-up were discarded as transient (this is sufficient to avoid bias in our study). We consider cases

where the computational budget is tight and the simulation estimation uncertainty is significant,
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Table 1 The maximum absolute difference relative to the results obtained by using a run length equal to

106 days.

run length 103 104 105

m= 50 0.245 0.05 0.02

m= 100 0.191 0.05 0.019

m= 500 0.185 0.049 0.016

and cases with low simulation uncertainty. To accomplish the former, we use a short run length for

each replication: 10 days after the warm up. For the latter we use a run length of 500 days after

the warm up.

Ideally we would compare our CrI for U to the perfect fidelity CrI [qα/2(zm, µ(·)),

q1−α/2(zm, µ(·))], which requires knowledge of µ(·). Since the true response surface of the critical

care facility is not known, we instead used very long simulation runs to estimate the system mean

response for each sample ΘΘΘ∼ pΘΘΘ(θθθ|zm). To find a run length that is adequate to estimate µ(θθθ), we

did a side experiment: We consider real-world sample sizes ofm= 50,100,500. For each sample size,

we ran 10 macro-replications, drawing an independent real-world sample from the true distributions

in each. Given this data, we computed the posteriors of the input model parameters, drew 10 sam-

ples from each posterior, and recorded estimates of the mean response obtained using run lengths

of 103,104,105 and 106 days. The maximum relative difference for each run length compared to the

results obtained using 106 is recorded in Table 1. A run length of 104 achieved a maximum relative

error of 0.05. Considering both the precision and computational cost, we used run length 104 days

to estimate the system mean response and further to obtain [q̂α/2(zm, µ(·)), q̂1−α/2(zm, µ(·))] for

comparison.

We compare our method to direct simulation and to the perfect fidelity CrI. To do so we ran

1000 macro-replications of the entire experiment. In each macro-replication, we drew m real-world

observations from each input model and computed the posteriors of the input-model parame-

ters pΘΘΘ(θθθ|zm). To closely approximate the perfect fidelity CrI, we then generated B = 1000 pos-
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terior samples from pΘΘΘ(θθθ|zm) and estimated µ(θθθ) using a run length of 104 days; this yielded

[q̂α/2(zm, µ(·)), q̂1−α/2(zm, µ(·))] for that macro-replication.

For direct simulation and our Bayesian approach, we set the run lengths for each simulation

replication be 10 or 500 days beyond the warm-up period. A total computational budget of N =

2000 replications was expended by each method. For our Bayesian method, the number of design

points used to build the metamodel was k = 20, implying n = 100 replications per design point.

For a 12-dimensional problem k = 20 is a very small design. We used B = 1000 posterior samples

to form the CrI. For direct simulation we also used B = 1000 posterior samples, but allocated

n= 2000/1000 = 2 replications to each.

The mean and standard deviation (SD) of q̂Xα/2, q̂
X
1−α/2 and the estimated posterior probability

content in [q̂Xα/2, q̂
X
1−α/2] were obtained for m = 50,100,500 and α = 0.05; they are recorded in

Tables 2–3, where X denotes the method used to obtain the estimate: perfect fidelity, direct simu-

lation or metamodel. The top half of Tables 2–3 gives the results with run length 10 days, implying

large simulation estimation uncertainty. The CrI obtained by our Bayesian approach [q̂α/2(zm,yD),

q̂1−α/2(zm,yD)] is very close to [q̂α/2(zm, µ(·)), q̂1−α/2(zm, µ(·))]. However, as m increases, the

difference between direct simulation’s [̂̄qα/2(zm), ̂̄q1−α/2(zm)] and [q̂α/2(zm, µ(·)), q̂1−α/2(zm, µ(·))]

increases, and the interval obtained by direct simulation is too wide; this is because simulation

uncertainty is overwhelming input-parameter uncertainty. On the other hand, since the design space

for the GP metamodel is the smallest ellipsoid covering the most likely samples from pΘΘΘ(θθθ|zm),

the size of this space decreases as the amount of real-world data m increases. Thus, the meta-

model uncertainty decreases. Table 3 shows that asm increases, the error |q̂γ(zm,yD)− q̂γ(zm, µ(·))|

for γ = α/2,1− α/2 tends to decrease. As a larger mean response is typically associated with a

larger estimator variance, the estimators of the CrI upper bounds are more variable than the lower

bounds.

Since FU(·|zm, µ(·)) is unknown, we use the percentage of precisely estimated mean responses

contained in the intervals [q̂α/2(zm,yD), q̂1−α/2(zm,yD)] and [̂̄qα/2(zm), ̂̄q1−α/2(zm)] to estimate the
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probability content. Tables 2–3 show that the probability content of [q̂α/2(zm,yD), q̂1−α/2(zm,yD)]

is close to the nominal value 1−α. However, under the same computational budget, the intervals

[̂̄qα/2(zm), ̂̄q1−α/2(zm)] obtained by direct simulation are much wider and they typically have obvi-

ous over-coverage. Note that “over-coverage” here means the probability content of FU(·|zm, µ(·))

contained in the interval is larger than 1−α; this is different from CI coverage. The over-coverage

of [̂̄qα/2(zm), ̂̄q1−α/2(zm)] becomes even worse when m increases and input uncertainty declines.

This indicates that for smaller input uncertainty, we need a larger computational budget for direct

simulation so that the impact from the simulation estimation uncertainty becomes negligible.

The bottom half of Tables 2–3 gives the results with run length 500 days. The interval [̂̄qα/2(zm),

̂̄q1−α/2(zm)] is very close to [q̂α/2(zm, µ(·)), q̂1−α/2(zm, µ(·))]. This indicates that the simulation

estimation error is negligible. From these results one might conclude that when the simulation

budget is substantial, then direct simulation is slightly better than using a metamodel. However,

for consistency we retained a small experiment design of only k = 20 design points even with the

larger budget and smaller variance outputs; metamodel error would be reduced even further by

using more design points.

The finite-sample performance in Tables 2–3 demonstrates that when there is a tight compu-

tational budget, our Bayesian approach reduces the influence of simulation estimation error and

provides a CrI much closer to [qα/2(zm, µ(·)), q1−α/2(zm, µ(·))] than direct simulation; when there

is sufficient computational budget, both direct simulation and our approach provide CrIs close to

[qα/2(zm, µ(·)), q1−α/2(zm, µ(·))].

7. Conclusions

When we use simulation to evaluate the performance of a stochastic system, there is input and

simulation uncertainty in the performance estimates. In this paper, we propose a fully Bayesian

framework to quantify the impact from both sources of uncertainty via a CrI for the simulation

mean response when evaluated at the true, correct parametric input-model parameters. We do this

by propagating the posterior uncertainty about the input-model parameters to the output mean
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Table 2 CrI quantile estimates when m= 50,100,500 and α= 0.05, where p̂Xα denotes the estimated probability

content of FU (·|zm, µ(·)) in the interval [q̂Xα/2, q̂
X
1−α/2].

m= 50, run length=10 q̂Xα/2 mean q̂Xα/2 SD q̂X1−α/2 mean q̂X1−α/2 SD p̂Xα mean p̂Xα SD

estimated perfect fidelity 1.02 0.4 2.97 0.64

direct simulation 0.75 0.37 3.32 0.64 0.99 0.004

GP metamodel 0.94 0.39 2.94 0.64 0.952 0.019

m= 100, run length=10 q̂Xα/2 mean q̂Xα/2 SD q̂X1−α/2 mean q̂X1−α/2 SD p̂Xα mean p̂Xα SD

estimated perfect fidelity 1.26 0.29 2.62 0.41

direct simulation 0.89 0.27 3.05 0.42 0.998 0.002

GP metamodel 1.21 0.29 2.61 0.41 0.951 0.019

m= 500, run length=10 q̂Xα/2 mean q̂Xα/2 SD q̂X1−α/2 mean q̂X1−α/2 SD p̂Xα mean p̂Xα SD

estimated perfect fidelity 1.63 0.14 2.23 0.16

direct simulation 1.06 0.13 2.86 0.18 1 0

GP metamodel 1.61 0.15 2.23 0.17 0.947 0.027

m= 50, run length=500 q̂Xα/2 mean q̂Xα/2 SD q̂X1−α/2 mean q̂X1−α/2 SD p̂Xα mean p̂Xα SD

estimated perfect fidelity 1 0.39 2.94 0.63

direct simulation 0.99 0.39 2.95 0.63 0.951 0.003

GP metamodel 0.93 0.38 2.93 0.63 0.953 0.017

m= 100, run length=500 q̂Xα/2 mean q̂Xα/2 SD q̂X1−α/2 mean q̂X1−α/2 SD p̂Xα mean p̂Xα SD

estimated perfect fidelity 1.25 0.29 2.61 0.41

direct simulation 1.24 0.29 2.62 0.41 0.952 0.004

GP metamodel 1.22 0.29 2.6 0.41 0.95 0.018

m= 500, run length=500 q̂Xα/2 mean q̂Xα/2 SD q̂X1−α/2 mean q̂X1−α/2 SD p̂Xα mean p̂Xα SD

estimated perfect fidelity 1.63 0.14 2.24 0.17

direct simulation 1.61 0.14 2.26 0.17 0.964 0.005

GP metamodel 1.62 0.14 2.23 0.17 0.948 0.017



Xie, Nelson, and Barton: A Bayesian Framework for Quantifying Uncertainty in Stochastic Simulation
Article submitted to Operations Research; manuscript no. OPRE-2013-10-562 31

Table 3 Errors of CrI quantile estimates when m= 50,100,500 and α= 0.05, where eXqγ ≡ q̂Xγ − q̂γ with

q̂γ = q̂γ(zm, µ(·)) and γ = α/2,1−α/2 and eXpα ≡ p̂Xα − (1−α).

m= 50, run length=10 eXqα/2
mean eXqα/2

SD eXq1−α/2
mean eXq1−α/2

SD eXpα mean eXpα SD

direct simulation -0.27 0.06 0.35 0.07 0.04 0.004

GP metamodel -0.08 0.09 -0.02 0.12 0.002 0.019

m= 100, run length=10 eXqα/2
mean eXqα/2

SD eXq1−α/2
mean eXq1−α/2

SD eXpα mean eXpα SD

direct simulation -0.37 0.05 0.44 0.06 0.048 0.002

GP metamodel -0.05 0.06 -0.01 0.08 0.001 0.019

m= 500, run length=10 eXqα/2
mean eXqα/2

SD eXq1−α/2
mean eXq1−α/2

SD eXpα mean eXpα SD

direct simulation -0.57 0.04 0.62 0.04 0.05 0

GP metamodel -0.02 0.04 0 0.04 -0.003 0.027

m= 50, run length=500 eXqα/2
mean eXqα/2

SD eXq1−α/2
mean eXq1−α/2

SD eXpα mean eXpα SD

direct simulation -0.01 0.02 0.01 0.02 0.001 0.003

GP metamodel -0.07 0.08 -0.02 0.11 0.003 0.017

m= 100, run length=500 eXqα/2
mean eXqα/2

SD eXq1−α/2
mean eXq1−α/2

SD eXpα mean eXpα SD

direct simulation -0.01 0.02 0.01 0.02 0.002 0.004

GP metamodel -0.04 0.05 -0.01 0.07 0 0.018

m= 500, run length=500 eXqα/2
mean eXqα/2

SD eXq1−α/2
mean eXq1−α/2

SD eXpα mean eXpα SD

direct simulation -0.02 0.01 0.02 0.01 0.014 0.005

GP metamodel -0.006 0.02 -0.008 0.03 -0.004 0.017

via a GP which characterizes the posterior information about the mean response as a function of

the input models given a set of simulation experiments. A flexible metamodel allows us to include

various types of prior information about the simulation mean, and this reduces the influence of

simulation estimation error. Our Bayesian framework provides a way to sample from the posterior
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distribution for the system mean response U from which we can produce an asymptotically valid

CrI as the number of posterior samples goes to infinity.

An empirical study using a critical care facility demonstrates that when the computational bud-

get is tight, our Bayesian framework makes effective use of the simulation budget and reduces the

uncertainty introduced when propagating the input uncertainty to output mean; when there is suf-

ficient computational budget, then both direct simulation and our approach provide intervals that

are close to the perfect fidelity CrI. In addition, our approach has good finite-sample performance

even when there are several input models including both discrete and continuous distributions.

We have provided a provably valid Bayesian framework to quantify uncertainty in stochastic sim-

ulation problems with univariate, independent, parametric input models from known distribution

families. Useful extensions of our framework that we will pursue include multivariate input models,

input-model-family uncertainty, and nonparametric input models. Some steps in these directions

are provided by Biller and Corlu (2011), who developed an approach to quantify the uncertainty of

multivariate input models; Chick (2001) and Zouaoui and Wilson (2004), who accounted for both

parameter and input-model-family uncertainty; and Song and Nelson (2013) who considered input

uncertainty when using the empirical distribution of the real-world data.

Endnotes

1. We use θθθc to denote the unknown true parameters; ΘΘΘ to denote a random variable representing

our belief about θθθc; and θθθ to denote a generic value or function argument.
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