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The spiral-down effect occurs when incorrect assumptions about customer behavior cause high-fare ticket sales, protection
levels, and revenues to systematically decrease over time. If an airline decides how many seats to protect for sale at a
high fare based on past high-fare sales, while neglecting to account for the fact that availability of low-fare tickets will
reduce high-fare sales, then high-fare sales will decrease, resulting in lower future estimates of high-fare demand. This
subsequently yields lower protection levels for high-fare tickets, greater availability of low-fare tickets, and even lower
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to analyze the process by which airlines forecast demand and optimize booking controls over a sequence of flights. Within
the framework, we give conditions under which spiral down occurs.
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1. Introduction
Revenue management involves the application of quantita-
tive techniques to improve profits by controlling the prices
and availabilities of various products that are produced
with scarce resources. The best-known revenue manage-
ment application occurs in the airline industry, where the
products are tickets (for itineraries) and the resources are
seats on flights. Over the past decade, both practitioners
and academics have helped to develop a considerable and
rapidly growing literature on revenue management. Much
of this work is reviewed in Talluri and van Ryzin (2004b),
Bitran and Caldentey (2003), and Boyd and Bilegan (2003).
In almost every instance of published work, the starting

point of the analysis is some set of assumptions regard-
ing an underlying stochastic or deterministic demand pro-
cess. With these assumptions in hand (and assumed to be
correct), most papers proceed to analyze the model and
derive policies that are good or optimal for the formulated
model. In the airline context, such a policy usually pre-
scribes which types of tickets should be available at which
times, and under which circumstances.
However, the situation faced by revenue managers in

practice is different in at least two key regards: Assump-
tions may be incorrect, and model parameters are not
known. There are a variety of reasons why a revenue man-
ager may use a model with incorrect assumptions. Among

these are (a) availability of intuitively pleasing decision
rules—such as the Littlewood rule considered herein,
(b) simplification for analytical tractability, (c) availability
of forecasting and optimization software, and (d) lack of
understanding of the problem. Moreover, a revenue man-
ager may be aware of a modeling error, but may not fully
comprehend its consequences. We are specifically inter-
ested in the consequences of using incorrect models, espe-
cially if the parameters of such models are estimated with
available data. Even if the data are good (say correctly
untruncated demand data) and a good forecasting method
is used, the problem remains that parameters are being esti-
mated for an inappropriate model, and consequently there
often do not exist parameter values that will make the rev-
enue manager’s model correct.
In revenue management practice, there is a process

whereby controls (e.g., protection levels) are enacted, sales
occur, flights depart, new data are observed, and parameter
estimates are updated. The updated estimates are then used
to choose new controls for the next set of flights, and so on.
An important question is: What can happen in such a fore-
casting and optimization process if the revenue manager
uses a good forecasting method, but the chosen controls are
based on erroneous assumptions?
As an example, suppose that there are two classes of

tickets and that customers are flexible—that is, they are
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willing to buy either low-fare or high-fare tickets, but they
will buy the low-fare tickets if both are available. Suppose
also that the airline chooses how many seats to reserve
for high-fare tickets (i.e., the protection level) based on
past sales of high-fare tickets, while neglecting to account
for the fact that availability of low-fare tickets will reduce
sales for high-fare tickets. Then, if more low-fare tickets
are made available, low-fare sales will increase and high-
fare sales will decrease, resulting in lower future estimates
of high-fare demand, and subsequently lower protection
levels for high-fare tickets and greater availability of low-
fare tickets. The pattern continues, resulting in a downward
spiral of high-fare sales, protection levels, and revenues.
It is of concern that the flawed model produces subopti-
mal controls (which is no surprise), but of even greater
concern is the phenomenon that the controls can become
systematically worse as the forecasting and optimization
process continues. Boyd et al. (2001) have used simulation
to demonstrate this spiral-down effect, which is known to
some practitioners. However, to our knowledge, this phe-
nomenon has not been studied in the literature, although
Kuhlmann (2004, pp. 379–380) alluded to the underlying
issue with his remark that

Although airlines had spent considerable sums making fore-
casting, allocation, and other elements of revenue manage-
ment more precise, they failed to deal with some of the
inherent flawed assumptions of revenue management. For
instance, if a carrier sold 50 B-class passengers on any given
day, that was then established as the historical demand for
B class, ignoring the fact that the absence of availability of
other classes might have skewed the result.

In this paper, we introduce a generic framework for the
study of iterative data collection-forecasting-optimization
processes. We begin by formalizing what it means for
a forecasting method to be good, even if the method is
used to estimate parameters for an incorrect model. Work-
ing within our framework, we study a process in which a
revenue manager sets protection levels for a sequence of
flights using the Littlewood rule, with its inputs estimated
by various good forecasting methods applied to observed
data. Underlying his use of the Littlewood rule is the rev-
enue manager’s reliance on a model in which one of these
inputs, “the probability distribution of high-fare demand,”
is assumed to be exogenously determined, i.e., unaffected
by the chosen protection levels. However, the observed his-
torical data do depend on the past values of the protection
levels, and this dependence is not captured properly by the
revenue manager’s model. That is, the revenue manager
makes a modeling error.
We analyze the dynamic behavior of the Littlewood rule

because it is widely used in practice and forms the basis of
much revenue management software. The rule also allows
for relatively tractable dynamics within our general frame-
work. In addition, the observation that models founded on
incorrect assumptions can lead to a systematic deteriora-
tion of performance remains relevant in a broader context,

especially in light of the large number of models that do
not accurately describe consumer behavior.
Our main results show that in many cases the protection

levels converge to a value, in some cases to zero. The limit
of the sequence of protection levels is a fixed point of a cer-
tain function. As a result, the data observed by the revenue
manager seem consistent with his incorrect model, possibly
reinforcing his belief in the model. Such a limit point is
often suboptimal (in terms of the corresponding expected
revenue), and in many cases it is much worse than the sub-
optimal decision that would have resulted if the revenue
manager had not sought to improve the parameter estimates
of the incorrect model with the observed data. This indi-
cates that if one starts with a flawed model, then attempts
to refine parameter estimates may be counterproductive.
Some additional insights are obtained from our analysis.

The first one is that, contrary to what may be expected, the
spiral-down phenomenon may happen with or without data
truncation. As we show, the phenomenon may occur even
if all customers can be observed after all tickets have been
sold. We also show that the problem is not forecast vari-
ability or the quality of the forecast method. These findings
emphasize the variety of situations in which spiral down
can occur, and demonstrate that the real issue is the mod-
eling error. Another insight is that the relation between the
distribution of “flexible” customers—i.e., customers who
are willing to buy a high-fare ticket but prefer a low-fare
one—and the ratio of the fares appears to be crucial to
determine whether the protection levels spiral down or up
or neither.
Processes that involve both estimation and control have

been studied in various contexts. A large part of the litera-
ture on stochastic control addresses simultaneous parameter
estimation and control. It is well known that the so-called
parameter identifiability problem can lead to convergence
of parameter estimates to incorrect values that are con-
sistent with the observed data; for example, see Kumar
and Varaiya (1986) and Bertsekas (2000). Van Ryzin
and McGill (2000) model the process whereby an airline
chooses revenue management controls for a sequence of
flights with unknown model parameters. Similar to most
published revenue management work, their model assumes
that there is an exogenous demand for tickets of different
fare classes, that is, they do not consider the possibility of
misspecification in the revenue manager’s model. In §5.3,
we consider the consequences of modeling error in a simi-
lar setting. There are also publications that propose inven-
tory control mechanisms for problems with unknown or
partially specified demand distributions. The basic focus is
similar to that of van Ryzin and McGill (2000) insomuch as
techniques are proposed to solve classes of problems, but
the consequences of incorrect modeling assumptions are
not investigated. For examples and references, see Burnetas
and Smith (2000) and Carvalho and Puterman (2003).
Some of the literature on game theory and bounded ratio-

nality studies games in which the players learn about prob-
lem parameters and/or the actions of other players over
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multiple stages of the game; for example, see Fudenberg
and Levine (1998). Although Kreps (1990, p. 155) men-
tions the possibility of model misspecification by players in
games, very little work in the literature incorporates such
modeling error, that is, studies the consequences of param-
eter estimation and control with misspecified models for
which there do not exist parameter values that will make
the models correct.
Research that does consider effects of modeling error

includes that of Cachon and Kok (2003), who study the
issue in the context of a newsvendor problem. In their set-
ting, the newsvendor uses an incorrect optimization model,
namely, the basic newsvendor model, with an input param-
eter called “the salvage value,” to choose the initial inven-
tory, and the newsvendor attempts to estimate the value of
this input parameter with observed data. They study the
newsvendor’s estimates and chosen controls in the context
of a model (the correct model) in which a clearance price
is determined at the end of the primary selling season as
a function of the remaining inventory at the end of the
primary selling season. Other related work includes that
of Balakrishnan et al. (2004), who study a deterministic
inventory system where the demand rate depends on the
inventory level. They consider a situation where orders are
placed according to the standard EOQ formula with the
demand rate estimated from data in a way that does not
properly account for the dependence between demand rate
and inventory level. Bertsekas and Tsitsiklis (1996) study
the approximation of dynamic programming value func-
tions with parameterized functions. In many cases, there are
no parameter values that will make the approximate func-
tion equal to the value function. In their §8.3, they give an
example of a controller for the game of Tetris based on such
a misspecified approximation, in which the performance of
the controller deteriorates as it attempts to improve the esti-
mates of the parameter values and the policies based on
these parameter estimates.
This paper is organized as follows. Section 2 describes

the framework that we use to study the revenue manage-
ment forecasting and optimization process, including the
data observed by the revenue manager, the quantities fore-
casted by the revenue manager, the method used by the
revenue manager to choose controls, and how these aspects
fit together in the process dynamics. Section 3 provides
a simple deterministic example of spiral-down behavior.
Section 4 defines what is regarded as a good forecast-
ing method, and provides examples. Section 5 analyzes
spiral-down behavior under three forecasting methods. Sec-
tion 6 discusses how the results in previous sections can be
extended. Section 7 establishes general results that relate
the long-run behavior of forecasts and protection levels,
giving additional conditions for spiral down. Section 8
briefly discusses what to do about the spiral-down effect,
and resulting research questions. All proofs are given either
in the appendix at the end of the paper or in the online
appendix, which is available at http://or.pubs.informs.org/
Pages/collect.html.

2. The Framework
Consider a single flight with c seats, and suppose that there
are Class-1 and Class-2 tickets for sale. The price of a
Class-i ticket is fi, where f1 > f2 > 0. Suppose also that
there is a revenue manager, whose job it is to control avail-
ability of the tickets to maximize the airline’s expected rev-
enue. Below, we describe a setup in which (a) the revenue
manager determines booking policies using a model that is
widely used in the airline industry that assumes that there
is an exogenous random demand for each class of ticket,
and (b) customers decide what to purchase based on their
own preferences as well as the available alternatives, and
hence there is actually no such thing as exogenous demand
for each class of ticket.

2.1. Revenue Manager’s Choice of Booking
Control

Suppose that the revenue manager uses the well-known
Littlewood rule (see, e.g., Littlewood 1972, Belobaba 1989,
Wollmer 1992, Brumelle and McGill 1993, or van Ryzin
and McGill 2000) to control the availability of Class-1 and
Class-2 tickets. Specifically, the revenue manager chooses
the protection level for Class-1 tickets, and employs a
model that takes as input the cumulative probability distri-
bution H of the assumed exogenous demand for Class-1
tickets. Given H , the revenue manager chooses a protection
level l that satisfies

l ∈H−1��	
 (1)

where � �= 1 − f2/f1 and H−1��	 denotes the set of
�-quantiles of H . That is, l is chosen to satisfy

H�l	� � and H�l−	� �
 (2)

where H�l−	 �= limx↑l H�x	 denotes the left limit of H
at l. For continuous demand distributions, condition (1)
states that the protection level is chosen to satisfy

f1 ×Prob[exogenous demand for Class-1 tickets� l�= f2�

Similar interpretations are possible for integer-valued de-
mand. The protection level l� 0 is used to control bookings
as follows: The cheaper Class-2 tickets are available as long
as more than l seats are available, that is, as long as fewer
than c − l tickets in total have been sold. Throughout the
paper, we consider a setting in which the protection level
for a flight is set just once during the time period over
which bookings for the flight take place.

2.2. Revenue Manager’s Observed Data

Once the revenue manager has decided to use the Little-
wood rule, the assumed distribution H has to be estimated
based on available data. In practice, these data typically
include historical values of Class-1 tickets sales, possi-
bly after some so-called unconstraining to remove effects
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caused by censoring and/or truncation (see §4.2 of Boyd
and Bilegan 2003). In our setting, these data consist of
past values of what we call the observed quantity X, which
may be censored or truncated or unconstrained data, and
which the revenue manager believes to be observations of
the exogenous Class-1 demand.
By virtue of the assumption that the revenue manager is

using the Littlewood rule (1), only the high-fare “demand
distribution” has to be estimated. Upon using protection
level l to control the booking process, the revenue manager
obtains a new value X of the observed quantity. Let G�l
 ·	
denote the cumulative distribution function of X if the
booking process is controlled with protection level l. Note
that the distribution of X depends on l, whereas H does
not, and the revenue manager’s model does not contain a
construct such as G. Later, we discuss various ways in
which the revenue manager can use values of the observed
quantity to estimate H .
We illustrate the above ideas with some examples that

demonstrate how the distribution of X may depend on l.

Example 2.1. The first example is the model that usually
is associated with the Littlewood rule. There are only two
types of customers, namely, type-a and type-b customers.
Type-a customers want only Class-1 tickets and type-b cus-
tomers want only Class-2 tickets, and all type-b customers
arrive before any type-a customers arrive. Let Da denote
the number of type-a customers that arrive, and let the
observed quantity X be equal to Da. Thus, here the revenue
manager observes all the type-a customers who arrive, even
customers who arrive after all c tickets have been sold. In
addition, it is assumed that Da does not depend on l. Hence,
G�l
 x	 �= Prob�X � x�= Prob�Da � x�, which is indepen-
dent of l. Under some additional independence assump-
tions, using (1) to choose the protection level is optimal in
this example.

Example 2.2. In this example there are type-a, type-b,
and type-ab customers, and no specific assumptions on
the order of arrivals. Type-a customers buy Class-1 tick-
ets only, and type-b customers buy Class-2 tickets only.
Type-ab customers buy either Class-1 or Class-2 tickets. If
Class-2 tickets are available, then an arriving type-ab cus-
tomer will purchase a Class-2 ticket. If only Class-1 tickets
are available, then an arriving type-ab customer will pur-
chase a Class-1 ticket. The three types of customers arrive
according to a marked point process that describes cus-
tomer arrival times and customer types over the time inter-
val between when tickets first become available and when
the flight departs. The point process itself is independent
of the chosen protection level l.
We consider cases in which the observed quantity X is

Class-1 sales (“truncated Class-1 demand”) and “untrun-
cated Class-1 demand” separately. Let Da and Dab denote
the number of type-a and type-ab customers, respec-
tively, who arrive during the time interval. Let Da�l	 and
Dab�l	 denote the number of type-a and type-ab customers,

respectively, who arrive until c − l tickets have been sold
(if l � c, then Da�l	 = Dab�l	 = 0; if the total demand is
less than c− l, then Da�l	=Da, Dab�l	=Dab). Note that
Da�l	 and Dab�l	 both depend on the arrival processes of
all three types of customers.

Case A: Untruncated Class-1 Demand. In this case, X
is equal to the number of type-a customers who arrive plus
the number of type-ab customers who arrive when Class-2
tickets are no longer available (that is, the number of type-
ab customers who either purchase Class-1 tickets or who
arrive when no tickets are available). That is, X = Da +
Dab − Dab�l	, and therefore, G�l
 x	 = Prob�Da + Dab −
Dab�l	� x�, which depends on l. Note that in this example
the revenue manager continues to observe customers even
after c tickets have been sold.
Recall that the observed quantity X is what the revenue

manager thinks is an observation of the supposed exoge-
nous “Class-1 demand,” and thus it makes sense to the
revenue manager to estimate the supposed distribution H
using observed values of X. Note also that in this case
we are eliminating the possibility of worry about truncated
data by allowing the revenue manager to observe all arriv-
ing customers, even after all c tickets have been sold. In
addition, we are giving the revenue manager the “benefit of
the doubt” by including type-ab customers who are turned
away after all tickets have been sold in the observed quan-
tity X.
Case B: Truncated Class-1 Demand. In this case, the

observed quantity X is the number of Class-1 tickets
that are sold; that is, X = Da�l	 + min�Da − Da�l	 +
Dab −Dab�l	
 c
 l�, and therefore, G�l
 x	= Prob �Da�l	+
min�Da − Da�l	 + Dab − Dab�l	
 c
 l� � x�, which also
depends on l. In this example, the revenue manager does
not continue to observe customers after c tickets have been
sold.
We use the above cases later in this paper. These cases

will be referred to as Example 2.2.A and Example 2.2.B,
respectively. In other settings, we do not describe the details
of how the distribution of X arises from the interaction
of customers’ behavior and the choice of l, but rather we
directly work with G�l
 ·	; see, e.g., §§5.1 and 5.3. We
emphasize that the general results developed in this paper
do not hinge on the particular examples of X above. Rather,
we require only that the following general setup prevails.

2.3. Dynamics of the Forecasting and
Optimization Process

We consider a sequence indexed k= 1
2
3
 � � � 
 of a par-
ticular type of flight, for example, an 8 am Monday flight
from New York to Los Angeles. The revenue manager
selects a protection level L0 for Flight 1, and subsequently
sees observed quantity X1. The distribution of the observed
quantity X1 for Flight 1 is G�L0
 ·	. Based on what is
observed, the revenue manager selects a new protection
level L1 for Flight 2. The distribution of the observed
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quantity X2 for Flight 2 is G�L1
 ·	, and given L1, X2 is
conditionally independent of the past. The revenue man-
ager continues in this fashion, yielding sequences �Lk�
and �Xk�, where Lk−1 and Xk denote the protection level
and observed quantity, respectively, for flight k. After each
flight k, the revenue manager uses the data X1
 � � � 
Xk that
have been observed so far to construct an estimate 	Hk

of the probability distribution of the assumed exogenous
demand for Class-1 tickets. Then, the revenue manager
chooses the protection level Lk ∈ � 	Hk	−1��	 for flight k+1
using the Littlewood rule (1).
To precisely describe the iterative forecasting and book-

ing control process, we introduce some more notation. Let
���	 denote the space of probability distribution functions
on �. For each k ∈�, let �k� ���	×�k 
→���	 denote a
generic update function that maps the initial estimate 	H 0 ∈
���	, and the data �X1
 � � � 
Xk	 ∈�k observed so far, to a
new estimate 	Hk. The process evolves on probability space
��
� 
�	 with filtration �� k�. Expectation with respect
to � is denoted by Ɛ. The initial estimate 	H 0 for Class-1
demand is specified and a protection level L0 ∈ � 	H 0	−1��	
is chosen. The sequence ��Xk
 	Hk
Lk	� k ∈ �� is adapted
to �� k�. We assume that with probability 1 (w.p.1), for
each k ∈�,

� �Xk+1
� x �� k�=G�Lk
 x	 for all x ∈�
 (3)

that is, the conditional distribution of Xk+1, given the his-
tory of the process up to flight k, depends only on Lk.
Forecasts and protection levels are updated according to

	Hk �=�k� 	H 0
X1
 � � � 
Xk	
 (4)

Lk ∈ � 	Hk	−1��	
 (5)

for each k ∈�. The revenue manager’s chosen forecasting
method determines each �k. We will mostly be interested
in forecasting methods that are good in a certain sense.
Loosely speaking, “good” will mean that if the distribu-
tions G�Lk
 ·	 settle down to a limit as k gets large, then
the forecasts 	Hk will approach the same limit. Before delv-
ing into these details, we discuss an example in the next
section.

3. A Deterministic Example
To motivate some of the issues concerning the spiral-down
phenomenon within the framework described above, we
discuss a simple deterministic example. Consider the set-
ting described in Example 2.2.A. Suppose that there are
d customers who want a ticket, where d � 0 is a fixed
constant, and that all customers are of type ab. That is,
we have Da = 0, Dab = d, and Dab�l	=min�d
 �c− l	+�.
Thus, if the protection level is l, then the observed quantity
is deterministically equal to X = d − min�d
 �c − l	+� =
�d− �c− l	+�+, and hence

G�l
 x	=
{
1 if x� �d− �c− l	+�+


0 otherwise.
(6)

It is easy to see that the total Class-2 sales is equal
to min�d
 �c − l	+� = d − X, and the total Class-1 sales
is equal to min�c
d� − �Class-2 sales	. Because f1 > f2,
the best thing to do is to set the protection level at c or
higher so that the number of high-fare tickets sold will
be min�c
d� and the number of low-fare tickets sold will
be 0. The worst thing to do is to set the protection level
at max�0
 c − d� or lower so that the number of low-fare
tickets sold will be min�c
d� and the number of high-fare
tickets sold will be 0.
Suppose that we start with an arbitrary L0 � 0, and that

for each k ∈�, the forecast 	Hk is the empirical distribution
function of the observed quantity X; i.e.,

	Hk�x	 �= 1
k

k∑
j=1

��Xj�x�� (7)

We discuss three cases separately: (i) d= c, (ii) d < c, and
(iii) d > c.
Case (i): d = c. In this case, for any l ∈ �0
 c�, X = l,

and thus G�l
 x	= ��l�x�. Hence, for any L0 ∈ �0
 c�, X1 =
L0 and 	H 1�x	 = ��L0�x� = G�L0
 x	, and thus it follows
that Lk = L0 and 	Hk = 	H 1 for all k � 1. If L0 > c, then
X1 = d= c, and 	H 1�x	= ��d�x�. It follows that L

k = d and
	Hk�x	= ��d�x� for all k� 1.
Case (ii): d < c. In this case, X1 = �d − �c − L0	+�+

and 	H 1�x	= ���d−�c−L0	+�+�x�. Because �d− �c− L0	+�+ �

�d−�c−L0	�+ � L0, it follows that L1 = � 	H 1	−1��	= �d−
�c−L0	+�+ � L0. Furthermore, we have a strict inequality
(i.e., L1 <L0) unless L1 = L0 = 0. In general, we have the
following result.

Proposition 1. Suppose that the probability distribution of
the observed quantity is given by (6) with d < c, and that
forecasts are made according to (7). Then, Lk+1 � Lk for
all k. Furthermore, there exists a k∗ such that Lj = 0 and
Xj = 0 for all j � k∗.

Observe that Proposition 1 gives a situation in which the
protection levels spiral down to the worst possible value.
Also note that 0=G−1�0
 �	.
It is also interesting that the revenue manager’s estimates

	Hk converge to the point mass at zero, which is indeed con-
sistent with what the revenue manager observes—namely,
that Xj = 0 for all j large enough. Hence, (a) the use of
an incorrect model, and (b) the application of a forecast-
ing method that is “good” insomuch as it agrees with the
observations, together combine to produce the worst pos-
sible protection levels. Also, observe that the cause of the
problem is not censored or truncated sales data, because all
customers are observed by the revenue manager.
Table 1 shows the spiral-down effect described by Propo-

sition 1. The values of c, d, f1, f2, and L0 were chosen
to have an example that can be followed in a step-by-step
manner, using only manual calculations. Note that the ini-
tial protection level is optimal. In spite of that, the revenue
manager’s incorrect assumptions lead the protection levels
to settle on the worst possible value.
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Table 1. Spiral down with c = 10, d = 8, f1 = 500,
f2 = 200, and L0 = 10.

Protection Class-1 Class-2
k level Lk−1 Obs. qty. Xk sales sales Revenue ($)

1 10 8 8 0 4,000
2 8 6 6 2 3,400
3 8 6 6 2 3,400
4 6 4 4 4 2,800
���

���
���

���
���

���
8 6 4 4 4 2,800
9 4 2 2 6 2,200
���

���
���

���
���

���
20 4 2 2 6 2,200
21 2 0 0 8 1,600
���

���
���

���
���

���
50 2 0 0 8 1,600
51 0 0 0 8 1,600

Case (iii): d > c. If L0 > c, then Xk = d, 	Hk�x	= ��d�x�,
and Lk = d for all k � 1. If L0 ∈ �0
 c�, then the behavior
of Lk is described in the proposition below.

Proposition 2. Suppose that the probability distribution of
the observed quantity is given by (6) with d > c, and that
forecasts are made according to (7). Suppose that L0 ∈
�0
 c�. Then, Lk+1 � Lk for all k. Furthermore, there exists
a k
 such that Lj = d and Xj = d for all j � k
.

Proposition 2 illustrates a situation in which protection
levels drift upward to the best value, even though the rev-
enue manager is using a model based on the wrong assump-
tions. Observe also that we have d=G−1�d
�	.
Although in this example spiral down occurs only when

there is spare capacity (i.e., d < c), in general, spare capac-
ity is not necessary for spiral down to occur, as illustrated
by the results in §§5, 6, and 7.
In each of the cases described above, all the protection

levels are eventually equal to a fixed point l∗ of G−1�·
 �	,
that is, for all k large enough it holds that Lk =G−1�Lk
�	.
Hence, when the revenue manager’s forecast 	Hk is such
that l∗ = � 	Hk	−1��	, then Lk = l∗, and the next observed
quantity Xk+1 is also equal to l∗, which to the revenue
manager appears to be consistent with the forecast 	Hk.
This causes forecast 	Hk+1 not to differ much from 	Hk,
and Lk+1 = Lk = l∗. In §7, we discuss this characteristic in
greater generality.

4. Good Forecasting Methods
The behavior of the forecast and optimization process
depends on the forecasting method being used. We are par-
ticularly interested in a certain class of forecasting methods,
which we call “good” ones. Our definition of good will
formalize the notion that the estimates � 	Hk� are consistent
with the distribution of the quantities �Xk� over the long
run (see the discussion after Proposition 1).

To specify precisely what is meant by a good forecast-
ing method, we need some definitions. Let

w→ denote weak
convergence; recall that a sequence of distribution functions
�F k� on � converges weakly to distribution function F on
� (written F k

w→ F ) if F k�x	→ F �x	 for all x at which F
is continuous. If we want to emphasize that a distribution
function (say F ) depends on the sample path ! ∈� (i.e.,
depends on the evolution of the iterative process), then we
write F �!
 ·	. In this case, we say that F is a random dis-
tribution function. More formally, by a random distribution
function F , we mean a random element F � � 
→ ���	,
measurable with respect to � and the Borel "-algebra �
corresponding to the topology of weak convergence on
���	. Proposition 17 in the appendix establishes that for
each x ∈ �, F �!
x	 is a well-defined random variable. It
also establishes that sets of the form �! ∈�� F k�!
 ·	 con-
verge weakly as k→�� and �! ∈�� F k�!
 ·	 w→ F �!
 ·	�
are in � .

Definition 1. Consider a sequence � 	Hk� of random dis-
tribution functions and a sequence �Y k� of real-valued ran-
dom variables, both defined on probability space ��
� 
�	
and adapted to filtration �� k�. Let F k� � 
→���	 be given
by F k�!
x	 �= � �Y k+1 � x �� k�, that is, F k is the condi-
tional distribution of Y k+1. Let �∗ �= �! ∈�� F k�!
 ·	 con-
verges weakly as k→��, and for all ! ∈�∗, let F ∗�!
 ·	
denote the weak limit of �F k�!
 ·	�.
We say that � 	Hk� is a good forecasting method for �Y k�

if there exists a set �′ ⊂� such that � ��′�= 0, and

	Hk�!
 ·	 w→ F ∗�!
 ·	 (8)

for all ! ∈�∗\�′.
The definition calls � 	Hk� a good forecasting method for

�Y k� if for � -almost all sample paths ! ∈� such that the
sequence of conditional distribution functions of �Y k� con-
verges weakly to some distribution function F ∗�!
 ·	, the
forecast distributions � 	Hk�!
 ·	� converge weakly to the
same F ∗�!
 ·	. In particular, if �Y k� is an i.i.d. sequence
with common distribution F ∗, then � 	Hk� is called a good
forecasting method for �Y k� if � 	Hk� converges weakly
to F ∗ w.p.1—a natural requirement for a reliable forecast-
ing method.
Note that the conditions in the definition do not require

the sequences �F k�!
 ·	� to have limits, and the limits, if
they exist, do not have to be the same for all !. Also note
that Definition 1 allows for any behavior of the forecasts
� 	Hk� on the set of ! ∈� on which the sequence �F k� does
not converge weakly. Finally, note that (8) is equivalent to
the following:

� � 	Hk�!
 ·	 w→ F ∗�!
 ·	
 F k�!
 ·	 w→ F ∗�!
 ·	�
= � �F k�!
 ·	 w→ F ∗�!
 ·	�$ (9)

i.e., � � 	Hk�!
 ·	 w→ F ∗�!
 ·	 � F k�!
 ·	 w→ F ∗�!
 ·	� = 1
whenever � �F k�!
 ·	 w→ F ∗�!
 ·	� > 0.
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The idea of defining a “reliable” forecast as one that
approaches the true distribution is not new. Blackwell and
Dubins (1962) introduced the concept of merging as a
way to formulate that property mathematically, and Dawid
(1982) proposed the idea of calibration, which means that
the observed empirical distributions converge to the fore-
casted ones. Kalai et al. (1999) expanded on those ideas and
not only proposed alternative definitions for merging, but
also showed the equivalence between appropriately defined
concepts of merging and calibration. A general definition
of merging is the following. Let �%�· � � k	 and %�· � � k	
be, respectively, the forecasted and true distributions given
the history of a process �Y k� up to step k. Suppose that
Y k takes values in state space S, and let 	 be a collection
of subsets of a set such as S or S� (the choice of set and
collection 	 is different for different notions of merging).
Suppose that

sup
A∈	

� �%�A �� k	−%�A �� k	�→ 0 w.p.1 (10)

as k→�. The collection 	 determines how strong condi-
tion (10) is. For example, in Blackwell and Dubins (1962),
	 is the "-algebra on S� generated by all histories of the
process �Y k�, and Kalai et al. (1999) say that �% strongly
merges to % if (10) holds for such a choice of 	. Thus, for
�% to strongly merge to %, convergence of �% to % is required
not only for the 1-step forecasts but also for the n-step fore-
casts for all n. Also, if 	 is the "-algebra on S representing
the collection of events in one step, and (10) holds for such
a choice of 	 (so that convergence is required only for the
1-step forecast), then Kalai et al. (1999) say that �% merges
to %.
We can relate the above definitions to our definition by

choosing the probability measures �% and % to be the mea-
sures induced by the involved random variables. That is,
we have

�%��−�
 x� �� k� �= 	Hk�!
x	


%��−�
 x� �� k� �= � �Y k+1
� x �� k�= F k�!
x	�

We see from (10) that merging, in the terminology of Kalai
et al. (1999), implies that

sup
x∈�

� 	Hk�!
x	− F k�!
x	�→ 0 w.p.1 (11)

as k→�. Condition (11) implies that 	Hk�!
 ·	 w→ F ∗�!
 ·	
almost everywhere on �!� F k�!
 ·	 w→ F ∗�!
 ·	�, which is
condition (8) in Definition 1. Hence, if � 	Hk� merges to
�F k�, then � 	Hk� is a good forecasting method for �Y k�,
i.e., merging implies goodness of the forecasting method.
Moreover, Definition 1 applies to processes with state
space �, whereas Kalai et al. (1999) assume that the
state space is finite. The two definitions coincide when the
state space is finite and �F k� converges weakly w.p.1.

An interesting question that arises from the above con-
clusion concerns the relationship between good forecasts
and the notion of calibration referred to earlier. In Kalai
et al. (1999), a forecast is said to be calibrated if it passes a
certain set of checking rules; based on that, they proceed to
prove that (strong) merging is equivalent to (strong) calibra-
tion. It is natural to ask whether Definition 1 corresponds to
some weaker notion of calibration. The fact that merging in
the terminology of Kalai et al. (1999) implies goodness of
the forecasting method suggests that being a good forecast-
ing method may be equivalent to passing a smaller set of
checking rules than the set required for the standard notion
of calibration. A more thorough examination of these ideas
falls outside the scope of this paper.
Also, note that if the conditional distributions converge

weakly to F ∗ w.p.1, then by Proposition 3 below, the empir-
ical distributions also converge weakly to F ∗ w.p.1, and
hence the values of �Y k� will be “in agreement” with their
limiting conditional distribution. In such a case, if a good
forecasting method is used, then the forecaster will perceive
the values of �Y k� to be in agreement with the forecasts,
which again suggests that good forecasts are, in a sense,
calibrated with F ∗.
In subsequent sections, we will apply the results of this

section with �Y k�= �Xk�. The results of the present section
do not depend on this particular choice; they are valid inde-
pendent of the setup of the rest of the paper. Note also that
the definition of a good forecasting method is not affected
by whether or not the sequence �F k� is dependent on � 	Hk�.
In the case where �Y k�= �Xk�, F k indeed depends on 	Hk,
which may cause the revenues to spiral down. Hence, a
good forecasting method can be an ingredient of a poorly
behaving revenue management process.
Next we discuss some examples of forecasting methods

and check whether they satisfy Definition 1.
Empirical Distribution Function. The empirical distribu-

tion function is defined as

	Hk�x	 �= 1
k

k∑
j=1

��Y j�x�� (12)

One can use 	Hk to forecast the distribution of Y k+1. When
the sequence �Y k� is i.i.d. with common distribution F ,
then a stronger property than being good holds. Namely, for
� -almost all !, 	Hk converges to F uniformly in x by the
Glivenko-Cantelli Theorem—see Theorem 5.5.1 of Chung
(1974). For the general (i.e., possibly non-i.i.d.) case, the
next proposition shows that the empirical distribution pro-
vides a good forecasting method.

Proposition 3. The sequence � 	Hk� defined in (12) is a
good forecasting method for �Y k�.

Empirical Moving Average �EMA	 Model. Suppose that
the distribution function 	Hk defined in (4) can be written as

	Hk�!
 ·	 �=H�Mk�!	
 ·	
 (13)

Mk�!	 �= k− 1
k

Mk−1�!	+ 1
k
Y k�!	= 1

k

k∑
j=1

Y j�!	� (14)
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In the above equations, H�m
 ·	 is a distribution with
unknown parameter m that the forecaster estimates with the
sample average of �Y k�. This setting is applicable when 	Hk

and the limiting distribution F ∗ belong to a parametric fam-
ily with a single unknown parameter given by the mean,
such as the exponential and Poisson distributions. In §5.1,
we examine two such cases in more detail. The proposition
below shows that under some assumptions, (13) and (14)
specify a good forecasting method for �Y k�.

Proposition 4. Consider a family of distributions
�H�m
 ·	� m ∈ 
 ⊂ ��, where m = ∫

xH�m
dx	 is the
mean of H�m
 ·	, 
 is closed, and H�m
 ·	 is continuous
in m with respect to the topology of weak convergence.
Suppose that �Y k� and �F k� as in Definition 1 satisfy
F k�!
 ·	 = H�Uk�!	
 ·	 w.p.1, where Uk �= Ɛ�Y k+1 � � k�.
Also, suppose that supk�0 Ɛ��Y

k+1	2 � � k� < Z w.p.1
for some integrable random variable Z. Then, � 	Hk� in
(13)–(14) is a good forecasting method for �Y k�.

If for each m, the distribution H�m
 ·	 has a density
h�m
 ·	 with respect to a (common for all k) measure %,
then by Scheffé’s Theorem (see, e.g., Billingsley 1968), a
sufficient condition for continuity of H�m
 ·	 in m is con-
tinuity of h�m
x	 in m for %-almost all x. Hence, it can
be readily seen that many widely used distributions satisfy
the continuity assumption in Proposition 4.
It is worthwhile commenting on the relationship between

the EMA model and the nonnegative exponentially
weighted moving average (EWMA) forecasting method. In
EWMA, the distribution function 	Hk is defined as in (13),
but Mk is defined as Mk = .Mk−1 + �1− .	Y k for some
constant . ∈ �0
1	. It is easy to check that, in general,
EWMA is not a good forecasting method in the sense of
Definition 1.

5. Some Specific Cases
In this section, we study three forecasting methods and
the resulting sequence of protection levels. The first one is
based on affine updates, which includes the EMA model
described in §4, with the underlying distribution being
normal or exponential. The second one is the empirical dis-
tribution. Finally, the third case involves stochastic approx-
imation updates of the protection levels as proposed by
van Ryzin and McGill (2000). The latter method directly
updates the protection levels and is not meant to be a fore-
casting method, but as shown later, it fits in the framework
of §2.3.

5.1. Affine Updates

Suppose that the sequence of protection levels satisfies the
following inductive equation:

Ɛ�Lk �� k−1�= Lk−1 + 1
k
�/− �1−0	Lk−1�

= k− 1+0

k
Lk−1 + /

k
� (15)

Before establishing the results, we give some examples
in which the induction (15) occurs. Both examples use
the EMA forecasting model described in §4. The first one
assumes that the true distribution is normal with known
variance, and aims to estimate the mean; the second one
assumes that the true distribution is exponential, and again
aims to estimate the mean. In both cases, the observed quan-
tity has a continuous distribution, and in the normal case the
observed quantity can assume negative values. Of course,
these are not realistic distributions for the demand for airline
tickets. Shlifer and Vardi (1975) claim that, based on a study
of the data collected by the operations research team at El-
Al Airlines, it was observed that the number of passengers
on a flight is approximately normally distributed. According
to Belobaba (1989), past analyses generally have assumed
that demand is normally distributed. Curry (1990) refers to
the truncated normal distribution as typical, and Wollmer
(1992) states that demand is often assumed to approximate
a continuous distribution such as the normal, and he also
presents expressions specifically for the case with normally
distributed demand. Brumelle and McGill (1993) point out
that the normal distribution is often used with methods
such as Expected Marginal Seat Revenue (EMSR). We have
learned from conversations with revenue management pro-
fessionals that to this day the normal distribution is often
used in demand models in practice. Thus, although a model
with normally distributed observed quantity is unrealistic,
such models have been used many times, and therefore we
think that it is of interest to take a closer look at the dynamic
behavior of such a model. Nevertheless, the settings in this
section and §5.2 are clearly restrictive.
In this section, we assume that the mean of the observed

quantity Xk (conditional on � k−1) is equal to the protec-
tion level Lk−1, and in §5.2 we assume that all customers
prefer the low fare but are willing to pay the high fare if
the low fare is not available. These assumptions are made
to facilitate analysis, and in §6 we show how the results in
this section and §5.2 can be used to obtain results regard-
ing the dynamic behavior of more complicated models. For
example, we generalize the spiral-down results to the case
where the mean of Xk is %�Lk−1	, where % is an arbitrary
function such that %�l	� l for all l.
We use the notation N�%
"2	 to denote the normal

distribution with mean % and variance "2; with a slight
abuse of the notation, N�%
"2	 also denotes the distribu-
tion function of the normal distribution. That is, if A is
a random variable and B is a distribution function, then
A ∼ N�%
"2	 means that A is normally distributed with
mean % and variance "2, whereas B = N�%
"2	 means
that B�x	 = ∫ x

−��"
√
23	−1e−�t−%	2/�2"2	 dt for all x ∈ �.

Similarly, we use exp�1/6	 to denote both the exponential
distribution with mean 6 and its distribution function. The
correct interpretation should be clear from the context.
The Normal Case. Suppose that, given any protection

level l, X is normally distributed with mean l and vari-
ance "2, that is, G�l
 ·	= N�l
"2	. Suppose that the rev-
enue manager knows that the distribution is normal and
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also knows "2, and assume that he uses the sample average
of observed X values to estimate the supposed mean of X.
Let Mk denote the sample average of the first k observed
X values. Then, 	Hk = N�Mk
"2	. The process is started
with some protection level L0, and then, inductively,

Xk ∼N�Lk−1
"2	
 (16)

Mk = k− 1
k

Mk−1 + 1
k
Xk
 (17)

	Hk =N�Mk
"2	
 (18)

Lk = � 	Hk	−1��	=Mk +/
 (19)

where / = "7−1��	 and 7 denotes the standard normal
cumulative distribution function. It follows that

Ɛ�Lk �� k−1�= Lk−1 + /

k
� (20)

Thus, in this example, 0= 1.
The Exponential Case. Suppose that, given any protec-

tion level l, X is exponentially distributed with mean l,
that is, G�l
 ·	= exp�1/l	. Suppose that the revenue man-
ager knows that the distribution is exponential, and suppose
that he uses the sample average of observed X values to
estimate the supposed mean of X. Let Mk denote the sam-
ple average of the first k observed X values. Then, 	Hk =
exp�1/Mk	. The process is started with some protection
level L0, and then, inductively,

Xk ∼ exp�1/Lk−1	
 (21)

Mk = k− 1
k

Mk−1 + 1
k
Xk
 (22)

	Hk = exp�1/Mk	
 (23)

Lk = � 	Hk	−1��	= ln
(

1
1−�

)
Mk� (24)

It follows that

Ɛ�Lk �� k−1�= k− 1+ ln
(

1
1−�

)
k

Lk−1� (25)

Thus, in this example, 0= ln�1/�1−�		 and /= 0.
Next, we consider sequences �Lk� generated by (15).

Let m be a positive integer such that m− 1+ 0 > 0. Let
��f k
 gk	��k=m be a sequence defined inductively by

f m−1 �= 1
 f k �= f k−1 k

k− 1+0
for all k�m
 (26)

gm−1 �= 0
 gk �= gk−1 + /

k
f k for all k�m� (27)

Note that it follows from (15) that

Ɛ�f kLk − gk �� k−1�= f k−1Lk−1 − gk−1� (28)

In what follows, we need the following assumption for
�f kLk − gk� to be a convergent martingale. Later we give
examples of cases where this condition is satisfied.

Assumption (A). The sequence ��f k
 gk
Lk	��k=m satisfies
supk�m Ɛ�f kLk − gk�<�.
The proposition below gives the behavior of the sequence

�Lk� in terms of / and 0.

Proposition 5. Suppose that Assumption (A) holds. Then,
the sequence �f kLk − gk� forms a convergent martingale,
that is, there exists a finite random variable A such that
f kLk − gk →A w.p.1 as k→�. In addition,
1. If 0< 1 and /= 0, then Lk → 0 w.p.1.
2. If 0 = 1 and / = 0, then �Lk� is a martingale and

Lk →A w.p.1.
3. If 0= 1 and / �= 0, then Lk → sgn�/	� w.p.1.

If 0 > 1, then we are not sure how Lk behaves, except
that there are many cases in which Lk →±�, as explained
later. If 0< 1 and / �= 0, then without additional informa-
tion we do not know how Lk behaves. For more discussion,
see the online appendix. Next, we return to the examples.
The Normal Case �continued	. Recall that in this case,

/= "7−1��	 and 0= 1. First, we establish that Assump-
tion (A) holds.

Lemma 1. If the system evolves according to (16)–(19),
then Assumption (A) holds.

The following result follows from Proposition 5 and
Lemma 1:

Proposition 6. If the system evolves according to (16)–
(19), then there exists a finite random variable A such that
f kLk − gk →A w.p.1 as k→�. In addition, the following
holds:
(i) If � �= 1− f2/f1 < 1/2, i.e., if /< 0, then Lk →−�

w.p.1 as k→�;
(ii) If � > 1/2, i.e., if / > 0, then Lk → +� w.p.1 as

k→�; and
(iii) If � = 1/2, i.e., if / = 0, then Lk → A w.p.1 as

k→�. Moreover, in this case A∼ N�L0
"2∑�
i=1 1/i

2	=
N�L0
"232/6	.

In applications, it is often the case that f2/f1 > 1/2, and
thus Lk →−� as k→�, which is the spiral-down effect.
The Exponential Case �continued	. Recall that in this

case, /= 0 and 0= ln�1/�1− �		. Note that 0 > 0. First
we establish that Assumption (A) holds.

Lemma 2. If the system evolves according to (21)–(24),
then Assumption (A) holds.

The following result follows from Proposition 5 and
Lemma 2:

Proposition 7. If the system evolves according to (21)–
(24), then there exists a finite random variable A such
that f kLk →A w.p.1 as k→�. In addition, the following
holds:
(i) If 1−� = f2/f1 > 1/e, i.e., if 0 ∈ �0
1	, then Lk → 0

w.p.1 as k→�;
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(ii) If 1− � = f2/f1 = 1/e, i.e., if 0 = 1, then Lk → A
w.p.1 as k→�; and
(iii) If 1− � = f2/f1 < 1/e, i.e., if 0 > 1, then f k → 0

as k → �. Thus, for those ! ∈ � such that f kLk�!	 →
A�!	 > 0, it holds that Lk�!	→�. However, if A�!	= 0,
then we need more information to determine the asymptotic
behavior of Lk.

In applications, it is often the case that f2/f1 > 1/e, and
thus Lk → 0 as k→�, which again gives the spiral-down
effect.

5.2. Empirical Distribution

In this section, we study the protection levels resulting from
forecasting with the empirical distribution (7). Consider the
same setting of the deterministic example in §3, but assume
that the total demand D is random. Thus, if the protection
level is l, then the observed quantity is given by X �= �D−
�c− l	+�+.
Consider a sequence of outcomes in the situation described

above. Assume that �Dk� k� 1� is an i.i.d. sequence, and
let Xk �= �Dk − �c−Lk−1	+�+. Given X1
 � � � 
Xk, the rev-
enue manager constructs the corresponding empirical dis-
tribution 	Hk and chooses Lk to be a �-quantile of 	Hk.
The next observed quantity Xk+1 is then given by Xk+1 �=
�Dk+1 − �c−Lk	+�+.
Next, we compute Lk explicitly in terms of X1
 � � � 
Xk.

Let X1� k
 � � � 
Xk�k denote the order statistics of X1
 � � � 
Xk.
Note that if k� is an integer, then the set � 	Hk	−1��	 of
�-quantiles of 	Hk may not be a singleton. However, for
any � ∈ �0
1� and any k, we have that X�k��� k is an ele-
ment of � 	Hk	−1��	. Therefore, in this section we follow
the convention that

Lk �=X�k��� k ∈ � 	Hk	−1��	�

Now we can compare Lk �= X�k��� k and Lk+1 �=
X��k+1	��� k+1. There are two cases:
Case 1: ��k+ 1	�� = �k��. Then,

Xk+1
� Lk ⇐⇒ Lk+1 = Lk
 (29)

X�k��−1� k
�Xk+1

� Lk ⇐⇒ Lk+1 =Xk+1
 (30)

Xk+1
�X�k��−1� k ⇐⇒ Lk+1 =X�k��−1� k� (31)

Case 2: ��k+ 1	�� = �k��+ 1. Then,

Xk+1
� Lk ⇐⇒ Lk+1 = Lk
 (32)

Lk
�Xk+1

�X�k��+1� k ⇐⇒ Lk+1 =Xk+1
 (33)

Xk+1
�X�k��+1� k ⇐⇒ Lk+1 =X�k��+1� k� (34)

Using the fact that Xk+1 �= �Dk+1 − �c − Lk	+�+, we can
compute the probabilities of the events on the left-hand side
of the above implications. For any a� 0,

� �Xk+1 >a �� k�= � ��Dk+1 − �c−Lk	+�+ >a �� k�

= � �Dk+1 >a+ �c−Lk	+ �� k��

In particular, if Lk � 0, then

� �Xk+1 >Lk �� k�= � �Dk+1 >Lk + �c−Lk	+ �� k�

= � �Dk+1 >max�c
Lk� �� k�� (35)

Based on the above relations, we can reach some con-
clusions regarding the behavior of �Lk�. For instance, if
Dk � c w.p.1, then we see from (35) that Xk+1 � Lk w.p.1,
and so from (29)–(34) we have that Lk+1 � Lk w.p.1.
Because �Lk� is bounded below by zero, it is a bounded
monotone sequence, so there exists a random variable L
such that Lk → L w.p.1 as k→�. On the other extreme, if
Dk � c w.p.1, then it is easy to see from (35) that Xk =Dk

for k large enough, i.e., after a transient period, �Xk� is an
i.i.d. sequence. In that case, the distance between Lk and
the set of �-quantiles of the distribution of D converges
to 0 (cf. Lemma 4).
Similar results are obtained if the revenue manager does

not continue to observe customers after c tickets have been
sold. In this case, the observed quantity X is equal to the
observed sales of Class-1 tickets. This situation corresponds
to Example 2.2.B with Dab = Dk, and we have Xk+1 =
min��Dk+1− �c−Lk	+�+
 c
Lk�. It follows that Xk+1 � Lk

w.p.1, and so as before it follows that there exists a ran-
dom variable L such that Lk → L w.p.1 as k→�. Unlike
the case in the previous paragraph, in this case the protec-
tion levels spiral down irrespective of the relation between
Dk and c.

5.3. Stochastic Approximation Updates

In this section, we discuss a stochastic approximation algo-
rithm for updating protection levels, as proposed by van
Ryzin and McGill (2000). Their approach does not require
that the demand distributions be known, but it does require
that the demand for tickets of different fare classes be
exogenous. In this section, we consider what happens if the
demand for tickets of different fare classes depends on the
chosen protection levels and the revenue manager uses a
stochastic approximation algorithm.
Similar to most published revenue management work,

and translated into our notation for two ticket classes
(van Ryzin and McGill consider an n-class problem), their
model assumes that the observed quantity X is the demand
for Fare Class 1, and that the distribution G�·	 of the
demand for Fare Class 1 is independent of the protection
level l; that is, G�l
 ·	=G�·	 for all l. Hence, for continu-
ous G, the goal is to find a protection level L∗ that satisfies
G�L∗	 = �. It is interesting to observe that such a pro-
tection level L∗ is given by G−1��	, which is the limiting
point established by Propositions 15 and 16 in §7.
The proposed method updates the protection levels Lk

according to the equation

Lk+1 �= Lk + 9k ��− ��Xk+1�Lk��
 (36)
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where �9k� is a sequence of nonnegative step sizes satis-
fying

∑
k 9k = � and

∑
k 9

2
k < �. Note that this scheme

corresponds to a degenerate forecasting distribution 	Hk that
is updated as follows:

	Hk+1�x	 �=
{
��Lk−9k�1−�	�x� if Xk+1 � Lk


��Lk+9k��x� otherwise.

Their primary result shows that under some assumptions, if
protection levels are updated using the stochastic approx-
imation algorithm above, then the sequence of protec-
tion levels converges to a protection level L∗ that satisfies
G�L∗	= �.
Below, we show that under some conditions if the dis-

tribution of the observed quantity depends on the protec-
tion level and if Lk is updated according to (36), then
Lk converges to a deterministic limit l∗. Under an addi-
tional continuity assumption, it follows that G�Lk
Lk	→
G�l∗
 l∗	 = � w.p.1. We use the following result from
§II.5.1 of Benveniste et al. (1990).

Proposition 8. Consider the random sequences �Xk��k=1 ⊂
�n and �Lk��k=0 ⊂ �m that satisfy Lk+1 = Lk +
9kS�L

k
Xk+1	, where �9k�
�
k=0 is a deterministic nonneg-

ative step size sequence that satisfies
∑�

k=0 9k = � and∑�
k=0 9

2
k <�. Let � k denote the "-algebra generated by

X1
 � � � 
Xk
L0
 � � � 
Lk. Suppose that the following assump-
tions hold:
1. For each l ∈�m, there exists a probability distribution

G�l
 ·	 on �n such that for any Borel function g� �m ×
�n 
→�+,

Ɛ�g�Lk
Xk+1	 �� k�=
∫
�n
g�Lk
 x	G�Lk
dx	

w.p.1. That is, the conditional distribution of Xk+1, given
the history of the process up to iteration k, depends only
on Lk.
2. There exist constants K1
K2 > 0 such that∫

�n
�S�l
 x	�2G�l
dx	�K1 +K2�l�2

for all l ∈�m.
3. Let s� �m 
→ �m be given by s�l	 �= ∫

�n S�l
 x	 ·
G�l
dx	. There exists an l∗ ∈�m such that

inf��l∗ − l	T s�l	� =� �l∗ − l�� 1/=� > 0

for all = > 0. That is, the conditional expected direction
vector s�l	 points to the interior of the halfspace at l that
contains l∗.
Then, Lk → l∗ w.p.1.

Assumptions 1 and 2 of Proposition 8 imply that, w.p.1,
Ɛ��S�Lk
Xk+1	�2 �� k��K1+K2�Lk�2 and the conditional
expected direction vector s�Lk	 = Ɛ�S�Lk
Xk+1	 � � k� is
finite for all k.
Let F � � 
→ �0
1� be given by F �l	 �= G�l
 l	. In our

problem, S�l
 x	= �− ��x�l�, and thus s�l	= �−G�l
 l	=
� − F �l	. It is easy to see that Assumption 3 of Proposi-
tion 8 is satisfied if and only if Assumption (B1) holds.

Assumption (B1). There exists an l∗ ∈� such that the fol-
lowing holds. For any => 0, there exists a >> 0 such that
F �l	� �−> for all l ∈ �l∗ −1/=
 l∗ −=� and F �l	� �+>
for all l ∈ �l∗ + =
 l∗ + 1/=�.

Under the assumptions of van Ryzin and McGill (2000),
Assumption (B1) holds. In their setting, G does not depend
on the protection level, and thus F �l	=G�l	. They assume
that there is a constant c > 0 such that −�l − l∗	�� −
F �l	� � c�l − l∗�2 for all l. That is, F �l	 � � + c�l − l∗	
for all l� l∗, and F �l	� �+ c�l− l∗	 for all l� l∗, which
imply that Assumption (B1) holds with > = c=. (In fact,
their assumption cannot hold for all l, because F �l	 ∈ �0
1�
for all l. Nevertheless, because F is nondecreasing when G
does not depend on l, if −�l− l∗	��−F �l	�� c�l− l∗�2 for
all l in some neighborhood of l∗, then Assumption (B1) is
satisfied, and their line of argument works.)
Next, we verify that the conditions in Proposition 8

are satisfied in our problem if Assumption (B1) holds.
It follows from Proposition 5 on p. 451 of Fristedt and
Gray (1997) that the assumption in (3) and Assump-
tion 1 of Proposition 8 are equivalent. Next, recall that
S�l
 x	 = � − ��x�l� ∈ �−1
1	 for all l and x, and thus∫
� �S�l
 x	�2G�l
dx	 < 1 for all l ∈�, that is, Assumption 2
of Proposition 8 holds. Finally, Assumption 3 of Proposi-
tion 8 and Assumption (B1) are equivalent. Proposition 9
follows from these observations.

Proposition 9. Suppose that Assumption (B1) holds and
that the protection levels are updated according to (36).
Then, Lk → l∗ w.p.1.

Note that the assumptions do not require F to be contin-
uous at l∗. If in addition it is assumed that F is continuous
at l∗, then F �Lk	→ F �l∗	= � w.p.1, that is, G�Lk
Lk	→
G�l∗
 l∗	 = � w.p.1, and l∗ ∈ G−1�l∗
 �	. Alternatively,
when l takes on integer values only and the family of dis-
tributions �G�l
 ·	� is stochastically increasing in l, then
G�l∗
 l∗ − 1	�G�l∗ − 1
 l∗ − 1	 < � < G�l∗
 l∗	, i.e., l∗ ∈
G−1�l∗
 �	.
The online appendix gives sufficient conditions for the

sequence �Lk� generated by the stochastic approximation
method to satisfy G�Lk
Lk	 → � w.p.1, even if Lk does
not converge to a deterministic or random limit. In addi-
tion, it is shown that every limit point L∗ of �Lk� satisfies
G�L∗
L∗	= �, that is, L∗ ∈G−1�L∗
 �	.
Next, we consider two examples with stochastic approx-

imation updates, which correspond to Examples 2.2.A
and 2.2.B. We start with the following result.

Proposition 10. In Examples 2.2.A and 2.2.B, the func-
tion F �l	 �=G�l
 l	 is nondecreasing.

It follows that F is a nondecreasing step function, and
thus F satisfies Assumption (B1) unless � happens to be
equal to one of the values of F . That is, �Lk� converges
w.p.1 to some l∗. Note also that in those examples the fam-
ily of distributions �G�l
 ·	� is stochastically increasing in l,
so that l∗ ∈G−1�l∗
 �	.
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In the following examples, Class-1 tickets have price 1,
Class-2 tickets have price 0�5 (so � = 0�5), the time horizon
is 100, the capacity is c= 100, and the step size parameter
is 9k = 104/�105 + k	.

Example 5.1. This example corresponds to Example 2.2.A,
in which the observed quantity X is the “untruncated
Class-1 demand.” Type-a customers arrive according to a
nonhomogeneous Poisson process with rate 0�005t, type-b
customers arrive according to a nonhomogeneous Pois-
son process with rate 0�5− 0�005t, and type-ab customers
arrive according to a homogeneous Poisson process with
rate 0�5. Note that the expected total number of arrivals
over the booking period is 100, of which 50% are type-ab
customers, 25% are type a, and 25% are type b. Figure 1
shows the expected revenue (estimated via simulation) as a
function of the protection level for this system. The optimal
protection level is 98, which corresponds to an expected
revenue of about 75. We did calculate confidence intervals
for the estimated quantities, but because they were negli-
gible due to the large sample size used, we chose not to
display them.
Figure 2 shows 10 sample paths of the protection levels

produced by the stochastic approximation method. In this
example, when l∗ = 49 we have G�l∗ − 1
 l∗ − 1	 < � and
G�l∗
 l∗	 > � (these quantities were estimated via simula-
tion, again with a large sample size). Thus, by Proposi-
tion 10, Assumption (B1) holds. Note that the protection
levels do spiral down from the nearly optimal protection
level of L0 = 100 to l∗ = 49, as predicted by Proposition 9.

Example 5.2. The parameters for this example are the
same as for Example 5.1, except that the observed quantity
X is as in Example 2.2.B, that is, X is equal to the num-
ber of Class-1 tickets sold. As it turns out, for this exam-
ple we again have G�l∗ − 1
 l∗ − 1	 < � and G�l∗
 l∗	 > �
for l∗ = 49, and thus it follows from Proposition 10 that
Assumption (B1) is satisfied. The graph for this system is
very similar to that in Figure 2, so we do not display it.

Figure 1. Example 5.1: Expected revenue as a function
of the protection levels.
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Figure 2. Example 5.1: Spiral down of protection lev-
els from the optimal protection level of 100,
shown for 10 sample paths.
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A few comments about the above examples are in order.
First, note that the two examples above—which correspond
to untruncated and truncated observations—behave very
similarly. In general, this is not the case; in fact, the dif-
ferences become starker as the ratio of expected demand
by capacity increases (in these examples the ratio is equal
to 1). Also, from Figure 1 we see that the expected rev-
enue corresponding to l∗ = 49 is about 70. That is, the loss
in revenue resulting from the modeling error is above 6%
(compared to the revenue corresponding to the optimal pro-
tection level of 98), which is a significant amount in terms
of airline revenues. Finally, it is worth mentioning that the
limit of the spiral down is directly related to the percent-
age of flexible (i.e., type-ab) customers, as given in the
following result:

Proposition 11. Consider Examples 2.2.A and 2.2.B, and
suppose that all customers are type ab. Suppose that the
protection levels are updated according to (36). In Exam-
ple 2.2.A, if � �Dab � c� > �, then Lk → 0 w.p.1, whereas
if � �Dab � c� < �, and there is no l > c such that � �Dab �

l� = �, then Lk → l∗ w.p.1 for some l∗ > c. In Exam-
ple 2.2.B, Lk → 0 w.p.1 regardless of anything else.

6. Extensions
In the previous sections, we considered the dynamic behav-
ior of sequences of forecasts � 	Hk� and protection levels
�Lk� for various families of distributions G�l
 ·	 of X and
various forecasting methods. Next, we show how to extend
these results to other settings. In §§6.1 and 6.2, we dis-
cuss extensions through stochastic comparisons and path-
wise comparisons, respectively, of random variables in the
other settings with random variables considered in the pre-
vious sections.
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6.1. Stochastic Comparisons

Let �st denote the usual stochastic order for distributions on
the real line; i.e., for real-valued random variables Z1 ∼H1,
Z2 ∼H2, we write Z1 �st Z2 or H1 �st H2 if for all bounded
nondecreasing measurable functions f � � 
→�,

∫
� f dH1 �∫

� f dH2, i.e., Ɛ�f �Z1	� � Ɛ�f �Z2	�. It can be shown that
H1 �st H2 if and only if H1�x	 � H2�x	 for all x ∈ �
(Müller and Stoyan 2002). Consider the Polish space ���	
of distributions on the real line endowed with a metric that
induces weak convergence, such as the Lévy metric, and
the closed partial order �st defined above (Kamae et al.
1977). Let �st denote the usual stochastic order on the
space �����		 of probability measures on ���	, that is,
for P1
 P2 ∈�����		, and two ���	-valued random ele-
ments H1 ∼ P1 and H2 ∼ P2, we write H1 �st H2 or P1 �st

P2 if for all bounded nondecreasing measurable functions
f � ���	 
→�,

∫
���	 f dP1 �

∫
���	 f dP2, i.e., ƐP1 �f �H1	��

ƐP2 �f �H2	�. Note that f � ���	 
→� nondecreasing means
that for any h1
 h2 ∈ ���	 with h1 �st h2, it holds that
f �h1	� f �h2	.
Suppose that we want to consider a setting with a fam-

ily �G�l
 ·	�l of distributions of observed quantity X and a
particular forecasting method, producing sequences of fore-
casts � 	Hk� and protection levels �Lk�. Suppose that for a
setting with distributions G�l
 ·	 of X, forecasts � 	Hk�, and
protection levels �Lk�—for example, a setting considered in
one of the previous sections—one can establish that 	Hk �st	Hk for all k. Then, it follows that

Lk �= min
{
x ∈�� 	Hk�x	� �

}=min
{
x ∈ � 	Hk	−1��	

}
�st L

k ∈ � 	Hk	−1��	

for all k. In such a case, a result that implies spiral down
of �Lk�, in distribution or almost surely, also implies spiral
down of �Lk� in distribution. Next, we give examples of
how the results established in the previous sections can be
extended as described above.

Proposition 12 (Stochastic Comparison with Empir-
ical Distributions). Suppose that G� l
 ·	 �st G�l
 ·	 for
all l � l, and the empirical distribution is used for both
	H and 	H , that is, 	Hk�x	 �= k−1

∑k
j=1 ��Xj�x� and 	Hk�x	 �=

k−1
∑k

j=1 ��Xj�x�. If L
0 �st L

0, then

G�Lk
 ·	�st G�Lk
 ·	

Xk+1

�st X
k+1


	Hk+1 �st
	Hk+1


Lk+1
�st L

k+1


for all k= 0
1
 � � � �

Proposition 12 can be used to stochastically bound
a sequence �Xk
 	Hk
Lk
G�Lk
 ·	� with another sequence
�Xk
 	Hk
Lk
G�Lk
 ·	�, such as the sequence considered
in §3, as follows: Suppose that, for some deterministic

constant d, it holds that given the protection level l, the
observed quantity X is almost surely less than or equal
to �d − �c − l	+�+, and that the empirical distribution
is used for 	H . If L0 �st L

0, then G�Lk
 ·	 �st G�Lk
 ·	,
Xk+1 �st X

k+1, 	Hk+1 �st
	Hk+1, and Lk+1 �st L

k+1 for all
k = 0
1
 � � � � Note that if L0 is a deterministic constant,
then L0 �st L

0 implies that w.p.1, Lk � Lk, G�Lk
 ·	 �st

G�Lk
 ·	, Xk+1 �Xk+1, 	Hk+1 �st
	Hk+1 for all k= 0
1
 � � � �

In addition, if d < c, then �Lk� spirals down to zero w.p.1.

Proposition 13 (Stochastic Comparison with Affine
Updates). Suppose that %� � 
→ � satisfies %�l	 � l
for all l. Suppose that G� l
 ·	 = G�%� l	
 ·	, and that
G� l
 ·	 �st G�l
 ·	 for all l � l. Suppose that 	Hk =
G�Mk
 ·	 and 	Hk = G�Mk
 ·	, where Mk = k−1

∑k
j=1X

j

and Mk = k−1
∑k

j=1X
j . If L0 �st L

0, then

G�Lk
 ·	�st G�Lk
 ·	

Xk+1

�st X
k+1


Mk+1
�st M

k+1


	Hk+1 �st
	Hk+1


Lk+1
�st L

k+1


for all k= 0
1
 � � � �

Observe that Proposition 13 in conjunction with Propo-
sition 6(i) or 7(i) allows us to identify many situations in
which spiral down occurs. For instance, if the conditions of
Proposition 13 and Proposition 7(i) hold, then the distribu-
tion of Lk converges weakly to the point mass at zero. Note
that the assumption %�l	� l is natural because larger val-
ues of the protection level l tend to produce larger values
of the observed quantity X for small values of l only.

6.2. Pathwise Comparisons

The stochastic comparisons in the previous section do not
require the sequences �Xk
 	Hk
Lk
G�Lk
 ·	� and �Xk
 	Hk

Lk
G�Lk
 ·	� to be constructed on the same probability
space. If the sequences are defined on the same proba-
bility space, then stronger results such as Lk � Lk w.p.1
can sometimes be obtained. For example, suppose that one
wants to study the behavior of a sequence �Xk
 	Hk
Lk

G�Lk
 ·	�, but that complications hinder direct analysis
of the sequence. One may construct another sequence
�Xk
 	Hk
Lk
G�Lk
 ·	� of which the behavior is already
understood on the same probability space, and then derive
insight regarding the behavior of �Xk
 	Hk
Lk
G�Lk
 ·	�
through pathwise comparisons with �Xk
 	Hk
Lk
G�Lk
 ·	�.
Another setting in which pathwise comparisons are natu-

ral is as follows. Suppose that Xk is the number of high-fare
tickets sold (truncated demand), and that Xk is the untrun-
cated demand estimate corresponding to the same underly-
ing customer demand. Then, it is natural to model the two
sequences on the same probability space, and to assume
that if Lk � Lk w.p.1, then Xk+1 � Xk+1 w.p.1. We obtain
the following pathwise comparison result.
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Proposition 14 (Pathwise Comparison). Consider any
! ∈ � such that, for any k, Lk�!	 � Lk�!	 implies that
Xk+1�!	 � Xk+1�!	. Suppose that the forecasting method
used in both sequences satisfies the following condition for
all k: If �X1�!	
 � � � 
Xk�!		 � �X1�!	
 � � � 
Xk�!		, then
	Hk�!
 ·	�st

	Hk�!
 ·	. If L0�!	� L0�!	, then

Xk�!	�Xk�!	


	Hk�!
 ·	�st
	Hk�!
 ·	


Lk�!	� Lk�!	


for all k= 1
2
 � � � �

Note that the result above applies to individual sample
paths !. If the assumptions of the proposition hold w.p.1,
then the conclusions hold w.p.1.

6.3. Batching of Observations

In this section, we consider a variation of the methods in
§§5.1–5.3 in which the protection level is not updated after
every observation of X, but rather after a batch consisting
of n observations (recall one observation corresponds to
one flight instance). Under this approach, if the underlying
forecast method is good—in the sense of §4—then for any
fixed value of Lk−1, the batch forecasts converge to the
true distribution G�Lk−1
 ·	 as n becomes large. Thus, with
larger values of n, the choice of the next protection level
Lk will be based on a forecast that tends to be closer to the
distribution G�Lk−1
 ·	 than with smaller values of n.
Let 	Hk

n denote the forecast and let Lk
n denote the protec-

tion level after batch k has been observed, with each batch
consisting of n observations. Thus, L1

n is based on observa-
tions X1
 � � � 
Xn, and Lk+1

n is updated using new observa-
tions Xkn+1
 � � � 
X�k+1	n. Protection levels remain constant
between updates; that is, Lnk+j = Lk

n for j = 0
 � � � 
 n− 1,
and

� �Xkn+j+1
� x �� kn+j �=G�Lkn+j 
 x	=G�Lk

n
 x	 (37)

for all j = 0
 � � � 
 n− 1 and all x ∈�.
Consider initially the case where the same batch size n

is used for all k. It is not difficult to check that the results
of §§5.1–5.3 are readily extended to this situation. For
example, consider the analysis for the normal distribution
in §5.1. With batching, (16) is replaced by X�k−1	n+1
 � � � 

Xkn ∼ N�Lk−1

n 
"2	. Define �Xk
n �= ∑kn

j=�k−1	n+1X
j/n, and

replace (17)–(19) by Mk
n = ��k − 1	Mk−1

n + �Xk
n�/k, 	Hk

n =
N�Mk

n 
"
2	, and Lk

n = � 	Hk
n 	

−1��	=Mk
n +/. It then follows

that Ɛ�Lk
n � � k−1

n � = Lk−1
n + //k, where � k−1

n �= � �k−1	n.
The proof of Lemma 1 carries over with Xk, Mk, Lk,
and "2 replaced everywhere by �Xk

n , M
k
n , L

k
n, and "2

n �=
"2/n, respectively. Therefore, Proposition 6 (with Lk and
"2 replaced by Lk

n and "2
n ) applies to the situation where

updates occur every n observations. Similar conclusions are
obtained for the remaining cases in §§5.1–5.3.

Consider now the limiting case (as n → �) in which
	Hk = G�Lk
 ·	. In the context of the normal distribution
discussed in §5.1, we have

Lk =G−1�Lk−1
 �	= Lk−1 +/� (38)

Clearly, if / �= 0, then /Lk → � as k → �, whereas if
/= 0, then Lk = L0. Note the similarity between this con-
clusion and the results of Proposition 6.
In the context of the empirical distribution approach

described in §5.2, stronger conclusions for the limiting case
can be obtained, compared to the case of finite n. We have

Lk =G−1�Lk−1
 �	
 (39)

which is the same as in (38), except that in the former case
Lk can be computed explicitly because of the particular
form of G. Additional assumptions are needed to establish
the convergence of Lk generated by (39). For example, if
f�� � 
→ � given by f��l	 �= G−1�l
 �	 is a contraction
mapping, then Lk converges to the fixed point of f� , which
can be a suboptimal point.
Finally, for the stochastic approximation procedure de-

scribed in §5.3, in the limiting case (n→�) (36) becomes
Lk+1 �= Lk + 9k�� −G�Lk
Lk	� = Lk + 9ks�L

k	, and thus
we can apply a simpler version of Proposition 8 where
Assumptions 1 and 2 are not needed.
In summary, in all cases discussed in this section, we

have seen that reducing (or even eliminating) the forecast
variability does not prevent spiral down. This emphasizes
the observation that the spiral-down effect is a consequence
of modeling error, and not forecast variability.

7. Relating the Convergence of
Forecasts and Protection Levels

We turn now to an analysis of the protection-level process
�Lk� when a general good forecast method is used. As the
results in §5 illustrate, ad hoc tools are typically required
to calculate the limiting values (if any) of �Lk�. Thus, the
results we establish in this section do not give explicit con-
ditions for convergence of �Lk�; rather, the results relate
the asymptotic behaviors of �Lk� and of the forecasting
sequence �Hk�. Roughly speaking, we show that �Lk� con-
verges if and only if �Hk� converges weakly to some dis-
tribution. That is, the forecasts “stabilize” if and only if
the protection levels do. Although intuitive, such a result
is valid only under appropriate assumptions; indeed, we
present an example in which the sequence of protection
levels �Lk� does not converge even though �Hk� does. We
will be interested in the following set of assumptions.

Assumption (C1). � 	Hk� is a good forecasting method
for �Xk�.

Assumption (C2). The distribution function G�l
 ·	 is con-
tinuous in l in the topology corresponding to weak
convergence.
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Observe that if the protection level l takes on only integer
values, then Assumption (C2) automatically holds, because
then G�l′
 ·	=G�l
 ·	 for all l′ and l such that �l′ − l�< 1.
The following are the main results of this section. Note

that Proposition 16 applies to the deterministic example dis-
cussed in §3. For b ∈� and A⊂�, let d�b
A	 �= inf��b−
a�� a ∈A� denote the distance between the point b and the
set A.

Proposition 15. Consider the stochastic process described
by (3)–(5), and suppose that Assumptions (C1) and (C2)
hold. If there exists a random distribution function 	H such
that � � 	Hk

w→ 	H�= 1, then � �d�Lk
 	H−1��		→ 0�= 1. In
addition, if � � 	H−1��	 is a singleton]= 1, then there exists
a random variable L such that � �Lk → L�= 1 and � �L=
G−1�L
�	�= 1.

Proposition 16. Consider the stochastic process described
by (3)–(5), and suppose that Assumptions (C1) and (C2)
hold. If there exists a random variable L such that
� �Lk → L� = 1, then � � 	Hk

w→ G�L
 ·	� = 1 and � �L ∈
G−1�L
�	�= 1.

Example 7.1. The following example shows that, without
additional assumptions, the sequence of protection levels
�Lk� may not converge. Let 0 � a < b. Let G�l
 x	 =
��a+b−l�x�. Specifically, G�a
x	 = ��b�x� and G�b
x	 =
��a�x�. Note that Assumption (C2) holds: If lk → l, then
G�lk
 x	 → G�l
 x	 for all continuity points x of G�l
 ·	,
that is, for all x �= l. Also note that G�l
 ·	 is stochas-
tically decreasing in l, instead of stochastically increas-
ing in l as would have been more appealing for the
application.
Suppose that we use the empirical distribution (7) as

forecast distribution for X. In case � 	Hk	−1��	 is not a
singleton, choose Lk = min�x� 	Hk�x	 � �� = min�x ∈
� 	Hk	−1��	�. Let � = 1/2. Let L0 = a, or equivalently, let
	H 0�x	 = ��a�x�/2 + ��b�x�/2. Then, it is easy to show by
induction on k that

Lk =Xk =
{
a if k even


b if k odd


G�Lk
 x	=


G�a
x	= ��b�x� if k even


G�b
x	= ��a�x� if k odd


	Hk�x	=



1
2
��a�x� +

1
2
��b�x� if k even


k− 1
2k

��a�x� +
k+ 1
2k

��b�x� if k odd.

Let 	H�x	 �= ��a�x�/2 + ��b�x�/2 = 	H 0�x	. Then, � 	Hk −
	H�� → 0 as k→�, but the sequence �Lk� does not con-
verge. Of course, we have to violate some assumptions of
Proposition 15 here. Specifically, we violate the assumption
that � � 	H−1��	 is a singleton�= 1.

8. Conclusions
In this paper, we introduce a framework for analyzing the
dynamics of forecasting and optimization in revenue man-
agement. We consider a model that has been studied widely
in the revenue management literature and that has been
used widely in revenue management practice, combined
with a number of forecasting methods that have been pro-
posed for revenue management. We give conditions under
which the spiral-down phenomenon occurs.

8.1. What to Do About the Spiral-Down Effect

The results in this paper suggest a number of interesting
and important research questions. Before discussing some
of these questions, we reiterate the motivation for our work.
Most papers on revenue management specify a model, sup-
pose that the model is correct, and then propose a method to
obtain decisions based on the model. While this approach
has led to some useful results, so far it has ignored the
question of what happens when (a) the assumptions of
the models do not hold, and (b) the models are repeat-
edly updated and used. The questionable nature of some of
the assumptions of many widely used revenue management
models provides additional emphasis to the importance of
this question. The results in this paper illustrate how an
error in such a model can lead to a systematic deterioration
of the controls if the model is updated and used repeat-
edly. Such systematic deterioration is different in nature,
and potentially of greater concern, than the suboptimality of
solutions obtained if a model with error is used only once.
Hence, the main contribution of this paper is to address an
important question that has long been ignored.
A question that naturally follows from the results in this

paper is how to avoid the spiral-down effect. In general, this
is a difficult question, because more accurate, but still not
entirely correct, models are not guaranteed to have better
dynamic behavior than less accurate models. In addition,
merely preventing the controls or the objective from spiral-
ing down may not give satisfactory results. As an example,
consider a model that produces the same control irrespec-
tive of the observed data. Such a model does not suffer
from the spiral-down effect; however, a model that makes
no use of observed data may be undesirable. In a compari-
son of models, one model may make better use of observed
data and produce better controls when its assumptions are
satisfied, but may be worse in terms of dynamic behav-
ior when its assumptions are not satisfied. Nevertheless, it
seems to be a good starting point to develop more accurate
models, and then to study their dynamic behavior. In what
follows, we make a few brief comments about attempts to
accomplish these goals.
Brumelle et al. (1990), Bodily and Weatherford (1995),

and Belobaba and Weatherford (1996) consider models in
which a customer who requests a ticket in a particular
lower-fare class may be willing to purchase a ticket in a
higher-fare class if no more tickets in the lower-fare class
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are available. These models assume that there is exogenous
demand for each fare class, while allowing that some cus-
tomers may buy tickets in a different class if their preferred
class is not available. In general, the assumption that there
is such a thing as exogenous demand for a particular fare
class is becoming more difficult to justify as customers are
able to easily obtain information about large sets of alter-
natives and their attributes. (In addition, this also raises the
need to include competition in models.) Hence, it may be
desirable to move toward formulations that do not rely on
the notion of exogenous demand for a fare class, such as
those in which each customer chooses among the presented
set of alternatives with choice probabilities that depend on
that set (Talluri and van Ryzin 2004a). Nevertheless, for
the problem considered in this paper, the models referred
to above may have better dynamic behavior than the model
associated with Littlewood’s rule. A more detailed investi-
gation of the dynamics of these models is beyond the scope
of this paper.
Taking into account that models necessarily have error,

in this paper we illustrate why it may be important to
understand the dynamic behavior of models with errors. In
general, it seems prudent for practitioners to study their
models, including the associated forecasting methods, in
situations where the assumptions of the model do not hold.
If the study reveals that the model is not robust to viola-
tions of the assumptions, then the practitioner may want to
consider a different model or forecasting method.
Another way to potentially avoid phenomena such as

spiral down is to follow a model-free approach and to
directly track how the control (the protection levels) affects
the quantity of interest (revenue). For example, one may
attempt to use a response surface approach to maximize
the expected revenue as a function of the controls, with-
out using the notion of demand. For such an approach to
work, the airline would need to use different values of the
controls to estimate how the revenue responds as a func-
tion of the controls, at least in a neighborhood of control
values. Such an approach has shortcomings, including the
need to use potentially bad values of the controls to esti-
mate the response of the expected revenue and the need to
obtain many observations—especially when the control is
high dimensional—to accurately approximate the response
surface.

8.2. Future Directions

There is a clear need for more work on how to avoid or
mitigate the spiral-down effect. In addition, there remain
some open technical questions related to the analysis of the
spiral-down effect. For example, we have considered fore-
casting techniques for which, w.p.1, the forecast distribu-
tions converge weakly, and hence the associated quantiles
also converge. Although this notion is less restrictive than
related ones studied in the literature (see the discussion
in §4), some forecasting methods used in revenue man-
agement practice, such as the empirical distribution, have

this property, whereas some others, such as exponential
smoothing, do not. Nevertheless, some of the forecasting
methods that do not have this property have other desirable
characteristics. For example, methods such as exponential
smoothing use smoothing constants or weights for the new
observations of X that remain bounded away from zero, as
opposed to the forecasting methods considered in this paper
that use weights of 1/k for the new observations Xk. Such
weights that remain large prevent these methods from hav-
ing the property above, but at the same time these weights
allow the forecasts to adjust faster to possible changes
in the underlying random processes, such as seasonality,
trends, “shifts” in demand, and user interventions. Thus,
it seems desirable to develop a theory, possibly based on
other modes of convergence of the forecast distributions (or
at least of their quantiles), that would include other fore-
casting methods used in practice.
The results in this paper describe, under various assump-

tions on the relationship between the conditional distribu-
tions G�l
 ·	 of the observed quantity X and the protection
level l, conditions that result in the spiral-down effect when
certain forecasting systems are used. In each case, we
have relied on arguments tailored to the specific forecast-
ing system under consideration to establish convergence of
the protection levels �Lk�, and in some cases, to identify
the limits. It would be of interest to find more general,
easily checkable conditions on the behavior of G�l
 ·	 as
a function of l and the forecasting update functions �k

in (4) that would allow one to show when spiral down
does (or does not) occur. Our results in §7 indicate that
the existence of an l that satisfies the fixed-point condi-
tion G−1�l
 �	 = l will likely be important in such a the-
ory. Other conditions that appear to be potentially useful
include: (a) f��l	 �= G−1�l
 �	 is a contraction mapping;
(b) f��l	 � l; (c) f��l	 − l is monotone; (d) the family
�G�l
 ·	� is stochastically increasing in l; and (e) Xk � Lk−1

implies that Lk � Lk−1. The particular cases that we have
covered in this paper have satisfied some of these condi-
tions. Additional work is required to establish such general,
easily checkable conditions that characterize spiral-down
behavior.

Appendix
Online Appendix

The online appendix is available at http://or.pubs.informs.
org/Pages/collect.html.

Auxiliary Results and Proofs

Proposition 17. Let B denote the Borel "-algebra on �.
Consider the space ����	
�	 of probability distributions
on �, endowed with the Borel "-algebra � corresponding
to the topology of weak convergence on ���	. Consider
a measurable space ��
� 	. Let �Hk� � 
→ ���	� be a
sequence of �� 
�	-measurable functions.



Cooper, Homem-de-Mello, and Kleywegt: Models of the Spiral-Down Effect in Revenue Management
984 Operations Research 54(5), pp. 968–987, © 2006 INFORMS

(i) Consider a probability space ��
� 
�	 and a filtra-
tion �� k�. Consider a random sequence �Y k� adapted to
filtration �� k�, where Y k� � 
→ �. Let F k� � 
→ ���	
be given by F k�!
x	 �= � �Y k+1 � x � � k�, that is, F k is
the conditional distribution of Y k+1. Then, F k is �� k
�	-
measurable.
(ii) The set �∗ �= �! ∈ �� Hk�!
 ·	 converges weakly

as k→�� is in � .
(iii) Let �∗ �= �! ∈ �� Hk�!
 ·	 converges weakly as

k→��, and let � ∗ �= �A ∈� � A⊂�∗�. For each ! ∈�∗,
let H∗�!
 ·	 denote the weak limit of �Hk�!
 ·	�. Then,
� ∗ is a "-algebra on �∗. In addition, H∗ is �� ∗
�	-
measurable, and thus H∗ is also �� 
�	-measurable.
(iv) For any �� 
�	-measurable F � � 
→���	, the set

�! ∈�� Hk�!
 ·	 w→ F �!
 ·	� is in � .
(v) Let F � � 
→ ���	 be an �� 
�	-measurable func-

tion. For any x ∈�, let fx� � 
→� be defined as fx�!	 �=
F �!
x	. Then, fx is �� 
B	-measurable. That is, fx is a
real-valued random variable.

The proof of Proposition 17 is given in the online
appendix.

Proposition 18. Suppose that �Y k� � 
→ �� are �� 
B	-
measurable random variables. Then, 	Hk defined in (12) is
�� 
�	-measurable for all k.

The proof of Proposition 18 is given in the online appendix.

Lemma 3. Consider a probability space ��
� 
�	, and the
space ����	
�	 of probability distributions on � endowed
with the Borel "-algebra � corresponding to the topology
of weak convergence on ���	. Let F � � 
→ ���	 be a
�� 
�	-measurable function. For each ! ∈�, let D�!	 �=
�x ∈�� F �!
x	 > F �!
x−	� denote the set of jump points
of F �!
 ·	. Then, the set �x ∈ �� � �x ∈ D�!	� > 0� is
countable.

The proof of Lemma 3 is given in the online appendix.

Proof of Proposition 3. Proposition 18 establishes that
	Hk is �� 
�	-measurable for all k, i.e., 	Hk is a random
distribution function.
Let �F k�, �∗, and F ∗ be as in Definition 1. For any

! ∈� and any x ∈�, let

Sn�!
x	 �=
n∑

k=1

(
��Y k�!	�x� − F k−1�!
x	

)
�

Note that �Sn�!
x	� is a martingale with respect to �� n�
because Ɛ�Sn�!
x	 � � n−1� = Ɛ���Y n�!	�x� − F n−1�!
x	 �
� n−1� + Ɛ�Sn−1�!
x	 � � n−1� = � �Y n�!	 � x � � n−1� −
F n−1�!
x	+ Sn−1�!
x	= Sn−1�!
x	. In addition,

�∑
k=1

Ɛ����Y k�!	�x� − F k−1�!
x		2�
k2

�

�∑
k=1

1
k2

<��

It follows from a strong law of large numbers for mar-
tingales (Chow 1967) that limn→� Sn�!
x	/n = 0 w.p.1,

that is, there is a set �′�x	 ⊂ � such that � ��′�x	� =
0 and limn→� Sn�!
x	/n = 0 for all ! ∈ �\�′�x	.
Because 	Hn�!
x	 �= �1/n	

∑n
k=1 ��Y k�!	�x�, it follows that

	Hn�!
x	 − �1/n	
∑n

k=1 F
k−1�!
x	 → 0 for all ! ∈

�\�′�x	.
For each ! ∈�∗, let D�!	 �= �x ∈�� F ∗�!
x	 > F ∗�!


x−	� denote the set of jump points of F ∗�!
 ·	. It is shown
in Lemma 3 that the set �x ∈�� � �x ∈D�!	� > 0� is count-
able. Let S be a countable dense set in � such that � �x ∈
D�!	�= 0 for all x ∈ S. Let �′′�x	 �= �! ∈�∗� x ∈D�!	�.
Then, for any x ∈ S, x is a continuity point of F ∗�!
 ·	 for
all ! ∈�∗\�′′�x	, and � ��′′�x	�= 0. Then, F k−1�!
x	→
F ∗�!
x	, and thus �1/n	

∑n
k=1 F

k−1�!
x	→ F ∗�!
x	 for
all ! ∈�∗\�′′�x	.
Let �′ �= ⋃

x∈S �′�x	 ∪ �′′�x	. Then, � ��′� = 0 and
	Hn�!
x	 → F ∗�!
x	 for all x ∈ S and all ! ∈ �∗\�′.
This implies that 	Hn�!
 ·	 w→ F ∗�!
 ·	 for all ! ∈ �∗\�′

(Fristedt and Gray 1997, Proposition 2, p. 245). �

Proof of Proposition 5. It follows from (26) and (27)
that

f k =
k∏

i=m

i

i− 1+0
and gk =

k∑
j=m

/

j
f j �

Recall from (28) that Ɛ�f kLk−gk �� k−1�= f k−1Lk−1−gk−1.
ByAssumption (A),wehaveƐ�f kLk−gk�� supj�m Ɛ�f jLj−
gj �<�. Hence, �f kLk − gk� is a martingale.
First, consider the case with 0 < 1 as in part 1 of the

proposition. Consider f k. For sufficiently large values of i,
i/�i− 1+0	 ∈ �1
�	, and i/�i− 1+0	 ↓ 1, i.e., �i− 1+
0	/i ∈ �0
1	 and �i − 1 + 0	/i ↑ 1 as i → �. First, we
want to determine limk→� f k. Recall the following result:
Consider a sequence �ai�

�
i=m, with ai ∈ �0
1	 for all i. Then,∏�

i=m ai = 0 if and only if
∑�

i=m�1 − ai	 = �. Let ai �=
�i− 1+ 0	/i. Then,

∑�
i=m�1− ai	=

∑�
i=m�1− 0	/i =�.

Thus, 1/f k =∏k
i=m ai → 0, and hence f k →� as k→�.

Next, consider gk =∑k
j=m f

j//j . If / = 0, then gk = 0
for all k. By Assumption (A), we have supk Ɛ�f kLk −
gk� = supk Ɛ�f kLk� < �, and consequently �f kLk� is an
L1-bounded martingale. Therefore, the martingale conver-
gence theorem (see, e.g., Theorem 9.4.4 of Chung 1974)
implies that w.p.1, f kLk →A as k→�, where A is a finite
random variable. Then, it follows from the observation that
f k →� as k→� that w.p.1, Lk → 0 as k→�.
Suppose now that 0= 1 as in parts 2 and 3 of the propo-

sition. In this case, f k = 1 for all k. Also, gk =∑k
j=1//j ,

and thus if / < 0, then gk → −�; and if / > 0, then
gk →� as k→�; if /= 0, then gk = 0 for all k. Observe
that supk Ɛ�f kLk − gk� = supk Ɛ�Lk − gk�<� by Assump-
tion (A). Hence, we can again apply the martingale con-
vergence theorem to conclude that w.p.1, Lk − gk → A as
k→�, where A is a finite random variable. Thus, if /< 0,
then Lk →−�; if /> 0, then Lk →�; and if /= 0, then
Lk →A as k→�. �
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Proof of Lemma 1. First, we show by induction that

Xk+1 ∼N

(
L0 +/

k∑
i=1

1
i

"2

(
1+

k∑
i=1

1
i2

))

 (40)

Mk+1 ∼N

(
L0 +/

k+1∑
i=2

1
i

"2

k+1∑
i=1

1
i2

)

 (41)

Lk+1 ∼N

(
L0 +/

k+1∑
i=1

1
i

"2

k+1∑
i=1

1
i2

)

 (42)

for all k = 0
1
 � � � � It follows from (16)–(19) that X1 ∼
N�L0
"2	, M1 = X1 ∼ N�L0
"2	, and L1 = M1 + / ∼
N�L0 +/
"2	, so (40)–(42) holds for k= 0. Suppose that
the inductive hypothesis holds for 1
 � � � 
 k− 1.
The conditional distribution of Xk+1, given � k, is

N�Lk
"2	. Using the inductive hypothesis, it follows from
a result often used in Bayesian statistics that the (uncon-
ditional) distribution of Xk+1 is N�L0+/

∑k
i=1 1/i
"

2�1+∑k
i=1 1/i

2		, so (40) holds for k. Moreover, Mk+1 =∑k+1
i=1 X

i/�k+ 1	 is normally distributed with mean

Ɛ�Mk+1�= Ɛ�Ɛ�Mk+1 �� k��

= Ɛ

[
Mk + /

k+ 1

]
= L0 +/

k+1∑
i=2

1
i

and variance

Var�Mk+1�=Var�Ɛ�Mk+1 �� k��+ Ɛ�Var�Mk+1 �� k��

=Var
[
Mk + /

k+ 1

]

+ Ɛ

[
Var

[
k

k+ 1
Mk + 1

k+ 1
Xk+1 �� k

]]

=Var�Mk�+ Ɛ

[
Var

[
1

k+ 1
Xk+1 �� k

]]

= "2
k∑

i=1

1
i2
+"2 1

�k+ 1	2



which gives (41). Finally, because Lk+1 =Mk+1 + /, (42)
follows.
Next, note that because 0 = 1 in this case, it follows

that f k = 1, so to show that Assumption (A) holds, we
must show that supk Ɛ�Lk − gk�<�. It follows from (42)
that Ɛ��Lk − gk	2� = �Ɛ�Lk − gk�	2 + Var�Lk − gk� =
�L0	2+"2∑k

i=1 1/i
2, and thus supk Ɛ��L

k−gk	2�= �L0	2+
"2∑�

i=1 1/i
2 < �. It follows from the Cauchy-Schwartz

inequality that Ɛ�Lk − gk� � Ɛ��Lk − gk	2�1/2, and hence
supk Ɛ�Lk − gk�<� as stated. �

Proof of Lemma 2. It is easy to see from (25) that

Ɛ�Lk�= L0
k∏

i=1

i− 1+0

i
= L0

f k

for all k, thus Ɛ�f kLk�= L0, and hence supk Ɛ�f kLk� = L0 <
�. �

Proof of Proposition 10. Recall that the marked point
process that describes customer arrival times and customer
types is independent of the chosen value of the protection
level l. Thus, we can compare what happens along each
sample path of the point process with different choices of l.
Consider any sample path, and let N denote the total

number of arrivals for that sample path. Consider protec-
tion levels l and l+ 1. Let the corresponding values of the
observed quantity up to and including arrival n be denoted
by X�l
n	 and X�l+1
 n	, respectively, n= 0
 � � � 
N . Note
that, for a given sample path, X�l
N 	 denotes the final
observed quantity X with protection level l. We show that
along any sample path, the observed quantity X�l+ 1
N 	
exceeds the observed quantity X�l
N 	 by at most 1. Then,
it follows that

F �l+ 1	=G�l+ 1
 l+ 1	= � �X�l+ 1
N 	� l+ 1�

� � �X�l
N 	� l�= F �l	


that is, F is nondecreasing as claimed.
Case 2.2.A: Untruncated Class-1 Demand. Recall that

in this case the observed quantity is the number of cus-
tomers who would purchase a Class-1 ticket if a Class-1
ticket were available. Thus, X�l
n	 denotes the number of
customers up to and including arrival n who would pur-
chase a Class-1 ticket if a Class-1 ticket were available
upon arrival. Clearly, if N � c− l and arrival number c− l
is type ab, then X�l + 1
N 	 = X�l
N 	 + 1. Otherwise,
X�l+1
N 	=X�l
N 	. Thus, for any sample path such that
X�l
N 	� l, it holds that X�l+1
N 	� l+1, and the result
follows.
Case 2.2.B: Truncated Class-1 Demand. Here the

observed quantity is the number of Class-1 tickets sold.
Thus, X�l
n	 denotes the number of Class-1 tickets sold
up to and including arrival n. Let Y �l
 n	 be the total num-
ber of tickets sold up to and including arrival n. As in the
previous case, if N < c − l, then X�l + 1
N 	 = X�l
N 	.
Otherwise, N � c− l and the following cases hold:
• If arrival number c − l is type a, then X�l+ 1
 n	=

X�l
n	 for all n.
• If arrival number c− l is type b, then Y �l
 n	= Y �l+

1
 n	 + 1 for all n � c − l until capacity is reached with
protection level l. Thus, we have the following cases:

—If capacity c is not reached with protection level l,
then capacity also is not reached with protection level l+1,
and X�l+ 1
N 	=X�l
N 	.

—If capacity c is reached with protection level l, then
at that time there still is a remaining space with protection
level l+ 1.

∗ If that space is filled (it can only be filled with a
Class-1 ticket), then X�l+ 1
N 	=X�l
N 	+ 1.

∗ Otherwise, X�l+ 1
N 	=X�l
N 	.
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• If arrival number c− l is type ab, then Y �l
 n	= Y �l+
1
 n	 for all n, and X�l + 1
 n	 = X�l
n	+ 1 for all n �

c− l, thus X�l+ 1
N 	=X�l
N 	+ 1.
As before, for any sample path such that X�l
N 	 � l,

it also holds that X�l + 1
N 	 � l + 1, and the result fol-
lows. �

Proof of Proposition 11. First, consider the untruncated
case, i.e., the setting of Example 2.2.A. As before, let
Dab�l	 be the number of customers arriving until c− l tick-
ets are sold. Then, for any l � 0, we have that Dab�l	 =
min�Dab
 �c − l�+� and thus the observed quantity X is
given by Dab −Dab�l	= �Dab − �c− l�+�+. Hence, the dis-
tribution of X (for x� 0) is

G�l
 x	= ���Dab − �c− l�+�+ � x	

= ���Dab − �c− l�+�+ � x
 Dab � �c− l�+	

+���Dab − �c− l�+�+ � x
Dab > �c− l�+	

= ��Dab � �c− l�+	

+���c− l�+ <Dab � x+ �c− l�+	

= ��Dab � x+ �c− l�+	� (43)

It follows from (43) that if l ∈ �0
 c�, then G�l
 l	 =
��Dab � c	, which is a constant. For l > c, G�l
 l	 =
��Dab � l	, which goes to 1 as l→�. Finally, it is clear
that G�l
 l	= 0 for l < 0. It follows that if ��Dab � c	 > �,
then Assumption (B1) holds for l∗ = 0, whereas if ��Dab �

c	 < � and there is no l > c such that ��Dab � l	 = �,
then Assumption (B1) holds for some l∗ > c. The result
then follows from Proposition 9. If ��Dab � c	 = �, then
Assumption (B1) does not hold, so we cannot determine
the limiting behavior of the sequence �Lk�.
Consider now the truncated case, i.e., the setting of

Example 2.2.B. Now the observed quantity X is given
by min�Dab − Dab�l	
 c
 l�, i.e., X � l w.p.1 and hence
G�l
 l	= 1 for all l � 0. Because G�l
 l	= 0 for all l < 0
and � < 1, we see that Assumption (B1) holds for l∗ = 0.
Again, the result follows from Proposition 9. �

Proof of Proposition 15. It follows from Lemma 4
below that � �d�Lk
 	H−1��		 → 0� = 1. If � � 	H−1��	 is
a singleton� = 1, then let L �= 	H−1��	, and it follows
that � �Lk → L� = 1. By Assumption (C2), �!� Lk�!	→
L�!	� ⊂ �!� G�Lk�!	
 ·	 w→ G�L�!	
 ·	�, and thus it fol-
lows from � �Lk → L�= 1 that � �G�Lk
 ·	 w→G�L
 ·	�= 1.
Then, because G�Lk
 ·	 is the conditional distribution of
Xk+1 given � k, it follows from assumption (C1) that
� � 	Hk

w→G�L
 ·	�= 1. Therefore, � � 	H =G�L
 ·	�= 1, and
hence L=G−1�L
�	, w.p.1. �

Lemma 4. Consider a sequence of distribution functions
�F k�⊂���	 such that F k

w→ F ∈���	. For � ∈ �0
1	, let
�qk
Qk� �= �F k	−1��	, that is, �qk
Qk� denotes the set of
�-quantiles of F k [cf. (2)], and let �q
Q� �= F −1��	. Then,
q � lim infk→� qk � lim supk→�Qk � Q. That is, for any
sequence �9k� of �-quantiles of F k, d�9k
 F −1��		→ 0 as
k→�.

The proof of Lemma 4 is given in the online appendix.

Proof of Proposition 16. ��Lk → L	= 1 and Assump-
tion (C2) imply that ��G�Lk
 ·	 w→ G�L
 ·		 = 1. This,
combined with Assumption (C1), imply that �� 	Hk

w→
G�L
 ·		= 1.
For the second part, note that Lk ∈ � 	Hk	−1��	 if and only

if 	Hk�Lk	� � and 	Hk�x	� � for all x < Lk, and similarly
L ∈G−1�L
�	 if and only if G�L
L	� � and G�L
x	� �
for all x < L. First, we show by contradiction that, w.p.1,
G�L
L	 � �. Suppose that G�L
L	 < �. It follows from
G�L
 ·	 being right continuous that there exists a > > 0
such that G�L
x	 < � for all x < L+>. G�L
 ·	 must have
a continuity point y ∈ �L
L+ >	. Note that, w.p.1, for all
sufficiently large k, Lk < y. Thus, � � 	Hk�Lk	� 	Hk�y	→
G�L
y	 < �, whereupon a contradiction is reached. Hence,
w.p.1, G�L
L	� �.
Next, we show by contradiction that, w.p.1, G�L
x	� �

for all x < L. Suppose that there exists an x < L such
that G�L
x	 > �. G�L
 ·	 must have a continuity point
y ∈ �x
L	. Note that G�L
y	�G�L
x	 > �. Also, w.p.1,
	Hk�y	 → G�L
y	, and thus, for all sufficiently large k,
	Hk�y	 > � and Lk > y. However, that contradicts Lk ∈
� 	Hk	−1��	. Hence, w.p.1, G�L
x	 � � for all x < L, and
therefore L ∈G−1�L
�	. �
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