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We discuss the problem of estimating probabilities of rare events in static simulation models

using the recently proposed cross-entropy method, which is a type of importance-sampling

technique in which the new distributions are successively calculated by minimizing the cross-

entropy with respect to the ideal (but unattainable) zero-variance distribution. In our ap-

proach, by working on a functional space we are able to provide an efficient procedure without

assuming any specific family of distributions. We then describe an implementable algorithm

that incorporates the ideas described in the paper. Some convergence properties of the

proposed method are established, and numerical experiments are presented to illustrate the

efficacy of the algorithm.
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1. Introduction

A common problem in many areas of operations research is that of evaluating the expected

value of a random quantity such as

α := IEf [N (Z)] , (1)

where Z = (Z1, . . . , Zn) ∈ IRn is a vector with joint probability density function (pdf) f(z),

and N is an arbitrary real-valued function in IRn. Many techniques have been developed

over the years to provide estimates of α that are “better” than basic Monte Carlo, in the

sense that the variance of the resulting estimates is reduced. See, for instance, Fishman

(1997) and Law and Kelton (2000) for general discussions.

One method that has proven useful in many settings is the so-called importance-sampling

(IS) technique. This well-known technique consists of drawing independent and identically
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distributed (i.i.d.) samples Z1, . . . , ZN from an appropriately chosen pdf g(·), and estimating

α by

α̂N(g) =
1

N

N∑
j=1

N (Zj)
f(Zj)

g(Zj)
. (2)

The pdf g(·) must dominate N (·)f(·) in the absolutely continuous sense. That is, Supp[N (·)f(·)] ⊂
Supp[g(·)], where “Supp” denotes the support of the corresponding function, i.e., the set of

points where the function is not equal to zero. The choice of g (henceforth called an IS dis-

tribution) is critical for the effectiveness of this approach, and in fact much of the research

on importance sampling focuses on determining appropriate IS distributions. We remark

that our assumption that the underlying distributions have pdfs is made only to simplify

the exposition. The discussion in the paper can be extended to more general distributions.

For example, for discrete distributions, the pdf should be understood as a probability mass

function rather than a density in the strict sense. Of course, in that case integrals should be

interpreted as summations.

A common approach encountered in the literature is to restrict the choice of IS distri-

butions to some parametric family, say, {g(·, θ) : θ ∈ Θ}. Then, one attempts to find the

“best” (in some sense) parameter θ∗. For example, θ∗ can be the parameter that minimizes

the variance of the estimator α̂N (g(·, θ)); see Rubinstein and Shapiro (1993) for a discussion

and Vázquez-Abad and Dufresne (1998) for an application. Another example is that of Oh

and Berger (1992), who assume a certain form for the “optimal” parameter and develop an

adaptive procedure to estimate it.

Recently, Rubinstein (2002) introduced a method to calculate the parameter for the IS

distribution in the context of rare events, which he called the cross-entropy (CE) method.

The idea is to calculate the parameter θ∗ such that g(·, θ∗) minimizes the Kullback-Leibler

cross entropy with respect to the zero-variance pdf g∗ (defined in Section 2). In general, the

calculation of θ∗ requires solving a certain stochastic optimization problem, but in certain

cases an explicit formula can be derived for θ∗. One example is when the underlying random

vector has independent components and the family of distributions is the so-called natural

exponential family, parameterized by the mean (de Boer et al. 2005, Homem-de-Mello and

Rubinstein 2002).

In this paper we propose a more general view of the cross-entropy method. In our

setting, we do not restrict the choice of IS distributions to some parametric family; our

only constraint is that g have a product form. The rationale for this restriction is that
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sampling from an arbitrary multivariate distribution is known to be a difficult task, so

by imposing a product form on g we ensure that the components of the vector Z can be

sampled independently, which then reduces the sampling problem to a unidimensional one.

The cross-entropy optimization problem is solved on a functional space, and an explicit

solution (henceforth called CE-optimal distribution) is provided. As we shall see later, the

results obtained with such an approach generalize ones found in the literature.

We also study the relationship between the pdf given by the cross-entropy problem and

the product-form pdf that minimizes the variance of the estimator α̂N(g). Our discussion

suggests that the cross-entropy problem can be viewed as a slight variation of variance

minimization, with the advantage that the underlying optimization problem can be solved in

closed form. We then discuss an adaptive scheme to estimate the CE-optimal distribution. A

basic version of the procedure — for parametric distributions — was proposed by Rubinstein

(1999); here, we propose an algorithm that allows more general distributions and incorporates

automatic adjustment of the parameters of the algorithm. A detailed comparison between

our approach and the standard CE method is provided in Section 3.2. Some aspects related

to convergence of the proposed algorithm are discussed in Section 3.3, where we establish

that the adaptive procedure finishes after finitely many iterations. The estimate obtained

can then be refined by increasing the sample size if necessary.

Finally, we present some numerical results in Section 4 for a flow-line production system,

where the goal is to estimate the probability that a certain sequence of jobs finishes processing

after a certain time. This is a difficult problem for which no general analytical solution is

available. The results suggest that the CE method works very well, providing accurate

estimates for probabilities as low as 10−56 in reasonable time. These results are checked

through the derivation of lower and upper bounds, or even exact values in some cases. We

also provide a numerical comparison with the hazard-rate twisting method described in

Huang and Shahabuddin (2004) and Juneja and Shahabuddin (2002).

In summary, the main contributions of this paper are the following. (i) We provide a

general framework for the cross-entropy method, which allows for derivation of closed-form

solutions to the CE-optimization problem for arbitrary distributions. This generalizes prior

work and consequently opens the way for use of the CE method with other types of distri-

butions. (ii) We propose and test a modified version of the CE algorithm that incorporates

the generalizations mentioned in (i) and provably finishes after finitely many iterations. We

also illustrate the numerical behavior of the method on a difficult 50-dimensional problem
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with large variability. (iii) Along the way, we provide a new result on convergence of quantile

estimates when quantiles are not unique.

1.1. Literature Review

The basic ideas of importance-sampling were outlined by Kahn and Marshall (1953). Glynn

and Iglehart (1989) extended these ideas to stochastic processes. Since then, a considerable

amount of research has been devoted to the study of IS techniques in simulation, in particular

for rare-event simulation; see Heidelberger (1995) and Shahabuddin (1995) for reviews. Most

of the work in this area, however, deals with dynamic models, in the sense that α in (1) is

calculated either from some steady-state performance measure or from some stopping time

(e.g., the probability that a buffer exceeds a certain capacity). Among other techniques that

have been proposed for dynamic problems are the splitting and RESTART methods — see,

for instance, Glasserman et al. (1999) and Villén-Altamirano and Villén-Altamirano (1999).

Applications of the CE method to dynamic systems are discussed in de Boer (2000) and

Kroese and Rubinstein (2004).

In contrast, our model is essentially static, i.e., we want to estimate (1) for a given

deterministic function N of a random vector Z of known distribution. Such a problem

is encountered more often in the statistics literature, and in fact IS techniques have been

studied in that context as well; some close references to our work are Oh and Berger (1992,

1993) and Zhang (1996). Huang and Shahabuddin (2004) discuss a general approach based

on the hazard-rate twisting method of Juneja and Shahabuddin (2002) to estimate rare-event

probabilities in static problems. That method, which is also used by Juneja et al. (2004) to

estimate rare-event probabilities in stochastic PERT networks, is discussed in more detail in

Section 4. Static problems have also gained importance in the simulation community because

of the applications of these models in finance (see, e.g., Glasserman 2004). In addition,

static rare-event problems have an interesting connection with combinatorial optimization

(de Boer et al. 2005). We must mention that large-deviations techniques are often employed

to estimate rare-event probabilities (e.g., Bucklew 1990, Dembo and Zeitouni 1998); however,

these techniques are usually more applicable when the underlying quantities involve a sum

of random variables, which is not necessarily the case of our setting as we deal with general

functions N .
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2. Determining a Good IS Distribution

2.1. The Cross-Entropy Approach

It is well known that if N (·) ≥ 0 in (1) then the optimal choice for the IS distribution is

given by

g∗(z) =
N (z)f(z)

α
; (3)

this yields a zero-variance estimator, i.e., Var[α̂N(g∗)] = 0 in (2). Of course, we cannot

use g∗ since it depends on the quantity α we want to estimate. However, even if we could

somehow compute g∗, it would be difficult to generate samples from it, since g∗ is a joint

pdf. One way to circumvent the latter issue is to determine the distribution ḡ that minimizes

the Kullback-Leibler “distance” to g∗ among all densities with a product form, i.e. g(z) =

g1(z1) × · · · × gn(zn). The Kullback–Leibler cross-entropy (see Kullback and Leibler 1951,

Kapur and Kesavan 1992) defines a “distance” between two pdf’s f(·) and g(·) as

D(f, g) =

∫
IRn

f(z) log
f(z)

g(z)
dz.

Notice that D is not a distance in the formal sense, since in general D(f, g) �= D(g, f).

Nevertheless, it is possible to show (Kullback and Leibler 1951) that D(f, g) ≥ 0 and that

D(f, g) = 0 if and only if the corresponding cdfs are the same. The problem can then be

defined as

min {D(g∗, g) : g ∈ G}, (4)

where G is the set of densities with product form such that Supp[N (·)f(·)] ⊂ Supp[g(·)]. For

an arbitrary g ∈ G we have

D(g∗, g) =

∫
T

g∗(z) log

[
g∗(z)
g(z)

]
dz

=

∫
T

g∗(z) log[g∗(z)] dz − 1

α

∫
T

N (z)f(z) log[g(z)] dz

where T ⊂ IRn denotes the support of N (·)f(·). We will use the convention that a log[0] =

−∞ if a > 0. It follows that the solution of (4) is the same as the solution of the problem

min
g∈G

−
∫

T

N (z)f(z) log[g(z)] dz = min
g∈G

−IEf [N (Z) log[g(Z)]] . (5)

Let fZi
(·) denote the marginal distribution of Zi, and Z̃ denote the vector (Z1, . . . , Zi−1, Zi+1, . . . , Zn).

Define the function

ϕi(zi) := IEZ̃|Zi
[N (Z) |Zi = zi] fZi

(zi), (6)
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where IEZ̃|Zi
[·] denotes the expectation with respect to the conditional density fZ̃|Zi

(·) of Z̃

given Zi. Notice that we can write α = IEf [N (Z)] =
∫

T
N (z)f(z) dz =

∫
Ti
ϕi(zi) dzi, where

Ti ⊂ IR is the support of ϕi(·). Moreover, since IE [log[gi(Zi)]N (Z)] = IE [IE[log[gi(Zi)]N (Z) |Zi]] =

IE [log[gi(Zi)]IE[N (Z) |Zi]], we have that
∫

T
log[gi(zi)]N (z)f(z) dz =

∫
Ti

log[gi(zi)]ϕi(zi) dzi

and thus minimizing D(g∗, g) subject to g ∈ G is equivalent to solving the functional problem

max
gi∈Q

∫
Ti

log[gi(zi)]ϕi(zi) dzi

s.to (7)∫
Ti

gi(zi) dzi = 1.

In (7), Q is the subset of L1 (integrable functions) consisting of nonnegative functions whose

support is Ti. Notice that Q is a convex set. Moreover, Q is non-empty since it contains

ϕi(·).
We now discuss ways to solve (7). Define the functionals (in L1)

Fi(gi) =

∫
Ti

log[gi(zi)]ϕi(zi) dzi

Hi(gi) =

∫
Ti

gi(zi) dzi − 1.

It is clear that Fi is concave on Q, whereas Hi is affine on L1. Let us compute the derivatives

of these functionals, which we denote respectively by DFi(gi) and DHi(gi). These derivatives

are operators in L1, defined as

DFi(gi)h = lim
t→0

Fi(gi + th) − Fi(g)

t

= lim
t→0

∫
Ti

log[gi(zi) + th(zi)] − log[gi(zi)]

t
ϕi(zi) dzi. (8)

Since log[·] is concave, the function ρ(t) := (log[x + td] − log[x])/t is monotone in t for any

x > 0 and any d. It follows from the monotone convergence theorem that we can interchange

the integral and the limit in (8) and hence we obtain

DFi(gi)h =

∫
Ti

h(zi)

gi(zi)
ϕi(zi) dzi.

Similarly, we have DHi(gi)h =
∫

Ti
h(zi) dzi.

Consider now the Lagrangian functional associated with (7), which is defined on L1 × IR

as Li(gi, λ) := Fi(gi) + λHi(gi). It is known (Bonnans and Shapiro 2000, Proposition 3.3)
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that if there exists a pair (ḡi, λ̄) such that ḡi ∈ Q, Hi(ḡi) = 0 and

ḡi ∈ argmax
gi∈Q

Li(gi, λ̄), (9)

then ḡi solves (7). The proposition below exhibits such a pair:

Proposition 1 Consider the function ϕi(·) defined in (6), and define the density function

ḡi(zi) :=
ϕi(zi)

α
. (10)

Then, the pair (ḡi,−α) satisfies (9) and therefore ḡi solves (7).

Proof. It is immediate that ḡi ∈ Q and Hi(ḡi) = 0. Thus, we just need to check (9). From

the definition of the Lagrangian function, we have that, for given gi and λ,

DLi(gi, λ)h =

∫
Ti

h(zi)

gi(zi)
ϕi(zi) dzi + λ

∫
Ti

h(zi) dzi

=

∫
Ti

[
ϕi(zi)

gi(zi)
+ λ

]
h(zi) dzi. (11)

Consider now the function ḡi defined in (10). It is clear that ϕi(zi)/gi(zi) − α = 0 for all zi

and thus from (11) we have that

DLi(ḡi,−α) ≡ 0. (12)

Since the function Li(·, λ) is concave on Q for any λ, (12) implies that ḡi maximizes Li(·,−α).

This concludes the proof.

Corollary 1 Let b(·) be an arbitrary function. Then, the expected value of a random variable

Xi with the density ḡi defined in (10) is

IEḡi
[b(Xi)] =

IEf [b(Zi)N (Z)]

IEf [N (Z)]
. (13)

In particular, by taking b(y) = yk we obtain an expression for the kth moment of ḡi.

Proof. We have

IEḡi
[b(Xi)] =

∫
Ti

b(xi) ḡi(xi) dxi =
1

α

∫
Ti

b(xi)IEZ̃|Zi
[N (Z) |Zi = xi] fZi

(xi) dxi

=
1

α

∫
Ti

IEZ̃|Zi
[b(Zi)N (Z) |Zi = xi] fZi

(xi) dxi

=
IEf [b(Zi)N (Z)]

α
. (14)
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Proposition 1 and Corollary 1 generalize previous results. The exact form of the solu-

tion of the cross-entropy problem (4) had been derived only for particular cases — namely,

parametric problems where the family of distributions is the natural exponential family

parameterized by the mean (de Boer et al. 2005, Homem-de-Mello and Rubinstein 2002).

Proposition 1 and Corollary 1, in turn, do not assume any distribution.

Proposition 1 gives the desired product-form distribution. While that facilitates the

task of generating random samples from that distribution — since each component can be

generated independently — we still must deal with the fact that ḡi depends on α, the quantity

we want to estimate. We address this in Section 3.

2.2. Relating Variance Minimization and Cross Entropy

In Section 2.1 we showed how the optimization problem of minimizing the Kullback-Leibler

“distance” to the optimal distribution can be solved analytically. While such a property is

certainly appealing, it is natural to inquire what type of properties the resulting pdf has.

We address this issue by comparing the cross-entropy problem (4) with the problem of

finding a pdf that yields an estimate with minimum variance. Suppose we want to find a

pdf g◦ with product form such that g◦ minimizes Var[α̂N(g)]. Notice that

Varg

[
N (Z)

f(Z)

g(Z)

]
= IEg

[(
N (Z)

f(Z)

g(Z)

)2
]
−
(

IEg

[
N (Z)

f(Z)

g(Z)

])2

= IEf

[
N (Z)2f(Z)

g(Z)

]
−α2,

so minimizing the variance is equivalent to solving the problem

min
g∈G

IEf

[
N (Z)2 f(Z)

g(Z)

]
. (15)

In turn, (5) has the same solution as

min
g∈G

IEf

[
N (Z) log f(Z)

g(Z)

]
. (16)

Notice the similarity between (15) and (16).

Consider now the particular case where N is an indicator function of the form I{M(Z)≥a}

— which is the setting of this paper from Section 3 on. Then, by noticing that I2 = I

and conditioning on the event {M(Z) ≥ a}, we have the solutions of (15) and (16) are

respectively the same as the solutions of

min
g∈G

IEf

[
f(Z)

g(Z)
|M(Z) ≥ a

]
and min

g∈G
IEf

[
log

f(Z)

g(Z)
|M(Z) ≥ a

]
.

Since log is an increasing function, we see that the two problems are indeed similar. Clearly,

without the constraint g ∈ G the solution of both problems is the zero-variance pdf g∗.
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3. Estimating Rare-Event Probabilities

We turn now to the issue of using the product-form distribution ḡi derived in Proposition 1

to obtain estimates of the value α defined in (1) when α is the probability of a rare event.

That is, the function N in (1) is of the form N (Z) = I{M(Z)≥a} for some function M and

some a ∈ IR such that {M(Z) ≥ a} is an event of small probability. In what follows, we

describe an implementable algorithm and discuss some issues related to convergence.

3.1. The Algorithm

As remarked earlier, using ḡi directly is impossible since it depends on α. To overcome this

difficulty, we describe now a multi-stage algorithm for estimating ḡ, whose basic version was

first proposed by Rubinstein (1999). The improvements we propose here include closed-form

expressions (derived from the generalized approach of Section 2) and an automatic update

of the main parameters of the algorithm.

The idea of the algorithm is to generate an increasing sequence of values {γ̂k}k=1,2,... and a

sequence of distributions {ĝk}k=1,2,... such that ĝk is a good importance-sampling distribution

to estimate Pf (M(Z) ≥ γ̂k). This is accomplished by solving the cross-entropy problem (4)

with the underlying function N (Z) set to I{M(Z)≥bγk}. Notice however that the solution to

(4), which is given by (10), depends on the quantity Pf(M(Z) ≥ γ̂k). The latter expression

can be written as

Pf(M(Z) ≥ γ̂k) = IE
bgk−1

[
I{M(Z)≥bγk}

f(Z)

ĝk−1(Z)

]
(17)

provided the condition f(z) > 0 =⇒ ĝk−1(z) > 0 holds for all z such that M(z) ≥ γ̂k. By

construction, ĝk−1 is a good distribution to estimate Pf(M(Z) ≥ γ̂k−1); thus, if γ̂k is not

much bigger than γ̂k−1 — i.e. if the event {M(Z) ≥ γ̂k} is not rare under ĝk−1 — one

expects ĝk−1 to be a reasonably good distribution to estimate Pf(M(Z) ≥ γ̂k) as well. Once

γ̂k reaches the threshold value a, then the algorithm returns the current density ĝk.

We provide now a formal description of the algorithm. Let γ(g, ρ) denote an arbitrary

(1 − ρ)-quantile of M(Z) under g, i.e., γ(g, ρ) satisfies

Pg(M(Z) ≥ γ(g, ρ)) ≥ ρ, (18)

Pg(M(Z) ≤ γ(g, ρ)) ≥ 1 − ρ. (19)
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Notice that, given an i.i.d. sample Z1, . . . , ZN from g(·), γ(g, ρ) can be easily estimated by a

(1− ρ)-sample quantile of M(Z1), . . . ,M(ZN). The latter quantity is denoted by γ̂
N
(Z, ρ).

The algorithm requires the definition of constants ρ0 (typically, 0.01 ≤ ρ0 ≤ 0.1), ν > 1

and δ > 0. Below, an expression of the form Θ(Zj)|Zj
i = zi denotes Θ(Zj

1, . . . , Z
j
i−1, zi, Z

j
i+1, . . . , Z

j
n).

Algorithm 1 :

1. Set k := 1, N := initial sample size, ĝ0 := f .

2. Generate i.i.d. samples Z1, . . . , ZN from the pdf ĝk−1(·).

3. Let γ̂k := min{a, γ̂
N
(Z, ρk−1)}.

4. Define

α̂k :=
1

N

N∑
j=1

I{M(Zj)≥bγk}
f(Zj)

ĝk−1(Zj)
.

5. Compute the unidimensional density ĝk
i (·) as

ĝk
i (zi) :=

1
N

∑N
j=1

(
I{M(Zj)≥bγk}

f(Zj)
bgk−1(Zj)

∣∣∣ Zj
i = zi

)
fZi

(zi)

α̂k
.

6. If γ̂k = a, STOP; let g̃ := ĝk be the distribution returned by the algorithm.

7. Otherwise, let C(ρ) denote the condition

C(ρ) : the sample (1 − ρ)-quantile of M(Z1), . . . ,M(ZN) is bigger than

or equal to min{a, γ̂k−1 + δ}

(a) If C(ρ) is satisfied with ρ = ρk−1, then set ρk := ρk−1, k := k + 1 and reiterate

from step 2;

(b) If C(ρ) is not satisfied with ρ = ρk−1 but it is satisfied with some ρ < ρk−1, then

set ρk := largest of such ρ and go back to step 3;

(c) If C(ρ) is not satisfied with any ρ ≤ ρk−1, then let N := νN and go back to step 2.

Note that when the original density f is not of product form, extra care should be taken

to use the samples Z1, . . . , ZN the first time step 5 is executed — after all, by fixing Zj
i = zi

the distribution of the other Zk (k �= i) change. One way around this problem is to generate

new samples Z1, . . . , ZN for each value of zi, using the same stream of random numbers for
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all of them. From the second iteration on this is no longer necessary, since by construction

ĝk(z) (k ≥ 1) has product form.

Usually we cannot compute the whole density function in step 5, as this would require

infinitely many calculations. One case in which this can be easily accomplished is when Z

has a discrete distribution with a small support. For example, suppose that the Zi’s are

independent and each Zi takes on values {zi1, . . . , zim}; then, fZi
(·) is the probability mass

function fZi
(zij) = P (Zi = zij), so computation of ĝk is achieved by doing the calculation in

step 5 for mn values.

In the case of continuous distributions, two possible approaches are: (i) to approximate

the density by a discrete distribution, and (ii) to fix a family for the IS distributions and

then compute some of its moments. For example, suppose we fix the family of normal

distributions; then it suffices to compute the first two moments in order to specify ĝk. The

gamma distribution also shares that property. In that case, step 5 is replaced by the following

step, derived from (14):

5′. Estimate the rth moment of ĝk
i by

μ̂k,r
i :=

1
N

∑N
j=1(Z

j
i )

rI{M(Zj)≥bγk}
f(Zj)

bgk−1(Zj)

α̂k
. (20)

Note that when 5′ is used no extra care is required at the first iteration. In the numerical

experiments of Section 4 we adopt both approaches, using step 5 for discrete distributions

and step 5′ for gamma distributions.

3.2. Discussion

We now discuss the extent to which Algorithm 1 differs from prior work on cross entropy

(compiled in de Boer et al. 2005). The major differences can be classified into two categories:

(i) update of the IS distributions, and (ii) update of the parameter ρ and of the sample size

N .

One of the contributions of this paper is a generalization of the framework for the cross-

entropy method, which allows for derivation of closed-form solutions to the CE-optimization

problem for arbitrary distributions. This leads to a different update of the IS distributions,

as reflected in step 5 of Algorithm 1. In the original CE method, the update of the IS

distribution requires (i) working with parametric distributions, and (ii) solving a stochastic

optimization problem, a task that can be very time-consuming. As discussed in de Boer et al.
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(2005) (see also Homem-de-Mello and Rubinstein 2002), one case where this can be avoided

is when the underlying distributions belong to the so-called natural exponential family, pa-

rameterized by the mean. In that case a closed-form solution to that stochastic optimization

problem can be found — not surprisingly, the expression for the optimal parameter (the

mean) coincides with (13) with b(Zi) = Zi. Such a class covers a good range of distributions

but leaves out a number of cases, for example, discrete distributions or multi-parameter dis-

tributions such as normal or gamma (with both parameters allowed to vary). Algorithm 1

covers these cases by means of steps 5 or 5′, as illustrated numerically in Section 4.

In theory, the density function given by ḡi in (10) is the best one can have under the

cross-entropy philosophy, in the sense that any further constraints imposed to (4) — such

as restricting g to be of parametric form — will yield sub-optimal solutions. In practice,

of course, computing the whole CE-optimal density may be impractical; we have already

discussed that, for continuous distributions, the approach of computing moments of the

distribution (i.e. step 5′) provides an alternative to computing the CE-optimal density.

A natural question that arises is how this moment-matching approximation performs for

parametric distributions.

Consider the class of parametric distributions for which the parameters can be expressed

as functions of the first, say, k moments. That is, suppose the original distribution f in (1) is

of the form f(z) = f1(z1, θ1)×· · ·×fn(zn, θn), where the θi are parameters that can be written

as functions of the first k moments. We represent this by writing θi = Hi(m
1
i , . . . , m

k
i ).

The original CE approach for such a problem will calculate the CE-optimal values of θi,

call them θ̃i. Clearly, this is equivalent to finding the corresponding moments m̃1
i , . . . , m̃

k
i .

Now suppose one applies the moment-matching approach described above. Then, one obtains

the moments m̄1
i , . . . , m̄

k
i of the CE-optimal density ḡi. How can we sample from a distribu-

tion with these moments? One natural alternative is to calculate θ̄i := Hi(m̄
1
i , . . . , m̄

k
i ) and

then sample from fi(zi, θ̄i); in that case, it is clear that the quality of the θ̄i cannot be better

than that of the θ̃i obtained by optimizing directly the parameters, since in general ḡi(·) is

not of the form fi(·, θi). Although the moment-matching approach will provide no better

solutions than the original (parametric) CE method in this case, we remark that (i) the

moments m̄1
i , . . . , m̄

k
i can be used with distributions other than fi, (ii) the moment-matching

approach does not require solving a stochastic optimization problem, and (iii) in our experi-

ence, the resulting values of the parameters θ̄i and θ̃i are in practice very similar. Indeed, it

is reasonable to expect that the CE-optimal density ḡi be close to the family of the original
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distribution (say, a gamma distribution); hence, the moments of ḡi should be close to the

moments of the distribution obtained with the parametric approach. The results presented

in Section 4 confirm that intuition.

The other major difference between the algorithm proposed in this paper and the original

CE method refers to the update of the parameter ρ and of the sample size N in step 7.

This step is crucial not only to establish that the algorithm terminates after finitely many

iterations but also to provide a safeguard for practical convergence. Indeed, as discussed

in Homem-de-Mello and Rubinstein (2002), one cannot expect Algorithm 1 to terminate if

the parameter ρ is kept fixed throughout the algorithm. Roughly speaking, if ρ is fixed,

the values of γ̂k may start converging to a value below the desired threshold a. Reducing

ρ forces γ̂k to increase. If the random variable M(Z) satisfies certain conditions (e.g., if it

has infinite tail), then one can guarantee that γ̂k can always be increased by a minimum

amount, though in the process the sample size may have to be increased. Rubinstein (2002)

also proposes an adaptive algorithm — where ρ is changed adaptively — but the motivation

for the adaptive rules and hence the algorithm itself are different from the ones proposed

here.

3.3. Convergence Issues

We formalize now the convergence notions discussed at the end of Section 3.2. We start with

the following assumption:

Assumption A: The IS distributions selected by the algorithm belong to a class G such

that Pg(M(Z) ≥ a) > 0 for all g ∈ G.

Assumption A simply ensures that the probability being estimated — Pf(M(Z) ≥ a) —

does not vanish when the original pdf f(·) is replaced by a another distribution g(·). The

assumption is trivially satisfied if the distribution of M(Z) has infinite tail when the dis-

tribution of Z belongs to some family (e.g., exponential, or gamma, etc.). For zero-tail

distributions, the assumption holds as long as either a is less than the maximum value of

the function M(Z), or if there is a positive probability that a is attained.

As before, let γ(g, ρ) denote an arbitrary (1− ρ)-quantile of M(Z) under g(·). It is clear

that, under assumption A, by decreasing ρ sufficiently we can force the quantiles γ to grow

past a. In particular, we can force γ to increase at least by some pre-specified amount δ > 0.

13



Thus, it is clear that γ(ĝk−1, ρk−1) ≥ a for some k. However, the exact value of γ(ĝk−1, ρk−1)

is unknown; hence, we must ensure that such a property is kept when γ(ĝk−1, ρk−1) is replaced

by its estimate γ̂
N
(Z, ρk−1).

Proposition 2 below does exactly that. In the proposition, the term “with probability

one” refers to the probability space where Z lies, and when Z1, Z2, . . . are viewed as random

variables on that space. Before stating the proposition, we show the lemma below, which

is an interesting result in its own right since convergence results for quantiles found in the

literature typically introduce an assumption to guarantee uniqueness of the quantiles (see,

e.g., Serfling 1980). Lemma 1 shows that we still have convergence even when the quantile

is not unique, though in that case one cannot guarantee convergence of sample quantiles to

a single value.

Lemma 1 Let Y 1, Y 2, . . . be i.i.d. random variables with common cdf G(·), and let Ξ denote

the set of (1− ρ)-quantiles of G. Let ξ̂
N

denote a (1− ρ)-sample quantile of Y 1, Y 2, . . . , Y N .

Then, the distance d(ξ̂
N
,Ξ) between ξ̂

N
and the set Ξ goes to zero (as N goes to infinity)

with probability one. Moreover, given any ε > 0, we have P (d(ξ̂
N
,Ξ) > ε) → 0 exponentially

fast with N .

Proof. Notice initially that a (1 − ρ)-quantile of a random variable Y can be expressed as

an optimal solution of the problem minξ IEφ(Y, ξ), where

φ(Y, ξ) =

{
(1 − ρ)(Y − ξ) if ξ ≤ Y

ρ(ξ − Y ) if ξ ≥ Y.

To see this, notice that the subdifferential set ∂ξIEφ(Y, ξ) can be expressed as ∂ξIEφ(Y, ξ) =

[ρ − P (Y ≥ ξ), −(1 − ρ) + P (Y ≤ ξ)]. It is easy to check that φ(Y, ξ) is convex in ξ for

all Y . It follows that IEφ(Y, ξ) is convex in ξ and thus a necessary and sufficient optimality

condition for the problem minξ IEφ(Y, ξ) is 0 ∈ ∂IEφ(Y, ξ) (see, e.g., Rockafellar 1970). This

is true if and only if ρ−P (Y ≥ ξ) ≤ 0 and −(1−ρ)+P (Y ≤ ξ) ≥ 0, i.e., if and only if ξ is a

(1−ρ)-quantile of Y . A similar argument shows that the sample (1−ρ)-quantile of a sample

Y1, . . . , YN (recall this is ξ̂
N
) is the solution to the sample average approximation problem

minξ N
−1
∑N

i=1 φ(Yi, ξ). Since the objective function IEφ(Y, ξ) is convex in ξ, it follows that

the distance d(ξ̂
N
,Ξ) goes to zero as N goes to infinity w.p. 1 (Rubinstein and Shapiro

1993). The last statement follows from classical results on exponential rates of convergence

of solutions of stochastic programs (Kaniovski et al. 1995).
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Proposition 2 Suppose assumption A holds, and let x ∈ (0, a]. Let g ∈ G, and let Z1, Z2, . . .

be i.i.d. with common density g(·). Then, there exists ρx > 0 and a random Nx > 0 such

that, with probability one, γ̂
N
(Z, ρ) ≥ x for all ρ ∈ (0, ρx) and all N ≥ Nx. Moreover, the

probability that γ̂
N
(Z, ρ) ≥ x for a given N goes to one exponentially fast with N .

Proof. Let {Z1, . . . , ZN} be a set of i.i.d. samples from g(·). Consider initially the case

where Pg(M(Z) > x) > 0. As discussed earlier we have that γ(g, ρ∗) > x for any ρ∗ ∈ (0, ρ+
x ),

where ρ+
x = Pg(M(Z) > x) > 0. It follows from Lemma 1 that the distance between the

sample (1 − ρ∗)-quantile γ̂
N
(Z, ρ∗) of M(Z1), . . . ,M(ZN) and the set of (1 − ρ∗)-quantiles

of M(Z) goes to zero as N goes to infinity w.p. 1. Since γ(g, ρ∗) > x, it follows that

γ̂
N
(Z, ρ∗) > x w.p. 1 for N large enough. Moreover, the probability that γ̂

N
(Z, ρ∗) > x for

a given N goes to one exponentially fast.

Consider now the case where Pg(M(Z) > x) = 0, i.e. x is the maximum value achieved

by M(Z). By assumption A, this implies that ρ0
x := Pg(M(Z) = x) > 0 and thus, for any

ρ∗ ∈ (0, ρ0
x) we must have γ(g, ρ∗) = x. It follows that γ(g, ρ∗) = x is also the unique (1−ρ∗)-

quantile of the random variable W := xI{M(Z)=x}. It is clear that γ̂x
N

:= xI{bγ
N

(Z,ρ∗)=x} is a

sample (1 − ρ∗)-quantile of W 1, . . . ,WN , where W j := xI{M(Zj)=x}. Since the distribution

of W has finite support, it follows from the results in Shapiro and Homem-de-Mello (2000)

that γ̂x
N

= γ(g, ρ∗) = x w.p. 1 for N large enough, and, moreover, the probability that

γ̂x
N

= γ(g, ρ∗) = x for a given N goes to one exponentially fast. Since γ̂x
N

= x if and only if

γ̂
N
(Z, ρ∗) = x, the proof is complete.

The above proposition shows not only that γ̂
N
(Z, ρ) reaches any threshold x for suffi-

ciently small ρ and sufficiently large N (which ensures that the algorithm terminates), but

also that one expects N not to be too large due to the exponential convergence, at least

for moderate values of ρ (of course, when ρ is very small N needs to be large anyway).

Notice that the update of the sample size in step 7(c) guarantees that the sample size Nx in

Proposition 2 is achieved and hence either γ̂k increases by at least δ or it hits the value a.

That is, at some iteration K we set γ̂
K

:= a. This ensures that Algorithm 1 finishes after

a finite number of iterations. At that point we can then use the distribution g̃ returned by

the algorithm to calculate the estimate α̂N(g̃) in (2), perhaps with a different sample size.

Of course, g̃ is only an estimate of the CE-optimal distribution ḡ; thus, the more one allows

N to grow — which is controlled by the initial sample size as well as the update parameter

ν — the more precise this estimate will be.
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3.4. Practical Issues

Despite the above convergence results, one needs to be aware that, ultimately, the quality of

the distributions generated by the algorithm will depend on the particular sample sizes used.

A “poor” distribution will yield poor estimates of the underlying rare-event probabilities.

Thus, it is important to ensure that “large enough” sample sizes are being used. Although

in general such a calculation is problem-dependent — and as such must be determined by

experimentation — in some cases it is possible to derive some guidelines.

For example, consider the case of estimating an arbitrary function of each random vari-

able. Using (13), one can easily construct estimates using sample average counterparts. For

example, the moments of each random variable can be estimated by (20). The ratio form

of that expression suggests use of a procedure to calculate confidence intervals originally de-

veloped for estimation of ratios (e.g., regenerative simulation). Following that approach, in

order to obtain a (1−β)%-confidence interval for θi := IEḡi
[b(Xi)] in (13) we can draw a set

{Z1, . . . , ZN} of i.i.d. samples from some g(·) (in case of Algorithm 1, g = ĝk−1), calculate

α̂ :=
1

N

N∑
j=1

N (Zj)
f(Zj)

g(Zj)

θ̂i :=

(
1

N

N∑
j=1

b(Zj
i )N (Zj)

f(Zj)

g(Zj)

)
1

α̂

and then the interval is given by

θ̂i ± z1−β/2

√
σ̂2/N

α̂
.

In the above formulas, z1−β/2 is the standard normal (1−β)-quantile and σ̂2 := σ̂11−2θ̂iσ̂12+

θ̂2
i σ̂22, where the σ̂ij are the elements of the sample covariance matrix Σ that estimates the

covariance between b(Zi)N (Z)f(Z)
g(Z)

and N (Z)f(Z)
g(Z)

. Having confidence intervals for θi as a

function of the sample size allows us to control the error of the estimates by computing the

appropriate sample sizes. Such a procedure is standard in simulation; see Law and Kelton

(2000) for details.

Another issue related to practical implementation of Algorithm 1 concerns the values for

the constants ν, δ, and ρ0. We suggest ν ≤ 2. For δ, one approach is to take δ = 0 until

the sequence {γ̂k} gets “stalled,” at which point a positive δ is used again. This approach

yields the slowest progression of γ̂k, but in turn the final estimate ĝk is more “reliable,”
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in the sense that it is calculated from more precise estimates — recall from Section 3 that

we need the event {M(Z) ≥ γk} not to be rare under ĝk−1. This also explains why it is

desirable that ρk does not become too small; otherwise large sample sizes will be required to

get reliable estimates ĝk . Notice however that, even if the CE-optimal ḡ could be obtained,

some problems might still require a very large sample size in (2). Given the limitations

of one’s computational budget, Algorithm 1 can be used to detect such a situation — the

algorithm can be halted once ρk in step 7 gets too small (or, equivalently, when N gets too

large).

4. Numerical Results

We present now numerical results obtained for a manufacturing problem. The model is de-

scribed in the manufacturing setting only to simplify the discussion — as we shall see below,

the problem may be cast in terms of longest paths in a certain directed graph. General

longest-path models are widely applicable in many areas, for example PERT networks (Ad-

lakha and Kulkarni 1989). Since the proposed algorithm does not exploit the structure of

the graph when computing the IS distributions, we believe the behavior of the algorithm for

a more general longest-path problem would be similar to the one observed here.

In all examples below, we used an implementation of Algorithm 1 described in Section 3.3.

Recall that the algorithm requires the definition of three constants, ρ0, ν, and δ. We used

ρ0 = 0.1 and ν = 2. For δ, we adopted the conservative approach δ = 0. In these examples

such a δ sufficed, i.e., the sequence {γ̂k} never got stalled. We also implemented a control

of the sample sizes as a function of the error of the estimates θ̂i, as discussed in Section 3.4.

More specifically, let Δi be the ratio between the half-width of the confidence interval for

θi and the estimate θ̂i. Our goal was to keep the maximum (with respect to i) value of

Δi constant at all iterations, although we allowed N to grow by a factor of at most ν per

iteration.

Consider a single stage in a production system in which there are S single-server stations

and a set of J jobs that must be processed sequentially by all stations in a prescribed order.

We assume that the processing of job j on station s is a random variable whose distribution

is known, and that each station processes its incoming jobs on a first-come-first-serve basis,

holding waiting jobs in a queue of infinite capacity. All jobs are released at time zero to

be processed by the first station (this assumption is made just for notational convenience
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and can easily be dropped). For a job j (j = 1, ..., J) and a station s (s = 1, ..., S), let Ysj

denote the service time of processing job j on station s, and let Csj denote the time job j

finishes its service at station s. Let Y := (Y11, . . . , YSJ) denote the vector of service times,

which is assumed to be random with a known distribution. Note that CSj can be viewed as

a total completion time of job j and that each Csj is a function of Y , and hence is random.

The above model was studied in Homem-de-Mello et al. (1999) in the context of optimizing

the performance system with respect to the release times of the jobs, so no estimation of

probabilities was involved; we refer to that paper for details.

Our goal is to estimate the probability that all J jobs will be completed by a certain time

a; that is, with M(Y ) = CSJ(Y ), we want to estimate α = P (M(Y ) ≥ a). Calculation of

M(Y ) for a particular realization of Y can be done via the recursive formula

Csj = max(Cs−1,j, Cs,j−1) + Ysj, j = 1, . . . , J, s = 1, . . . , S, (21)

with Cs0 = C0j = 0, s = 1, . . . , S, j = 1, . . . , J . Notice that the above problem is static

(which is the focus of the present paper) since the number of jobs under consideration is

finite.

The structure of the problem allows for derivation of lower and upper bounds for the

probability of interest. For that, we shall use the fact that CSJ is the length of the longest

path in a certain directed graph, which is a “grid” of S + 1× J nodes except that the nodes

on the last row are not connected horizontally (see Homem-de-Mello et al. 1999 for a detailed

description). Let T denote the total number of feasible paths and Lp the length of path p,

p = 1, . . . , T . Thus, CSJ = maxp=1,...,T Lp.

It is easy to see that each feasible path has exactly S + J − 1 arcs — more specifically, S

vertical arcs and J − 1 horizontal ones. Since each arc length corresponds to a service time,

it follows that each Lp is the sum of S + J − 1 random variables. The proposition below

gives a useful property if all jobs have the same distribution on a given machine. Notice

that it deals with the concept of stochastic ordering (denoted by ≥st); we refer to Asmussen

(2003) for definitions and properties. The proof of the proposition is provided in the Online

Supplement to this paper on the journal’s website.

Proposition 3 Suppose that, for each s = 1, . . . , S, the random variables {Ysj}j=1,...,J are

identically distributed, and that all random variables in the problem are independent. Suppose

also that one of the random variables {Ys1}s=1,...,S dominates the others in the stochastic
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sense, i.e., there exists smax ∈ {1, . . . , S} such that Ysmax1 ≥st Ys1, s = 1, . . . , S. Then, there

exists a path pmax such that Lp ≤st Lpmax for all p = 1, . . . , T . Moreover,

P (Lpmax ≥ x) ≤ P (CSJ ≥ x) ≤
(
S + J − 2

J − 1

)
P (Lpmax ≥ x). (22)

In particular, if the random variables {Ys1}s=1,...,S are such that Ys1 ≥st Y�1 if and only if

IE[Ys1 ≥ Y�1] then pmax denotes the index of the path with the largest expected value.

4.1. Gamma Distributions

We consider the case where all service times have a gamma distribution. In what follows,

we denote by gamma(η, β) the gamma distribution with mean ηβ and variance ηβ2. Clearly,

the parameters η and β can be recovered from the first two moments of the distribution,

since

ηβ2 = Var[Y ] ⇐⇒ IE[Y ]β = IE[Y 2] − (IE[Y ])2 ⇐⇒ β =
IE[Y 2]

IE[Y ]
− IE[Y ] (23)

ηβ = IE[Y ] ⇐⇒ η =
IE[Y ]

β
(24)

For simplicity, we assume that the service times of all jobs are independent, and that the

service times of all jobs at a given machine have the same distribution. Even with this sim-

plifying assumption, exact computation of α is impossible, except for special cases. Thus, in

our view the example provides a meaningful and novel application of the proposed algorithm.

We adopted the following methodology. First, for fixed J and S, we generated a problem

randomly. This was accomplished by generating parameters η1, . . . , ηS uniformly between

1 and 5 and β1, . . . , βS uniformly between 1 and 10 (one pair (ηs, βs) for each machine).

We then estimated P (CSJ ≥ a) for three values of a, based on the value of the total mean

service time Γ = J
∑S

s=1 ηsβs. We took a = 0.8Γ, a = Γ, and a = 2Γ. The rationale for

these choices was that the expected completion time would be Γ if a job started its process

at machine 1 only after the previous job finished its process at the last machine. Thus, Γ is

a gross overestimate of the actual expected completion time, hence P (CSJ ≥ Γ) should be

small.

To estimate P (CSJ ≥ a), we used Algorithm 1 to estimate the first two moments of

the CE-optimal distribution, and then recovered the optimal parameters η∗ and β∗ using

(23)-(24). The output of the algorithm — two S× J-dimensional vectors — determined the

parameters of the gamma importance-sampling distribution used to estimate the probability.
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For the sake of comparison, we also estimated the same probability using the hazard-

rate twisting (HRT) method described in Juneja and Shahabuddin (2002) and Huang and

Shahabuddin (2004). The HRT method consists of twisting the original distributions by

an exponential quantity that depends on the so-called asymptotic hazard function of the

distribution. More specifically, let Λ(x) = − log(1 − F (x)) denote the hazard function of a

distribution F , and let Λ̃(x) denote a function that is asymptotically similar to Λ(x). The

HRT method computes the twisted distribution

dF ∗(x) = eθa
eΛ(x)−Ψ(θa)dF (x), (25)

where θa is a carefully selected value that depends on the threshold value a, and Ψ(θa) is

the normalization constant log
∫
eθa

eΛ(x)dF (x).

In the present case of gamma distributions and for the particular function M(Y ) =

CSJ(Y ), the calculations are greatly simplified. Indeed, the asymptotic hazard function of

a gamma(η, β) distribution is Λ̃(x) = (1/β)x. Moreover, the normalization function Ψ(θ) is

given by −η log(1− θ). To simplify the notation, let Y1, . . . , Yn denote the random variables

in the problem (so n = S×J), with Yi ∼ gamma(ηi, βi). Following Huang and Shahabuddin

(2004), define the function q(a) := ca for some c > 0. This function satisfies Condition 4.4

in Huang and Shahabuddin (2004), thus we have that lima→∞ logP (CSJ > a)/q(a) = −Iopt,

where

Iopt = inf

{
n∑

i=1

yi/βi : CSJ(y) > 1/c

}
. (26)

Since CSJ is defined by max and + operations, it follows that the optimization problem

in (26) can be easily solved. Let βmax := maxi=1,...,n βi and let imax be an index such that

βmax = βimax . Then, the solution to the optimization problem in (26) is simply y∗i = 1/c if

i = imax and y∗i = 0 otherwise. It follows that Iopt = 1/(cβmax) and hence

P (CSJ > a) = e−a/βmax(1+o(1)). (27)

Huang and Shahabuddin (2004) suggest then taking θa = 1 − b/q(a) = 1 − b/(ca) for some

b > 0. By substituting this value into (25) we see that the twisted distribution F ∗
i for

variable Yi is given by

F ∗
i = gamma

(
ηi,

βica

b

)
, (28)

whose meaning should be clear despite the abuse of notation. Unfortunately, despite the

asymptotic optimality of the distribution in (28), the performance of this distribution for
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finite values of a seems to depend very much on the choice of the constants c and b — indeed,

in our examples this distribution often performed very poorly and yielded estimates equal

to zero in several cases. A possible explanation is that the HRT procedure hinges on Λ̃(x)

being a good approximation for Λ(x). While this is true asymptotically, the approximation

may be poor even for large values of x, particularly if the number of random variables is

relatively large.

Nevertheless, the idea of hazard-rate twisting is very appealing, so in order to use that

method we chose values for c and b in an empirical way. Our rationale was the following:

from (28) we have that the mean of Yi under the twisted distribution is ηiβica/b. We would

like the paths defining the completion times CSJ to have total mean equal to a. Moreover,

we know from (27) that the maximum value among β1, . . . , βn is what defines the asymptotic

probability. Thus, we chose b so that the completion time calculated with weights ηiβmaxca/b

on the arcs is equal to a. This corresponds to taking

b =
∑
i∈p0

ηiβmaxc, (29)

where p0 is the path corresponding to that completion time. Note that the above value is

similar to the one proposed by Juneja et al. (2004), which can be shown to be equal to∑n
i=1 ηiβmaxc (though the latter did not perform well in our experiments). In either case,

when b is substituted into (28) the constant c disappears from the expression.

To provide a fair comparison, we provided the same computational budget for both meth-

ods. That is, we used a larger sample size for HRT, since Algorithm 1 requires extra compu-

tational time to calculate the optimal parameters. We increased the sample size sequentially

until the total CPU time used by the HRT method was the same as the time used for Algo-

rithm 1. Based on these samples, we computed the estimates for mean and variance. As an

extra verification, the above procedure was replicated ten times, and we built 95% confidence

intervals using the averages of individual estimates of mean and variance.

We also compared our algorithm with the parametric CE method, in which the param-

eters are optimized directly. As discussed in Section 3.2, optimizing the parameters usually

requires solving a difficult stochastic optimization problem; in the particular case of gamma

distributions, however, the calculations are simplified. Indeed, in that case the CE problem

to be solved is

max
ηi,βi≥0

∫
log[fi(zi, ηi, βi)]ϕi(zi) dzi (30)
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where fi(zi, ηi, βi) = Γ(ηi)
−1β−ηi

i zηi−1
i e−zi/βi is the density of the gamma distribution and

ϕi(zi) is defined in (6). After some algebra, one can easily re-write the objective function of

the above problem as

ψi(ηi, βi) := α

[
log

β−ηi

i

Γ(ηi)
+ (ηi − 1)

IEf

[
log(Zi)I{M(Z)≥a}

]
α

− 1

β

IEf

[
ZiI{M(Z)≥a}

]
α

]
. (31)

Note that the right-most term is exactly the same as expression (14) for the first moment

of the CE-optimal density ḡi. Thus, we can estimate this value using the same multi-stage

procedure given by Algorithm 1 — and a slight modification of the algorithm also allows for

estimation of IEf

[
log(Zi)I{M(Z)≥a}

]
/α. Note also that we can divide the objective function

by α since we are interested only in the optimal solution of (30). It follows that, once the

expectations in (31) are estimated, (30) becomes a simple deterministic two-dimensional

problem, which can be solved using standard optimization methods. We used Matlab’s

fminsearch function, which in turn implements the Nelder-Mead algorithm.

Confirming the intuitive argument laid out in Section 3.2, the values of ηi and βi obtained

with the parametric procedure described above were very similar to the values obtained with

the moment-matching approach (see Table 4 for one example). We emphasize, however, that

the latter method does not require the extra optimization step — which, even though it takes

negligible time in this particular case, may be difficult for other distributions. The estimated

probabilities with both methods were in most cases statistically equal; for that reason, we

do not display the results obtained with the parametric approach.

Another possible way to bypass the optimization procedure is to allow only one of the

parameters (say, βi) to vary; in that case, the procedure becomes closer to the versions of

the CE method proposed in the literature for distributions in the natural exponential family,

where the optimal mean can be estimated directly. Clearly, such a procedure can only provide

sub-optimal solutions with respect to the approach where both ηi and βi are optimized; for

example, for the system whose results are displayed in Table 4, the variance of the one-

parameter estimate was about three times as large as the variance of the two-parameter

estimate. Thus, we do not report results for the one-parameter approach.

Table 1 displays the results for J = 10 jobs and S = 5 machines, which corresponds to 50

random variables. The values of the parameters ηi and βi for this data set are respectively

2, 4, 5, 5, 3 and 10, 8, 1, 10, 9 for each machine. Although these results correspond to a

particular instance of data, similar results were observed for other problems we generated
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(for the same J and S and the same rule for generation of η and β). Therefore, we report

only one representative of the group. In the table, α̂ is the estimate for P (CSJ ≥ a), with

the number in parentheses denoting the half-width of a 95% confidence interval, in the same

order of magnitude. N is the sample size used to compute the estimate once the importance-

sampling distribution is determined. Notice that, since the sample size used with the HRT

method was variable, the N column under “HRT” displays a rounded average. The column

labelled “NCE” reports the (rounded) average sample size used in Algorithm 1 to calculate

the CE-optimal parameters (recall that we used an adaptive scheme for automatic update of

sample sizes, as described earlier). The initial sample size used in the procedure was always

set to 5000.

To compute the bounds given by (22), we need to estimate P (Lpmax ≥ a). For the

underlying problem, one can easily check from the construction in the proof of Proposition 3

that Lpmax

d
=
∑10

i=1 gamma(5, 10)+gamma(2, 10)+gamma(4, 8)+gamma(5, 1)+gamma(3, 9)

(note that gamma(5, 10) stochastically dominates the other distributions). We thus obtain

the bounds

P (gamma(50, 10) ≥ a) ≤ P (Lpmax ≥ a) ≤ P (gamma(70, 10) ≥ a) . (32)

Table 1 lists the exact lower and upper bounds given by (22) and (32). Notice that T =(
13
9

)
= 715 in that case. Exact solutions for such a problem are not available, so the purpose

of the bounds is just to provide a rough check on the order of magnitude of the obtained

results. Note that HRT underestimates the probability when a = 1340 and a = 2680.

Table 1: Estimated Probabilities and Exact Bounds for the Case J = 10, S = 5, ηs ∼ U(1, 5),
βs ∼ U(1, 10)

HRT CE
a α̂ N α̂ N NCE lower bound upper bound

1072 4.8 (6.8) × 10−8 127K 9.0 (0.1) × 10−8 100K 13K 2.5 × 10−10 3.8 × 10−2

1340 2.9 (2.7) × 10−18 158K 4.7 (0.1) × 10−14 100K 26K 2.8 × 10−17 3.2 × 10−7

2680 2.3 (3.9) × 10−98 322K 8.6 (0.1) × 10−56 100K 80K 7.8 × 10−61 7.9 × 10−45

We also studied the case where all service times have the same gamma distribution

with parameters η = 1 and β = 25. In that case, the bounds in (22) can be computed more

precisely since Lpmax is the sum of S+J−1 gamma(1, 25) independent random variables and

thus has a gamma(14, 25) distribution. Table 2 displays the estimation results, together with

the bounds given by (22). Note that HRT underestimates the probability when a = 2500.
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Table 2: Estimated Probabilities and Exact Bounds for the Case J = 10, S = 5, ηs = 1,
βs = 25

HRT CE
a α̂ N α̂ N NCE lower bound upper bound

1000 1.2 (0.4) × 10−5 117K 5.9 (0.3) × 10−5 100K 10K 6.7 × 10−7 4.8 × 10−4

1250 2.8 (4.7) × 10−8 160K 3.7 (0.9) × 10−8 100K 32K 5.1 × 10−10 3.6 × 10−7

2500 3.7 (7.2) × 10−32 348K 9.5 (5.9) × 10−28 100K 80K 6.9 × 10−28 4.9 × 10−25

Finally, we studied the case where S = 1. In this case, the completion time is simply a sum

of J i.i.d. gamma(η, β) and therefore has a gamma(Jη, β) distribution, so the probabilities

can be computed analytically. In this case we took a = 2Γ, a = 3Γ, and a = 4Γ, where

Γ = Jηβ. Table 3 displays the results for J = 10, η = 5, and β = 5. The column labeled

“Exact” contains the true values. We can see that the estimates obtained with both methods

are very close to the real values, and indeed the confidence intervals cover the exact values.

This suggests that the heuristics we used to determine the parameters of the HRT method

is efficacious, at least when the number of variables is small.

Table 3: Estimated and Exact Probabilities for the Case J = 10, S = 1, η = 5, β = 5

HRT CE
a α̂ N α̂ N NCE Exact

500 1.176 (0.008) × 10−8 123K 1.178 (0.007) × 10−8 100K 5K 1.179 × 10−8

750 7.401 (0.055) × 10−22 161K 7.390 (0.072) × 10−22 100K 26K 7.412 × 10−22

1000 1.704 (0.013) × 10−37 225K 1.696 (0.020) × 10−37 100K 44K 1.693 × 10−37

To illustrate the behavior of the algorithm, we considered another problem with J = 5

jobs, S = 2 machines, and all service times having the same gamma(5, 5) distribution. The

value of a chosen was a = 350, for which the algorithm yielded the estimate probability

1.006(0.049) × 10−7 with sample size 100,000 (the lower and upper bounds for this case are

respectively 2.433× 10−8 and 1.216× 10−7). Table 4 displays, for each iteration k, the value

of γ̂k (computed in step 2 of Algorithm 1), the corresponding sample size used, and the new

parameters η and β of each service time Ysj, obtained from the moments calculated in step 5′

of the algorithm. Notice that γ̂k reaches a = 350 after 4 iterations. The last line displays the

values obtained by solving the parametric problem (30) with the objective function re-written

as in (31), which yielded the estimate 1.014(0.060)×10−7 . For the same problem (and same
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computational budget), the HRT method yielded the estimate 1.335(0.522)× 10−7, with the

IS distribution being a gamma(5, 11.67).

Table 4: Progression of the Algorithm for the Case J = 5, S = 2, η = 5, β = 5

k γ̂k N η̂k β̂k

0 5K 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

1 200.8 5K 6.02 5.32 4.67 4.14 4.25 5.61 6.21 6.49 6.97 6.91
4.36 4.17 4.28 4.68 6.00 6.47 7.04 7.09 6.88 5.39

2 255.6 5K 5.92 4.34 4.03 4.10 3.59 7.36 8.93 8.74 8.06 8.43
3.59 3.08 4.48 4.34 6.25 8.64 10.80 8.08 8.88 6.76

3 310.3 10K 6.19 4.44 3.48 2.63 3.61 8.72 10.26 11.94 14.30 8.07
2.84 2.66 2.95 4.00 6.78 10.82 13.38 13.63 11.53 8.11

4 350.0 20K 5.56 4.28 3.36 2.43 3.38 10.39 12.90 13.39 16.64 8.84
2.61 2.53 2.94 4.13 5.95 12.20 15.53 15.69 12.87 9.80

parametric 5.15 3.69 3.23 2.61 3.68 11.23 15.00 13.93 15.50 8.12
CE 3.19 2.82 3.00 3.62 5.71 10.00 13.93 15.36 14.66 10.21

4.2. Discrete Distributions

We now consider the case where all service times have discrete distributions with finite

support. As before, we assume that the service times of all jobs are independent, and that

the service times of all jobs at a given machine have the same distribution.

For fixed J , S, and m we generated, for each of the S machines, m values for service

times between 10 and 40 and m corresponding probabilities at random. Notice that, because

the random variables take on a finite number of values, the maximum possible completion

time Ψ can be found by setting each random variable to its maximum value and solving

a longest-path problem. However, such a procedure does not determine the probability of

the maximum value, unless there is a single path corresponding to it. We then estimated

P (CSJ ≥ a) for two values of a, based on the value of the maximum completion time Ψ. We

took a = 0.9Ψ and a = Ψ (obviously, P (CSJ > Ψ) = 0).

To estimate P (CSJ ≥ a), we again used Algorithm 1. In this case we can determine the

whole IS distribution, which reduces to the probabilities of each value of each service time

— an S × J ×m-dimensional vector. In order to check the obtained probabilities, we also

estimated the same values using standard Monte Carlo, providing the same computational

budget for both methods. The above procedure was replicated 50 times, and the average and
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95% confidence intervals were built from those 50 independent estimates, both for Monte

Carlo and CE.

We first consider a problem with J = 10 jobs, S = 5 machines, and m = 4 possible

outcomes for each random variable. This corresponds to 50 random variables and a 200-

dimensional parameter vector. The values ys� taken on by each service time and the respective

probabilities ps� are listed in Table 5. In this particular case the exact probability for

a = Ψ = 541 can be computed, since there is a single path corresponding to the maximum

completion time. That value is (0.330)(0.392)10(0.466)(0.220)(0.197) = 5.710 × 10−7. The

estimated probabilities are displayed in Table 6, using notation similar to Tables 1-3. We

can see that the estimate obtained with the CE method is fairly close to the real value.

Table 5: Values Taken on by the Service Times and Corresponding Probabilities, for the
Data Set with Discrete Distributions

s ys1 ps1 ys2 ps2 ys3 ps3 ys4 ps4

1 12 0.309 16 0.091 28 0.270 39 0.330
2 11 0.035 25 0.418 32 0.155 40 0.392
3 16 0.137 17 0.353 28 0.044 38 0.466
4 17 0.635 20 0.037 21 0.108 29 0.220
5 18 0.679 20 0.072 23 0.052 35 0.197

Table 6: Estimated Probabilities for Discrete-Distribution Case, J = 10, S = 5, m = 4,
Random Data

MC CE
a α̂ N α̂ N NCE Exact

486 2.30 (0.18) × 10−2 635 2.22 (0.21) × 10−2 100 100
541 0.000 (0.00) 10200 4.95 (3.26) × 10−7 700 700 5.71 × 10−7

To illustrate the behavior of the algorithm for the discrete-distribution case, we consider

a smaller problem with J = 4 jobs and S = 3 machines; the distribution of the service

times is the same as in the first three rows of Table 5. The maximum value achieved by

CSJ in this case is a = 237, for which the algorithm yielded the estimate probability 0.0035

(±0.0002) with 20 replications of sample size 200 each (the exact value can be calculated

as 0.0036). Table A–1 in the Online Supplement displays, for each iteration k, the value of

γ̂k (computed in step 3 of Algorithm 1) and the updated probability of each value taken on

by Ysj, as calculated in step 5 of the algorithm (denoted by p̂k
sj,m). Notice that γ̂k reaches
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a after three iterations. Notice also the presence of a “degenerate” effect; the (s, j) with

1.0 in the respective row correspond to the edges of the longest path in the related graph.

Incidentally, this example illustrates the application of the CE method to combinatorial

optimization problems (in this case, longest path). We refer to de Boer et al. (2005) and

Rubinstein (1999, 2002) for details.

5. Concluding Remarks

We have studied some aspects of the cross-entropy method, which is an algorithm for esti-

mation of rare-event probabilities that has been proposed in the literature and that has been

gaining some popularity. More specifically, we have proposed a general form of the method

— applicable to any distribution — that encompasses and extends existing work. We have

also proposed an implementable version of the algorithm and illustrated its behavior through

numerical examples. The obtained results are encouraging and suggest that the proposed

algorithm is fairly robust, requiring little tuning of its parameters.

Some issues for further research remain. For example, it would be important to find

conditions under which the solutions of the cross-entropy and variance-minimization prob-

lems coincide, at least asymptotically. Also, the derivation of performance bounds for the

estimates obtained with the proposed method (derived with finite sample size) would be

desirable.
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cross-entropy. E. Yücesan, C.-H. Chen, J. L. Snowdon, J. M. Charnes, eds. Proc. of the

2002 Winter Simulation Conf. 310–319.

Homem-de-Mello, T., A. Shapiro, M. L. Spearman. 1999. Finding optimal material release

times using simulation based optimization. Management Sci. 45 86–102.

28



Huang, Z., P. Shahabuddin. 2004. A unified approach for finite dimensional, rare-event

Monte Carlo simulation. R. G. Ingalis, M. D. Rossetti, J. S. Smith, B. A. Peters, eds.

Proc. of the 2004 Winter Simulation Conf. 1616–1624.

Juneja, S., R. Karandikar, P. Shahabuddin. 2004. Tail asymptotes and fast simulation of de-

lay probabilities in stochastic PERT networks. Manuscript, Tata Institute of Fundamental

Research, Mumbai, India.

Juneja, S., P. Shahabuddin. 2002. Simulating heavy tailed processes using delayed hazard

rate twisting. ACM Trans. on Model. and Comput. Simulation 12 94–118.

Kahn, H., A. W. Marshall. 1953. Methods of reducing the sample size in Monte Carlo

computations. J. of the Oper. Res. Soc. 1 263–278.

Kaniovski, Y. M., A. J. King, R. J.-B. Wets. 1995. Probabilistic bounds (via large deviations)

for the solutions of stochastic programming problems. Ann. Oper. Res. 56 189–208.

Kapur, J. N., H. K. Kesavan. 1992. Entropy Optimization Principles with Applications.

Academic Press, New York.

Kroese, D., R. Y. Rubinstein. 2004. The transform likelihood ratio method for rare event

simulation with heavy tails. Queueing Systems 46 317–351.

Kullback, S., R. A. Leibler. 1951. On information and sufficiency. Ann. Math. Statist. 22

79–86.

Law, A. M., W. D. Kelton. 2000. Simulation Modeling and Analysis. 3rd ed. McGraw-Hill,

New York.

Oh, M.-S., J. O. Berger. 1992. Adaptive importance sampling in Monte Carlo integration.

J. Statist. Comput. Simulation 41 143–168.

Oh, M.-S., J. O. Berger. 1993. Integration of multimodal functions by Monte Carlo impor-

tance sampling. J. Amer. Statist. Assoc. 88 450–456.

Rockafellar, R. T. 1970. Convex Analysis. Princeton Univ. Press, Princeton, NJ.

Rubinstein, R. Y. 1999. The cross-entropy method for combinatorial and continuous opti-

mization. Methodology and Comput. in Appl. Probab. 2 127–190.

29



Rubinstein, R. Y. 2002. Cross-entropy and rare events for maximal cut and partition prob-

lems. ACM Trans. on Model. and Comput. Simulation 12 27–53.

Rubinstein, R. Y., A. Shapiro. 1993. Discrete Event Systems: Sensitivity Analysis and

Stochastic Optimization by the Score Function Method . Wiley, Chichester, U.K.

Serfling, R. 1980. Approximation Theorems in Mathematical Statistics. Wiley, New York.

Shahabuddin, P. 1995. Rare event simulation of stochastic systems. C. Alexopoulos, K. Kang,

W. R. Lilegdon, D. Goldsman, eds. Proc. of the 1995 Winter Simulation Conf. 178–185.

Shapiro, A., T. Homem-de-Mello. 2000. On the rate of convergence of Monte Carlo approx-

imations of stochastic programs. SIAM J. on Optim. 11 70–86.

Vázquez-Abad, F., D. Dufresne. 1998. Accelerated simulation for pricing Asian options.

D. J. Medeiros, E. F. Watson, J. S. Carson, M. S. Manivannan, eds. Proc. of the 1998

Winter Simulation Conf. 1493–1500.

Villén-Altamirano, M., J. Villén-Altamirano. 1999. About the efficiency of RESTART. Proc.

of the RESIM Workshop. Univ. of Twente, The Netherlands 99–128.

Zhang, P. 1996. Nonparametric importance sampling. J. Amer. Statist. Assoc. 91 1245–1253.

30


