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Abstract

Airline reservation systems involve the use of booking policies to implement a predetermined allocation of seats to

different fare classes. Models for optimal allocation of seats typically assume one of two commonly used booking policies,

often without recognizing the differences between them. In this paper, we present alternative representations of these

booking policies, and demonstrate that even with identical seat allocations the two booking policies may result in different

expected revenues. We also show conditions under which one of the policies is better. Our Markov chain models facilitate

optimization of seat allocations given either booking policy. Examples are given.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

After deregulation of the airline industry in 1970s,
airlines were able to set their own prices. They could
also sell seats of the same cabin for different prices.
That was an early stage for airline revenue manage-
ment. This area has evolved considerably since then;
see for instance the articles by McGill and Van
Ryzin, 1999, Park and Piersma (2002) and Boyd and
Bilegan (2003) for excellent reviews, as well as the
recent book by Talluri and van Ryzin (2004). It has
also expanded into businesses other than air passen-
e front matter r 2006 Elsevier B.V. All rights reserved

e.2006.02.006

ng author. Tel.: +1 614 292 7856;

7852.

sses: haerian.1@osu.edu (L. Haerian),

ern.edu (T. Homem-de-Mello),

l.1@osu.edu (C.A. Mount-Campbell).
ger services. Broadly speaking, revenue management
deals with various issues including pricing, forecast-
ing and demand modeling (for instance, see Dai
et al., 2005) and inventory and capacity allocation
(see Sridharan, 1998, for example). It is interesting to
note that Coelli et al. (2002) found that airlines
typically fail to generate the maximum possible
revenue from their capacity primarily due to less
than optimal capacity utilization. In the airline
industry, one of the principal problems aimed at
capacity management is seat inventory control, the
purpose of which is to allocate the seats of the same
cabin to different fare classes to maximize the total
revenue. Airlines usually offer tickets for many origin
destination flights. Typically, the problem of seat
inventory control of the network of flights is solved
in one of two ways: as independent single leg flights,
or through heuristic methods for a network of
.
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simultaneous flights. Solving single leg problems
allows for (i) the use of powerful techniques like
dynamic programming, and (ii) the incorporation of
many features like overbooking, cancellation, con-
sumer choice, etc. However, the interaction between
flights is lost. For example, if the problem is solved as
independent legs, one connected flight using two legs
might be rejected in favor of accepting a single leg
flight with higher revenue per leg, even though it
might have been more profitable to the network to
accept the connected flight. Williamson (1992) used
simulation to show that solving the problem as a
network of flights makes a significant increase in
expected revenue compared to solving it as indepen-
dent legs.

Littlewood (1972) was the first to propose a
model for the seat inventory problem. That model
was developed for single leg problems with only two
fare classes. The basic idea is to accept the lower
fare requests until the revenue of accepting another
low fare class is exceeded by the expected revenue of
a high fare class. Belobaba (1987) extended Little-
wood’s idea to more than two fare classes and
proposed a heuristic to find the booking control
policy. Later, Curry (1990), Wollmer (1986) and
Brumelle and McGill (1993) proposed different
algorithms to find the optimal allocation.

Glover et al. (1982) were the first to propose a
network formulation for the airline revenue-man-
agement problem. They formulated the problem as
a network flow problem. The drawback of their
model is the necessity of passengers being path
indifferent, which is not a realistic assumption. The
integer-programming model underlying the network
flow problem is able to distinguish between different
paths. However, it only takes into account the
expected value of demand and the stochastic nature
of the demand is not fully captured. The constraint
of the integer-programming model is that number of
seats allocated to each class is no more than
expected value of demand for that class. The linear
programming (LP) relaxation of Glover’s et al.
model is a deterministic linear programming (DLP)
model. Wollmer (1992) proposed a model, which
takes into account the distribution of the demand. A
drawback of this model is large number of decision
variables. De Boer et al. (2002) proposed a model,
which is similar to Wollmer’s with fewer decision
variables.

A very important aspect of seat inventory control
is nesting. The idea of nested allocation is to make
the seats allocated to each fare class available to all
higher fare classes. Without nesting, it is possible to
reject a request for a high-fare class even though
there are still seats available to one or more lower
fare classes. Without nesting, this situation might
happen when all the seats allocated to a specific high
fare class are filled. Now the question is how to rank
different fare classes. It is clear that for a single leg
problem, the ranking of the booking classes is based
on their fares. The higher the fare, the higher the
ranking of the corresponding fare class. In a
network of flights, the problem is more complex
since the contribution of each fare class to the
network has to be taken into account as well as the
fare of the class.

There have been different ideas about how to
rank different fare classes in a network of flights.
Williamson (1992) suggested ranking fare classes in
a network of flights based on the incremental
revenue that is generated if an additional seat is
made available to each fare class. For the DLP
model, she approximated this by using the dual
variables of the demand constraint. Another meth-
od, called virtual nesting, has been applied by
American Airlines (see Smith et al., 1992). In this
method, the origin–destination–fares on each leg are
clustered into eight buckets where the first two
buckets are for controlling the first and business
classes only. The remaining buckets are for coach
class. Each origin–destination–fare is indexed to one
of the buckets. The buckets are nested.

The idea of nesting has become quite popular
among practitioners. In many cases, a standard
method such as LP is used to determine good seat
allocations and then a nesting policy based on these
allocations is implemented. Some researchers have
proposed the incorporation of the nesting procedure
into the optimization algorithm, although in that
case the optimization techniques become much
more involved. Notable examples of the latter are
Bertsimas and de Boer (2005) and van Ryzin and
Vulcano (2003).

In summary, the problem of interest for the
airline industry involves capacity planning and the
allocation of the available capacity in a network of
flights. While addressing the problem at the network
level has been shown to be important and some
authors have attempted it, the practical end result is
to implement the allocation scheme on the indivi-
dual flight leg level. To implement seat allocations
for each flight leg, two basic approaches have been
proposed in the literature, namely, a booking limit
control policy and a virtual nesting control policy.
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Bertsimas and de Boer (2005) describe both
methods, which they call standard nesting and theft
nesting, respectively, a terminology we adopt here.

In this paper, we study the standard and theft-
nesting approaches in detail. The value of this
contribution lies in that, although these control
policies are recognized to be distinct, to the best of
our knowledge an analysis of the differences
between them has not been provided. Our study
alerts for the fact that the differences in revenue
when implementing one approach or the other can
be significant. Moreover, by showing the existence
of a ‘‘crossing point’’ for the booking horizon, i.e. a
point after which one of the policies is necessarily
superior, we can help the practitioner decide which
of the methods is more suitable in his or her case.

We also propose a unified alternative representa-
tion of the standard and theft-nesting methods
based on the concept of a nesting table. Besides
allowing for an easy visualization of the mechanism
behind those policies—which can constitute a
valuable teaching tool—our approach allows for
the development of a Markov chain (MC) model
that represents the booking process. The proposed
model allows for exact calculation of the expected
revenue under both standard and theft approaches,
when requests for reservations are assumed to
follow a homogeneous Poisson process, meaning
that the Poisson parameter is constant and therefore
time independent. Our model can be used to assess
the benefits of specific allocations much more
quickly and directly than simulation. In particular,
since the calculations are exact and do not require
simulation, our approach leads naturally to optimi-
zation of the seat allocation, which requires simpler
deterministic (rather than stochastic) procedures.

The remainder of the paper is organized as follows:
In Section 2 we describe the standard and theft-
nesting approaches in detail and use a simple
example to show how they differ. We also propose
two methods—which we call fill from the right (R)
and fill from the left (L) booking policies—which are
provably equivalent to, respectively, standard nesting
and theft nesting. In Section 3 we present simulation
results for a few examples showing that the revenues
obtained under these policies can be significantly
different, even if the original allocation is the same.
In Section 3, we present our analytical model for
computation of the expected revenue and discuss
some optimization issues. In Section 4 we present our
conclusions and discuss some future work. Some
theoretical results are presented in the Appendix A.
2. Overview of booking control policies

2.1. Problem definition and notation

Let C be the capacity of the cabin of the airplane
and n denote the number of fare classes. Here we
define a fare class to be a one-leg itinerary with a
predetermined price. Let x1,y,xn denote the num-
ber of seats allocated to classes 1,y,n where the
classes are ordered from the highest fare class to the
lowest fare class. Since we are only concerned with
the nesting policies, here we assume that seat
allocations have been decided beforehand using
some method. Given one such allocation, we define
the protection level of class i to be the number of
seats that are protected for the exclusive use of class
i�1 and higher classes. More specifically

pli ¼
Xi�1
j¼1

xj, (1)

where xj is the number of seat allocated to class j.
Since the xj’s must be nonnegative, it is easy to see
that

0 ¼ pl1ppl2p � � �pplnpC. (2)

Both standard and theft policies use the protec-
tion levels in Eq. (1) to determine which requests
should be accepted and which ones should be
rejected. In order to illustrate how the two policies
work and how they can lead to different results, we
shall consider the following simple example to
which we will refer throughout the paper.

Example 1. Consider a single leg flight with
capacity 8. There are three fare classes with revenues
r1 ¼ $300, r2 ¼ $200 and r3 ¼ $100 and seat alloca-
tions x1 ¼ 1, x2 ¼ 6 and x3 ¼ 1. The protection
levels calculated from Eq. (1) are as follows:

pl1 ¼ 0,

pl2 ¼ x1 ¼ 1,

pl3 ¼ x1 þ x2 ¼ 1þ 6 ¼ 7.

2.2. Standard nesting policy

We describe first the standard nesting policy,
following closely the description in Bertsimas and
de Boer (2005). First, all the fare classes are ranked.
In this case, since we are dealing with a single leg
flight, we rank the fare classes based on the fares.
Class 1 has the highest rank followed by class two
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Table 1

Applying standard nesting policy to Example 1

Booking requests 2 3 3 2 2 2 2 2 1 1 1

Decision

A ¼ Accept A A R A A A A A A R R

R ¼ Reject

R1 8 7 6 6 5 4 3 2 1 0 0 0

R2 7 6 5 5 4 3 2 1 0 0 0 0

R3 1 1 0 0 0 0 0 0 0 0 0 0
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and three. Then we define inventory buckets. Let Bi

represent the inventory bucket corresponding to
fare class i. Inventory bucket of class i includes all
the fare classes that are ranked less than or equal to
class i. So in general Bi ¼ fi; i þ 1; . . . ; ng.

Let Ri(t) denote the seat availability or remaining
capacity of bucket i after t requests have been
accepted. Notice that pli is the number of seats that
are protected from fare class i and lower ranked fare
classes and therefore from bucket i. Therefore Ri(t)
is defined as

RiðtÞ ¼ sðtÞ � pli, (3)

where sðtÞ ¼ C � t represents the remaining capa-
city of the cabin after t requests have been accepted.

Once the remaining capacity of the cabin, s(t),
becomes equal to pli there are no more seats
available to bucket i. So any request for fare class
i, i+1,y,n�1 or n will no longer be accepted. In
other words, Ri becomes zero and remains zero.
From Definition (3) and inequality (2) it is easy to
see that

0pRnðtÞpRn�1ðtÞp � � �pR1ðtÞ ¼ sðtÞ for all t.

(4)

As described by Bertsimas and de Boer (2005),
‘‘The policy is to accept booking requests as long as
there are still seats available for all inventory
buckets of which the considered booking class is
part. If a booking request is accepted, the seat
availability of any such bucket is decreased.’’ In
other words, given that t requests have already been
accepted, a new request for fare class i is accepted if

R1ðtÞ40; R2ðtÞ40; . . . ;RiðtÞ40.

From Eq. (4), this could be simply written as

RiðtÞ40. (5)

Based on definition of standard nesting booking
policy, once a request for fare class i is accepted, R1,
R2,y,Ri are all decreased by one unit. Note that a
special case occurs when RiðtÞ ¼ Riþ1ðtÞ40. A
request for fare class i is accepted based on Eq.
(5). Now, RiðtÞ ¼ Riþ1ðtÞ means that the current
booking limit of bucket i is equal to booking limit of
class i+1, therefore the accepted request for fare
class i actually takes one of the seats that could have
been sold to fare class i+1. Therefore, Bi+1 will
have one less seat available now. In other words if
RiðtÞ ¼ Riþ1ðtÞ, then once the request for fare class i

is accepted, not only R1,y,Ri but also Ri+1 would
need to be decreased by one unit. A similar
argument applies to other classes j4i such that
RiðtÞ ¼ RjðtÞ. Thus, the standard nesting booking
policy can be re-phrased as follows:

A request for fare class k (given that t bookings
have been made) is accepted if Rk(t)40, and once it
is accepted, seat availability of the buckets are
updated as follows,

Riðtþ 1Þ ¼

RiðtÞ � 1 if ipk;

RiðtÞ � 1 if i4k and RkðtÞ ¼ RiðtÞ;

RiðtÞ if i4k and RkðtÞ4RiðtÞ:

8><
>:

(6)

Acceptance of any request, of course, also implies
that sðtþ 1Þ ¼ sðtÞ � 1.

Now consider Example 1 above. Initially,
sð0Þ ¼ C ¼ 8, so the initial Ri’s are calculated from
Eq. (3) as below,

R1ð0Þ ¼ 8� 0 ¼ 8,

R2ð0Þ ¼ 8� 1 ¼ 7,

R3ð0Þ ¼ 8� 7 ¼ 1.

Suppose now that (2 3 3 2 2 2 2 2 1 1 1) represents a
sequence of booking requests by class index. Table 1
shows the result of applying standard nesting policy
to our example. As seen from the result, the third,
tenth and eleventh requests are rejected and all
other requests are accepted. In the next section, we
propose a booking policy we call ‘‘fill from the
right’’ (R) that is equivalent to the standard nesting
policy but easier to visualize. Before proposing the
R control policy, we define a nesting table, which is
basis for our proposed method.
2.3. Nesting table

The idea of nested allocation can be illustrated by
drawing a table with C columns and n rows
corresponding to capacity and number of classes,
respectively. Each column represents one seat and
could be filled with only one entry in any of the
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rows, which correspond to the class. On each row,
pli of the cells are crossed out starting from the right
side of the table. Crossed out cells in each row
represent the seats that are protected from the
corresponding class and are reserved for higher
classes only. We will call this table the ‘‘nesting
table’’ throughout the paper. The nesting table for
the previous example is shown in Fig. 1.

2.4. The fill from the right (R) booking policy

Suppose C, n and either pli’s or xi’s are given. If
xi’s are given, pli’s can be calculated from Eq. (1).
The R booking policy fills up the nesting table from
the right as booking requests are accepted. More
specifically, it can be described as follows:
�
 Draw the nesting table by using C, n and pli’s.

�
 If there is a booking request for class i, start from

the right side of the ith row
J Fill up the first available seat (the first cell

which is not crossed out and its corresponding
column has no other entry).

J If there is no such a seat available, reject the
booking request.
�
 Repeat until there are no more booking requests
or no seats left.

Shown in Fig. 2 are the results of applying R
booking policy to Example 1. In order to make the
Fig. 1. Nesting table of Example 1.

Requests Listed in Order 
From Right to Left

1 1  1 2 2 2 2

Reject

2 2 2

3

}

2

Fig. 2. Applying the R book
method easier to follow, we have listed the booking
requests in reverse order above the nesting table and
drawn arrows to show the assignment of accepted
requests to cells in the figure. Please note that the
third, tenth and eleventh booking requests are
rejected and all other requests are accepted. The
result of applying the R policy to the example is the
same as applying the standard nesting control
policy. This is actually true in general, as we shall
see later.

2.5. Theft nesting (virtual nesting booking control)

In this section, the theft-nesting control policy is
described and applied to Example 1. In the
following, we adapt the theft-nesting booking policy
(described and used in van Ryzin and Vulcano,
2003) to the single flight leg case as follows. As
before, let x1,y,xn denote the number of seats
allocated to class 1,y,n where the classes are
ordered from the highest to the lowest fare class.
Let yi denote the protection level for classes i and
higher. Under a theft-nesting policy, requests in
class i+1 are accepted if and only if the remaining
capacity exceeds yi. Notice that yi is not exactly the
same as pli. The quantity yi corresponds to the
number of seats that are protected for class i and
higher, whereas pli is the number of seats that are
protected from class i and made available to higher
classes. It is easily seen that yi ¼ pliþ1 for i ¼

0; . . . ; n� 1 and yn ¼ C. Therefore theft-nesting
policy can be re-phrased as follows:

A request for fare class i (given that t bookings
have been made) is accepted if s(t)4pli.

Once a request for fare class i is accepted the
remaining capacity of the cabin, s(t), will be
decremented by one unit, i.e. sðtþ 1Þ ¼ sðtÞ � 1.
2 3 3 2

1 

2 2

ing policy Example 1.
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The result of applying theft-nesting policy to
Example 1 is presented in Table 2.

We see that the result of applying theft-nesting
booking control is different from applying standard
nesting. We describe now a ‘‘fill from the left’’
booking policy, which as we shall see is equivalent
to the theft-nesting policy.
2.6. Fill from the left (L) booking policy

Suppose C, n and either pli’s or xi’s are given. If
xi’s are given, pli’s can be calculated as in Eq. (1).
The L booking policy fills up the nesting table from
the left. It is described in more detail as follows:
�

Ta

Ap

Bo

pli
S(t

De

A ¼

R ¼
Draw the nesting table by using C, n and pli’s

�
 If there is a booking request for class i, start from

the left side of the ith row
J Fill up the first available seat (the first cell

which is not crossed out and its corresponding
column has no other entry).

J If there is no such a seat available, reject the
booking request.
ble 2

plyi

okin

)

cisio

A

R

�
 Repeat until there are no more booking requests
or no seats left.

The result of applying L booking policy to
Example 1 is shown in Fig. 3. In order to make
ng the theft nesting booking policy Example 1

g requests 2 3 3 2 2 2 2 2 1 1 1

1 7 7 1 1 1 1 1 0 0 0

8 7 7 7 6 5 4 3 2 1 0

n

ccept A R R A A A A A A A R

eject

2   3 3   2   2  2

  Reject

2 2 2 2

Fig. 3. Applying L Booking
the method easier to follow, the booking requests
have been added to the table along with arrows to
show how the table is filled. It can be seen that the
second, third and eleventh booking requests are
rejected and all other requests are accepted. That is
the same as when we applied theft-nesting control
policy.

2.7. Equivalency of methods

We show now that theft nesting and standard
nesting policies are equivalent to our proposed L
and R booking policies respectively. As discussed
earlier, the advantage of L and R booking policies
over theft and standard nesting policies is that they
are easier to visualize and allow for the use of a MC
model to model the process of filling the aircraft,
which will be described in Section 4.

Below we state the results formally.

Theorem 1. Let C, s(t) and n represent capacity of

the cabin, remaining capacity of the cabin and number

of fare classes, respectively. Given a sequence of

requests where each request is for fare class

1,2,y,n�1 or n, the theft-nesting policy and the L

booking policy defined above both make the same

accept/reject decision to each and every one of the

request in the sequence.

Proof. After t bookings have been made, the
number of columns of the nesting table with no
entry indicates the remaining capacity of the cabin,
i.e. s(t). In L booking policy, as the requests are
accepted columns of the nesting table will be filled
up one by one from the left side of the nesting table.
Consider the ith row of the nesting table. pli right
cells of this row are crossed out. So, initially, C�pli
Requests Listed in Order 
From Left to Right

   2  2 1 1    1 

1 1

 2 2

{

Policy to Example 1.
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i 

Class i-1 

Class i 

Class i+1 

Class i+2 

Vi

Vi+1

Fig. 4. Nesting table for R booking policy at some point in time.
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of the left cells of this row are not crossed out. In
fact, at any time during the process if s(t) is larger
than pli that means there are some cells, s(t)�pli to
be exact, on the ith row that are not crossed out and
the corresponding column has no other entry, so
based on L booking policy these cells can be filled
with a request for fare class i. However if sðtÞ ¼ pli
then there is no cell on row i which is both not
crossed out and with no entry on its corresponding
column, therefore based on L booking policy a
request for fare class i can no longer be accepted.
Once a request for fare class i is accepted, the first
available column from the left side of the nesting
table will be filled up, which means s(t) is
decremented by one unit.

In summary, the condition for accepting a request
for fare class i in L booking policy, given that t

requests have been accepted, is s(t)4pli. Moreover,
once a request is accepted, s(t) will be decremented
by one unit. It is easy to see that these are consistent
with the condition and updating rule in theft-nesting
policy. Suppose that in an airplane allocation
problem with given cabin capacity and given set of
protection levels, a request for fare class i arrives.
Both L booking policy and theft-nesting policy will
make the same accept/reject decision when applying
to this problem. Also, these two methods both
update the system in the same way, which means the
remaining capacity of the cabin after accept/reject
decision will be the same no matter which policy was
applied. Therefore if these two policies are applied to
the same sequence of requests where each request is
randomly chosen from fare classes 1,2,y,n�1 or n,
the same accept/reject decision will be made for each
and every of the requests of the sequence. &

Theorem 2. Let C, s(t) and n represent capacity of

the cabin, remaining capacity of the cabin and number

of fare classes respectively. Given a sequence of

requests where each request is for fare class

1,2,y,n�1 or n, the standard nesting policy and the

R booking policy defined above both make the same

accept/reject decision to each and every one of the

requests in the sequence.

Proof. As before, let t denote the number of
requests have already been accepted. Let Vi(t)
denote the number of columns with no entry whose
corresponding cells on row i are not crossed out. At
the beginning of the process, when no column is
filled up, Við0Þ ¼ C � pli.
We will show by induction that,

0pV nðtÞpVn�1ðtÞp � � �pV 1ðtÞ ¼ C for all t:

(7)

From Eq. (2), it is clear that Eq. (7) holds for
t ¼ 0. Suppose it also holds for 1,y,t. If Vi(t) is not
zero, then based on R booking policy a request for
fare class i will be accepted and the first right
available cell on row i will be filled up. By the
induction hypothesis, Eq. (7) holds and so we can
say that if a cell on row i is not crossed out, then all
the cells of the corresponding column on rows
1,2,y,i�1 are not crossed out either. However, the
cells of the corresponding column on rows i+1,
i+1,y,n may or may not be crossed out. Therefore,
when a request for fare class i is accepted, it will
affect V1,V2,y,Vi, decreasing them by one, but it
may or may not effect Vi+1, Vi+2,y,Vn. Notice
that, when Vi(t)4Vi+1(t), the column that is going
to be filled up with the request for fare class i, has
not been available to fare class i+1 any way,
because the corresponding cell is crossed out on row
i+1. However, when Vi(t)4Vi+1(t) the column that
is going to be filled up with the request for fare class
i is also available to fare class i+1, because the
corresponding cell on row i+1 is not crossed out.
This concept can be seen in Fig. 4.

In summary, R booking policy accepts a request
for fare class k if Vi(t)40 and, once the request is
accepted, Vi’s will be updated as following:

Viðtþ 1Þ ¼

V iðtÞ � 1 if ipk;

V iðtÞ � 1 if i4k and V kðtÞ ¼ ViðtÞ;

V iðtÞ if i4k and V k4ViðtÞ:

8><
>:

(8)

Based on the above updates, it is clear that Eq. (7)
holds at t+1. It follows that the updates are valid
for all t and these are consistent with Eq. (6).
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Therefore, in an airplane allocation problem with
given cabin capacity and given set of protection
levels, when a request for fare class i arrives both R
booking policy and standard nesting policy will
make the same accept/reject decision when applying
to this problem. Also, these two methods both
update the system in the same way. In other words,
Vi and Ri are updated in the exact same way for
i ¼ 1; . . . ; n. If these two policies are applied to the
same sequence of requests where each request is
randomly chosen from fare classes 1,2,y,n�1 or n,
same accept/reject decision will be made for each
and every of the requests of the sequence. &

3. Simulation

In order to examine the difference between R and
L booking policies and therefore theft and standard
nesting, we have simulated the process of applying
R and L booking policies to four different examples
of a single leg flight. The simulation results are
presented in this section.

We assume that the booking requests follow
homogeneous Poisson processes with known rates
of arrivals. The booking period is the time from
when the flight tickets are first put on sale until the
flight time. We assume that the booking period is
divided into equal time units, where one time unit is
small enough so that there is at most one booking
request per time unit (such an assumption is
common in the literature). T denotes the booking
period as a discrete multiple of time unit throughout
the paper. As before pi denotes the probability of
arrival of fare class i in one time unit where class
zero stands for no request in that time unit. The
corresponding probability, p0 can be calculated as
p0 ¼ 1�

Pn
i¼1pi. Since the arrival process follows a

homogeneous Poisson process, pi’s do not change
over time. We used MATLAB 6.5 to code the
simulation. The simulation process is described in
the next paragraph.

First T is fixed. For the fixed T, 1500-sample
sequences of booking requests, indexed by the fare
class, are generated. As mentioned before, fare class
zero stands for no request in the corresponding time
unit. Each sample sequence is a vector of T

elements, where each of the numbers is a sample
from a discrete probability distribution with prob-
ability mass function {pi}. For each sample sequence
of booking requests, the process of applying R and
L booking policies are simulated and the revenue
generated by each one is calculated. The average of
1500 sample revenues is then computed for each R
and L booking policies. The calculated revenue,
basically, shows the average revenue that will be
generated if we start selling the tickets T time units
before the time of the flight. This process is repeated
for different multiples of time unit (different T’s).
The average generated revenue versus T is then
graphed for both R and L booking policies. All four
examples are single leg flights. The parameters for
the examples are given in Table 3.

As it can be seen from Figs. 5 to 8, up to a certain
T the average revenue generated by R booking
control policy is slightly greater than the one
generated by L booking policy, but after that the
average revenue generated by R booking control
policy is exceeded by the one generated by L
booking control policy. Even though capacity,
number of fare classes, fare and probability of
arrivals are different in the examples, the same
behavior is observed. The same behavior was
observed for hundreds of other examples as well
which are not presented here. We provide some
theoretical explanation for that phenomenon in the
Appendix A.

4. Alternative model for calculating expected

revenues

As mentioned in Section 1, one of the advantages
of the L and R policies we propose is that they allow
for the development of a Markov chain (MC) model
for the booking process. This model, in turn, yields
exact values for the expected revenue, in which case
simulation is no longer necessary. Since the Markov
chains for the R and L policies are different, we
describe them separately below.

4.1. Markov chain model for L booking policy

For any single leg problem with capacity C, the
proposed MC model has C+1 stages. There are C
seats available at stage one, C�1 seats at stage two
and finally no seat at stage C+1. In other words at
stage i, i�1 seats are already taken and C+1�i seats
are available. Since in this model there is only one
seat at each stage, we have only one state per stage,
so the terms ‘‘stage’’ and ‘‘state’’ become inter-
changeable. Thus, from now on we refer to states
rather than stages. One time unit is equivalent to
one transition from state to state. The only possible
transitions are from each state to itself or to the one
after that. The first state of the proposed MC is the
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Fig. 5. Simulation of R and L booking policies for Example 2.

Table 3

Parameters of four examples used in simulation process

Example Capacity Number of fare classes Fare class Fare ($) Protection level Probability of arrival

2 4 3 1 400 0 0.01

2 200 1 0.02

3 100 2 0.03

3 15 4 1 550 0 0.015

2 400 3 0.03

3 200 5 0.04

4 75 10 0.05

4 50 6 1 610 0 0.015

2 500 5 0.03

3 450 7 0.04

4 320 10 0.05

5 200 15 0.06

6 100 20 0.07

5 100 10 1 700 0 0.015

2 640 5 0.03

3 520 10 0.04

4 410 15 0.05

5 350 20 0.06

6 300 25 0.07

7 250 30 0.075

8 200 40 0.08

9 150 50 0.085

10 100 60 0.09
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Fig. 6. Simulation of R and L booking policies for Example 3.
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Fig. 7. Simulation of R and L booking policies for Example 4.
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nesting table that we saw before. All other states are
the nesting table with the filled columns eliminated
from it. Therefore, the last state, which shows the
end of the process, is the nesting table with all the
columns filled and therefore eliminated. Since there
are no more columns to be filled up at the last state,
there is no transition from the last state. Therefore,
the last state is an absorbing state.

The process always starts from the first state,
which is the original nesting table with no column
eliminated from it. Based on the L booking policy,
the first available left column can be filled up with
eligible fare classes, which are those whose corre-
sponding rows are not crossed out. Since at any
state the filled columns are already eliminated from
the nesting table, the first available left column is
actually the first left column, which can be filled
with eligible fare classes. In that case, the column is
filled up and transition to the next state occurs
which is the previous table with its filled column
eliminated from it. The corresponding transition
probability is sum of all probabilities of eligible fare
classes at that state. Self-transitions occur when
there is either no booking request or no eligible one.
The corresponding transition probability is then p0
plus the sum of probability of all non-eligible
booking requests at that point. Fig. 9 is the MC
for L policy applied to the second example listed in
Table 3. Transition probabilities are written over
the transition arrows.

As mentioned before, the process always starts at
the first state. The first left column of states one and
two have no crossed out cells and can be filled up
with any of the three booking requests in which case
it will transit to the next state with transition
probability of p1+p2+p3. The first left column of
the third state is not available to the third fare class
and can be filled up with the first and second fare
classes only. Therefore, once we reach at state three
we will remain there until there is a request for fare
classes 1 or 2 in which case transition to the fourth
state occurs with the transition probability of
p1+p2.
p1 + p2 + p3 p1

p0 p0

Fig. 9. Example 2 MC model whe
4.2. Markov chain model for R booking policy

The MC model for the R policy is similar to the
one for L policy with larger number of states. There
are again C+1 stages corresponding to the number
of seats that are left. Transitions happen from each
state to itself or to the states of the next stage only.
Same as before, the probability of transition from a
state to itself equals the probability of no request in
one time unit plus the probability of requests for all
the classes that have no seats left to fill. The first
state of the proposed MC is the nesting table that
we saw before. All other states are the nesting table
with the filled columns eliminated from it. The last
state, which shows the end of the process, is the
nesting table with all the columns filled and there-
fore eliminated. Since there are no more columns to
be filled up at the last state, there is no transition
from the last state. Therefore, the last state is an
absorbing state. The process always starts from the
first state, which is the original nesting table with no
column eliminated from it. Based on the R booking
policy, the first available right column can be filled
up with eligible fare classes, which are those whose
corresponding rows are not crossed out. The first
available right column can be the first, second or
any other column of the nesting table depending
upon the state of the system and the class of the
request. That is why there is usually more than one
state in the stages of the MC model of the R
booking policy. The corresponding transition prob-
ability of transition from one state to another state
of the next stage is the sum of all probabilities of
eligible fare classes at that state. Fig. 10 is the MC
for R policy applied to second example listed in
Table 3. Transition probabilities are written over
the arrows.

4.3. Calculating expected revenue

For any single leg flight, the process of applying L
or R booking policy can be modeled by an
absorbing MC as described before. Let P denote
 + p2 + p3 p1 + p2 p1

1

p0 + p2 + p3
p0 + p3

End

n applying L booking policy.
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Fig. 11. Revenue generated by applying L booking policy to

Example 2 using simulation and the Markov chain model.
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the transition probability matrix of corresponding
MC. As we mentioned before, each transition is
equivalent to one time unit, therefore Pn shows the
state of the MC after n transitions or n time units.
In order to calculate the expected revenue generated
by L booking policy, we need to define the value of
transition. If no seat is sold, the value is 0; if a fare
class i is sold, then the value of transition is ri; if
either a seat i or j is sold to make a transition, then
the value is: r̂ij ¼ ðripi þ rjpjÞ=ðpi þ pjÞ; if one of
three seats is sold to make the transition, then the
value is r̂ijk ¼ ðripi þ rjpj þ rkpkÞ=ðpi þ pj þ pkÞ, and
so on. Let vbe be the value of being in state b and
ending in state e after one transition. Then, we can
calculate the expected value of a transition from any
state b as follows: v̄b ¼

Pn�1
e¼0vbepbe, where, pbe is the

transition probability. Let V be the column vector
with elements v̄1; v̄2; . . . ; v̄n and let pk be the row
vector of state probabilities after k transitions, with
k ¼ 0 for the initial state and k ¼ T when the plane
takes off. Finally, let ¯̄rk be the expected revenue
from the kth transition. Thus,

¯̄r1 ¼ p0PV

¯̄r2 ¼ p1PV ¼ p0P2V

..

.

¯̄rT ¼ pT�1PV ¼ p0PT V

9>>>>>>=
>>>>>>;

and the expected revenue

XT

k¼1

¯̄rk ¼ p0
XT

k¼1

Pk

 !
V . ð9Þ

The two graphs in Figs. 11 and 12 show the result
of calculating expected revenue for the second
example listed in Table 3 by using the MC method
described above as well as the result of the simulation
that we saw in the previous section. Both graphs
show that the two methods get matching results, but
there is no noise in the MC model.

4.4. Using the Markov chain model for optimization

Ideally, the airline wants not only to determine
the best nesting policy but also the optimal
protection levels. Thus, the goal becomes to
incorporate nesting into the optimization proce-
dure. Such an issue has been addressed in the
literature (notably in Bertsimas and de Boer, 2005,
and van Ryzin and Vulcano, 2003), and some
algorithms have been proposed. Because of the
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Example 2 using simulation and the Markov chain model.

Table 4

Total enumeration for Example 3 of Table 2

T Best policy Best protection level Expected revenue ($)

30 L or R (0, 0, 0, 0) 960

80 L (0, 0, 0, 1) 2530

100 L (0, 0, 0, 3) 3052

200 L (0, 0, 3, 15) 4812

300 L (0, 0, 12, 15) 5755

500 L (0, 1, 15, 15) 6766

1000 L (0, 11, 15, 15) 7590
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stochastic nature of the problem, these algorithms
implement some complex gradient-based simulatio-
n–optimization procedures.

Our MC model allows us to address that problem
from a different perspective than the existing
methods and algorithms. Suppose that for a given
booking period (T), we want to look for the best set
of protection levels and best policy. In other words,
we would like to find out, at a certain amount of
time before the flight, how many seats of each fare
class need to be protected and what policy, L or R
need to be applied in order to generate the
maximum revenue. An important consequence of
using the MC model is that, since it yields exact

expected revenues, there is no need for simulation.
Hence, the optimization problem becomes a com-
pletely deterministic combinatorial problem where
the goal is to find the best allocation alternative and
the best (between L and R) policy. Many techniques
are available for such problems, e.g., simulated
annealing, tabu search or cross-entropy, to name a
few. A detailed investigation of that issue falls
outside the scope of this paper, so for the purposes
of illustrating its potential we discuss a small
example that can be solved by enumeration.

Consider now the third example listed in Table 3.
Notice that there are total of 816 possible set of
protection levels. Therefore, there are total of 1632
possible allocation-policy combinations. Using our
MC model, we calculated the expected revenue
corresponding to each possible alternative. The
results of this calculation for various values of T

are given in Table 4. We can see that, as length of
the booking horizon (i.e. T) grows, we tend to
protect more seats from the lower-fare classes, since
the likelihood of having enough high-fare customers
to fill up the plane increases. Of course, this is a
consequence of our assumption that the arrival
process of each class is homogeneous Poisson; in
practice, this is not the case, so our model is suitable
for relatively small horizons where the rate of the
Poisson process can be assumed to be constant.
Note that we say ‘‘relatively small’’ since the
appropriate length depends on factors such as the
arrival pattern and the capacity of the plane. Thus,
the numbers in Table 4 illustrate what happens
under different scenarios, in which the given values
of T are ‘‘relatively small’’.

It is important to notice that, although we could
have simulated each of the possible 1632 alterna-
tives for each T, the results would likely be
inconclusive—since the simulation output contains
random error, properly identifying the best alter-
native would require applying ranking and selection
procedures (see, e.g., Law and Kelton, 2000), which
for the number of alternatives at hand would be
extremely time-consuming.

5. Conclusion and future study

We have studied in detail two nesting policies
proposed in the literature and highlighted the
differences between them. An important conclusion
of our analysis is that there exists a ‘‘crossing point’’
for the booking horizon, i.e. if the horizon is long
enough then the theft-nesting policy will be super-
ior, whereas for shorter horizons either the standard
nesting is better or they both yield the same result.
This insight can help the practitioner decide which
of the methods is more suitable in his or her case. A
potential avenue for future work is the development
of methods that can identify the crossing point. We
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believe that this cross point depends on capacity,
protection level, fares and probabilities of arrival of
fare classes, so another possible area for future
study could be to examine how the cross point is
related to each of these factors.

We have also developed a Markov chain model
for the booking process that allows for exact
calculation of expected revenues, which in principle
allows for more efficient optimization of the
protection levels since only deterministic techniques
are required. For a large network, however, the
number of states in the Markov chain can be very
large; hence, a potential area for further research is
to study how the size of the chain can be reduced,
e.g., by eliminating or aggregating states. Finally,
developing an efficient method to search for the best
set of protection levels is another important topic,
on which research is underway.

Appendix A. Properties of the expected revenue of

the system in terms of policy used

We discuss now properties of the expected
revenue of the system in terms of policy used for
allocation (i.e. L or R).

For each t ¼ 1; 2; . . . ; let Dt be a random variable
denoting the class of the arrival at time t with Dt ¼

0 if no arrival occurs at t. Let Rt and Lt be random
variables denoting the revenue obtained under,
respectively, the R and L policies up to time t.
Note that the specific values taken on by Rt and Lt

depend on the values taken on by the random
variables D1, D2,y,Dt.

The following lemma shows an important rela-
tionship between Rt and Lt.

Lemma 1. There exist random times t1 and t2, with

t1pt2, such that

RtXLt if tpt1, (10)

RtpLt if tXt2. (11)

Proof. Consider a particular arrival stream, i.e. a
specific sample path of the stochastic process
D ¼ ðD1;D2; . . .Þ. The key observation for the proof
is the following fact: because of its ‘‘filling from the
right’’ nature, up to a certain point, policy R allows
for more choices than policy L to fill an empty slot
in the nesting table. Indeed, the first C�pln requests
are accepted under either policy. After that, the L
method starts filling the table from the left, i.e. the
columns with more blank. Thus, the options to fill
the remaining columns with policy L will be
narrower than with R, in the sense that policy R
allows for more lower-fare arrivals to be accepted.
This continues until the point where policy R rejects
its first customer. Clearly, until that point policy R
has accepted at least the same customers accepted
by L. By calling this time t1, Eq. (10) follows.

On the other hand, all the slots filled by R
booking policy customers that were rejected by L
booking policy will be eventually filled by L
booking policy if the arrival stream is long enough.
This follows from the fact that each sample path of
the stochastic process D contains infinitely many
arrivals of every class, a property ensured by the
assumption that the Poisson arrival process is
homogeneous. Note that, unless both L and R
accept exactly the same customers (an event whose
probability is strictly less than 1), policy L will be
able to improve upon the revenue obtained with R
since it fills the slots with higher-fare customers. Let
t2 be the time when the nesting table is filled by
policy L. Then, Eq. (11) follows. &

Proposition 1. There exists a deterministic time T2

such that

E½Rt�oE½Lt� if tXT2. (12)

Proof. Let I denote the indicator function of an
event, i.e. I fAg ¼ 1 if A occurs, I fAg ¼ 0 otherwise.
Let us write the difference E[Rt�Lt] as

E½Rt � Lt� ¼ E½ðRt � LtÞI ftpt1g�

þ E½ðRt � LtÞI ft1otot2g�

þ E½ðRt � LtÞI ftXt2g� ð13Þ

and take t-N. Note that, by Lemma 1, the first
term on the right-hand side is non-negative and the
third term is non-positive. In fact, the proof of
Lemma 1 shows that, when tXt2, not only RtpLt

but also RtoLt on a set of positive probability.
Thus, the third term is strictly positive. Since all
terms in the integrand are bounded, it follows from
the bounded convergence theorem that we can
switch the limit and the expectations. Since both t1
and t2 are finite with probability one, we have that
I ftpt1g ! 0, I ft1otot2g ! 0 and thus

lim
t!1

E½Rt � Lt� ¼ lim
t!1

E½ðRt � LtÞI ftXt2g�o0.

Thus, there exists T2 such that Eq. (12) holds. &
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