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Abstract. In this paper we study a Monte Carlo simulation–based approach to stochastic
discrete optimization problems. The basic idea of such methods is that a random sample is generated
and the expected value function is approximated by the corresponding sample average function. The
obtained sample average optimization problem is solved, and the procedure is repeated several times
until a stopping criterion is satisfied. We discuss convergence rates, stopping rules, and computational
complexity of this procedure and present a numerical example for the stochastic knapsack problem.
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1. Introduction. In this paper we consider optimization problems of the form

min
x∈S

{g(x) := EPG(x,W )} .(1.1)

Here W is a random vector having probability distribution P , S is a finite set (e.g.,
S can be a finite subset of R

n with integer coordinates), G(x,w) is a real valued
function of two (vector) variables x and w, and EPG(x,W ) =

∫
G(x,w)P (dw) is the

corresponding expected value. We assume that the expected value function g(x) is well
defined, i.e., for every x ∈ S the function G(x, ·) is measurable and EP {|G(x,W )|} <
∞.

We are particularly interested in problems with the following characteristics:
1. The expected value function g(x) := EPG(x,W ) cannot be written in a closed

form, and/or its values cannot be easily calculated.
2. The function G(x,w) is easily computable for given x and w.
3. The set S of feasible solutions, although finite, is very large, so that enumer-

ation approaches are not feasible. For instance, in the example presented in
section 4, S = {0, 1}k and hence |S| = 2k; i.e., the size of the feasible set
grows exponentially with the number of variables.

It is well known that many discrete optimization problems are hard to solve.
Another difficulty here is that the objective function g(x) can be complicated and/or
difficult to compute even approximately. Therefore stochastic discrete optimization
problems are difficult indeed and little progress in solving such problems numerically
has been reported so far. There is an extensive literature addressing stochastic discrete
optimization problems in which the number of feasible solutions is sufficiently small to
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