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Abstract

We study a network airline revenue management problem with discrete customer choice be-
havior. We discuss a choice model based on the concept of preference orders, in which customers
can be grouped according to a list of options in decreasing order of preference. If a customer’s
preferred option is not available, the customer moves to the next choice on the list with some
probability. If that option is not available, the customer moves to the third choice on the list
with some probability, and so forth until either the customer has no other choice but to leave
or his/her request is accepted. Using this choice model as an input, we propose some mathe-
matical programs to determine seat allocations. We also propose a post-optimization heuristic
to refine the allocation suggested by the optimization model. Simulation results are presented
to illustrate the effectiveness of our method, including comparisons with other models.



1 Introduction

Revenue management involves the application of quantitative techniques to improve profits by

controlling the prices and availabilities of various products that are produced with scarce resources.

Perhaps the best known revenue management application occurs in the airline industry, where the

products are tickets (for itineraries) and the resources are seats on flights. In view of many successful

applications of revenue management in different areas, this topic has received considerable attention

in the past few years both from practitioners and academics. The recent book by Talluri and van

Ryzin [2004b] provides a comprehensive introduction to this field, see also references therein. A

common way to model the airline booking process is as a sequential decision problem over a fixed

time period, in which one decides whether each request for a ticket should be accepted or rejected.

A typical assumption is that one can separate demand for individual itinerary-fare pairs; that is,

each request is for a particular type of ticket on a particular itinerary, and yields a pre-specified fare.

These combinations are called classes. Typically, a class is determined by particular constraints

associated with the ticket rather than the physical seat. For example, a certain class may require

a 14-day advance purchase, or a Saturday night stay, etc.

The existence of different classes reflects different customer behaviors. The classical example is

that of customers traveling for leisure and those traveling on business. The former group typically

books in advance and is more price-sensitive, whereas the latter behaves in the opposite way. Airline

companies attempt to sell as many seats as possible to high-fare paying customers and at the same

time avoid the potential loss resulting from unsold seats. In most cases, rejecting an early (and

lower-fare) request saves the seat for a later (and higher-fare) booking, but at the same time that

creates the risk of flying with empty seats. On the other hand, accepting early requests raises the

percentage of occupation but creates the risk of rejecting a future high-fare request because of the

constraints on capacity.

In practice, customers are not completely segmented into classes. A customer may be able to

afford an expensive ticket for a particular class on a particular itinerary, but if a lower-priced ticket

is available on the same flight, he or she will likely take it. Generally, customers have their own

preferences among all the options.

Both academics and practitioners realize that a customer choice model for the network envi-

ronment is an important step forward. Cooper et al. [2006] show that models that ignore customer

choice may lead to policies that, when used repeatedly, drive revenues down, a phenomenon they

call the “spiral-down effect.” There are a few papers in the literature dealing with the customer

choice behavior in airline setting. Belobaba [1989] models a heuristics called the expected marginal

seat revenue (EMSR) to allocate seats to the different classes. The idea assumes that every cus-
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tomer has a non-homogenous probability distribution on choosing multiple tickets. Although this

work is based on the independent-demands assumption across classes, a “buying up-down” concept

is introduced for modeling customer choice behavior with discounted seats. Belobaba and Weather-

ford [1996] and Bodily and Weatherford [1995] build their heuristics for the modified EMSR model

for solving single-leg problems with customer choice. Brumelle et al. [1990] provide optimal condi-

tions for the single-leg customer buy-up model. Talluri and van Ryzin [2004a] provide a thorough

analysis of a single-leg model under a general discrete choice model of demand.

Despite the advances provided by the above works, those models have a major drawback —

namely, that they deal with single-leg models. The operations in major airlines is largely based on

the network environment which is expected to be a large and multiple resources problem; however,

the extension of single-leg models to a network environment is far from clear, and can lead to

problems that are too big to solve.

Some recent work has addressed the issue of customer choice in a network environment. Zhang

and Cooper [2005] discuss a model for customer choice among different departure times between the

same city pair. By assuming that customers only make a choice among alternatives within the same

booking classes, they build a dynamic programming model for the problem and develop bounds and

approximations for it. van Ryzin and Vulcano [2008] introduce a way to model customer behavior

whereby customers choose substitutes if their preferred choices are not offered. This is accomplished

by associating a preference list to each customer. Such a list contains the alternatives that are

acceptable by that customer, ranked in the order of preference. They combine that demand model

with a virtual nesting control approach, and solve the resulting revenue maximization problem using

stochastic approximation techniques. Because the problem is non-convex, the proposed method

yields local optimizers. Gallego and Hu [2006] approach the issue of customer choice from the

viewpoint of dynamic pricing, and study a game-theoretical model for the problem.

The model that is closest to ours is the one described in Gallego et al. [2004] and Liu and

van Ryzin [2008]. The authors model customer choice by means of offer sets with associated

probabilities. This works as follows: Let J be the set of itinerary-fare classes available and let S
be the collection of all subsets of J . The idea of this approach is to associate to each set S ∈ S
the conditional probability that a class j ∈ S is chosen by an arriving customer given that only the

classes in S are offered. Thus, such a model captures the substitutability of products by consumers.

To optimize the system, Gallego et al. [2004] propose a linear programming model where the

decision variables represent the amount of time each set S ∈ S is made available. Although the

model is novel and yields good results, it suffers from a drawback — namely, the fact that the

number of decision variables grow exponentially fast with the number of classes, which is easy

to see since |S| = 2|J |. To overcome that problem, Liu and van Ryzin [2008] propose a column
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generation algorithm together with a decomposition heuristic. The algorithm assumes that the

choice probabilities are generated from a multinomial logit model. In such a model, customers

are divided into segments (e.g., budget-sensitive and time-sensitive customers). Each segment

corresponds to a vector of “preference weights” for each itinerary-fare class, and the probabilities

are calculated from the ratios. For example, if the weights are vA = 3, vB = 2, vC = 1, then

P (A|A) = 3/3 = 1, P (A|AB) = 3/(3 + 2) = 3/5, P (A|AC) = 3/(3 + 1) = 3/4 P (A|ABC) =

3/(3 + 2 + 1) = 1/2 and so on, where P (A|AB) denotes the probability that a customer chooses A

given that A and B are offered, and similarly for the other sets.

A crucial assumption for the efficiency of the algorithm in Liu and van Ryzin [2008] is that

the segments described above are disjoint, i.e., no itinerary-fare class belongs to more than one

segment. Such an assumption can be difficult to verify in practical problems, where many segments

may exist. Miranda Bront et al. [2007] study the general case, where segments need not be disjoint.

They show that the problem is NP-Hard, and propose a greedy heuristic to overcome the complexity

of an exact algorithm. Zhang and Adelman [2007] study an approach to those models based on

approximate dynamic programming techniques.

A central concept to our work is that of a customer preference order to describe the gross

customer behavior regarding the order of classes for which they try to purchase tickets. If the

customer’s first choice is not available, she either tries her second choice or decides not to purchase

anything. If her second choice is not available either, again she moves to her next choice or decides

not to purchase anything, and so on. We model each customer’s decision made at each step —

i.e., between trying the next choice or leaving the system — as a Bernoulli random variable with

known probability. Our basic assumption is that customers can be grouped by similar purchasing

preferences.

The notion of preference orders is related to the idea of preference lists described in van Ryzin

and Vulcano [2008], where each arriving customer comes with a list of options to be followed in

case that customer’s preferred choices are not available. However, in that case the order in which

the customers arrive matter. For example, consider a preference order with two classes A → B and

transition probability pAB, and suppose that at most one customer can be booked from each class.

Suppose also that exactly two customers request a ticket. In our model, we book both classes A

and B with probability pAB, and book class A only with probability 1 − pAB. In the model in

van Ryzin and Vulcano [2008], we would have one customer with preference list A only (call it

customer 1) and another with preference list A,B (call it customer 2). In that case, we book both

classes A and B as long customer 1 arrives before customer 2. So, as long as that event happens

with probability pAB the two models are equivalent, but it is unclear whether this argument can

be extended to a more general setting. We conjecture that the equivalence holds when the arrival
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process is a homogeneous Poisson process, but since our model does not require that assumption

we do not dwell on this point.

Our concept of preference orders is also very similar to that of segments described in Liu and

van Ryzin [2008] and Miranda Bront et al. [2007]. The transition probabilities within a preference

order can be viewed as a particular case of the offer set probabilities. To illustrate that point,

consider a preference order with three classes A → B → C and transition probabilities pAB, pBC ,

and let us express this in terms of offer set probabilities. We have

P (A|A) = 1, P (A|AB) = 1, P (A|AC) = 1, P (A|ABC) = 1,

P (B|B) = pAB, P (B|BC) = pAB, P (C|C) = pAB pBC .

It is clear however from the above example that our choice model cannot be expressed as a multino-

mial logit. This is a major difference between our work and that of Liu and van Ryzin [2008] and

Miranda Bront et al. [2007], where the multinomial logit model is an important component to

allow for the derivation of column generation algorithms. Moreover, we do not assume that the

preference orders are disjoint as in Liu and van Ryzin [2008]. Another major difference is the

optimization model — we assume that the demands for each preference order are independent with

known distributions, and propose both deterministic as well as stochastic programming models to

determine the number of seats to be allocated to each possible choice within each preference order.

Since we do not make the assumption that preference orders are disjoint, such a solution yields

multiple values for the same class. To overcome that issue we introduce heuristic algorithms —

called backup heuristics — that process the solution from the model to determine a single allocation

for each class.

In summary, the major contribution of this paper is the introduction of mathematical programming

models for the discrete customer choice problem. Although the problem can be difficult to solve

due to the large number of scenarios, we propose an approximating model that can be solved con-

siderably faster. Our numerical experiments suggest that the approximation yields good results.

We also propose a heuristic to implement the solution given by the model.

The remainder of the paper is organized as follows. We introduce the construction of preference

orders in Section 2. In Section 3 we propose an optimization problem for the preference order model

as well as an approximation to that problem that leads to a much smaller scenario tree. We show

simulation results that suggest that the approximation can provide results that are close to those

obtained with the original process. In Section 4 we describe our mathematical programming models

and discuss solution techniques. In Section 5 we compare our models with the traditional origin-

destination seat allocation models that assume independent demands for each class. In Section 6

we propose our backup heuristic to properly implement seat allocations resulting from solving the
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mathematical programs. Numerical results are presented in Section 7 to illustrate the ideas set

forth in the paper.

2 Model Description

We consider an airline company that has L combinations of origin and destinations (OD), which

we index by i = 1, . . . , L. An OD combination is the set of all the directed itineraries connecting

the origin and the destination. For each specific OD combination, say the ith one, the company

has ni itineraries. For each itinerary there are ki booking classes. Therefore, there are niki booking

classes available to complete this trip. To illustrate, consider for example an OD combination, say

from city A to city B, that can be completed through either one non-stop flight or three different

one-stop flights. Then for this OD combination, there are four possible itineraries, that is n1 = 4.

For all those flights, we have only 3 booking classes available, say first class, business, and coach

class. Thus, the customers traveling from city A to city B have n1k1 = 4× 3 = 12 possible choices

to complete the trip.

An individual customer has personal preference in purchasing a ticket for the ith OD combi-

nation. The customer will (perhaps involuntarily) arrange some of the niki available choices in

an order from the most to the least preferred tickets. The list constructed by the customer is

called a customer preference order. Theoretically, for each OD combination i there are
∑niki

`=1 `!

possible preference orders constructed. This is obviously beyond computational capability even for

small models — indeed, in our small example above, the number of possible preference orders has

order of magnitude 109. It is reasonable to think, however, that the actual number of preference

orders in the model is much smaller because only a few selected preference orders may be suffi-

cient to describe the possible customer behaviors. For instance, in a small problem we may have

three preference orders, corresponding respectively to budget-sensitive customers, time-sensitive

customers, and time-sensitive customers with a budget cap. In practical problems more preference

orders would be identified, constructed, and integrated into the airline company operation, but the

total number could still be relatively small.

During the booking process, a customer who has her first options rejected might give up booking

because either the price or the time schedule becomes unattractive to her. As a result, some

customers might leave the booking for other alternatives, such as those offered by a competitor.

Assuming that customers behave independently of each other and have the same probability of

moving on to the next option in the preference order, it follows that the number of customers who

choose to stay can be modeled by random variables with binomial distribution.

We illustrate the leave-or-stay process with the following example. Consider a preference order
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with three booking classes, 1, 2, and 3 arranged in the order of decreasing customer interest. The

transition probability from class 1 in the preference order to class 2 is p1, and from class 2 in this

order to class 3 is p2. Denote the total demand for this customer group by ξ1 and the allocations for

classes 1, 2, and 3 respectively by x1, x2, and x3. Then, min(ξ1, x1) customers get their first-choice

tickets, so ξ1 −min(ξ1, x1) = [ξ1 − x1]+ customers face the choice between staying or leaving (here

and thereafter, [a]+ denotes max(a, 0)). Thus, the number of customers who actually request class 2

is ξ2 := B([ξ1 − x1]+ , p1) (where B(n, p) denote the binomial distribution with parameters n and

p). Likewise, ξ3 := B([ξ2 − x2]+ , p2) is the number of remaining customers who choose to stay and

request a ticket for class 3. The process is illustrated in Figure 1.

Figure 1: A buy-up example

In the general model, we consider a network with m legs, and denote the m-dimension leg

capacity vector by c. There are niki itinerary-fare classes for the ith OD combination. The

number of preference orders for ith OD combination is Si; for the sth preference order of that OD

combination, we denote the actual number of choices by Ris. For example, for the preference order

displayed in Figure 1 we have Ris = 3.

The decision variables are {xisr}, indicating the seat allocation for rth choice inside sth preference

order for the ith OD combination. Note that the seat allocation is assigned not only by booking

classes but also by preference orders. When preference orders are not considered — this is the case

with the standard linear program model for network revenue management, see e.g. Talluri and van

Ryzin [2004b] — there are
∑L

i=1 niki decision variables. In our model, the total number of decision

variables is
∑L

i=1

∑Si
s=1 Ris. That is, we refine booking class allocations by constructing preference

orders. We also have an m × (
∑L

i=1

∑Si
s=1 Ris) matrix A which reflects the complete network leg

structure by seat allocations. Such a matrix is constructed in a similar fashion to the matrix in

standard OD models, i.e., Ajk = 1 if the itinerary corresponding to the triple (OD pair, preference

order, choice within the preference order) indexed by k uses leg j.

Denote the demand for the sth preference order of the ith OD combination by ξis1 and the de-

mand thereafter (i.e., for the subsequent choices within that preference order) by ξisr = B([ξis(r−1)−
xis(r−1)]+ , pis(r−1)), r = 1, . . . , Ris. Here, pis(r−1) is the “buy-up” probability. By construction, we

have pisr > 0, r = 1, . . . , Ris − 1, and pisRis = 0. In practice, the buy-up probabilities must be

estimated using some quantitative method; for example, Andersson [1998] and Algers and Beser
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[2001] describe some techniques used in a project at Scandinavian Airlines Systems (SAS). Our

work focuses on modeling, solving, and implementing an optimization model, so we will not discuss

the probability estimation approaches; rather, we treat those probabilities as model inputs.

3 The Optimization Model

Using the notation defined in Section 2, we now exhibit the optimization model analyzed in this

paper. The goal is to determine the seat allocations xisr for each triple (OD pair, preference

order, choice within the preference order) that maximize the expected accrued revenue. Below, fisr

indicates the fares corresponding to each of those triples.

max
x
E

[
L∑

i=1

Si∑

s=1

Ris∑

r=1

fisr min(ξisr, xisr)

]

Subject to: Ax ≤ c (P)

xisr ∈ Z+

ξis(r+1) = B([ξisr − xisr]+ , pisr), (3.1)

i = 1, . . . , L, s = 1, . . . , Si, r = 1, . . . , Ris − 1.

Note that the above model resembles the classical simple-recourse stochastic program used in

traditional revenue management models, sometimes called the probabilistic nonlinear programming

model (PNLP); see, for instance, Talluri and van Ryzin [2004b] and references therein for the basic

ideas, and de Boer et al. [2002] and Chen and Homem-de-Mello [2008] for further analysis. A

major difference, however, is the introduction of the recursive equation (3.1) to define the demand

corresponding to each triple (OD pair, preference order, choice within the preference order) —

in the classical PNLP model, the demand for each itinerary-fare combination is assumed to be

exogenous, which does not allow for the modeling of customer choice.

3.1 Model Simplification

The presence of equation (3.1) in problem (P) makes it a nonlinear nonconvex stochastic program.

Moreover, (P) is likely to have a large number of scenarios. For instance, consider a small setting

with just one OD combination for a one-way trip, L = 1. There are only n1 = 2 itineraries. For

either itinerary, there are k1 = 2 classes, such as high-fare and low-fare classes. Then, there are

n1k1 = 2×2 = 4 choices for all customers. We also assume there are only two preference orders, one

for budget-sensitive customers and the other one for time-sensitive customers. The four booking
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classes are itinerary 1 high-fare class (Class 1), itinerary 1 low-fare class (Class 2), itinerary 2 high-

fare class (Class 3), and itinerary 2 low-fare class (Class 4). Suppose itinerary 1’s departure time

is more attractive than that of the itinerary 2. As a result, the fare level for the comparable class

in itinerary 2 is lower than that of itinerary 1. Therefore, the preference order for time-sensitive

travelers would be Class 2, Class 1, Class 4, and finally Class 3. For budget-sensitive travelers, the

preference order should be Class 4, Class 2, Class 3, and finally Class 1.

To give an idea of how large the number of scenarios can be even for such a small prob-

lem, consider the case where the exogenous demand ξ1 = (ξ11, ξ12)T is deterministic and equal

to (20, 5)T , and suppose the seat allocation is x = (x111, x112, x113, x114, x121, x122, x123, x124)T =

(8, 3, 1, 1, 1, 1, 3, 2)T . Even though the exogenous demand is deterministic, the size of the scenario

tree grows because of the leave-or-stay process. For example, for the budget-sensitive customers’

preference order, since ξ11 = 20 and x111 = 8 there are 12 customers who would have to make

a choice between trying the next option (Class 2) or leaving. Thus, the corresponding binomial

random variable has 13 scenarios for the allocation x112. Since x112 = 3, up to 10 customers may

try the third option (Class 3), but the actual number depends on that 13-scenario random variable

as well as on the binomial process describing the move from the second to the third option. The

number of scenarios for the budget-sensitive preference order can be calculated as 178. Similarly,

for the time-sensitive preference order, the number of scenarios is 11. Therefore, for this simple

problem, which is shown in Figure 2, the total number of scenarios is 178× 11 = 1958.

Figure 2: Example for the huge scenario tree

It is clear from the above discussion that it can be difficult to solve (P). In order to circumvent

that problem, we shall consider an approximation to (P) whereby the binomial random variables are

replaced with their expectations and the integrality constraint is relaxed. Note that the resulting

problem is still stochastic, since the incoming demands (ξis1) are random. Thus, we obtain:
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max
x
E

[
L∑

i=1

Si∑

s=1

Ris∑

r=1

fisr min(ξisr, xisr)

]

Subject to: Ax ≤ c (PA)

xisr ≥ 0

ξis(r+1) = [ξisr − xisr]+ pisr, (3.2)

i = 1, . . . , L, s = 1, . . . , Si, r = 1, . . . , Ris − 1.

3.2 Examples

We show now some numerical examples to compare problems (P) and (PA).

Example 1. Consider an OD combination with three choices available at prices of $200, $400,

and $500. To describe discrete customer choice, we have two preference orders with deterministic

demands information. The capacity of the plane is 15 seats. In this case, problem (P) can be solved

Preference Orders Demands Transition Probability Fare Levels ($)

1 20 0.3, 0.7 200, 400, 500

2 8 0.8, 0.6 500, 400, 200

Table 1: Parameters for Example 1.

by enumerating the entire scenario tree. One obtains the same optimal solution for both models,

(1 6 0 8 0 0)T with the objective value equal to $6,227 for problem (P) and $6,600 for problem

(PA).

In the above example problem (PA) has a higher objective value than (P) at the same solution.

The converse may occur as well. For instance, consider the case of one preference order in which

customers have three choices, with buy-up probabilities all equal to 0.5. Suppose the exogenous

demand is deterministic with ξ = 4. The fares are f = ($100, $150, $400). Then, for the seat

allocation x = (2, 1, 2), it is easy to calculate the objective value of (P) as 2f1 + 0.5× f2 + 0.125×
f2 + 0.125× [f2 + f3] = $362.5, whereas the objective value of (PA) is 2f1 + f2 = $350.

Another type of comparison can be conducted in terms of comparing critical points for a given

seat allocation x. We need the following definition 1.

Definition 1. In a given preference order with R choices, there exists a unique q∗ such that

q∗ = max{n : ξn ≥ xn, ξn > 0, 1 ≤ n ≤ R}
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(q∗ = 0 if ξ1 < x1), so we have ξq∗+1 < xq∗+1, ξ(q∗+2), . . . , ξR = 0. We call q∗ the critical point for

this seat allocation x.

In words, the critical point is the place within the preference order up to which the residual

demand is sufficient to cover the seat allocation. Notice that q∗ is random since it depends on the

demand. Evaluating the critical points is important because the allocations prior to the critical

point account for most of the revenue. Moreover, the revenue prior to the critical point is determin-

istic, since it is simply the allocation times the fare. The example below suggests that the critical

points for problems (P) and (PA) can be close. Notice that, since demand for different preference

orders is assumed to be independent, it suffices to study a single preference order.

Example 2. We consider a preference order with ten choices. To study how the critical point q∗

behaves as demand increases or increases, consider three settings in which the exogenous demand is

Poisson distributed with means respectively equal to 120 (low), 150 (medium) and 180 (high). The

remaining parameters are listed in Table 2 below.

Choices Seat Allocation x Fare levels $ Transition Probability

1 35 400 0.9

2 25 450 0.95

3 25 700 0.8

4 23 800 0.8

5 11 1000 0.5

6 8 800 0.8

7 8 400 0.7

8 3 250 0.7

9 5 300 0.5

10 7 400 0

Table 2: Seat allocation and transition probabilities for Example 2

Table 3 shows some statistics on the critical point, obtained by simulating both systems 10,000

times.

We can see that the critical points are indeed close in all cases. Moreover, although variances

for problem (P) are higher than their counterparts in problem (PA) — which is not surprising since

(P) has an extra level of uncertainty — the expected values of total revenue are very close. This

suggests that (PA) can actually be a good approximation for (P).
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Model Average C.P. Variance on C.P. Revenue Variance on Revenue

Problem (P)-low 3.36 0.29 58,139 4.183× 107

Problem (PA)-low 3.31 0.25 58,047 3.537× 107

Problem (P)-medium 4.67 0.41 71,860 2.291× 107

Problem (PA)-medium 4.65 0.32 72,072 1.773× 107

Problem (P)-high 5.70 0.41 78,332 6.229× 106

Problem (PA)-high 5.66 0.26 78,536 3.474× 106

Table 3: Simulation results for Example 2 for the three demand levels (low, medium, high).

4 Solving Problem (PA)

We discuss now how to solve problem (PA), which is a stochastic programming model for which the

random inputs are the random variables ξis1, i = 1, . . . , L, s = 1, . . . , Si. We shall first consider

an approximation where ξis1 is replaced by its expected value. The proposition below shows the

resulting problem. Here and thereafter the notation fx indicates
∑L

i=1

∑Si
s=1

∑Ris
r=1 fisrxisr.

Proposition 1. The model resulting from replacing ξis1 with its expected value in (PA) is equivalent

to the following deterministic linear program:

max
x

fx

Subject to: Ax ≤ c (PA-Lin)

xis1 +
xis2

pis1
+ . . . +

xisRis

pis1 . . . pis(Ris−1)
≤ E[ξis1], i = 1, . . . , L, s = 1, . . . , Si (4.1)

x ≥ 0.

Proof. Clearly, the resulting term fis1 min(E[ξis1], xis1) in the objective function can be replaced

with fis1xis1, together with the constraint xis1 ≤ E[ξis1]. Then, the term ξis2 in (3.2) can be written

as ξis2 = [E[ξis1] − xis1]+ pis1 = (E[ξis1] − xis1) pis1. It follows that the term fis2 min(ξis2, xis2) in

the objective function can be replaced with fis2xis2, together with the constraint xis2 ≤ (E[ξis1]−
xis1) pis1, which in turn is equivalent to

xis1 +
xis2

pis1
≤ E[ξis1]. (4.2)

Since the constraint xis1 ≤ E[ξis1] is a relaxation of (4.2), it can be removed. By repeating this

argument for the remaining values of r we obtain problem (PA-Lin).

Alternatively, we consider a two-stage stochastic programming approximating formulation for

(PA). The proposition below shows the resulting problem.
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Proposition 2. The following two-stage stochastic linear program with integer recourse provides

the same optimal solutions as model (PA):

max
x

fx− Eξ1 [Q(x, ξ1)]

Subject to: Ax ≤ c (PA-SP)

x ≥ 0,

where

Q(x, ξ1) = min
y,w,h≥0

fy (4.3)

Subject to: xis1 − yis1 ≤ ξis1,

xis1 +
wis1 − his1

pis1
= ξis1,

xisr − yisr − wis(r−1) ≤ 0, r = 2, . . . , Ris

xisr +
wisr − hisr

pisr
− wis(r−1) = 0, r = 2, . . . , Ris − 1

wisr ≤ ξis1bisr, r = 1, . . . , Ris − 1

hisr ≤ C(1− bisr), r = 1, . . . , Ris − 1

bisr ∈ {0, 1}, r = 1, . . . , Ris − 1.

In the above, all constraints are repeated for i = 1, . . . , L, s = 1, . . . , Si, and C is defined as

C := max
`

c`.

Proof. Let zisr denote the number of sold seats for the rth choice inside sth preference order for

the ith OD combination, i = 1, . . . , L, so the terms fisr min(ξisr, xisr) in the objective function of

(PA) are replaced with fisrzisr, together with the constraints zisr ≤ xisr and zisr ≤ ξisr.

Fix now i and s. Note that the term ξis2 in (3.2) can be written as ξis2 = max{(ξis1 −
xis1) pis1, 0}. We can write the latter term as wis1, together with the constraints

wis1 − his1 = (ξis1 − xis1) pis1 (4.4)

wis1 ≤ ξis1bis1 (4.5)

his1 ≤ C(1− bis1) (4.6)

wis1 ≥ 0, his1 ≥ 0, bis1 ∈ {0, 1}. (4.7)

Constraints (4.4)-(4.7), which involve binary variables, enforce that wis1 and his1 be respectively

the positive and negative parts of the term (ξis1 − xis1) pis1.
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It follows from the above developments that the inequality zis2 ≤ ξis2 generates zis2 ≤ wis1,

in addition to (4.4)-(4.7). Similarly, the term ξis3 in (3.2) can be written as ξis3 = max{(ξis2 −
xis2) pis2, 0}. Call the latter term wis2. Since we must have ξis2 = wis1, we can write the constraints

wis2 − his2 = (wis1 − xis2) pis2 (4.8)

wis2 ≤ ξis1bis2 (4.9)

his2 ≤ C(1− bis2) (4.10)

wis2 ≥ 0, his2 ≥ 0, bis2 ∈ {0, 1}. (4.11)

Hence, the inequality zis3 ≤ ξis3 generates zis3 ≤ wis2, in addition to (4.8)-(4.11). By repeating

this argument for successive values of r, we obtain the problem

max
x

E[fz]

Subject to: Ax ≤ c

zis1 ≤ ξis1,

zisr ≤ wis(r−1), r = 2, . . . , Ris

wisr ≤ ξis1bisr, r = 1, . . . , Ris − 1

hisr ≤ C(1− bisr), r = 1, . . . , Ris − 1

xis1 +
wis1 − his1

pis1
= ξis1,

xisr +
wisr − hisr

pisr
= wis(r−1), r = 2, . . . , Ris − 1

z ≤ x,

x ≥ 0, z ≥ 0, w ≥ 0, bisr ∈ {0, 1}

(where all constraints are repeated for i = 1, . . . , L, s = 1, . . . , Si), which in turn is equivalent to

(PA-SP) — this can be seen by defining yisr := xisr − zisr. It is clear from the above derivation

that the feasibility set of this problem is the same as that of (PA).

It is easy to see from the above developments that, when the distribution of ξis1 is atomic with

point mass at ξis1 = ξ̂is1, the optimal solution of (4.3) has y = 0, wis1 = pis1(ξis1 − xis1), and

wisr = pisr(wis(r−1) − xisr), provided that x is chosen in such a way that

xis1 ≤ ξis1

xis2 ≤ wis1 = pis1(ξis1 − xis1)

xis3 ≤ wis2 = pis2[pis1(ξis1 − xis1)− xis2]
...
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(there is no benefit in choosing x otherwise, i.e., there might be other solutions that do not satisfy

the above property but they cannot be better than that one). This in turn implies that (wisr −
hisr)/pisr ≥ 0 for all i, s, r, i.e., hisr = 0 and bisr = 1. In particular, when ξ̂is1 = E[ξis1] we have

that the formulation in (PA-SP) is the same as (PA-Lin). Since Q is convex in ξ1, it follows from

Jensen’s inequality that Q(x,E[ξ1]) ≤ E[Q(x, ξ1)] for all x and hence the optimal value of (PA-Lin)

provides an upper bound on the optimal value of (PA-SP). On the other hand, any optimal solution

xLin to (PA-Lin) is feasible for (PA-SP); therefore, the objective value of (PA-SP) at xLin is a lower

bound on the optimal value of (PA-SP). Note that such conclusions are analogous to those derived

in case of the traditional non-choice-based mathematical programming formulations for network

revenue management; see, for instance, Chen and Homem-de-Mello [2008].

While model (PA-SP) provides in principle a more accurate solution — since it is equivalent to

model (PA) — the advantage of formulation (PA-Lin) is that it can be solved more easily. (PA-Lin)

can be solved with any linear programming solver; (PA-SP), on the other hand, can be solved as a

binary linear program provided the total number of scenarios in the problem is small. In case the

number of scenarios is large one can resort to sampling techniques for stochastic programs as we

do in the experiments below (see for instance Shapiro 2003 for a review of such methods), but even

then the size of the problem may become an obstacle. One could combine sampling techniques with

a specialized algorithm for stochastic programs with integer recourse, but such an investigation is

out of the scope of this paper.

Alternately, we propose a simpler two-stage stochastic program, called (PA-SPs), that still

generalizes (PA-Lin) but is much easier to solve. The first stage is the same as in (PA-SP), but the

second stage is defined as

Q(x, ξ1) = min
y≥0

f̃y (PA-SPs)

Subject to:

xis1 +
xis2

pis1
+ . . . +

xisRis

pis1 . . . pis(Ris−1)
− yis ≤ ξis1, i = 1, . . . , L, s = 1, . . . , Si.

(4.12)

In the above, each element of the vector f̃ is defined as

f̃is := max

{
fis1, fis2pis1, fis3pis1pis2, . . . , fisRis

Ris−1∏

r=1

pisr

}
. (4.13)

Again, it is easy to see that when the distribution of ξis1 is atomic with point mass at ξis1 = ξ̂is1,

the optimal solution of the second stage in (PA-SPs) has y = 0. This happens because in order for

(4.12) to be satisfied, each additional unit of yis must be compensated by
∏r−1

k=1 pisk units of xisr
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for some r. The resulting gain in the objective function of the first stage is therefore fisr
∏r−1

k=1 pisk

which, by definition (4.13) of the coefficients of y, is offset by the cost of the second stage. Thus,

(PA-SPs) generalizes (PA-Lin), so the same relationship (in terms of bounds) between (PA-Lin)

and (PA-SP) holds between (PA-Lin) and (PA-SPs).

5 Relationship with the Independent Demand Model

An important question that arises about the preference order model concerns the value of such

a model compared to traditional independent demand models studied in the literature. In the

independent demand case, each booking class has a random demand ξ. The customer in each

class requests a reservation once and, if that class is not available, the customer leaves the booking

process without looking at other available booking classes. In contrast, the preference order model

assumes the customer is willing to consider alternatives. Figures 3 and 4 illustrate both processes

for the ith OD combination with n := niki booking classes.

Figure 3: Independent demand model

It is clear that the traditional independent demand is a particular case of the preference order

model, obtained by setting the number of preference orders Si to niki and the number of choices

within each preference order to one. It is interesting to compare the corresponding mathematical

programs. The standard linear program for the independent demand model (see, e.g., Talluri and
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Figure 4: Independent preference order model

van Ryzin 2004a) is

max fx

subject to (DLP)

Ax ≤ c,

x ≤ E[ξ]

x ≥ 0.

In (DLP), the total number of booking classes is
∑L

i=1 niki. Clearly, (DLP) is identical to model

(PA-Lin) with Si = niki and Ris = 1, s = 1, . . . , Si.

Consider now the traditional stochastic program for the independent demand model, often

referred to as the probabilistic nonlinear program (PNLP):

max f E[min(ξ, x)]

subject to (PNLP)

Ax ≤ c,

x ≥ 0.

Let us look at models (PA-SP) and (PA-SPs) with Si = niki and Ris = 1, s = 1, . . . , Si. In that

case the second stage becomes simply min{fy : y ≥ 0, y ≥ x − ξ}, which is more briefly written

as f [x− ξ]+ . Since x− [x− ξ]+ = min(x, ξ), it follows that (PNLP) coincides with both (PA-SP)

and (PA-SPs) in that case.

The above discussion demonstrates that models (PA-Lin), (PA-SP) and (PA-SPs) generalize the

traditional (DLP) and (PNLP) models to the case of consumer choice. This suggests that many
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of the results obtained for those well-studied models (such as asymptotic optimality or the use of

dual variables as bid prices, for example) may be applicable to these models as well. Such a study

is, however, out of the scope of this paper.

6 Implementing the Policy

The seat allocation provided by models (PA-Lin), (PA-SP) and (PA-SPs), if implemented directly,

may not lead to a good booking policy. Broadly speaking, the reason is that, by construction,

several triples (OD combination, preference order, choice within the preference order) correspond

to the same booking class but are located in different preference orders. Below we discuss this issue

in detail and propose a heuristic procedure as a remedy.

6.1 Drawbacks of applying the model recommendation directly

Models (PA-Lin), (PA-SP) and (PA-SPs) yield seat allocations for each choice within each preference

order. The natural way to translate such allocations into a booking policy is to accept requests

for a pair (OD, preference order) until the allocation corresponding to the first choice class is used

up, after which the next class within that preference order becomes available. When the last class

within that preference order is used up, the customer is rejected.

To see why such a policy is not practical, consider the following example. Assume an airline

company has two itineraries, A and B. Itinerary A is a connected trip while itinerary B is a

direct trip. There are two classes for both itineraries, such as coach class and business class.

The fares for coach and business class are $80, $300 respectively in itinerary A and $100, $500

for itinerary B. Suppose we have three preference orders, corresponding to budget-sensitive, time-

sensitive, or budget-time hybrid type customers. The fares for budget-sensitive customers arranged

by preference are $80, $100, $300, $500. Likewise, the fares are $100, $500, $80, $300 for time-

sensitive customers and $100, $80, $500, $300 for hybrid-type customers.

One drawback happens when booking requests for high-fare classes are rejected while there are

still some seats for the same booking class left available in another preference order. For instance,

suppose there is a booking request from a customer who only wants itinerary B due to time

constraints. Suppose also that no more $100 seats are available. The customer will then attempt

to purchase a $500 seat. If that class happens to be used up, the customer will leave and purchase

his trip elsewhere. Meanwhile, there are quite a few $500 seats assigned to the other preference

orders. Thus, if we follow the seat allocation policy without flexibility, that valued customer will

be rejected.
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The above discussion suggests that it is a good idea to “merge” allocations corresponding to

the same class. Such merging, however, must be done in a careful way. To illustrate that problem,

suppose that a time-sensitive customer is booking the $100 class and that a hybrid customer is also

booking the same class. But their next classes’ rates are noticeably different from each other, $500

and $80. If the hybrid customers could use $100 seats from the allocations for both time-sensitive

and hybrid customers, the shift for hybrid customers to buy $80 ticket would be delayed and the

shift for time sensitive customers to buy $500 ticket would tend to happen earlier. By the same

token, it is advantageous not to let time-sensitive customers use $100 seats allocated to hybrid

customers, to avoid delaying the shift for the former to purchase the $500 ticket.

Intuitively, those delays or accelerations would benefit the booking process by lifting the to-

tal revenue. We describe next a heuristic procedure called backup heuristic to improve the seat

allocation policy.

6.2 Backup heuristic on the seat allocation

We first introduce additional notation. For each rth choice open for booking, we have three values:

xisr is the seat allocation, fisr is the fare level, and

UBURisr := max{pisrfis(r+1), pisrpis(r+1)fis(r+2), . . . , pisr . . . pis(Ris−1)fisRis} (6.1)

is the unit buying up revenue which indicates the potential unit revenue if customers are asked to

buy-up. The term “buy-up” describes the activity to forward booking requests to the next available

but less favorite choice in the given preference order. When UBURisr > fisr, asking customers to

buy-up tends to generate more revenue. In this case, we should try to let buy-up activity happen

earlier. Otherwise, when UBURisr ≤ fisr, buy-up activity tends to hurt the total revenue, so

we should try to postpone buy-up call. Figure 5 illustrates the UBUR concept for the example

described in Section 6.1. There are three values in each block. The first bucket is the model

recommended allocation, x. The second bucket denotes the fare level while the third bucket is the

calculated UBUR.

We define now the backup operation.

Definition 2. When UBURisr ≤ fisr for rth choice in a given preference order, we use the same

booking class in other allocations to accept upcoming booking requests until all seats in this class

are reserved. This is the operation called backup.

Figure 6 shows the backup decisions for the UBUR values in Figure 5.

The backup operation, as described, is static, in the sense that the UBUR values do not change

with booking requests. It is intuitive, however, that a better procedure would be obtained if UBUR
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Figure 5: Example to illustrate UBUR values

Figure 6: Example for the backup policy

values changed upon the current seat availability. In that case, any materialized reservation would

trigger a change in UBUR values. In what follows, we consider two heuristics: the static backup

method which is based on initial UBUR values, and the dynamic backup method which updates

UBUR values upon changes on current seat availabilities. The dynamic backup heuristic algorithm

is described next.

• Step 1: Pull out seat allocation from the models (PA-Lin), (PA-SP) or (PA-SPs).

• Step 2: Initialize UBURs using (6.1).

• Step 3: Calculate the backup policy by UBUR and analyze the next booking request:

3.1 If requested booking is Non-Backup (fare level is lower than UBUR), then check the seat

allocation availability in step 3.2. Otherwise, go to step 3.3.

3.2 If no seat available for this request, upon customer’s buying-up decision go to step 3.1

with the booking request set to the next choice in that preference order (if there is no

next choice, the request is rejected). Otherwise, honor the request, update the seat

availability, and go to step 4.

3.3 Check seat availabilities from all allocations for the same booking class in the other

preference orders. If there is no seat for the requested booking class, upon customer’s
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buying-up decision go to step 3.1 with the booking request set to the next choice in that

preference order (if there is no next choice, the request is rejected). Otherwise, honor

the request, update the seat availability, and go to step 4.

• Step 4: Check if any class is no longer available (i.e., if all allocations corresponding to that

booking class have been reduced to zero); if so, eliminate the corresponding “blocks” from

the model. Go to step 5.

• Step 5: If there are no more requests or no more seats available, stop the process; Otherwise,

go back to step 3.

7 Numerical Experiments

We present now some numerical experiments to illustrate the performance of the methods discussed

in the previous sections and compare it with some of the existing models. We start with a very

small single-leg example, for which most models yield an analytical solution, and then move on to

larger networks.

7.1 A single-leg example

Consider a single-leg flight with two classes, say, A and B, with fA > fB. The arrival rate of

customers who plan to purchase the high-fare ticket (e.g., due to time constraints) is λA = 0.3.

Of those customers, 80% are willing to purchase the low-fare ticket if the high-fare ticket is not

available. Likewise, the arrival rate of customers who plan to purchase the low-fare ticket is λB =

0.7, and 50% of those customers are willing to purchase the high-fare ticket if the low-fare ticket is

not available. The arrival processes are assumed to be Poisson, the capacity of the plane is c = 100,

and the time horizon is T = 100.

How would one approach this problem with an independent demand model? One possibility,

of course, is to simply ignore the second-choice of each type of customer, but such an approach is

obviously sub-optimal. A more realistic approach is to use a heuristic procedure to accommodate

the choice probabilities. For example, one could set λ′A := λA +0.5λB = 0.65 as the “inflated” rate

of high-fare customers that takes into account the ones that were denied a low-fare ticket. Likewise,

one sets λ′B := λB + 0.8λA = 0.94. Using the inflated rates, one can then apply a standard model
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like the LP model or even the Littlewood rule. The LP model solves

max fAxA + fBxB

subject to

xA + xB ≤ 100,

0 ≤ xA ≤ 65

0 ≤ xB ≤ 94

Clearly, the optimal solution is xA = 65, xB = 35. If no adjustment is made, that is, if the original

rates λA and λB are used, the solution to the LP model is xA = 30, xB = 70. The Littlewood

rule uses the fB/fA quantile of the demand distribution FA for the high-fare class, i.e., it sets

xA := F−1
A (1−fB/fA) and xB := c−xA. The distribution FA may correspond to the original rates

or the inflated rates.

Let us consider the preference order models (PA-Lin) and (PA-SP) for this problem. In that

case we have two preference orders (A→B and B→A) with rates λ1 = λA = 0.3 and λ2 = λB = 0.7,

and four variables x11, x12, x21 and x22. The (PA-Lin) model is

max fAx11 + fBx12 + fBx21 + fAx22

subject to

x11 + x12 + x21 + x22 ≤ 100,

x11 +
1

0.8
x12 ≤ 30

x21 +
1

0.5
x22 ≤ 70

x ≥ 0.

It easy to see that, if fA ≥ 2fB, the optimal solution is x11 = 30, x12 = x21 = 0, and x22 = 35.

Since x11 and x22 correspond to the same class (A), the model sets xA = 65, xB = 0 (for simplicity,

in this example we do not consider the more elaborate backup heuristic described in Section 6.2).

It is interesting to compare that allocation with the solution of the adjusted independent model:

both set xA = 65, but (PA-Lin) shuts down the low-fare class to “save” low-fare customers who are

willing to pay more. If fA < 2fB the optimal solution is x11 = 30, x12 = x22 = 0, and x21 = 70.

Model (PA-SP) can be solved numerically. As mentioned before, sampling techniques can be

used to reduce the size of the model. For this experiment we took a small sample size of 15. Since

the solutions vary according to the sample, we conducted multiple replications. The actual revenues

corresponding to the obtained solutions in all instances were close to each other (more precisely,

within 0.5%), so in the results below we report the average allocation and average revenue. In

21



some cases all replications yielded the same allocation — for example, for fA = 100 and fB = 50,

all solutions satisfied x11 + x22 = 100 and x12 = x21 = 0. That is, (PA-SP) allocates all 100 seats

to the high-fare customers. Clearly, such a solution can be no worse than the solution given by

(PA-Lin).

Model (PA-SPs) can also be solved numerically. In fact, for this small example it can be solved

almost exactly by truncating the Poisson distribution of the arrival process in such a way that

the probability of the truncated region of each variable is 0.99. That resulted in 1,040 scenarios,

but since (PA-SPs) can be formulated as a linear program it can be solved very fast even for that

number of scenarios.

For comparison, let us look at the CDLP model described in Liu and van Ryzin [2008]. For this

problem the resulting LP is very small, since there are only three offer sets (A only, B only, A+B).

Calling the resulting variables tA, tB and tAB, respectively, we have

max 0.65fAtA + 0.94fBtB + (0.3fA + 0.7fB)tAB

subject to

0.65tA + 0.94tB + tAB ≤ 100

tA + tB + tAB ≤ 100

tA, tB, tAB ≥ 0.

Clearly, the solution to the above problem is to allocate everything to the offer set that yields

the maximizer of {0.65fA, 0.94fB, (0.3fA + 0.7fB)}. In the examples below the maximizer was

always the third element, which means that the policy recommended by the CDLP model was not

to impose any control, i.e., leave both classes A and B open throughout the booking horizon and

reject a request only if the overall capacity has been filled. This corresponds to setting tAB = 100,

tA = tB = 0.1

We tested the above models with different price ratios. More specifically, fA was fixed at $100,

and fB took values in {$50, $60, $75}. Table 4 summarizes the simulated revenues for all models,

together with 95% confidence intervals. All simulations were conducted with the same stream of

random numbers to facilitate comparison.

The results suggest that models (PA-SP) and (PA-SPs) are quite robust to variation in the fares

— although they do not always yield the highest revenue, both methods perform consistently well.

The other models perform well in some cases but poorly on others. Model CDLP also performs
1It must be noted that in the case fA = $100, fB = $50 any solution satisfying tA + tAB = 100 is optimal.

Different solutions, however, yield different revenues. For example, for the solution tA = 100 (open class A only) the

revenue is identical to that given by models (PA-SP) and (PA-SPs).
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fA = $100, fB = $75 fA = $100, fB = $60 fA = $100, fB = $50

Model Allocation Revenue Allocation Revenue Allocation Revenue

(A,B) 95% C.I. (A,B) 95% C.I. (A,B) 95% C.I.

LP (30,70) 7917±39 (30,70) 6903±35 (30,70) 6226±33

LP-Adj. (65,35) 7492±66 (65,35) 6967±66 (65,35) 6617±66

Littlewood (59,41) 7612±63 (63,37) 6981±65 (65,35) 6617±66

(PA-Lin) (30,70) 7917±39 (30,70) 6903±35 (65,0) 6224±37

(PA-SP) (37,63) 7956±46 (47,53) 7043±53 (100,0) 6590±71

(PA-SPs) (31,69) 7936±40 (44,56) 7059±53 (100,0) 6590±71

CDLP both open 7963±41 both open 6956±39 both open 6284±38

Table 4: Results for single-leg example

well but, as pointed out earlier, in the case fA = $100, fB = $50 it may lead to a poor policy

depending on which solution is chosen.

7.2 Numerical results for networks

We present now some numerical experiments for networks of flights. We use two examples, for

which we apply both (PA-Lin) and (PA-SPs) models to determine the seat allocations. To test

the efficacy of the backup heuristic, we compare the results obtained using the backup heuristic

with its counterpart which applies allocation directly. As discussed earlier, since (PA-SPs) is a two

stage stochastic programming problem with large number of scenarios, it can be solved by using

the sample average approximation approach. It must be noticed that the computational times

can change depending on the number of samples used to solve the stochastic program, which in

turn is related to the desired accuracy of the estimates. Still, to give a sense of the complexity

of the problem we can easily calculate the number of variables. For a sample of size N , the to-

tal number of variables for the linear programming formulation of (PA-SPs) is (no. of OD pairs)×
(no. of preference orders for each pair)×(N+no. of choices within each preference order). The to-

tal number of variables for (PA-Lin) is just (no. of OD pairs)×(no. of preference orders for each pair)×
(no. of choices within each preference order).

For both examples, presented in Sections 7.2.1 and 7.2.2, we sampled 10, 000 scenarios to

represent the problem. Based on the discussion above, we can see that model (PA-SPs) has

40, 024 variables in the first example, and 100, 060 variables in the second one. The computa-

tional time to solve the second example was seven times higher than the time needed to solve the
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first one.The optimization problems were solved using the simplex solver from the Coin-OR library,

on a Debian/Lenny/AMD64-Dual-Xeon workstation platform. The computational time to solve

(PA-Lin) was negligible in either case.

We also compare our preference order model with/without backup heuristics with the CDLP

model (see Section 1 for a discussion of that model). In order to make a fair comparison with those

counterparts, we use the same preference order models for the parallel flight example described in

Zhang and Cooper [2005], Miranda Bront et al. [2007], and Liu and van Ryzin [2008]. The second

example’s network structure is borrowed from Miranda Bront et al. [2007] with the same purpose.

In the parallel flight example, we have 26 − 1 = 63 decision variables for the CDLP model. In

the hub network, we have 22 booking classes and therefore, we have 222 − 1 = 4194303 decision

variables. It is clear that the time to solve the second example is far longer than the time required

for the parallel flight model.

We introduce some new notation.

1. NBLP means “no backup” by the optimal solution of (PA-Lin) model. We take the opti-

mal solution from (PA-Lin) model and implement it directly without any post-optimization

heuristic.

2. NBSP means “no backup” by implementing the optimal solution of (PA-SPs) model directly.

3. DBLP is “dynamic backup” by the optimal solution of (PA-Lin) model.

4. DBSP is “dynamic backup” by the optimal solution of (PA-SPs) model.

5. PI is the perfect information model. We use this result to measure the performance of our

preference order model and CDLP model.

7.2.1 Experiments for parallel flights

The first example is based on a network with three parallel flights, and two fare classes, business

and coach, on each flight. This example is illustrated in Figure 7. We construct four preference

orders listed in Table 5 and the available itineraries listed in Table 6. The initial capacity is

c = (30, 50, 40). The booking horizon consists of T = 300 time periods with an average of 150

arrivals. There are four customer preference orders, which are shown in Table 6.

In order to test our model under different loads, we simulated the system under the policies

suggested by our methods on three demand scenarios: heavy demand, fair demand, and soft de-

mand. We use λ be the parameter of demand loads. λ = 0.75 indicates the demand is at only 75%

of regular demand level. λ = 1.25 indicates the network is overloaded by additional 25%. For each

case, we have the capacity fixed.
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Figure 7: Example 1 of comparisons on multiple methods

Itinerary Leg Class Fare

1, morning flight 1 coach 400

2, morning flight 1 business 800

3, afternoon flight 2 coach 500

4, afternoon flight 2 business 1,000

5, evening flight 3 coach 300

6, evening flight 3 business 600

Table 5: Itineraries setting for the parallel flights

Preference order Ordered itineraries Transition probability Demand level

1 $1000, $800,$600 0.5,0.2 30

2 $300, $400,$500 0.5,0.2 45

3 $400, $800, $500, $1000, $300,$600 0.8,0.75,0.66,0.75,0.33 60

4 $800, $400, $1000, $500, $600,$300 0.8,0.75,0.66,0.75,0.33 15

Table 6: Preference orders’ setting for the parallel flights
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Figure 8: The hub network example of comparisons on multiple methods

It is important to clarify that the CDLP results we present here were obtained for our buy-

up/down structure rather than for a multinomial logit choice model. Therefore, our numerical

results on the CDLP model are close but do not match the results in Miranda Bront et al. [2007]

and Liu and van Ryzin [2008].

The numerical results are presented in Table 7. We use ± to denote a 95% confidence interval

from the simulation results.

Demand NBLP NBSP DBLP DBSP CDLP PI

λ = 0.75 65622± 122 65651± 123 65988± 131 66123± 131 65994± 139 66180± 119

λ = 1 78706± 83 79252± 96 80711± 86 81287± 91 79917± 108 82334± 94

λ = 1.25 83076± 34 84684± 44 83909± 13 84866± 15 83241± 52 87652± 21

Table 7: Numerical results for the parallel flights example

7.2.2 Experiment for a hub network

This example is based on a network considered in Liu and van Ryzin [2008] and Miranda Bront

et al. [2007], which is illustrated in Figure 8. The network has a total of 22 booking classes. There

is local traffic, and traffic over the hub which is connected through 10 legs. We list the parameters

in Table 8 followed by the setting of preference orders in Table 9.

The numerical results for the hub network are listed in Table 10. We must remark the compu-

tational burden for the CDLP model grows exponentially. As we mentioned earlier, the column-

generation approach developed in Liu and van Ryzin [2008] and Miranda Bront et al. [2007] cannot

be used in this setting since our choice model is not derived from a multinomial logit. Furthermore,

the complexity of a simulation model for CDLP also becomes higher.
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Itinerary Leg Class Fare Itinerary Leg Class Fare

1, morning flight 1 business 1000 12, evening flight 1 coach 500

2, morning flight 2 business 400 13, morning flight 2 coach 200

3, afternoon flight 3 business 400 14, morning flight 3 coach 200

4, afternoon flight 4 business 300 15, afternoon flight 4 coach 150

5, evening flight 5 business 300 16, afternoon flight 5 coach 150

6, evening flight 6 business 500 17, evening flight 6 coach 250

7, morning flight 7 business 500 18, evening flight 7 coach 250

8, morning flight 2,4 business 600 19, morning flight 2,4 coach 300

9, afternoon flight 3,5 business 600 20, morning flight 3,5 coach 300

10, afternoon flight 2,6 business 700 21, afternoon flight 2,6 coach 350

11, evening flight 3,7 business 700 22, afternoon flight 3,7 coach 350

Table 8: Itineraries setting for the hub network
PO Ordered itineraries Transition probability Demand level

1 $1000, $600,$600,$500,$300,$300 0.8,1,0.75,0.66,1 80

2 $300, $300,$500,$600,$600,$1000 1,0.8,0.25,1,0.5 200

3 $400, $400, $200, $200 1,0.5,1 50

4 $200, $200, $400, $400 1,0.2,1 200

5 $300, $300, $150, $150 1,0.5,1 100

6 $150, $150, $300, $300 1,0.2,0.8 150

7 $500, $500, $250, $250 0.8,0.625,1 20

8 $250, $250, $500, $500 1,0.2,0.8 50

9 $700, $700, $350, $350 0.8,0.625,1 20

10 $350, $350, $700, $700 1,0.2,1 40

Table 9: Preference orders’ setting for the hub network

Demand NBLP NBSP DBLP DBSP CDLP PI

λ = 0.75 210730± 165 195630± 213 211730± 177 211760± 168 211340± 213 227013± 145

λ = 1 246780± 79 255670± 163 248910± 73 256950± 159 246970± 215 268277± 147

λ = 1.25 254090± 19 274050± 61 254160± 20 274320± 67 255810± 98 304223± 130

Table 10: Numerical results for the hub network example
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7.3 Numerical experiments summary

The simulation results presented above lead to the following conclusions:

• The seat allocation from model (PA-SPs) tends to generate more expected revenue than the

counterpart from model (PA-Lin), especially when dynamic backup is applied. This is natural

since (PA-SPs) incorporates more information about the demand distribution other than just

the mean.

• The backup heuristic is one of the critical features of the preference order model. Applying

a backup heuristic can significantly improve the booking performance. The simple example

in Section 6.1 illustrates the issue, and the numerical results corroborate that intuition for

larger scale models.

• The preference order model can significantly improve the booking performance by granting

other choices to customers whose first choice was not available. While intuitive, such a result

quantifies the benefit of using a more accurate model that incorporates more information.

• The CDLP model is a good alternative to our preference order model. However, as the

number of booking classes grows, the number of choice sets — and hence the number of

variables — grows exponentially, whereas the size our preference order model tends to grow

much more slowly (the actual complexity depends on the preference order structure). On

the other hand, CDLP uses a more general choice model based on offer sets, whereas ours is

developed for the case of buy-up/down probabilities. Conceivably, the computational burden

to run CDLP could be reduced by developing column generation algorithms for our preference

order structure.

• We notice that our preference order model (with dynamic backup) outperforms the CDLP

model in the experiments. We conjecture that this is due to the fact that the CDLP model

does not incorporate randomness, which in some cases makes the model unable to distinguish

between different policies (cf. footnote comment in Section 7.1).

8 Conclusions

Research on discrete customer choice models for revenue management is an important topic of

ongoing activity in the academic community. It has been well recognized that discrete customer

choice is an important part of booking process.

In this paper we have proposed some mathematical programming models for network optimiza-

tion where customer choice is formulated through the concept of preference orders. The model gives
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a seat allocation that maximizes the expected revenue, much like the traditional seat allocation

models do in the independent demand case — indeed, as we have discussed, our approximating

models constitute extensions of the traditional mathematical programming models to the case of

consumer choice. Similarly, our models yield only heuristic policies; on the other hand, we do not

encounter the curse of dimensionality and other modeling issues concerning the state space in a

network.

Besides proposing a novel model for network optimization under customer choice, we have also

discussed a way to implement the model recommendations. We have proposed our backup heuristic

and also compared the preference order model with alternative models. Simulation results indicate

that the preference order model provides robust solutions to the problem.

In reality, an individual customer chooses either to stay or to leave randomly. Thus, a binomial

process such as the one used in model (P) would be more accurate to model the buy-up activity.

However, incorporating binomial random variables into the model leads to an exploding scenario

tree. To reduce the computational complexity, we have used deterministic staying rates as an

approximation. A topic for future research would be to determine the bounds on the error of that

approximation compared to the true model.
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