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ABSTRACT

We investigate the possibility of efficiency gains from
schemes that reduce the expected cost of a simulated
path, which allows more paths given a fixed compu-
tational budget. Many such schemes impart bias, so
we look at the bias-variance tradeoff in terms of mean
squared error. The work reduction schemes we consider
are fast numerical evaluation of functions, such as the
exponential, as well as changes to simulation structure
and sampling schemes. The latter include descriptive
sampling, reducing the number of time steps, and dis-
pensing with some factors in a multi-factor simulation.
In simulations where computational budgets are tightly
constrained, such as risk management and calibration
of financial models, using cheaper, less accurate algo-
rithms can reduce mean squared error.

1 INTRODUCTION

This paper explores several ideas that might enable
practitioners to improve the efficiency of their simu-
lations. These ideas are work reduction techniques be-
cause they reduce the time spent per simulated path,
rather than reducing the variance per simulated path,
as variance reduction techniques typically do. Effi-
ciency improvement in simulation is generally thought
of as variance reduction, that is, a reduction in the vari-
ance of the simulation estimate given a fixed budget C
of computer time. In the prototypical case, the sim-
ulation estimate is X̄ =

∑n
i=1 Xi/n where the Xi are

iid copies of an unbiased estimator X computed on one
sample path. Variance reduction often means a scheme
to reduce the variance V of X. Such schemes frequently
require more work W , i.e. computer time, per path than
a standard simulation does. Given a fixed budget, they
have fewer paths than a standard simulation. To be ef-
fective, such a variance reduction method must produce
a reduction in V which outweighs the increase in W :
the figure of merit is V W because the variance of X̄ is
V/n = V W/C. In this paper, we consider some work re-

duction schemes, which reduce the computational cost
W per path, and investigate when they improve the
efficiency of financial simulations.

Some work reduction schemes we investigate create
bias, so V W is not the appropriate figure of merit. For
biased simulations, it is standard to focus on the mean
squared error (MSE), seeking to reduce it given the
fixed computational budget. We focus on samples of
moderate size, not asymptotics as do Fox and Glynn
(1989).

Instead of fixing the budget, one may fix a target
MSE and seek to reduce the work required to achieve
it. This is often appropriate in financial applications,
where achieving a very low MSE merely wastes time,
Spock-like, on unhelpful precision. For example, if the
derivative security to be priced trades with a bid-ask
spread of 1% of its value, it is not much use to attain a
root mean squared error (RMSE) of less than, say, 0.1%
of its value. More importantly, model risk also puts
limits on how much precision is profitable and suggests
that one should not be too concerned about bias. If
our models are not all that close to being correct, why
worry about computing an expected discounted payoff
or a quantile of portfolio value too precisely under this
particular probability measure?

Nonetheless, it is worth worrying about the efficiency
of financial simulations. At present, the computational
burden of simulation hinders accurate large-scale risk
measurement, making it more difficult to manage risks
and price them in the context of a firm’s overall risk pro-
file. For a different approach to simulation design for
risk measurement, balancing the number of paths sim-
ulating the state at the risk measurement time horizon
against the number of paths used to simulate security
prices at that time, see Lee (1998) and Lee and Glynn
(1999). The computational burden also slows the re-
calibration of models, degrading the quality of pricing
and hedging. The application of variance or work re-
duction methods can make such simulations faster and
more practical.
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The computationally demanding applications for
which these work reduction ideas might be worth im-
plementing, such as calibration and risk management,
are generally performed frequently, perhaps daily. The
parameters do not change much from one repetition to
the next. Therefore if we optimize the level of work
reduction for yesterday’s simulation, having seen its re-
sult, this level is very likely best today too.

The first work reduction method to apply would be
not one of the ones we described here, but simply writ-
ing a computer program that refrains from unnecessary
memory operations and tailors the algorithm to the ma-
chine’s architecture. Memory access is rather expen-
sive. We found that it tends to take longer than gen-
eration of a uniform random variate, costing as much
as 10–20 additions. According to Goedecker and Hoisie
(2001): “Achieving high performance on modern ar-
chitectures is intimately related to a coding style that,
by minimizing memory traffic, maximizes processor uti-
lization.” “Memory access problems are usually the
single most detrimental factor leading to large perfor-
mance degradation. The basic principles are rather
simple and rewards are large.” “Applying optimization
techniques when writing a code, leading to an optimal
mapping of algorithms to the computer architecture,
can significantly speed up a program, often by a factor
of 10 to 100.”

Aside from such optimization, there are also gains in
speed to be had from other ways of utilizing hardware
more efficiently. Using single instead of double precision
for floating-point numbers makes division and memory
access 1.5–2 times as fast, but single precision may be
inadequate for some applications. Simulations also tend
to be amenable to parallel processing, although this is
not trivial to implement. A simple, limited version of
parallelization is available for some processors, such as
Intel Pentium III and IV: single instruction multiple
data (SIMD) processing, which allows the same opera-
tion to be performed on four single precision floating-
point numbers at once. We found that SIMD usually
increases speed somewhat more than threefold.

We focus not on these, but on work reduction schemes
that involve changing the simulation algorithm itself,
not just its implementation. First, in Section 2, we
consider reducing the cost of approximations to func-
tions such as the exponential. As Goedecker and Hoisie
(2001) point out, implementations in standard scientific
computing libraries are often very accurate, and there
exist much faster, slightly less accurate algorithms, in-
cluding some optimized for particular processors by
their vendors. Given our requirement for only mod-
est precision in most financial applications, we might
do better to use these cheaper approximations. Sec-
ond, there are schemes for avoiding the generation of

random variables, including the descriptive sampling
of Saliby (1990, 1997). Third, we investigate changes
to the stochastic process or cashflows being simulated.
These latter two topics are discussed in Section 3.

2 REDUCED COST APPROXIMATIONS

In this section, we investigate the effect of using dif-
ferent algorithms to approximate the exponential on
the speed and MSE of simple simulations. We assume
that the requisite standard normal random variates are
stored. (If it is faster, they could be generated anew or
regenerated using a fixed seed for the random number
generator.) In these examples, the expectations are ac-
tually known, allowing us to compute MSEs. Although
simulation is not necessary for these examples at all, the
results are suggestive in that the best exponential algo-
rithms here may be good for other applications where
simulation is necessary.

Vendor algorithms optimized to their hardware are
potentially the most powerful tools to use here. We
discuss them separately in Section 2.5 because it is dif-
ficult to separate the increase in speed they produce
into elements attributable to lower accuracy, tailoring
to processor architecture, and vectorization—many of
these functions process an entire array of arguments in
one function call instead of being called repeatedly to
process each element of the array in turn. Through-
out this section, except when mentioned, results are
reported from simulations run at single precision.

2.1 Candidate Algorithms

We compare five algorithms for approximating the ex-
ponential. Two are highly accurate, while the others are
actually approximations in the sense that their accuracy
is substantially less than the computer’s precision.

One is the standard algorithm to which the compiler
automatically links. As the link is to the precompiled li-
brary libm, we do not report what these standard algo-
rithms do. Another is ieee754 exp, which is available
at http://www.netlib.org/fdlibm/e_exp.c. It uses
argument reduction to change the problem of comput-
ing exp(x) to computing 2k exp(r) where x = k ln 2 + r
and |r| ≤ (ln 2)/2 ≈ 0.34657. Its core is a rational ap-
proximation to exp(r) involving a polynomial of fifth
degree in r2. Argument reduction is somewhat costly
because the time it takes to compute k and r from x is
nonnegligible compared to that for computing the ra-
tional approximation itself. However, it transforms a
good approximation on a small domain into an approx-
imation that is good everywhere.

One approximation to exp(x) is the fourth-order Tay-
lor expansion 1+x+x2/2+x3/6+x4/24 = (((0.0416̄x+
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0.16̄)x + 0.5)x + 1)x + 1. The latter representation is
faster to compute. Argument reduction can enhance a
Taylor expansion, which only approximates well near
the expansion point, which is zero here. The algo-
rithm bargain is the fourth-order Taylor expansion on
[−0.5, 0.5]. Elsewhere on [−1.5, 1.5], it returns either
1/e or e times the result of the Taylor expansion for the
reduced argument in [−0.5, 0.5]. Outside [−1.5, 1.5], it
calls the libm exponential. This means that the execu-
tion time of the function is random when the argument
is random: it is faster when the arguments tend to be
near zero.

Finally, we also consider the approximation of
Schraudolph (1999). This macro uses one multiplica-
tion and one addition, taking advantage of the structure
of floating-point representation, to achieve the effect of
a lookup table with linear interpolation.

2.2 Examples

Our first financial example is pricing a European call
option under the Black-Scholes model. We simulate in
a single step under the risk-neutral measure Q. The
estimator is

(a exp(bZ)− c)+

where a = S0 exp(−(σ2/2)T ), b = σ
√

T , c =
exp(−rT )K, and Z is a standard normal random vari-
ate. The parameters in our base case are S0 = 100,
K = 100, σ = 20%, and r = 5%. Computing a exp(bZ)
instead of exp(ln a + bZ) helps because bZ tends to be
near zero, which means that less argument reduction
needs to be done in methods that use it, and the Tay-
lor approximations are more accurate.

An alternative estimator is

1{Z > d}(a exp(bZ)− c)

where d = (ln(c/a))/b, which saves computation of an
exponential when the payoff is zero at the cost of adding
an if statement. It is expected to be faster except when
the option is extremely deep in the money. In the ta-
bles of Section 2.4, these two variants of the example
are referred to as call and call-c (for “conditional expo-
nentiation”) respectively.

The second financial example is pricing a cap under a
two-factor Gaussian HJM model. We simulate multiple
steps under the spot LIBOR measure Q̃, for which see
for instance Musiela and Rutkowski (1997, §§13.3 and
14.3.3). The estimator is

m−1∑
i=1

Di+1δ(Li − κ)+

where Di+1 is the discount factor for a cashflow arriving
at Ti+1 and Li is the spot LIBOR rate at Ti for the

period [Ti, Ti+1]. We simulate the negative log bond
prices Xik = − lnB(Ti, Tk) at time Ti for maturity Tk

by
Xik = Xi−1,k −Xi−1,i + ai + bi · Zi,

where {Zi}i=1,...,m are iid multivariate standard normal
random variables, ai = 1

2δ‖νik‖2, and bi =
√

δνik. Then

Li =
1
δ
(exp(Xi,i+1)− 1)

and

Di = exp(Yi) where Yi =
i∑

j=1

Xj−1,j .

Conditional exponentiation is applicable here, as for
the European call option. The estimator can be rewrit-
ten as

m∑
i=1

1{Xi−1,i > c1} exp(Yi)(exp(Xi−1,i) + c2)

where c1 = ln(1 + δκ) and c2 = −(1 + δκ). When the
indicator is zero at step i, we need not evaluate the
other factors in that term. We just go to the next step,
updating Xi,i+1, . . . , Xi,m and Yi+1, but we do not need
to evaluate the two exponentials at this step. Thus the
work done in exponentiation per path is significantly
random, and its expectation varies directly with how
deep in the money the cap is. Table 3 illustrates the
effect this has.

We parametrized our example with T = 5, δ = 0.25,
and made the initial yield curve flat at 5%. In the base
case, the strike was κ = 5%. All forward rate instan-
taneous volatilities had magnitude ‖σik‖ = 1%. The
greater k − i, i.e. the further into the future the time
period of the forward rate, the greater σik’s coefficient
on the second factor, leading to correlations of 0.5–1
for forward rates. These forward rate volatilities pro-
duce the bond instantaneous volatilities via the equa-
tion νik = δ

∑k−1
j=i σjk.

2.3 Results: Bias

We will only use fast approximations to the exponen-
tial if they lead to acceptably low bias in simulation
applications. Our guideline is that relative bias much
greater than 0.1% is not acceptable. We estimated the
relative bias (one minus the ratio of expected simulated
price to true price) for each approximation in various
examples. This was done by substituting a simulation
estimate with a low standard error (0.01% for call ex-
amples and 0.03% for cap examples) for the unknown
expected simulated price in the expression for relative
bias. The true price is known in these examples.
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The ieee754 exp function states that it is accurate
to within one unit in the last place at double preci-
sion, while the libm algorithms are accurate to double
precision. The bargain algorithm is not as accurate,
but the 95% confidence interval for its relative bias in-
cluded zero for every example that we checked. The
fourth-order Taylor approximation also had zero in the
confidence interval for the base call and cap examples,
but generated significant bias in other examples, listed
in Table 1.

Schraudolph’s approximation algorithm is not accu-
rate enough for use in any of the examples we consid-
ered. It had a relative bias of 4.3% for the call example
and 300% for the cap example. This approximation was
designed for use in neural networks, where the logistic
function (1 + exp(x))−1 is of more interest than exp(x)
itself. By contrast, in finance, it is functions of the form
exp(x)− 1 that are of most interest, and these demand
a greater degree of precision in approximating exp(x)
to attain an acceptable relative error.

We further examine the quality of the fourth-order
Taylor and Schraudolph approximations by investigat-
ing how they vary with the size of the argument. To
illustrate this dependence, we show in Table 1 the bias
of an out-of-the-money European call pricing simula-
tion with varying maturity T . The longer the matu-
rity, the greater the variability of the argument to the
exponential. The moneyness of the option is held con-
stant: in each case K = S0 exp((r − σ2/2)T + σ

√
T ),

so that the risk-neutral probability of a nonzero payoff
is Φ−1(−1) ≈ 16%. Looking at the relevant truncated
normal distribution, we can see that the simulation’s
bias will reflect primarily the accuracy of the approxi-
mation to the exponential for arguments whose size is
ln(K/S0) or a small multiple of it.

For the examples in Table 1, it was necessary to use
a better random number generator than the rand func-
tion of libm, which introduced bias of up to 0.8%. We
used instead MRG32k3a, which is described in L’Ecuyer
(1999).

Table 1: Effect of Argument Size on
Relative Biases in Call Pricing

Algorithm
T 4th order Schraudolph

0.25 ≈ 0% -3.7%
1 -0.04% 14%
2 -0.1% 7.5%
5 -0.8% -1.6%
10 -2.6% -1.2%

Table 1 shows that the relative bias induced in call
prices is unacceptably large for the Schraudolph ap-

proximation, and is acceptable for the fourth order Tay-
lor approximation only when the arguments are small
enough. The superiority on small arguments of a Tay-
lor approximation about zero motivated the combina-
tion with elementary argument reduction ideas to pro-
duce the bargain algorithm. The Schraudolph algo-
rithm performs best, although not well enough, when
arguments tend to be large because our concern with
relative bias and a payoff function similar in form to
exp(x)−1 makes the demand for precision greater when
x tends to be smaller. This also explains its disastrous
performance in the cap example, where the arguments
tend to be the smallest.

2.4 Results: Speed

The relative speeds of different algorithms depend
greatly on whether exponentiation is done in isolation
or as part of a financial simulation in which other op-
erations occur. This is because a modern processor in-
volves several subunits that perform operations simulta-
neously during execution of a nontrivial program, which
is known as “on-chip parallelism.” For this reason, it
is not straightforward to deduce from the speed of an
approximation to the exponential when run alone what
speed-up it will produce when used in a particular fi-
nancial simulation. The examples we give thus can only
suggest what might happen in other applications. As
we will see, it is typical for the speed gains in a compli-
cated example to be less than those in isolation.

In Table 2, we report the number of seconds required
to do ten million simulations, for each of the algorithms
and examples under consideration. The compilers and
processors used are:

• Microsoft Visual C++ 7.0, Intel Pentium III 1GHz

• Microsoft Visual C++ 7.0, Intel Pentium IV 1.8GHz

• gcc 2.95, Sun UltraSparc IIi 440MHz.

To establish the reliability of these results, we replicated
them on different Pentium III and IV processors. The
results were similar, up to adjustment for varying clock
speeds.

We present a range of times for running the bargain,
ieee754 exp, and Sun libm algorithms in isolation

because argument reduction causes the speed of an al-
gorithm to depend on its input. In the other examples,
the arguments are random, as specified by the financial
simulation. In that case, despite argument reduction,
it makes sense to present a total time, corresponding to
an average time per path.

From Table 2 we see that, depending on the pro-
cessor and example, the bargain algorithm compared
to libm produces increases in speed of about 1.3–1.7
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Table 2: Effect of Approximations to the Exponential
on Speed of Financial Simulations (seconds / 107)

Sun
Method/Example alone call call-c cap
4th-order Taylor 0.9 1.4 1.05 76
bargain 1.1–1.7 2.15 1.65 94
ieee754 exp 2.2–3.5 3.55 2.5 122

libm 2.5–3.2 3.6 2.5 125
Pentium III

Method/Example alone call call-c cap
4th-order Taylor 0.28 0.85 0.65 41
bargain 0.35–0.75 0.95 0.7 43
ieee754 exp 1.2–2.3 1.65 1.15 57

libm 1.7 2.1 1.35 69
Pentium IV

Method/Example alone call call-c cap
4th-order Taylor 0.13 0.56 0.44 15
bargain 0.14–0.26 0.58 0.45 15.5
ieee754 exp 1.4–2.1 1.3 0.85 31

libm 1.6 2.2 1.3 54

(Sun), 1.6–2.2 (Pentium III), or 2.9–3.8 (Pentium IV)
in these basic financial simulations. In isolation, its rel-
ative speed is even greater, but such outperformance is
not to be expected in the context of a simulation con-
taining an overhead of other computations not affected
by the choice of algorithm for the exponential.

The improvement over libm is greater on the faster
processors. (Even the highly accurate ieee754 exp
outperforms libm significantly on the faster processors.)
Apparently, libm is not much faster on a Pentium IV
1.8GHz than on a Pentium III 1.0GHz. The call ex-
ample is even slower. The cap example is faster, but
this relates primarily to faster simulation of log bond
prices, which is a large overhead in this example. Like-
wise, ieee754 exp in isolation is no better with the
Pentium IV. It has often been remarked that increased
clock speed is no guarantee of superior performance for
real applications. The cheaper exponential algorithms
seem better able to take advantage of the opportuni-
ties for on-chip parallelism, breaking down into smaller
sub-tasks which finish more quickly on the faster pro-
cessor, while the more accurate standard algorithms do
not fare so well. Improvements in processors, far from
diminishing the importance of fast approximations, are
increasing it.

We also see that argument reduction makes argument
size affect the speed of the algorithm by a factor of as
much as two. Moreover, the if statements required
to implement it have a nonnegligible cost even when
the argument is already small and they are not needed.

This is why bargain always costs more than the fourth-
order Taylor approximation, which is the same thing
without argument reduction. However, the cost of argu-
ment reduction in financial simulations using bargain
diminishes for faster processors.

Another interesting point is that conditional evalu-
ation of exponentials only when in the money speeds
up the simulation by a factor of 1.3–1.4 for bargain or
1.4–1.7 for libm. The example given here is an at-the-
money option; the effect would be greater for out-of-
the-money options.

One anomaly in Table 2 is that on the Pentium IV,
the call simulation with ieee754 exp is faster than
running that function alone, even on small arguments.
It is hard to know what to make of this, but it may be
simply a surprising effect of on-chip parallelism.

Table 3 shows the effect of the cap’s strike on speed
gains from faster exponentials. As discussed in Sec-
tion 2.2, a simulation of an out-of-the-money cap will
have fewer nonzero cashflows, and thus less need for
evaluations of the exponential. A strike of 10% is very
seldom triggered, so the choice of approximate expo-
nential algorithm is almost irrelevant. With a strike of
2%, the cap is deep in the money, and the exponentials
are usually evaluated.

Table 3: Effect of Moneyness on Speed
of Cap Simulation (seconds / 107)

Pentium III, 5 years
Strike 10% 7% 5% 2%
bargain 33 35 43 48
libm 33 40 69 96

Pentium IV, 5 years
Strike 10% 7% 5% 2%
bargain 11 12 15.5 18
libm 11 18 54 87

Pentium IV, 1 year
Strike 10% 5.2% 5% 2%
bargain 1 1.6 2.5 2.8
libm 1 6.2 16.1 28.1

It turns out that the increase in speed on the ex-
ponentials alone, excluding the overhead for doing
the deep-out-of-the-money simulation with no exponen-
tials, does not match the ratios for small arguments in
Table 2: for instance, (96 − 33)/(48 − 33) 6= 1.7/0.35.
One possible explanation for this is on-chip parallelism.
We also see that for another realistic example, an at-
the-money 1-year cap, bargain performs even better
against libm, increasing speed more than 6.4-fold. In
this example, there is relatively much less overhead, be-
cause fewer log bond prices need to be simulated.
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2.5 Vendor-Specific Products

There are a variety of highly efficient functions opti-
mized to specific processors and made available by the
hardware manufacturer. We maintain our focus on the
exponential function and report briefly on the Intel Per-
formance Primitives (IPP) package. We also report on
SIMD, which was mentioned in the introduction. It is
not a separate package, but rather a set of instructions
intrinsic to the processor, which some compilers know
how to access. There is also an Intel Math Kernel Li-
brary, which like IPP has vectorized functions for single
or double precision, and in versions whose accuracy is
high or low (but not as low as in IPP). For the Sun
platform, the Sun C compiler includes optimized expo-
nential functions in scalar and vector form.

Vectorization is itself a form of optimization to the
hardware. Evaluating a function on many arguments
in one call, taking advantage of the processor’s mem-
ory cache, can be more efficient than calling the func-
tion many times in a row. However, there is a draw-
back to using vectorized functions, or even SIMD, which
processes four arguments at once. Vectorization is
not straightforward to implement unless all paths have
same structure. For instance, conditional evaluation
of the exponential in the European call example seems
difficult to implement with vectorization. There would
be an array of one thousand standard normal random
variates Z on which the exponential is to be evaluated
when Z > d. Those numbers satisfying Z > d are only
a subset, and not stored contiguously in memory. For
similar reasons, even argument reduction is nontrivial
to implement in vectorized form.

When using vectorized functions, the size of the mem-
ory cache limits the number of arguments that can be
processed in one call. On these Pentiums, one thousand
seemed to be optimal, so a loop of ten thousand calls to
an IPP vectorized function performed ten million expo-
nentiations.

IPP includes two approximations to the exponential,
guaranteeing 11 and 24 bits of accuracy respectively.
On the Pentium III, these appeared to be the same
function—there was no cheaper 11-bit version. On the
Pentium IV, they took respectively 0.045 and 0.075 sec-
onds per ten million. The exponential with 24 bits of
accuracy generated no statistically significant bias in
the call pricing examples listed in Table 2.3. The 11-bit
version produced biases of 0.02% for T = 1 and 0.04%
for T = 0.25.

Table 4 presents the speed in isolation and on the call
example of the IPP 11-bit exponential and the fourth-
order Taylor approximation implemented with SIMD,
compared to libm without the use of any special fea-
tures.

Table 4: IPP and SIMD Speed (seconds / 107)

precision double single single
feature none IPP SIMD
algorithm libm IPP(11) 4th-order

Pent. alone 1.7 0.24 0.12
III call 2.35 0.34 0.35

Pent. alone 1.7 0.045 0.045
IV call 2.2 0.23 0.088

Table 4 is comparable to Table 2, which reported the
performance, without hardware-specific enhancement,
of approximate exponential algorithms alone and on the
call example. We see that the IPP vectorized exponen-
tial with 11-bit accuracy is faster than any algorithm
in Table 2. For the call example, it yields speeds about
2.5 times greater than those reported in Table 2. The
performance of the fourth-order Taylor approximation
implemented in SIMD was similar, except that it was
highly favorable in the call example on the Pentium IV.
The use of SIMD led to a 25-fold improvement over the
standard use of libm at double precision. This partic-
ular entry in the table is somewhat surprising, because
the speed is over six times greater than that of the same
example without SIMD, which works by processing four
numbers at once, ordinarily speeding up a simulation by
a factor of less than four.

Vendor-supplied packages of optimized functions con-
tain many potentially useful things, but one of the most
important is approximate division. We found regular
division to be about as costly as memory access, about
ten additions or multiplications. SIMD contains a faster
approximate division. When this is available, ratio-
nal approximations such as found in ieee754 exp, or
most routines for approximating the standard normal
inverse cdf Φ−1, become more attractive.

3 AVOIDING WORK

The previous section dealt with choices of algorithm
for evaluating functions approximately. We now turn
to changes in the structure of the simulation itself, not
in the functions it uses. We have already explored one
such change: in the difference between the call and call-
c examples, Table 2 shows that evaluating exponentials
only when the option finishes in the money can pro-
duce a noticeable savings of time. Another such work
reduction idea involves stopping some simulated paths
early (Glasserman and Staum 2002). Neither of these
produces bias.

Here we focus on the mortgage-backed security
(MBS), described in Section 3.1, as an example of a
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complicated simulation in which several corners can be
cut in the hope of saving time while incurring an accept-
ably small bias. The possibilities including dropping
factors in a multi-factor simulation, reducing the num-
ber of time steps below the number of dates specified
in the financial contract, and replacing some random
variates with things that are cheaper to compute.

As described below, our MBS simulation requires
three factors to simulate an interest rate, a stochastic
discount factor, and a mortgage rate. However, either
or both of the latter two processes may be approximated
as functions of the first, in which case the corresponding
factor does not need to be simulated.

In reality, a mortgage has 360 monthly payments, so
it is natural to price a MBS with a simulation of 360
time steps. We also simulated a mortgage of 240, 180,
120, or 30 equally spaced payments instead. We con-
sidered altering the mortgage rate as well, so as to keep
the annualized percentage rate the same no matter the
number of payments. It might be thought that this
would ameliorate the bias that changing the number
of payments introduces, but we found that it made it
worse. There is another aspect to this bias, which is
that longer payment periods lead to a slower amorti-
zation of the mortgage. These two effects are partially
offsetting in this example. Indeed, it turns out that
offsetting bias effects were crucial to any improvements
identified in this section.

Setting the number of time steps to be less than the
number of cashflows in order to reduce work is differ-
ent from the problem addressed by Duffie and Glynn
(1995). They considered setting the number of time
steps to be greater than the number of cashflows in or-
der to reduce bias from discretization of the stochastic
differential equation (SDE) describing the underlying
process. In this example, the SDE is integrated exactly.

The MBS example is high-dimensional, so we can ap-
ply Latin hypercube sampling (LHS) with 100 strata as
a variance reduction technique. If random variates are
generated during the simulation, not stored, a lower-
cost alternative to LHS is the descriptive sampling (DS)
of Saliby (1990). DS differs from LHS in always using
the midpoint of a cell rather than sampling uniformly
within a cell. It was intended as a variance reduc-
tion technique (Saliby 1997, Saliby and Pacheco 2002),
but the variance reduction is only substantial when the
number of strata is low, in which case the bias of DS
tends to be very high. Here we consider it as a work
reduction technique—we save the cost of generating a
uniform random variate by simply using the cell mid-
point. The results of Section 3.2 show that this savings
tends to be quite small. However, the decision about
whether to implement a simulation efficiency improve-
ment depends on the relationship between the effort of

implementation and the magnitude of the gains. Here
the gains are small, but it is easier to implement DS
than LHS.

A similar modification would be to replace, for in-
stance, normal random variates with random variates
that are cheaper to generate. Kloeden and Platen
(1992, p. 458) discuss this possibility in terms of asymp-
totic convergence rates as the number of time steps goes
to infinity, giving a binomial example. Such methods
may improve MSE, for instance, when the overall bud-
get is small, the number of time steps is large, and there
is not too much path-sensitivity, but we do not inves-
tigate them here. Of course, in simulation applications
where random variates are stored, none of these substi-
tutions are helpful.

3.1 Mortgage-Backed Securities

For background on mortgage-backed securities (MBS),
see for instance Richard and Roll (1989). We consider a
security whose payments are the 360 monthly cashflows
from a pool of 30-year mortgages. Simulations involving
MBS are often demanding in part because of the large
number of time steps, and possibly complexity in inter-
est rate modeling. The characteristic feature of MBS is
the homeowner’s option to prepay the mortgage. In this
example, we model the number of mortgages prepaying
as a function (involving an arctangent and fitting the
data of Richard and Roll 1989) of the newly available
mortgage refinancing rate, although other factors may
be modeled in practice.

We assume a very simple interest rate model: the
spot interest rate r and the mortgage refinancing rate
R both follow Ornstein-Uhlenbeck processes, i.e. the
Vasiček model. To avoid bias, it is necessary to simulate
a third factor, the log increment Yi+1 = ln Di+1− lnDi

of the stochastic discount factor Di =
∫ ti

0
r(s) ds, which

is jointly normal with ri+1 = r(ti+1). We assume condi-
tional independence between Ri and Di given ri and all
information from previous time steps, but the instan-
taneous correlation between r and R is 0.9. The initial
rates are r0 = 6.5% and R0 = 8.5%, but r and R have
the same parameters otherwise: mean reversion level
10%, mean reversion strength 0.15, and instantaneous
volatility 1%.

When we want to avoid simulating D with a separate
factor, we use the approximation

Dj = exp

(
−δ

j−1∑
i=0

rj

)
.

When we want to avoid simulating R as a separate fac-
tor, we replace Ri+1 with E[Ri+1|ri+1, Ri].
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3.2 Results

There is no closed-form expression for the value of a
MBS, so we use a very precise Monte Carlo estimate
as the true mean for purposes of calculating MSE. For
each method, we report the RMSE given a fixed com-
putational budget. The results of this section are from
the gcc 3.2 compiler on an Intel Pentium III 450MHz,
using double precision.

First suppose that the MBS pricing simulation uses
simple random sampling (SRS). One work reduction
technique is decreasing the number of time steps in the
simulation from 360 to 240, 180, 120, or 30. The other
is reducing the number of factors from three by approx-
imating either D or both D and R in terms of r. We
considered all combinations of these techniques. Ta-
ble 5 shows, for different values of the computational
budget, which combination produced the lowest RMSE,
and how much less that was than the base case of SRS
with 360 time steps and three factors. The MBS value
was about 1.07.

Table 5: RMSE Improvement over SRS for
MBS Pricing

budget base Best Method
(seconds) RMSE steps factors gain

10 0.0023 240 1 33%
50 0.0010 240 2 7%
100 0.0007 360 3 0%

Next suppose that the MBS pricing simulation uses
Latin hypercube sampling (LHS). This produces a 35%
reduction in RMSE (i.e. standard error, because there
is no bias) in the base case of three factors and 360
time steps. We now consider all of the above possibili-
ties for approximation, as well as the use of descriptive
sampling (DS) instead of LHS. Whether the budget was
10, 50, or 100 seconds, we found that the best method
was to use one factor, 360 time steps, and DS, leading to
a reduction in RMSE of 42–45%. This is not so much
because DS reduces the time per path (the reduction
is only 4%), but because of a surprising cancellation of
the bias introduced by using one factor. On its own, DS
introduces a bias of −0.0002 into a simulation of three
factors and 360 time steps. When used in a simulation
with one factor and 360 time steps, which has a bias of
0.0019, it reduces the bias to 0.00005.

The utility of results such as these depends on the
stability of biases from day to day as simulation pa-
rameters change. If a bias cancellation such as this one
between DS and the one-factor approximation is rela-
tively robust to changes in parameters, it can be used
for a while with some confidence. Perhaps tests to find
the currently optimal work reduction scheme could be

run on the weekend, then used for one week.
We checked whether such robustness is present in this

example by running the simulations with initial values
r0 = 7.5% and R0 = 9.5%, a fairly large increase of 1%
in the interest rates over the base case. For this exam-
ple too, some of the possible approximations provide a
reduction in MSE of almost half. However, the approx-
imation of one factor, 360 time steps, and DS increased
MSE by 175%. The bias of this simulation is 0.00264:
no favorable cancellation of bias takes place for these
changed parameters. This shows that the approxima-
tions considered here are not suitable for this problem,
at least unless the the parameters change very little in-
side an optimization or over the relevant timespan.

4 CONCLUSIONS

The work reduction techniques studied here have
the potential to increase significantly the speed of
computation-intensive financial simulations in reach an
MSE target. Their success (or lack thereof) will vary
greatly from problem to problem. These work reduc-
tion techniques may easily be combined with variance
reduction techniques, but this too changes their effec-
tiveness. In particular, they are compatible with quasi-
Monte Carlo.

Cheap function evaluation with fast but moderately
accurate approximations is a technique that can be ap-
plied fairly safely to most financial problems. A change
to the exponential algorithm alone can increase the sim-
ulation speed by factors ranging from three to over six,
for realistic examples on a Pentium IV processor. Using
techniques specific to the processor can lead to a 25-fold
increase in speed. However, efficient coding practices,
such as avoiding unnecessary computation and memory
access, are just as important, if not more so.

We also saw that changes to the structure of the sim-
ulation could also almost double its speed. Here the
approximations that can be made depend on the par-
ticular problem, as does the combination that works
best. Each problem has to be studied separately, but
this may well be worthwhile in the case of expensive
problems that are repeated frequently. A serious issue
surrounding the use of these techniques is the question
of the stability of bias with respect to changes in pa-
rameters; unless such stability exists, these techniques
are not safe to use.

Academics may be interested in applying these tech-
niques when they study variance reduction methods.
Frequently a variance reduction method decreases vari-
ance per path while increasing cost per path. Cost
per path depends on the accuracy of numerical func-
tion evaluation and coding style, which makes it hard
to assess. The ideas presented here can help to design
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an efficient baseline simulation, and thus give a realistic
picture of the efficiency gains from variance reduction.
Most of all, practitioners may find it beneficial to check
whether any of the techniques described here help to
reduce the RMSE in their toughest simulation applica-
tions, given a fixed budget, or allow them to reach an
RMSE target in less time.
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