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ABSTRACT

This paper presents an overview of techniques for im-
proving the efficiency of option pricing simulations, in-
cluding quasi-Monte Carlo methods, variance reduc-
tion, and methods for dealing with discretization error.

1 INTRODUCTION

Simulation is a valuable tool for pricing options, as
Boyle (1977) pointed out. It is easy to price most op-
tions by simulation under most models, even those that
are complicated or high-dimensional. (American op-
tions are a notable exception.) Simulation tends to per-
form better than many other numerical techniques on
high-dimensional problems, for instance, those that in-
volve many underlying securities or their prices at many
times. In particular, the rate of convergence of a Monte
Carlo estimate does not depend on the dimension of the
problem. Another attraction of simulation is the con-
fidence interval that it provides for the Monte Carlo
estimate. A survey of the field is Boyle, Broadie and
Glasserman (1997). Recent textbooks are Glasserman
(2003) and Herzog and Lord (2003).

These textbooks cover the application of simulation
to financial engineering in general, including other prob-
lems such as risk management. The present paper re-
stricts itself to option pricing, broadly construed in the
sense of pricing any derivative security, for instance,
mortgage-backed securities and swaps as well as the
many kinds of options. It is a revised version of Staum
(2002), which has more background on option pricing
and extra sections on estimating Greeks and on pricing
American options, but less material on variance reduc-
tion and quasi-Monte Carlo. In this paper, the focus is
on the efficiency of option pricing simulations: avoid-
ing (Section 2) or mitigating (Section 3) bias from dis-
cretization, variance reduction (Section 4), and quasi-
Monte Carlo (Section 5). Section 2 begins with a brief
review of how to price options by simulation.

2 HOW TO PRICE BY SIMULATION

The theory of financial engineering states that (in a
complete market) pricing an option is evaluating the
expectation of its discounted payoff, under a specified
measure. The canonical example is the European call
option under the Black-Scholes model. The European
call option’s payoff is max{ST − K, 0}, where ST is
the price of a stock at time T , and K is a prespecified
amount called the strike price. Under the Black-Scholes
model, the stock price follows the stochastic differential
equation (SDE)

dSt = St(r dt + σ dWt)

where W is a Wiener process (Brownian motion) under
the risk-neutral probability measure Q. Applying Itô’s
formula and integrating,

lnSt − lnS0 = (r − σ2/2)t + σWt.

Here S0 is the initial stock price, r is the instantaneous
interest rate on a riskless money market account, and
σ is the volatility. Because Wt is normally distributed
with mean 0 and variance t, the terminal log stock price
lnST is normal with mean lnS0 +(r−σ2/2)T and vari-
ance σ2T .

Pricing the European call option under the Black-
Scholes model therefore requires the generation of one
standard normal random variate per path. The simu-
lated value of ST on the ith path is

S
(i)
T = S0 exp

((
r − σ2/2

)
T + σ

√
TZ(i)

)
and the estimated option value is

1
n

n∑
i=1

e−rT max
{

S
(i)
T −K, 0

}
.

In this model, the situation is not appreciably more
difficult when pricing a path-dependent option whose
payoff depends on the value of the state vector at many
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times. For instance, a discretely monitored Asian call
option has the payoff max{S̄T − K, 0} where S̄T =∑m

k=1 Stk
/m is the average price. Now the simulation

must generate the entire path St1 , St2 , . . . , Stm
. Assume

tk = Tk/m = kh. The way to simulate the whole path
is to generate m independent standard normal random
variables Z

(i)
1 , . . . , Z

(i)
m for the ith path and set

S
(i)
(k+1)h = S

(i)
kh exp

((
r − σ2/2

)
h + σ

√
hZ

(i)
k

)
.

This provides the correct multivariate distribution for
(St1 , . . . , Stm

) and hence the correct distribution for S̄T .
Another challenge in path generation is continuous

path-dependence. While the payoff of the European call
option depends only on the terminal value of the state
vector, and the payoff of the discretely monitored Asian
call option depends only on a finite set of observations
of the state vector, some derivatives have payoffs that
depend on the entire continuous-time path. An example
is a down-and-in option that pays off only if a stock
price goes below some barrier, or equivalently, if the
minimum stock price is below the barrier. Suppose the
stock price obeys the Black-Scholes model. Because

min
k=1,...,m

Stk
> min

t∈[0,T ]
St

almost surely, the former is not an acceptable substitute
for the latter. It is necessary to introduce a new com-
ponent Mt = minu∈[0,t] Su into the state vector; this
can be simulated since the joint distribution of St and
Mt is known (Karatzas and Shreve 1991).

A slightly subtler example occurs in the Hull-White
model of stochastic interest rates. The SDE governing
the instantaneous interest rate rt is

drt = α(r̄ − rt)dt + σ dWt

where r̄ is the long-term mean interest rate, α is the
strength of mean reversion, and σ is the interest rate’s
volatility. Integration of this SDE yields the distribu-
tion of rt, which is normal. Then the simulated path
rt1 , . . . , rtm

is adequate for evaluating payoffs that de-
pend only on these interest rates, but not for evalu-
ating the discount factor DT =

∫ T

0
ru du; the discrete

approximation h
∑m

k=1 rkh does not have the right dis-
tribution. Instead one must add Dt to the state vector
and simulate using its joint distribution with rt, which
is easily computable.

3 DISCRETIZATION ERROR

Some financial models feature SDEs that are not easily
integrable, as the Black-Scholes and Hull-White mod-
els’ are. An example is the Cox-Ingersoll-Ross model,

in which the SDE is

drt = α(r̄ − rt)dt + σ
√

rt dWt.

This model’s principal advantage over Hull-White is
that the instantaneous interest rate must remain non-
negative. However, there is no useful expression for
the distribution of rt given r0. A simulation of this
model must rely on an approximate discretization r̂ of
the stochastic process r. Because the laws of these pro-
cesses are not the same, the Monte Carlo estimate based
on r̂ may be biased for the true price based on r. This
bias is known as discretization error.

Kloeden and Platen (1992) have written a major ref-
erence on the rather involved topic of discretizing SDEs,
whose surface this paper barely scratches. Faced with
an SDE of the generic form

dXt = µ(Xt)dt + σ(Xt)dWt

one simulates a discretized process X̂t1 , . . . , X̂tm
. Even

if the only quantity of interest is the terminal value XT ,
it is necessary to simulate intermediate steps in order
to reduce discretization error. The question is how to
choose the scheme for producing the discretized process
X̂ and the number of steps m.

The most obvious method of discretizing is the Euler
scheme

X̂(k+1)h = X̂kh + µ
(
X̂kh

)
h + σ

(
X̂kh

)√
hZk+1

where Z1, . . . , Zm are independent standard normal
random variates. The idea is simply to pretend that
the drift µ and volatility σ of X remain constant over
the period [kh, (k + 1)h] even though X itself changes.
Is there a better scheme than this, and what would it
mean for one discretization scheme to be better than
another?

There are two types of criteria for judging dis-
cretized processes. Strong criteria evaluate the differ-
ence between the paths of the discretized and origi-
nal processes produced on the same element ω of the
probability space. For example, the strong criterion
E[maxk ‖X̂tk

− Xtk
‖] measures the maximum discrep-

ancy between the path X̂(ω) and the path X(ω) over all
times, then weights the elements ω with the probability
measure P. On the other hand, weak criteria evalu-
ate the difference between the laws of the discretized
and original processes: an example is supx |P[X̂T <
x] − P[XT < x]|, measuring the maximum discrep-
ancy between the cumulative distribution functions of
the terminal values of X̂ and X. Weak criteria are of
greater interest in derivative pricing because the bias
of the Monte Carlo estimator f(X̂t1 , . . . , X̂tm

) of the
true price E[f(Xt1 , . . . , Xtm)], where f is the payoff,
depends only on the distribution of (X̂t1 , . . . , X̂tm).
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Given a choice of weak criterion, a discretization
scheme has weak order of convergence γ if the error
is of order m−γ as the number of steps m goes to infin-
ity. Under some technical conditions on the stochastic
process X and the exact nature of the weak criterion,
the weak order of the Euler scheme is 1, and a scheme
with weak order 2 is

X̂(k+1)h = X̂kh + σZk+1h
1/2

+
(

µ +
1
2
σσ′

(
Z2

k+1 − 1
))

h

+
1
2

(
µ′σ + µσ′ +

1
2
σ2σ′′

)
Zk+1h

3/2

+
1
2

(
µµ′ +

1
2
µ′′σ2

)
h2

where µ, σ, and their derivatives are evaluated at X̂kh.
This is known as the Milstein scheme, but so are some
other schemes. This scheme comes from the expansion
of the integral

∫ (k+1)h

kh
dXt to second order in h using

the rules of stochastic calculus.
The weak order of convergence remains the same if

simple random variables with appropriate moments re-
place the standard normal random variables Z. Not
only can such a substitution improve speed, but it may
be necessary when the SDE involves multivariate Brow-
nian motion, whose multiple integrals are too difficult
to simulate.

It is also possible to use Richardson extrapolation in
order to improve an estimate’s order of convergence.
For instance, let f(X̂(h)) denote the payoff simulated
under the Euler scheme with step size h. The Euler
scheme has weak order of convergence 1, so the leading
term in the bias E[f(X̂(h))]−E[f(X)] is of order h. The
next term turns out to be of order h2. Because the order
h terms cancel, the bias of 2E[f(X̂(h))] − E[f(X̂(2h))]
is of order h2, and this extrapolated Euler estimate has
weak order of convergence 2.

Turning to the choice of the number of steps m, one
consideration is allocating computational resources be-
tween a finer discretization and a greater number of
paths (Duffie and Glynn 1995). If there is a fixed com-
putational budget C, and each simulation step costs c,
then the number of paths must be n = C/(mc). For
a discretization scheme of weak order γ, the bias is
approximately bm−γ for some constant b. Estimator
variance is approximately vn−1 for some constant v.
Therefore the mean squared error is approximately

b2m−2γ + vn−1 = b2m−2γ +
vc

C
m

which is minimized by m ∝ C1/(2γ+1). With this opti-
mal allocation, the mean squared error is proportional

to C−2γ/(2γ+1), which is slower than the rate C−1 of
decrease of the variance of a simulation unbiased by
discretization errror. A higher order of convergence γ
is associated with a coarser discretization (m smaller)
and more rapid diminution of mean squared error with
increased computational budget C.

4 VARIANCE REDUCTION

The standard error of a Monte Carlo estimate decreases
as 1/

√
C, where C is the computational budget. This

is not an impressive rate of convergence for a numerical
integration method. For simulation to be competitive
for some problems, it is necessary to design an estima-
tor that has less variance than the most obvious one. A
variance reduction technique is a strategy for produc-
ing from one Monte Carlo estimator another with lower
variance given the same computational budget.

A fixed computational budget is not the same as a
fixed number of paths. Variance reduction techniques
frequently call for more complicated estimators that in-
volve more work per path. Where W is the expected
amount of work per path, the computational budget C
allows approximately n = C/W paths. There is a vari-
ance per path V such that the estimator variance is ap-
proximately V/n = V W/C. Thus a technique achieves
efficiency improvement (variance reduction given a fixed
budget) if it reduces V W .

In practice, one may be concerned with human ef-
fort as well as computer time. Computing power has
become so cheap that for many individual financial sim-
ulations, it is not worth anybody’s time to implement
variance reduction. On the other hand, some financial
engineering problems are so large that variance reduc-
tion is important.

For example, it is too time-consuming to compute
firmwide value at risk (VaR) for a large financial insti-
tution by simulating many future scenarios and pricing
all the firm’s derivatives by simulation in each scenario,
so financial institutions rely on methodologies of ques-
tionable soundness for computing VaR. Lee (1998) in-
vestigates one question of efficiency for such large VaR
simulations. Here variance reduction may make better
answers affordable.

Another example is model calibrations that involve
simulation of options’ prices to compute the objective
of an optimization. This takes a long time because
simulations must be done at every iteration of the opti-
mization routine. In this case, variance reduction makes
possible greater responsiveness to changing market con-
ditions.
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4.1 Antithetic Variates

Because of its simplicity, the method of antithetic vari-
ates is a good introduction to variance reduction tech-
niques, among which it is not one of the most pow-
erful. A quantity simulated on one path, such as a
payoff, always has a representation f(U) where U is
uniformly distributed on [0, 1]m. The antithetic variate
of U is 1 − U = (1 − U1, . . . , 1 − Um). The method
uses as an estimate from a pair of antithetic variates
(f(U) + f(1− U))/2, which can be called the symmet-
ric part of f . This is unbiased because 1 − U is also
uniformly distributed on [0, 1]m.

The antisymmetric part of f is (f(U)− f(1−U))/2.
These two parts are uncorrelated and sum to f(U), so
the variance of f(U) is the sum of the variances of the
symmetric and antisymmetric parts. The estimator us-
ing antithetic variates has only the variance of the sym-
metric part of f , and requires at most twice as much
work as the old. The variance of the antisymmetric
part is eliminated, and if it is more than half the total
variance of f , efficiency improves. This is true, for in-
stance, when f is monotone, as it is in the case of the
European call option in the Black-Scholes model.

4.2 Stratification and the Latin Hypercube

Stratification makes simulation more like numerical in-
tegration by insisting on a certain regularity of the dis-
tribution of simulated paths. This technique divides
the sample space into strata and makes the fraction
of simulated paths in each stratum equal to its prob-
ability in the model being simulated. Working with
the representation f(U1, . . . , Um), one choice is to di-
vide the sample space of U1 into N equiprobable strata
[0, 1/N ], . . . , [(N −1)/N, 1]. Then the stratified estima-
tor is

1
N

N∑
i=1

f

(
i− 1 + U

(i)
1

N
,U

(i)
2 , . . . , U (i)

m

)

where the random variables U
(i)
k are i.i.d. uniform on

[0, 1]. This estimator involves N paths, whose first com-
ponents are chosen randomly within a predetermined
stratum. Because these N paths are dependent, to get
a confidence interval requires enough independent repli-
cations of this stratified estimator sufficient to make
their mean approximately normally distributed.

Stratification applies in the quite general situation of
sampling from a distribution that has a representation
as a mixture: above, the uniform distribution on [0, 1]
is an equiprobable mixture of N uniform distributions
on intervals of size 1/N . The general case is sampling
from a distribution that is a mixture of N distribu-
tions, the ith of which has mixing probability pi, mean

µi, and variance σ2
i . The mixed distribution has mean∑N

i=1 piµi and variance

N∑
i=1

pi

(
µ2

i + σ2
i

)
−

(
N∑

i=1

piµi

)2

.

A stratified estimate has variance
∑N

i=1 piσ
2
i . The

amount of variance reduction is the difference

N∑
i=1

piµ
2
i −

(
N∑

i=1

piµi

)2

which is the variance of µη, where η is a random vari-
able taking on the value i with probability pi. That is,
stratification removes the variance of the conditional ex-
pectation of the outcome given the information being
stratified.

This approach can be very effective when the payoff
depends heavily on a single random variable, and it
is possible to sample the rest of the path conditional
on this random variable. For instance, if the payoff
depends primarily on a terminal stock price ST whose
process S is closely linked to a Brownian motion W ,
then a good strategy is to stratify on WT and simulate
Wt1 , . . . ,Wtm−1 conditional on it.

Stratification in many dimensions at once poses a dif-
ficulty. Using N strata for each of d random variables
results in a mixture of Nd distributions, each of which
must be sampled many times if there is to be a confi-
dence interval. If d is too large there may be no way
to do this without exceeding the computational bud-
get. Latin hypercube sampling offers a way out of this
quandary.

Consider the stratification of each dimension of
[0, 1]m into N intervals of equal length. A Latin hy-
percube sample includes a point in only N of the Nd

boxes formed. This sample has the property that it is
stratified in each dimension separately, that is, for each
stratum j and dimension k, there is exactly one point
U (i) such that U

(i)
k is in [(j − 1)/N, j/N ]. The Latin

hypercube sampling algorithm illustrates:

Loop over dimension k = 1, . . . ,m.

• Produce a permutation J of 1, . . . , N .

• Loop over point i = 1, . . . , N .

– Choose U
(i)
k uniformly in [(Ji − 1)/N, Ji/N ].

Because points are uniformly distributed within their
boxes, the marginal distributions are correct. Choosing
all permutations with equal probability makes the joint
distribution correct.
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Because it is not full stratification, Latin hypercube
sampling does not remove all the variance of the con-
ditional expectation given the box. Writing this condi-
tional expectation as a function µ(j1, . . . , jm) where jk

is the stratum in the kth dimension, Latin hypercube
sampling asymptotically removes only the variance of
the additive part of this function. The additive part
is the function g(j1, . . . , jm) =

∑m
k=1 gk(jk) that mini-

mizes the expected squared error of its fit to the original
function µ. Sometimes the fit is quite good, for instance
when pricing a relatively short-term interest-rate swap
in the Hull-White model. In each of a sequence of peri-
ods, the swap pays the difference between preset inter-
est payments and the then-prevailing interest payments.
These terms are linear in the normal random variates
Z1, . . . , Zm, but for pricing must also be multiplied by
nonlinear discount factors.

4.3 Importance Sampling

The intuitive way to plan a simulation to estimate
the expectation of a payoff f that depends on a path
X1, . . . , Xm is to simulate paths according to the law of
the process X, then compute the payoff on each path.
This is a way of estimating the integral∫

f(x)g(x)dx =
∫ (

fg

g̃

)
(x)g̃(x)dx

as long as g̃ is nonzero where fg is. The second inte-
gral has an interpretation as simulation of paths under
a new probability measure Q̃. The path X1, . . . , Xm

has likelihood g under Q and g̃ under Q̃. There is also
a new payoff f̃ = fg/g̃, the product of the original
payoff f and the Radon-Nikodym derivative or likeli-
hood ratio g/g̃. One way in which importance sampling
can arise naturally in the financial context is when Q
and Q̃ are both martingale measures, in which case the
Radon-Nikodym derivative is the ratio of the associated
numeraires’ terminal values.

The idea of importance sampling is to choose g̃ so
that f̃ has less variance under Q̃ than f does under Q.
When f is positive, the extreme choice is g̃ = fg/µ,
where µ is the constant of integration that makes g̃ a
probability density. Then f̃ = µ and has no variance.
However, this constant µ is precisely

∫
f(x)g(x)dx, the

unknown quantity to be estimated. The goal is to
choose g̃ to be a tractable density that is close to be-
ing proportional to fg. That is, one wishes to sample
states x according to importance, the product of likeli-
hood and payoff.

It is possible for importance sampling to go awry, as
the following example demonstrates. Suppose f(x) = x
and

g(x) =
{

e−x if x ∈ [0,K]
αx−4 if x > K

where K is very large. The simulation estimates the
mean of a random variable whose distribution is almost
exponential, but has a power tail. The mean and vari-
ance are both finite. Suppose g̃(x) is simply e−x for all
x ≥ 0. As x goes to infinity, so does the likelihood ratio
g/g̃. The new simulation variance is infinite: the new
second moment is∫ ∞

0

(
xg(x)
g̃(x)

)2

g̃(x) dx > α2

∫ ∞

K

x−6ex dx = ∞.

Moreover, we are likely not to simulate any x � K,
which has a large likelihood ratio, in which case the
sample standard deviation will not alert us to the failure
of the scheme.

The potential for mistakes aside, importance sam-
pling has proven extremely powerful in other applica-
tions, especially in simulation of rare events, which are
more common under an appropriate importance sam-
pling measure. There have been some effective finan-
cial engineering applications in this spirit, involving the
pricing of derivatives that are likely to have zero payoff.
An example is an option that is deep out of the money,
meaning that the underlying is currently distant from
a threshold that it must cross in order to produce a
positive payoff.

Importance sampling may become even more valu-
able in financial engineering with the advent of more
sophisticated approaches to risk management. There
is an increasing appreciation of the significance for risk
management of extreme value theory and the heavy-
tailed distributions of many financial variables. In mod-
els and applications where behavior in the tails of dis-
tributions has greater impact, importance sampling has
greater potential. An example of such developments is
the work of Glasserman, Heidelberger, and Shahabud-
din (2002).

4.4 Control Variates

Unlike other methods that adjust the inputs to simu-
lation, the method of control variates adjusts the out-
puts directly. A simulation intended to estimate an un-
known integral can also produce estimates of quantities
for which there are known formulas. The known errors
of these estimates contain information about the un-
known error of the estimate of the quantity of interest,
and thus are of use in correcting it. For instance, using
the risk-neutral measure, the initial stock price S0 =
EQ[e−rT ST ], but the sample average e−rT

∑n
i=1 S

(i)
T /n

will differ from S0. If it is too large, and the payoff
f(ST ) has a positive correlation with ST , then the es-
timate of the security price is probably also too large.

Generally, in a simulation to estimate the scalar E[X]
which also generates a vector Y such that E[Y ] is
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known, an improved estimator is X−β(Y −E[Y ]) where
β is the multiple regression coefficient of X on Y . The
variance of this estimator is the residual variance of X
after regression on Y ; the better the linear fit of X on
the predictors Y , the less variance remains after the ap-
plication of control variates. The regression coefficient
β is presumably unknown if E[X] is unknown, but the
usual least squares estimate will suffice. However, using
the same paths to estimate β and evaluate the control
variates estimator creates a slight bias. An alternative
is to estimate β from some paths reserved for that pur-
pose alone.

A favorite example of the great potential of control
variates is the discretely monitored Asian call option in
the Black-Scholes model, which appeared in Section 2.
Averaging, as in the average stock price S̄T , is the dis-
tinguishing feature of Asian options. For economic rea-
sons, the convention is that the averaging is arithmetic,
not geometric. For instance, an Asian option on oil
futures could help a power company hedge the aver-
age cost of its planned future purchases of oil, while
an option on a geometric average of prices does not
have such an obvious purpose. On the other hand, the
distribution of the arithmetic average of jointly lognor-
mal random variables (such as St1 , . . . , Stm

) is inconve-
nient, while the distribution of their geometric average
is again lognormal, so a geometric Asian option has a
closed-form price in the Black-Scholes model. The pay-
offs of arithmetic and geometric Asian call options are
extremely highly correlated, and therefore the geomet-
ric Asian call option makes a very effective control vari-
ate for simulation of the arithmetic Asian call option:
it can reduce variance by a factor of as much as one
hundred. Using this control variate, the simulation is
effectively estimating only the slight difference between
the arithmetic and geometric Asian options.

4.5 Repricing, Matching, and Weights

As an example of a control variate, we used a stock
price, which is a known expectation differing from the
corresponding simulated average. Some practitioners
react to such differences with dismay: when the simu-
lation reprices market securities such as a stock incor-
rectly, the policy of trading at simulated prices results
in arbitrage! Of course, one does not trade market se-
curities on the basis of simulated prices, nor does one
trade over-the-counter derivatives at exactly the simu-
lated price. Rather, one establishes a bid-ask spread,
accounting for model risk and profit margin. Nonethe-
less, the fear that errors in repricing market securities
indicate arbitrage in the simulated derivative security
prices may remain, leading to corrective techniques that
are closely related to control variates.

Continuing with the example of a single stock, one
approach is simply to change the simulated values of
ST until their sample average is indeed erT S0, then
computing the simulated derivative payoffs from these
adjusted simulated terminal stock prices. One way to
do this is to multiply ST by erT S0n/

∑n
i=1 S

(i)
T . This is

essentially taking the control variates concept and using
it to adjust values inside the simulation, rather than to
adjust the output directly. A related idea is to adjust
the inputs to the simulation, the random variates. For
instance, one might insist that the standard normal ran-
dom variates used in the simulation have sample mean
0 and sample standard deviation 1. Affine transforma-
tion of the random variates can accomplish this.

Although such affine transformation is reminiscent
of control variates, these techniques are not necessarily
equivalent, because the transformation takes place at
different stages in the simulation. However, like control
variates, these techniques create bias. Their relative
advantages vary from problem to problem.

Yet another alternative is to make the simulation es-
timator an unequally weighted average of the sample
paths. The weights are typically chosen to minimize
some measure of nonuniformity while satisfying a con-
straint. For example, the usual control variates estima-
tor turns out to be of this form, where the constraint is
that the control variate’s sample average must equal the
known mean, and the objective is the sum of squared
weights. Another example is Avellaneda’s (1998) use
of a relative entropy criterion with the constraint that
market securities’ average discounted payoff must equal
their market prices. This is often viewed not so much as
an efficiency technique, but a corrective to the part of
model risk that arises when a calibrated model does not
reprice market securities exactly. For more on weighted
Monte Carlo, see Glasserman and Yu (2003).

4.6 Conditional Monte Carlo

Another variance reduction technique is conditional
Monte Carlo. By substituting conditional expectations
when they are known, it often reduces both the work
and variance per path. In derivative security pricing,
this can be the simulation of the future value of the
security, rather than of its payoff.

For example, the down-and-in option mentioned in
Section 2 pays the same as a standard option if the
underlying goes below a specified barrier, and if not,
it pays nothing. Suppose there is a formula f for the
standard option price. Then one may simulate the un-
derlying path until maturity T or until the first time τ
that the barrier is crossed, whichever comes first. Then
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the estimated option value is

1
n

n∑
i=1

1{τ (i) ≤ T}D(i)

τ(i)f
(
τ (i), S

(i)

τ(i)

)
where 1 is the indicator function. This eliminates the
conditional variance of the standard option’s payoff and
reduces the expected number of steps per path from T
to E[min{τ, T}].

This approach also handles knock-out options
through in-out parity, and applies fairly directly to
other derivatives such as forward-starting options. In
a different way, conditional Monte Carlo has also been
applied to stochastic volatility models in which the op-
tion price is known conditional on the volatility path.

4.7 Work Reduction

While conditional Monte Carlo should reduce not only
work but also variance, as the name “variance reduc-
tion” suggests, there are methods that reduce work but
not variance, or even increase variance. These might be
called “work reduction” techniques. Just as a variance
reduction technique that reduces V (variance per path)
while increasing W (work per path) enhances efficiency
if it reduces the product V W , so an unbiased work re-
duction technique enhances efficiency if it reduces V W
by decreasing W more than it increases V . This is
reducing the simulation variance given a fixed compu-
tational budget. A work reduction technique that in-
troduces bias can still enhance efficiency in the sense of
reducing mean squared error.

One example is early stopping of some simulated
paths, which can enhance efficiency if the beginning of a
path contains more useful information than the end of a
path. It can make sense to allocate more of the simula-
tion resources to the steps of the path that explain more
of the variance in the simulation estimator. This can
be done without bias even when the decision to stop is
dependent on the simulated state. See Glasserman and
Staum (2002) and references therein.

A more prosaic way to reduce work, important in
practice, is to code simulation programs efficiently. In
part, this means simply refraining from unnecessary
computation and memory access, which can be sur-
prisingly easy to fall into. In part, this can involve
more interesting techniques such as fast algorithms for
numerical function evaluation and financial approxima-
tions that impart slight bias. See Staum, Ehrlichman,
and Lesnevski (2003) for examples.

4.8 Summary

The methods discussed above illustrate two major types
of variance reduction. Importance sampling and con-

trol variates rely on knowledge about the structure of
the problem to change the payoff or sampling distri-
bution. Stratified and Latin hypercube sampling also
benefit from a good choice of the variables to stratify.
However, these methods and antithetic variates work
by making Monte Carlo simulation less purely random
and more like other numerical integration techniques
that use regular, not random, distributions of points.
Similarly, quasi-Monte Carlo simulation is a numeri-
cal integration technique that bears a resemblance to
Monte Carlo, although its foundations are determinis-
tic.

5 QUASI-MONTE CARLO

A sample from the multidimensional uniform distribu-
tion usually covers the unit hypercube inefficiently: to
the eye it seems that there are clusters of sample points
and voids bare of sample points. A rectangular grid
of points looks more attractive, but the bound on the
error of this numerical integration technique converges
as n−2/d where n is the number of points used and d
is the dimension of the hypercube. For dimension four
or higher, there is no advantage compared to the or-
der n−1/2 convergence of the standard error of a Monte
Carlo (MC) simulation. The quasi-Monte Carlo (QMC)
approach, often used in financial engineering, is to gen-
erate a deterministic set of points that fills space effi-
ciently without being unmanageably numerous in high
dimension. Several authors have proposed rules for gen-
erating such sets, known as low-discrepancy sequences:
see Niederreiter (1992). The name “quasi-Monte Carlo”
does not indicate that these sequences are somewhat
random, but rather that they look random; indeed they
look more random than actual random sequences, be-
cause the human mind is predisposed to see patterns
that are statistically insignificant.

The great attraction of low-discrepancy sequences is
that they produce an error of integration whose bound
converges as (log n)d/n, a better asymptotic rate than
n−1/2. As this result suggests, QMC is often much more
efficient than MC, at least if d is not too large. If dimen-
sion d is too large relative to sample size n, two things
can go wrong. First, the regularity of popular low-
discrepancy sequences is such that, while coordinates 1
and 2 of points 1, . . . , n in a low-discrepancy sequence
may cover the unit square evenly, coordinates d−1 and
d of these n points may cover it very badly, causing
potentially large error. See, for instance, Figure 2 of
Imai and Tan (2002). Second, if (log n)d/n > n−1/2, it
suggests that MC may be more accurate than QMC.

However, QMC is often more accurate than MC even
when the dimension d is large and the sample size n is
not. An explanation for this surprise is the low effective
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dimension of many high-dimensional financial simula-
tion problems. Roughly, effective dimension means the
number of dimensions required to explain, in the sense
of analysis of variance, a large proportion of the entire
variance of the integrand. For precise definitions and
distinctions, see Caflisch, Morokoff, and Owen (1997).
Owen (2002) demonstrates that low effective dimension
is necessary for scrambled (0,m, d)-nets, a type of low-
discrepancy sequence, to beat MC; it is an open ques-
tion whether it is necessary for all QMC methods.

Such observations lead to contemplation of effective
dimension reduction. If one can change the simulation
scheme so that the integrand has the same integral on
the unit hypercube but a lower effective dimension, then
QMC may be more effective. For example, some such
transformations use Brownian bridge or principal com-
ponents as the basis for producing a sample path, which
would ordinarily proceed by using one random variate
at each time step in turn. Imai and Tan (2002) review
and extend efforts in this area.

Another promising development is randomized quasi-
Monte Carlo (RQMC), which randomizes a low-
discrepancy sequence so that it gains desirable statis-
tical properties while retaining its regularity proper-
ties. An RQMC algorithm produces dependent ran-
dom vectors U (1), . . . , U (n) each uniformly distributed
on [0, 1]m. This makes RQMC much like MC with a
variance reduction technique: the uniformity of each
U (i) means that the estimator is unbiased, while depen-
dence suitable for the problem provides reduced vari-
ance. An example is the random shift. Taking Ũ (i)

from a low-discrepancy sequence and ∆ uniformly dis-
tributed on [0, 1]m, U (i) = (Ũ (i) + ∆) mod 1 is also
uniformly distributed on [0, 1]m, but retains the origi-
nal spacing. From repeated random draws of the shift
∆, a confidence interval is available. As with impor-
tance sampling, there is the potential for great improve-
ment in efficiency, but a mistake can lead to increased
variance. For further information, see the survey of
L’Ecuyer and Lemieux (2002).

Financial engineering has proved to be a domain that
is quite favorable for QMC. The combination of QMC
with variance reduction techniques can be particularly
powerful. For an overview of QMC methods for finan-
cial computations and further references, see Lemieux
and L’Ecuyer (2001).

6 CONCLUSIONS

Many general simulation efficiency techniques apply to
option pricing. However, because many of these general
techniques require problem-specific knowledge to be ap-
plied to best advantage, much research has gone into
their application in the financial context. The knowl-

edgeable practitioner can use these ideas to achieve
high-quality estimates despite constraints on time and
computing power. This process is freeing financial en-
gineers from a dependence on closed-form solutions and
tractable but unrealistic models to simulate more real-
istic models, leading to better answers.
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