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Abstract

We use linear programming to provide a sensitivity analysis of Eisenberg and

Noe’s one-period model of contagion via direct bilateral links. We provide a

formula for the sensitivities of clearing payments and the terminal wealth of

each node to initial wealth of each node.
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1. Introduction

Eisenberg and Noe [1] present a one-period model of contagion via direct

bilateral links. They provide an algorithm for computing the payments that

each node makes. Elsinger [2] extends their model to include cross-holdings

of equity among nodes and multiple levels of seniority for debt. We use linear

programming to provide a sensitivity analysis of the Eisenberg-Noe model,

showing how the payments made and the terminal wealth of nodes are influ-

enced by small changes in the initial wealth of each node. We use the same
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techniques to address multiple levels of seniority for debt and sensitivities to

the nodes’ liabilities in Liu and Staum [4].

In systemic risk management, it is vital to address scenarios that involve

large changes to wealth, but the analysis of sensitivity to small changes also

has an important role to play. Sensitivity analysis is a crucial ingredient

in optimization and risk allocation methods that are based on gradients.

We envision applications in which sensitivity analysis is applied in each of

many scenarios sampled from a distribution describing shocks to the financial

system. An average sensitivity across scenarios can be used to describe the

impact of a small change in initial wealth on the expected performance of the

financial system. For example, in Liu and Staum [4], we use this scenario-by-

scenario sensitivity analysis of the Eisenberg-Noe model in a risk allocation

method for deposit insurance.

2. The Eisenberg-Noe Model and Algorithm

In the Eisenberg-Noe model, there are N nodes which have promised to

make certain payments to each other. Node i has initial wealth ei and has

total liabilities of p̄i. The fraction of its total liabilities owed to node j is

Πij. A node has no liabilities to itself, so Πii = 0 for all i = 1, . . . , N . Also,

if p̄i = 0, let Πij = 0. If node i pays pi in total, then it pays piΠij to node j

because of the equal priority of all liabilities. Then the terminal wealth of

node j is

vj = ej +
∑
i 6=j

piΠij − pj. (1)

2



Let e, p, p̄, and v be the vectors whose ith components are respectively

ei, pi, p̄i, and vi; let Π be the matrix whose (i, j)th element is Πij. In this

notation, Equation (1) can be rewritten as

v = e+ (Π> − I)p. (2)

Eisenberg and Noe [1] are concerned with the existence, uniqueness, and

computation of a clearing payment vector satisfying the following conditions

for all j = 1, . . . , N :

• the total payment node j makes is nonnegative and does not exceed its

total liabilities: 0 ≤ pi ≤ p̄i,

• limited liability of equity: vj ≥ 0, and

• priority of debt over equity: vj > 0 only if pj = p̄j.

(These conditions on p and v can be interpreted as conditions on the payment

vector p alone by making use of Equation (2).) Under mild assumptions on

Π, e, and p̄, the clearing payment vector is unique. One sufficient condition

is to have ei > 0 for all i = 1, . . . , N [1, §2.4]. We assume this condition

holds and let p∗ denote the unique clearing payment vector, and v∗ = e +

(Π> − I)p∗ denote the resulting vector of terminal wealth.
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Eisenberg and Noe [1, §3.2] prove that, for any row vector c whose coef-

ficients are all strictly positive, an optimal solution of the linear program

P (c, e) : max
p
cp such that (I −Π>)p ≤ e, 0 ≤ p ≤ p̄

is a clearing payment vector. Indeed, p∗ is the unique optimal solution of

this linear program. That is, p∗ can be found by maximizing a weighted sum

of all nodes’ payments, subject to the constraints that a node’s payment can

exceed what it receives from other nodes by no more than its initial wealth,

and its payment is nonnegative and can not exceed its promised payment.

Our sensitivity analysis is based on a reformulation of the linear program

P (c, e).

For analysis of computational complexity, it is preferable to consider an-

other algorithm for computing the clearing payment vector p∗, the fictitious

default algorithm of Eisenberg and Noe [1, §3.1]. Where N is the number

of nodes, the fictitious default algorithm requires O(N) iterations, each of

which involves O(N2) operations, for a computational complexity of O(N3).

A brute-force method of computing sensitivities to the initial wealth of each

of N nodes involves applying the fictitious default algorithm O(N) times,

each time with a sufficiently small perturbation to the initial wealth of one

node. The computational complexity of this brute-force method is O(N4).

Our method of sensitivity analysis takes the clearing payment vector as an

input, and its computational complexity is O(N3), dominated by the inver-
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sion of an N×N matrix in Equation (3). There are thousands of banks in the

United States alone, so our method could be thousands of times faster than

the brute-force method in large-scale applications. For applications in which

sensitivity analysis is performed in each of many scenarios, the increased

speed would be practically significant.

3. Alternative Linear Programs

For purposes of sensitivity analysis, P (c, e) can be reformulated by in-

troducing the vector v of slack variables for the inequality constraint (I −

Π>)p ≤ e. The slack variables allow the formulation of an equality con-

straint (I−Π>)p+v = e which, with the bound v ≥ 0, implies the inequal-

ity constraint (I −Π>)p ≤ e. The equality constraint (I −Π>)p + v = e

is equivalent to Equation (2), i.e. the slack variable vj is the terminal wealth

of node j if the payment vector is p. This justifies the use of the notation v

for the vector of slack variables. Let

x =

 p
v

 , c̃ =

[
c 0

]
, A =

[
I −Π> I

]
, and u =

 p̄

∞

 ,

where each sub-matrix or sub-vector is of size N . The linear program P (c, e)

is equivalent to the linear program

P̃ (c, e) : max
x
c̃x such that Ax = e, 0 ≤ x ≤ u,
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whose optimal solution x∗ is the transpose of [(p∗)>; (v∗)>].

Because we are not primarily interested in the sensitivity of the objective

function value c̃x∗ = cp∗ for a vector c whose components are all positive,

we also consider linear programs in which the objective is to maximize the

payment made by a single node or the terminal wealth of a single node. Let ξj

be a row vector of length N whose jth element is 1 and whose other elements

are zero. For j = 1, . . . , N , P̃ (ξj, e) has objective function [ξj 0]x = ξjp =

pj. We consider these linear programs to learn about the sensitivity of p∗j

and v∗j to e. The following proposition implies that x∗ is also an optimal

solution to all such linear programs.

Proposition 1. If c is a non-zero, non-negative row vector of length N ,

then x∗ is an optimal solution of P̃ (c, e).

Proof. Suppose that x = [p; v] is not an optimal solution of P̃ (c, e). Because

P̃ (c, e) is equivalent to P (c, e), this implies that p is not an optimal solution

of P (c, e). If p is infeasible, then it is not the clearing payment vector p∗,

which is feasible. If p is feasible but not optimal, then there exists a feasible

p′ such that p′j > pj for some j.

Suppose that p is feasible and p′j > pj. Let c′ be the row vector of length

N defined by c′j = 1 and c′i = (p′j − pj)/(1 +
∑N

k=1 p̄k) for all i 6= j. Its
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components are all strictly positive. Because p′ ≥ 0 and p ≤ p̄,

c′p′ − c′p = (p′j − pj) +
p′j − pj

1 +
∑N

k=1 p̄k

∑
i 6=j

(p′i − pi)

≥ (p′j − pj)

(
1−

∑
i 6=j p̄i

1 +
∑N

k=1 p̄k

)
> 0.

Because p′ is feasible and c′p′ > c′p, p is not an optimal solution of P (c′, e).

At the end of Section 1, we observed that the clearing payment vector p∗ is

an optimal solution of P (c′, e) for all c′ with strictly positive components.

Therefore p 6= p∗.

Thus, if x = [p; v] is not an optimal solution of P̃ (c, e), then whether or

not p is feasible, p 6= p∗, so x 6= x∗.

Our approach is to solve P̃ (c̃, e) once, for a single value of c whose com-

ponents are all strictly positive (for example, all equal to one), to get x∗,

and then to compute sensitivities with respect to e1, . . . , eN by performing

sensitivity analysis on P̃ (ξ1, e), . . . , P̃ (ξN , e) at x∗. The reason to do this

is that P̃ (c, e) has a unique optimal solution which is also optimal for each

problem P̃ (ξj, e), whereas it is possible for P̃ (ξj, e) to have multiple optimal

solutions, some of which are not optimal for P̃ (ξi, e) where i 6= j.

4. Sensitivity Analysis

To perform sensitivity analysis on P̃ (ξj, e), we consider bases for the

optimal solution x∗, which we characterize by introducing a classification of
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nodes. Because of the priority of debt over equity (discussed in Section 1),

each node j falls into one of three mutually exclusive sets:

1. V+, positive terminal wealth: v∗j > 0 and p∗j = p̄j,

2. V−, default: v∗j = 0 and p∗j < p̄j, or

3. V0, borderline: v∗j = 0 and p∗j = p̄j.

The variable vj is non-binding if j ∈ V+, while pj is non-binding if j ∈ V−.

These variables must be basic. If there are borderline nodes, forming a basis

of size N requires including some binding variables in the basis, in which case

x∗ is a degenerate solution and has multiple bases. We consider two bases

B+ and B− of x∗. If node j has positive terminal wealth, vj is a basic variable

in B+ and B−; if node j defaults, pj is a basic variable in B+ and B−; and

if node j is borderline, vj is a basic variable in B+ and pj is a basic variable

in B−. If there are no borderline nodes, x∗ is a non-degenerate solution and

has a single basis B = B+ = B−. To express this formally, let the variables

be ordered as [p1, . . . , pN , v1, . . . , vN ], so that j is the index of the variable pj

and N + j is the index of the variable vj. Then

B+ = V− ∪ {N + j : j ∈ V0 ∪ V+} and B− = V− ∪ V0 ∪ {N + j : j ∈ V+}.

The following proposition uses the bases B+ and B− to provide the desired

sensitivity analysis. First, we define some notation. When a basis such as B

is used as a subscript of a vector or matrix, the result is a vector or matrix

formed by selecting the rows or columns whose indices are in B. For example,
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the basic matrix B = A·B is the square matrix formed of the columns of A

corresponding to variables in the basis B, while [I 0]·B is the square matrix

whose (h, i)th element is one if xh = ph is the ith of N variables in the

basis B, and is zero otherwise. Let ∂−/∂ei and ∂+/∂ei be the left and right

derivatives with respect to ei. A matrix of the form ∂p∗/∂e has (h, i)th

element equal to ∂p∗h/∂ei.

Proposition 2. The partial derivatives of the clearing payments with respect

to initial wealth are given by

∂+p∗

∂e
= [I 0]·B+

(
B+
)−1

and
∂−p∗

∂e
= [I 0]·B−

(
B−
)−1

. (3)

If there is no borderline node, then ∂p∗/∂e = [I 0]·BB
−1.

Proof. For any h = 1, 2, . . . , N , by Proposition 1, x∗ is an optimal solution

to P̃ (ξh, e), whose objective function is [ξh 0]x = ξhp = ph. For any i =

1, 2, . . . , N , let εi = min{p̄k − p∗k : k ∈ V−}/2, which is strictly positive.

Consider the LP P̃ (ξh; e′) where e′ = e + εiξ
i, representing an increase in

the initial wealth ei to e′i = ei + εi. Let V ′−, V ′+, and V ′0 represent the sets of

defaulting nodes, nodes with positive terminal wealth, and borderline nodes,

respectively, in the scenario where initial wealth is e′. The same nodes default

in both scenarios, V ′− = V−, and the original nodes with positive terminal

wealth still have positive terminal wealth, V+ ⊆ V ′+. The original borderline

nodes may remain borderline or may have positive terminal wealth in the

new scenario: V0 ⊆ V ′0∪V ′+. From V ′− = V− and V0∪V+ = V ′0∪V ′+ it follows
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that B+ is still a basis for x∗ in P̃ (ξj; e′); indeed, B+ = (B+)′. Because ei

can be increased without changing the basis B+, ∂+p∗h/∂ei = ∂+x∗h/∂ei =

[ξh 0]B+(B+)−1 (ξi)
>

[3, Proposition 7]. The proof for the left derivatives

is similar. The last assertion follows from B = B+ = B− in the absence of

borderline nodes.

With Equations (2) and (3), we can compute the partial derivatives of

terminal wealth with respect to initial wealth:

∂+v∗

∂e
= I + (Π> − I)

∂+p∗

∂e
and

∂−v∗

∂e
= I + (Π> − I)

∂−p∗

∂e
. (4)

If there is no borderline node, then ∂v∗/∂e = I + (Π> − I)∂p∗/∂e.

5. Example

We illustrate our method with a simple example in which there are N = 3

nodes with

Π =


0 0.5 0.5

0.25 0 0.75

0.5 0.5 0

 , p̄ =


80

80

10

 , and e =


41

42

50

 .

The clearing vector is p∗ = [66, 80, 10]>. Choosing c = [1, 1, 1], the optimal

solution of P̃ (c) is given by p∗ = [66, 80, 10] and v∗ = [0, 0, 133]>. The first

node defaults, the second is borderline, and the third has positive terminal

wealth. Our bases are B+ = [1, 5, 6], containing p1, v2, and v3, and B− =
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[1, 2, 6], containing p1, p2, and v3. By selecting columns from the matrix

A =

[
I −Π> I

]
=


1 −0.25 −0.5 1 0 0

−0.5 1 −0.5 0 1 0

−0.5 −0.75 1 0 0 1


we derive the corresponding basis matrices

B+ = A·B+ =


1 0 0

−0.5 1 0

−0.5 0 1

 and B− = A·B− =


1 −0.25 0

−0.5 1 0

−0.5 −0.75 1

 .

The matrices [I 0]·B+ and [I 0]·B− are

[I 0]·B+ =


1 0 0

0 0 0

0 0 0

 and [I 0]·B− =


1 0 0

0 1 0

0 0 0

 .

From Equation (3),

∂+p∗

∂e
=


1 0 0

0 0 0

0 0 0

 and
∂−p∗

∂e
≈


1.14 0.29 0

0.57 1.14 0

0 0 0

 .

11



From Equation (4),

∂+v∗

∂e
=


0 0 0

0.5 1 0

0.5 0 1

 and
∂−v∗

∂e
=


0 0 0

0 0 0

1 1 1

 .

These sensitivities indicate some facts which may interest an analyst of this

three-node system. The sensitivity ∂−p∗1/∂e1 ≈ 1.14 shows that a decrease

of $1 in the initial wealth of node 1 causes the clearing payment made by

that node to drop by more than $1. This happens because such a decrease

also reduces the wealth flowing into node 2, making node 2 default, and thus

reduces the clearing payment from node 2 to node 1, and hence the wealth

flowing into node 1. From the sensitivities of v∗ to e, we see that whereas a

decrease in the initial wealth of any node results in a loss of terminal wealth

entirely borne by node 3, an increase in the initial wealth of node 1 results

in a gain in terminal wealth split evenly between nodes 2 and 3, while an

increase in the initial wealth of node 2 or 3 only increases the terminal wealth

of that node itself.
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