
NORTHWESTERN UNIVERSITY

Two-Level Simulation of Expected Shortfall: Confidence Intervals,

Efficient Simulation Procedures, and High-Performance Computing

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Industrial Engineering and Management Sciences

By

Hai Lan

EVANSTON, ILLINOIS

June 2010



2

c© Copyright by Hai Lan 2010

All Rights Reserved



3

ABSTRACT

Two-Level Simulation of Expected Shortfall: Confidence Intervals, Efficient Simulation

Procedures, and High-Performance Computing

Hai Lan

We develop and evaluate a two-level simulation procedure that produces a confidence

interval for expected shortfall. The outer level of simulation generates financial scenarios

while the inner level estimates expected loss conditional on each scenario. Our procedure

uses the statistical theory of empirical likelihood to construct a confidence interval, and

tools from the ranking-and-selection literature to make the simulation efficient.

Parameters that govern the behavior of the simulation procedures are important to

the effectiveness of sophisticated simulation. A parameter tuning method for a two-

level simulation with screening is discussed. A special procedure is introduced to predict

the behavior of the two-level simulation based on historical data or a pilot simulation.

A hybrid method of grid search and nonlinear convex local optimization techniques is

adopted to find suitable input parameters to optimize the forecast performance of the

two-level simulation.
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On the other hand, we accelerate the simulation by applying the new development of

parallel computing into the two-level simulation with screening. A hybrid of multi-core

CPU and multiple GPUs is adopted to hasten the computational efficiency of two-level

simulation with screening. Currently, we can shorten the simulation time by a factor of

40 compared with serial implementation.
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CHAPTER 1

Introduction

Financial risk management is vital to the survival of financial institutions and the

stability of the financial system. A fundamental task in risk management is to measure

the risk entailed by a decision, such as the choice of a portfolio. In particular, regulation

requires each financial institution to measure the risk of the firm’s entire portfolio and

to set its capital reserves accordingly, to reduce the chance of bankruptcy if large losses

occur. This firm-wide risk measurement problem is challenging. Solution methods that

avoid Monte Carlo simulation involve simplifications and approximations that cast doubt

on the validity of the answer. Monte Carlo simulation allows for detailed modeling of

the behavior of the firm’s portfolio given possible future events, and it is compatible with

the use of the best available models of financial markets. Because of this, Monte Carlo

simulation is an attractive methodology, but its appeal is limited by its computational

cost, which can be quite large, especially when derivative securities are involved (McNeil

et al., 2005, § 2.3.3). This is because a precise estimate of the risk measure requires

consideration of many future financial scenarios, and it takes a long time to compute

the value of all the derivative securities in any scenario. Consequently, a large firm-

wide risk measurement simulation can take days to run on a cluster of one thousand

computers. Because of the speed at which markets move, timelier answers are needed.

One of our main contributions is to develop a more efficient simulation procedure for
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risk measurement when it is time-consuming to compute the portfolio value in a future

financial scenario.

Let V be a random variable representing the value of a portfolio in the future, and

let FV be its distribution. A risk measure is a functional T (FV ) of this distribution. For

example, value at risk VaR1−p may be defined as the negative of the p-quantile of FV . In

market risk management, it is usual to consider the 95th or 99th percentile: p = 5% or

1%. In this paper, we focus on expected shortfall:

(1.1) ES1−p = −1

p

(
E[V 1{V ≤vp}] + vp(p− Pr[V ≤ vp])

)
,

where vp is the lower p-quantile of FV . If FV is continuous at vp, then ES equals tail

conditional expectation (Acerbi and Tasche, 2002):

TCE1−p = −E[V |V ≤ vp].

Closed-form expressions for ES are available when the distribution FV belongs to

some simple parametric families (McNeil et al., 2005, §§ 2.2.4, 7.2.3). There is also a

literature on nonparametric estimation of expected shortfall from data V1, . . . , Vk drawn

from a stationary process whose marginal distributions are FV . In this setting, Chen

(2008) shows that although kernel smoothing is valuable in estimating VaR, the simplest

nonparametric estimator of ES, involving an average of the ⌈kp⌉ smallest values among

V1, . . . , Vk, is preferred to kernel smoothing. Accordingly, we use unsmoothed averages in

our construction of confidence intervals for ES.

However, we consider a different situation, in which we do not have a sample of data

from FV and we do not have a parametric form for FV . In many risk measurement
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applications, it is important to consider risk as depending on the current state of the

market. In this case, historical loss data is not directly representative of the risks faced

today. In particular, suppose that V is the gain experienced by a portfolio containing

derivative securities. We have a model of underlying financial markets that allows us

to sample a scenario Z (which specifies such things as tomorrow’s stock prices) from its

distribution FZ , and there is a function V (·) such that the portfolio’s gain V = V (Z). Even

if FZ belongs to a simple parametric family, FV may not, because the value function V (·)

is not analytically tractable. Furthermore, the function V (·) itself is not generally known

in closed form; it is known in closed form only for some simple models and derivative

securities.

However, in most models, we can represent V (Z) = E[X|Z] where X involves the

payoffs of derivative securities, which we can simulate conditional on the scenario Z.

In this situation, we can estimate the risk measure T (FV ) by a two-level simulation,

in which the outer level of simulation generates scenarios Z1, Z2, . . . , Zk and the inner

level estimates each Vi := V (Zi) by simulating V conditional on Zi. For more on this

general framework and its significance in risk management, see Lan et al. (2007b). Point

estimation of a quantile of the distribution (here called FV ) of a conditional expectation via

two-level simulation has been studied by Lee (1998) and Gordy and Juneja (2006, 2008).

This is equivalent to point estimation of VaR. Gordy and Juneja (2008) also consider point

estimation of ES. This strand of the research literature emphasizes asymptotic optimality

for large computational budgets or portfolios. In related work, Steckley and Henderson

(2003) study estimation of the density of FV via two-level simulation.
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This thesis focuses on interval estimation of ES and moderate sample sizes. We de-

velop a procedure for efficient computation of a confidence interval for ES and show that

it performs well at realistic sample sizes. Two-level simulations can be extremely com-

putationally expensive. A plain two-level simulation procedure, such as that discussed in

Chapter 2, can produce very wide confidence intervals given the available computational

budget.

To produce a narrower confidence interval given a fixed computational budget, our

procedure uses screening with common random numbers, allocates sample sizes propor-

tional to each scenario’s sample variance and computes more precise confidence intervals

benefiting from the linearity of the results of empirical likelihood estimation.

Even with statistical efficiency techniques, like screening and empirical likelihood es-

timation, for large financial institutions with complex investment portfolios of multiple

assets, the computation of market risk presents real challenges. Usually the computa-

tion of risk measures for real portfolios takes days or weeks, yet the portfolios may be

refinanced within minutes or hours. This demands that computational efficiency be con-

sidered for any applicable procedure for risk measurement. Therefore, we improve the

efficiency of two-level simulation in the following two ways: we automatically tune the

procedure’s input parameters and implement the two-level simulation on a hybrid frame-

work of multicore CPUs and multiple Graphic Processing Units (GPUs).

For a sophisticated stochastic simulation like the two-level simulation we discuss here,

the input parameters can be divided into two categories: the modeling parameters, which

are part of the description of the underlying model, and the procedure parameters, which
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are part of the simulation procedure. For example, the underlying stock price is a model-

ing parameter. The number of samples that the experimenter would like to take for each

market scenario generated in the outer level to eliminate the unimportant ones is a pro-

cedure parameter. Modeling parameters are the prior knowledge the experimenters have

from the calibration of raw data or theoretical analysis. Procedure parameters stand for

the way the simulation is designed or the policies by which the experimental resources are

allocated. Usually procedure parameters are controllable and important to the efficiency

of the simulation procedure.

In practice, the procedure parameters are determined either by the experimenters’

experience or from empirical rules suggested from repeated experiments with different

procedure parameters. However, for these sophisticated simulation procedures, which are

too expensive to run repeatedly, the tuning of procedure parameters needs special con-

sideration. It is desirable to determine the optimal or near-optimal procedure parameters

with a modest cost.

When facing an entirely new simulation problem, the experimenters might do a pilot

simulation with a modest cost then tune the procedure parameters based on information

from the pilot simulation. More frequently, the experimenters might face a problem

similar to one seen before; for example, today’s problem may be similar to yesterday’s

problem, but with slight changes to some of the modeling parameters. If so, the procedure

parameters that were optimal for yesterday’s problem should still perform very well when

used in simulating today’s problem. We refer to the information collected from the pilot

simulation or historical simulation as pilot information.
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With pilot information, we can predict the performance of the simulation with different

procedure parameters. Therefore, optimization techniques may be applied to search the

feasible region of the procedure parameters to optimize the forecasted performance of the

simulation.

Parallel computing has proven to be effective to solve computationally intensive prob-

lems in physics, chemistry, biology and engineering. Research on parallel computing in

economics and finance has been reported in the past decade, covering diverse topics from

asset pricing to risk management. Yet the application of parallel computing in the fi-

nancial industry is still limited as the upfront prices of huge or even middle-scale super

computers are discouraging. Meanwhile, chip-level parallelism is commonplace and GPUs

are fundamentally many-core processors that provide a high degree of parallelism with

relatively affordable cost. Take NVIDIA GeForce 9800 as example. It contains 128 scalar

processing elements per chip, and provides a friendly C interface package, called CUDA,

through which programmers can take GPUs as additional computing resources where

massive pieces of C codes can be run simultaneously. Naturally, the chip-level parallelism

is fully compatible with distributed cluster computing and PC-grid computing (Tezuka

et al. (2005)), which are economic, scalable and de facto solutions for high performance

computing. Fan et al. (2004), Chinchilla et al. (2004) and Abbas-Turki and Vialle (2009)

provided successful applications of the integration of chip-level parallelism with cluster

computing or PC-grid computing in the fields of engineering and finance.

For our research, we only study parallel computing within one PC or workstation,

which seems to be the most accessible solution for the financial industry. Currently, up

to 4 GPUs can be installed within one computer. Modern CPUs usually contain 2 to
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8 cores. It is reasonable to adopt OpenMP and CUDA to manipulate all computing

capacities provided by CPUs and GPUs. OpenMP provides a set of pragma clauses and

interfaces for developing parallel applications on multicore CPUs with shared memory.

The NVIDIA CUDA package already provides some demos on Black-Sholes pricing and

Lattice pricing on a GPU. For pricing options with Levy underliers using the Fourier Space

Time-stepping method, Surkov (2007) parallelized the algorithm to gain greater efficiency.

As an advanced application, Singla et al. (2008) reported great speedup compared with

a CPU by parallelism on a GPU or field-programmable gate arrays on the estimation

of Value at Risk when the future value of the portfolio, when the future value of the

portfolio, V , is directly computable.

Risk management simulations may deal with non-trivial models and thousands of

derivative securities with complicated payoffs. However, for purposes of illustration, we

consider the following two simple examples. This allows us to report the coverage rate

that our procedure achieves by repeating the simulation experiment many times, so as to

see how often our confidence interval contains the true value of ES.

1.1. Selling a Single Put Option

At time 0, we sell a put option with strike price K = $110 and maturity U = 1 year

on a stock whose initial price is S0 = $100. This stock’s price obeys the Black-Scholes

model with drift µ = 6% and volatility σ = 15%. There is a money market account with

interest rate r = 6%. The initial price for which we sell the put option is P0 = P (U, S0),

which is the Black-Scholes formula evaluated for maturity U and stock price S0.
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We are interested in ES0.99 at time T = 1/52 years, or one week from now. The

scenario Z is a standard normal random variable that determines the stock price at time

T :

ST = S0 exp

((

µ− σ2

2

)

T + σ
√

TZ

)

.

The net payoff at maturity U , discounted to time T , from selling the put for an initial

price of P0 is

X = e−r(U−T )
(
P0e

rU − (K − SU)+
)
,

where

SU = ST exp

((

r − σ2

2

)

(U − T ) + σ
√

U − TZ ′

)

and Z ′ is a standard normal random variable independent of Z.

In this simple example, we can actually find the value

V = E[X|Z] = P0e
rT − P (U − T, ST ),

using the Black-Scholes formula evaluated for maturity U − T and stock price ST . Fur-

thermore, V is strictly decreasing in Z, so we can compute that VaR0.99 ≈ $2.92 by

evaluating V at Z = z0.01, the standard normal first percentile. By numerical integration,

we can also compute ES0.99 ≈ $3.39, which will help us to evaluate the performance of

our procedure. (Our procedure does not compute V by using the Black-Scholes formula,

but rather estimates it using inner-level simulation of payoffs at maturity.)
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Table 1.1. Portfolio of Call Options

Index Underlying Position Strike Maturity Option Implied
i Stock θi Ki Ui Price Volatility σi

1 CSCO 200 $27.5 0.315 $1.65 26.66%
2 CSCO -400 $30 0.315 $0.7 25.64%
3 CSCO 200 $27.5 0.564 $2.5 28.36%
4 CSCO -200 $30 0.564 $1.4 26.91%
5 JAVA 600 $5 0.315 $0.435 35.19%
6 JAVA 1200 $6 0.315 $0.125 35.67%
7 JAVA -900 $5 0.564 $0.615 36.42%
8 JAVA -300 $6 0.564 $0.26 35.94%

1.2. A Portfolio of Options on Two Stocks

We are interested in ES at time T = 1/365 years, or one day, of a portfolio of call

options on Cisco (CSCO) and Sun Microsystems (JAVA), as shown in Table 1.1. In the

table, the position given for each option is the number of shares of stock we have the

option to buy; if it is negative, then our portfolio is short call options on that many

shares of stock. Except for the portfolio weights, which we made up, the data in the

table was drawn from listed options prices on June 26, 2007. We ignored the distinction

between American and European options because neither of these stocks pays dividends, a

situation in which early exercise of an American call option is widely regarded as mistaken

(see, e.g., Luenberger, 1998, § 12.4).

The scenario Z = (Z(1), Z(2)) is a bivariate normal random variable that determines

the stock prices at time T :

S
(j)
T = S

(j)
0 exp

((

µ(j) − 1

2
(σ(j))2

)

T + σ(j)
√

TZ(j)

)

, j = 1, 2.
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Based on sample moments of 1,000 daily stock prices, the volatilities of CSCO and JAVA

are respectively σ(1) = 32.85% and σ(2) = 47.75%, while the correlation between the

components of Z is 0.382. In practice, more sophisticated methods of volatility forecasting

would be used, but this method yields a reasonable covariance matrix for the vector ST

of stock prices tomorrow. Because one day is such a short period of time that the effect

of the drift µ is negligible, while mean returns are hard to estimate because of the high

ratio of volatility to mean, we take each µ(j) = 0.

In addition to a distribution FZ for scenarios, we need to specify the function V (·) by

saying how option values at time T depend on the scenario. We adopt the “sticky strike”

assumption, according to which each option’s value at time T is given by the Black-

Scholes formula with volatility equal to the implied volatility that this option had at

time 0 (Derman, 1999). This does not make for an arbitrage-free model of the underlying

stock prices S, but it is an assumption that has been used in practice to model short-

term changes in option values. As in the previous example, we can compute these values

without using inner-level simulation, but our procedure performs inner-level simulation

for each option i by taking the stock price at maturity Ui to be

Si =
S

(ji)
T

Di
exp

(

−1

2
σ2

i (Ui − T ) + σi

√

Ui − TZ ′
i

)

where j1 = j2 = j3 = j4 = 1 (the four options on CSCO) and j5 = j6 = j7 = j8 = 2

(the four options on JAVA), Di is a discount factor from T to Ui, and Z ′ is a standard

multivariate normal random vector independent of Z. Based on Treasury bond yields,

the discount factor was 0.985 for options maturing in 0.315 years and 0.972 for options

maturing in 0.564 years. The independence of the components of Z ′ means that, even
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though in reality the eight options depend on two correlated stock prices at two times,

independent inner-level simulations are used to estimate the option prices at time T by

default. As shown by Gordy and Juneja (2006, 2008), this can improve the efficiency of

the two-level simulation. Furthermore, the sticky strike assumption does not lead to a

consistent model of the underlying stock prices, so one can not use a single simulation

of the two stocks to price all the options; this makes it more natural to think of eight

separate option pricing simulations.

The value of option i at time T is the conditional expectation of the discounted payoff

Yi := Di(Si − Ki)
+ given S

(ji)
T . The profit from holding the portfolio from 0 to T is

V (Z) = E[X|Z] where X = θ⊤(Y − P0/D0) and the discount factor D0 ≈ 1 because the

time value of money over one day is negligible; θ⊤ is the vector standing for the positions of

all instruments held in the invested portfolio. We estimated the true value of ES0.99 to be

$32.4, the average point estimate produced by 100 repetitions of the complete experiment

with a budget of 1.56 billion inner-level simulations each.

1.2.1. Different Pricing Models: Tailored by CRN

The function of a pricing model is to set up a map between the scenarios and portfolio’s

values. In most cases, this map has no closed form or is difficult to calculate directly.

Monte Carlo simulation is adopted to estimate the portfolio’s value conditionally on each

market scenario by averaging an amount of payoffs in the risk neutral probability of each

instrument in the portfolio. Whether the simulation of payoffs of different instruments

is independent or not has nothing to do with the validity of the two-level simulation.1

1This is different from the simulation of the price of a basket option, where the dependence of the prices
of underlying asserts DOES affect the price of the option.
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Yet smaller variance of the simulated portfolio value helps to generate a more precise

confidence interval for the expected shortfall.

Take the portfolio of options on JAVA and CISCO as an example. We could apply

different random number generating strategies shown in Table 1.2.

Option CRN1 CRN2 NATURE NAIVE
C1 Z1 Z Z ′

1 Z1

C2 Z1 Z Z ′
2 Z2

C3 −Z1 −Z Z ′
3 Z3

C4 Z1 −Z Z ′
4 Z4

C5 Z2 Z Z ′
5 Z5

C6 Z2 −Z Z ′
6 Z6

C7 Z2 Z Z ′
7 Z7

C8 Z2 Z Z ′
8 Z8

Table 1.2. Design of Pricing Model

In Table 1.2, Z is a standard normal random variable, Zi, i = 1, . . . , 8 are indepen-

dent standard normal random variables and Z ′
i are standard normal distributed random

variables with relationships shown as follows:

Z ′
i = Z ′

i+1 , i = 1, 3, 5, 7

ρ(Z ′
1, Z

′
3) = 0.747

ρ(Z ′
1, Z

′
4) = 0.382

ρ(Z ′
5, Z

′
7) = 0.747

Strategy CRN1 and CRN2 are just two different configurations of Common Random

Number (CRN; see, e.g., Law and Kelton, 2000) applied in the pricing model. When

simulating the value of portfolio’s with the risk neutral probability, the correlation implied
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in the real world probability is introduced to reduce variance. This strategy is called

NATURE. Strategy NAIVE, the default strategy adopted, simply summarizes all the

weighted, independently simulated value of each instrument altogether.

Through this approach, we enrich the test examples without introducing any more

portfolios. The topic about how to design optimal random numbers to reduce the variance

is out of the scope of this thesis.
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CHAPTER 2

Plain Two-Level Simulation

The plain two-level simulation addressed here works as the starting point of our re-

search and also as a benchmark to compare to in the empirical experiments. The mech-

anism of confidence interval estimation on two-level simulation is based on the fact that

[infv∈V G(v), supv∈V G(v)] is a confidence interval for G(V) with confidence level at least

1 − αi if V is a 1 − αi confidence region for V. Note that G could be any function, yet

computation of confidence interval becomes extremely easy when G is monotone or even

linear.

2.1. The Plain Procedure

Two-level simulation has wide application in discrete-event simulation, such as simu-

lation of queueing systems or stochastic optimization problems, where the two levels have

different meanings. Here we only focus on its application in risk management in financial

markets. Market scenarios, Zi, i = 1, . . . ,, are generated in the outer level; Zi contains

financial variables such as stock prices or interest rates at a future date T . Conditional

portfolio values, Vi := V (Zi) = E[V |Zi], are computed in the inner level. When Vi’s have

to be estimated by Monte Carlo simulation, payoffs at (or until) some future time Uj

(where j is the index of the instruments held in the portfolio) need to be sampled. During

the sampling, the financial variables within market scenarios may need to be simulated

forward between [T, Uj ] conditionally on Zi. Since valuing the instruments’ conditional
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prices is the goal of inner-level simulation, these financial variables usually modeled as

having so-called “risk natural probability” which is an artificial probability measure to

express the value of market instruments as the expectation of future payoffs.

Figure 2.1 shows the architecture of two-level simulation. Suppose the total number

of simulated payoffs C is given by the experimenter as a measure of the available compu-

tational resources, and the number of market scenarios k is also specified. Without prior

information about each market scenario, the sample size of the conditional payoffs of each

market scenario, Ni has to be set to equal, i.e. Ni = n0 = C
k
. There are some parts of

the plain two-level simulation to which efficiency techniques can be applied. Firstly, for

ES only a small portion of the market scenarios are important to our calculation. A large

proportion of total computational resources are wasted if equal simulation effort on all

generated market scenarios. Secondly, even for the market scenarios which are important

to the calculation of ES, there are still differences in the sample variance of Xi(·) which is

an unbiased estimator of Vi. If information about the market scenarios can be collected

through early stage simulation in a multi-stage procedure, an optimal budget allocation

of Ni is preferable.

2.2. Confidence Interval for Plain Two-Level Simulation

How does statistical uncertainty at the inner level combine with statistical uncertainty

at the outer level? This question must be answered to create a confidence interval after a

two-level simulation. One sign of the difficulties is that uncertainty at the inner level can

lead to bias in the obvious point estimates of ES1−p(FV ). Then the simple idea to con-

struct a confidence interval by applying the Center Limit Theorem to the average of the
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Figure 2.1. Plain Two-Level Simulation

point estimators does not apply. The problem can be viewed as follows. If Vi and its non-

decreasing order πV (·) were known, a confidence interval [L(V), U(V)] for ES1−p(FV ) can

be computed from V = (V1, · · · , Vk) either from a parametric or nonparametric method.

We relay on empirical likelihood estimator here because very weak assumptions are re-

quired for this nonparametric method. Baysal and Staum (2008) studied the construction

of outer-level confidence for ES1−p(FV ) based on the empirical likelihood estimator. Here

we review some essential facts about empirical likelihood for understanding its application

in our two-level simulation. Empirical likelihood involves considering distributions that

arise by assigning a vector w of weights to the scenarios Z1, Z2, . . . , Zk, or, equivalently,
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to their values V1, V2, . . . , Vk. This weight vector w must belong to the set

(2.1)

S(k) :=

k⋃

ℓ=1

Sℓ(k) where Sℓ(k) :=

{

w : w ≥ 0,

k∑

i=1

wi = 1,

ℓ∑

i=1

wi = p,

k∏

i=1

wi ≥ c k−k

}

,

where c is a critical value derived from a chi-squared distribution. Each w ∈ S(k) belongs

to Sℓ(k) for a unique integer ℓ, which can be interpreted as the number of scenarios that

we believe belong to the tail of FV , i.e. are less than or equal to the p-quantile of V . The

intuition behind using only weight vectors that fall in S(k) in this application of empirical

likelihood is as follows. First, it is unlikely that too few or too many of the scenarios that

we sampled from FV belong to the tail of FV . There are integers ℓmin and ℓmax such that

Sℓ(k) is empty if ℓ < ℓmin or ℓ > ℓmax; we need only consider a limited range of ℓ, not all

1, 2, . . . , k. (Although ℓ depends on w, and ℓmin and ℓmax depend on k, to lighten notation

we do not make this dependence explicit.) Second, we use only weight vectors that are

fairly close to uniform; if elements wi are too far from 1/k, then
∏k

i=1 wi < c k−k. This

means that we work with discrete distributions that are not too far from the empirical

distribution which places weight 1/k on each of V1, V2, . . . , Vk.

Because ES1−p involves an average over the left tail containing probability p, we also

define a transformed weight vector w′:

(2.2) w′
i :=







−wi/p, i = 1, 2, . . . , ℓ

0, otherwise.

If the vector V := (V1, V2, . . . , Vk) of true portfolio values were known, then with a weight

vector w it would define a discrete distribution Fw,V assigning probability wi to each value

Vi. For this distribution, ES1−p is
∑k

i=1 w′
iVπV (i). The empirical likelihood confidence
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interval for ES1−p of the unknown true distribution FV , expressed in Equation (1.1), is

(2.3)

[

L(V) = min
w∈S(k)

k∑

i=1

w′
iVπV (i), U(V) = max

w∈S(k)

k∑

i=1

w′
iVπV (i)

]

,

representing the outer-level uncertainty entailed by working with a sample Z1, Z2, . . . , Zk

instead of the true distribution FV and satisfying

(2.4) lim
k→∞

Pr{ES1−p(FV ) ∈ [L(V), U(V)]} ≥ 1− αo.

The intuition behind (2.3) is that S(k) is the set of weight vectors that are “empirically

likely,” and we do not believe that the true ES according to FV is less than the smallest

ES that comes from applying weights in S(k) to the values V, nor do we believe that

the true ES is more than the largest ES that comes from applying weights in S(k) to the

values V.

Because Vi is not known, V and hence L(V) and U(V) are unobservable. Instead we

construct L̂ and Û from the observable sample of payoffs to satisfy, for all V,

(2.5) lim
N→∞

Pr{[L(V), U(V)] ⊆ [L̂, Û ]} ≥ 1− αi

where N = (N1, · · · , Nk). Applying the Bonferroni inequality to Inequalities (2.4) and

(2.5),

(2.6) lim
k,N→∞

Pr{ES1−p(FV ) ∈ [L̂, Û ]} ≥ 1− α,

where α = αi + αo, an error spending decomposition which expresses the fact that error

arises in one of two ways: the unknown outer-level confidence interval [L(V), U(V)] fails
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to cover the true value due to unlucky sampling of risk factors, or the known confidence

interval [L̂, Û ] fails to cover the unknown outer-level confidence interval due to unlucky

sampling of payoffs at the inner level.

Suppose that sampling is done so the risk factors Z1, · · · , Zk are independent and

Xi1,j1, Xi2,j2 are independent of each other conditional on Zi1 and Zi2 for i1 6= i2. As

Ni → ∞,
√

NiX̄i(Ni) converges to normal distribution and are mutually independent.

Define ǫ := 1 − (1− αi)
1/k and let ti be the quantile at the 1 − ǫ/2 level of the Student

t distribution with Ni − 1 degrees of freedom. Let V be the random k-dimensional box

formed as the Cartesian product over i = 1, . . . , k of the intervals

[

X̄i(Ni)− tiSi/
√

Ni, X̄i(Ni) + tiSi/
√

Ni

]

.

Then V is an asymptotically valid confidence region for V:

lim
N→∞

Pr{V ∈ V} ≥ (1− ǫ)k = 1− αi.

Consequently, Inequality (2.5) is satisfied with

(2.7) L̂ = inf
v∈V

L(v) and Û = sup
v∈V

U(v).

It would also be possible to construct V in different ways, e.g., as an ellipsoid based

on the limiting χ2
k distribution of

∑k
i=1(X̄i(Ni) − Vi)

2/S2
i Ni . The ease of performing

the optimizations in Equation (2.7) and the size of the resulting confidence interval are

relevant considerations in choosing how to construct V. These optimizations are trivial

as L and U are linear when empirical likelihood estimation applied in the outer level and
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V has a least and a greatest element with respect to the usual partial ordering on k , as

it does when defined as the k-dimensional box.

Another important inequality can help to estimate Û more precisely,

(2.8) max
w∈S(k)

k∑

i=1

w′
iX̄πV (i)(NπV (i)) ≤ max

w∈S(k)

∑

i=1,...,k

w′
iX̄π1(i)(Nπ1(i))

where π1(·) is the permutation of i = 1, . . . , k such that X̄π1(i)(Nπ1(i)) is nondecreasing in i,

while πV is another permutation such that VπV (1) ≤ VπV (2) ≤ · · · ≤ VπV (k). Consequently,

Û can be refined as

(2.9) Û = max
w∈S(k)

k∑

i=1

w′
iX̄π1(i)(Nπ1(i)) + zhi max

i=1,...,k
Si

√
√
√
√ max

w∈S(k)

k∑

i=1

w′2
i

where zhi is the 1 − αhi quantile of the standard normal distribution. Also L̂ defined in

Equation (2.7) can be explicitly expressed as

(2.10) L̂ = min
w∈S

ℓmax∑

i=1

w′
i

(

X̄πLi
(NπLi

) + zlo
SπLi

(NπLi
)

√
NπLi

)

where πL satisfies that X̄πLi
(NπLi

) + zloSπLi
(NπLi

)/
√

NπLi
is nondecreasing in i, and zlo is

the 1− (1− αlo)
1/k quantile of the standard normal distribution.
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CHAPTER 3

Two-Level Simulation with Screening

Efficiency is important for two-level simulation, which can be very computationally

expensive, as discussed in Chapter 2. Efficiency enhancement for two-level simulation is

interesting for several reasons. It may not be straightforward to get a confidence interval

by the methods described in Chapter 2.2 when using variance reduction. The shape

of the inner-level confidence region V greatly influences efficiency. There are questions

about how to allocate computational resources within the inner level and how to allocate

computational resources between the outer and inner levels. The latter issue is addressed

in Chapter 4.

3.1. Screening

Screening is the process of eliminating (“screening out”) scenarios to increase the sim-

ulation’s efficiency by devoting more computational resources to the remaining scenarios.

From Equation (1.1) in Chapter 1, we can see that the point estimation of ES depends

on the values of scenarios πV (1), πV (2), . . . , πV (⌈kp⌉) alone, so we want screening to keep

these scenarios but eliminate as many others as possible. Call the set of scenarios that

survive screening I, and define γ := {πV (1), πV (2), . . . , πV (⌈kp⌉)}, the set of scenarios we

wish to keep. The event of correct screening is {γ ⊆ I}, and we must create a screening

procedure such that Pr{γ ⊆ I} ≥ 1− αs. The number of pairwise comparisons between

γ and all other scenarios is (k − ⌈kp⌉)⌈kp⌉. Therefore, for each ordered pair (i, j) we
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consider a hypothesis test that Vi ≤ Vj at level αs/((k − ⌈kp⌉)⌈kp⌉). If the hypothesis is

rejected, then we say Zi is “beaten” by Zj. For each i = 1, 2, . . . , k, let Xi1, Xi2, . . . , Xin0

be an i.i.d. sample drawn from the conditional distribution of X given Zi, and let X̄i(n0)

be its sample average. For each i, j = 1, 2, . . . , k, let S2
ij(n0) be the sample variance of

Xi1−Xj1, Xi2−Xj2, . . . , Xin0 −Xjn0. We retain all scenarios that are beaten fewer than

⌈kp⌉ times:

(3.1) I =

{

i :
∑

i6= j

1

{

X̄i(n0) > X̄j(n0) + d
Sij(n0)√

n0

}

< ⌈kp⌉
}

where 1{·} is an indicator function and

(3.2) d = tn0−1,1−αs/((k−⌈kp⌉)⌈kp⌉)

is the 1−αs/((k−⌈kp⌉)⌈kp⌉) quantile of the t-distribution with n0−1 degrees of freedom.

Because of the extra margin dSij(n0)/
√

n0 in Equation (3.1), there are pairs (i, j) such

that neither does scenario i beat scenario j, nor does scenario j beat scenario i; therefore

it is possible for |I| > ⌈kp⌉ scenarios to survive screening.

From Equation (3.1) we see that it is easier to screen out scenarios when the sample

variances S2
ij(n0) are smaller. We use CRN to reduce the variance of Xi−Xj by inducing

positive correlation between Xi and Xj . In finance, CRN usually induces a substantial

positive correlation between Xi and Xj . In our examples, Xi and Xj have to do with stock

option payoffs at maturity U > T simulated conditional on the stock price at time T being

Si(T ) or Sj(T ) respectively (here all instruments have the same maturity). These payoffs
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are highly correlated when CRN is used, because, in our examples, CRN makes the stock

return between times T and U the same for any value of S(T ).

3.2. Explanation of the Procedure

This section presents a fixed-budget two-level simulation procedure for generating a

confidence interval for ES1−p. The procedure first simulates scenarios Z1, Z2, . . . , Zk. If

the values V1, V2, . . . , Vk of these scenarios were known, then the point estimate of ES1−p

would be

(3.3) − 1

p





⌊kp⌋
∑

i=1

1

k
VπV (i) +

(

p− ⌊kp⌋
k

)

VπV (⌈kp⌉)



 .

That is, VπV (i) is the ith order statistic of V1, V2, . . . , Vk.

Because these values are not known, they are estimated by inner-level simulation.

The inner level of simulation has a first stage in which n0 ≥ 2 payoffs are generated

for every scenario, using common random numbers. Our proof of the procedure’s validity

depends on an assumption that the payoffs are normally distributed. Financial payoffs are

often far from normally distributed, but the sample averages are usually close to normally

distributed because of the Central Limit Theorem. Lesnevski et al. (2008) investigated

empirically the effect of non-normal payoffs on a related confidence interval procedure and

found that it posed no problem as long as the first-stage sample size n0 was at least 30.

After the first stage, screening eliminates scenarios whose values are not likely to

appear in Equation (3.3). Then sample sizes N1, N2, . . . , Nk are chosen; the sample size

Ni is 0 if scenario Zi has been screened out. The goal of screening is to allocate more of the

computational budget to scenarios that matter. Next, the first-stage data are discarded, a
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process called “restarting.” This is necessary for the statistical validity of the confidence

interval (Boesel et al., 2003).

In the second stage, Ni payoffs Xi1, Xi2, . . . , XiNi
are generated conditional on the

scenario Zi for each i = 1, 2, . . . , k using independent sampling (no CRN). The sample

average of Xi1, Xi2, . . . , XiNi
is denoted X̄i(Ni). Then a confidence interval is formed:

the confidence limits appear in Equations (3.4) and (3.5) below. The result derived in

Appendix B, is that the lower confidence limit is

(3.4) min
ℓ=⌊kp⌋,...,ℓmax

(

min
w∈Sℓ(k)

ℓ∑

i=1

w′
iX̄π0(i)(Nπ0(i))− zlo(ℓ)B0(ℓ)

)

and the upper confidence limit is

(3.5) max
ℓ=ℓmin,...,⌈kp⌉

(

max
w∈Sℓ(k)

ℓ∑

i=1

w′
iX̄π1(i)(Nπ1(i)) + zhiBS(ℓ)

)

,

where several quantities are defined in Step 5 of the procedure in the following subsection.

At an intuitive level, the lower confidence limit in Equation (3.4) arises from Equation (2.3)

by ordering the scenarios based on information available at the end of the first stage,

estimating the scenarios’ values by second-stage sample averages, and subtracting a term

that accounts for inner-level uncertainty. The upper confidence limit in Equation (3.5)

arises similarly, but the ordering of the scenarios is based on information available at the

end of the second stage, and we add a different term to account for inner-level uncertainty.

The minimization and maximization over ℓ represent our uncertainty about how many of

the values V1, V2, . . . , Vk are less than the quantile vp.
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The two-level simulation point estimate of ES1−p is

(3.6) − 1

p





⌊kp⌋
∑

i=1

1

k
X̄π1(i)(Nπ1(i)) +

(

p− ⌊kp⌋
k

)

X̄π1(⌈kp⌉)(Nπ1(i))



 .

If Ni = 0, then X̄i is taken to be ∞ so that it is not among the order statistics used in

Equation (3.6).

To get a confidence interval, we need a way of combining uncertainty that arises

at the outer level, because Z1, Z2, . . . , Zk is a sample from FZ , with uncertainty that

arises at the inner level because we only possess an estimate X̄i(Ni) of each scenario’s

value Vi = V (Zi). In Chapter 2, we described a framework for two-level simulation that

generates a two-sided confidence interval [L̂, Û ] with confidence level 1 − α where α can

be decomposed as α = αo + αi, representing errors due to the outer and inner levels of

simulation, respectively. Here we further decompose αi = αs +αhi +αlo, where αs is error

due to screening and αhi and αlo are errors respectively associated with upper and lower

confidence limits for inner-level simulation.

3.2.1. Outline of the Procedure

The procedure involves a fixed computational budget, which may be expressed as a total

number C of simulation replications, i.e., the total number of payoffs that can be simu-

lated, or as an amount of computing time T . The distinction between these two kinds

of computational budgets is important when choosing the first-stage sample size n0 and

the number of scenarios k. However, given n0 and k, the kind of budget makes only a

small difference in determining the number C1 of payoffs to simulate in the second stage.

If the budget is C total payoffs, then C1 = C − kn0. If the budget is an amount of
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Figure 3.1. Schematic illustration of our procedure’s operation.

time T , then during the first stage we must estimate t, the amount of time required to

simulate one payoff, and record T0, the amount of time required by the first stage. Then

C1 = (T −T0)/t, treating the amount of time required to construct the confidence interval

at the end as negligible in comparison to simulating payoffs.

To explain exactly how CRN are used, we overload notation by supposing that there is

a function Xi(·) such that when U is a uniform random variate (or vector), the distribution

of Xi(U) is the conditional distribution of the payoff X given that the scenario is Zi.

The procedure has the following steps, illustrated in Figure 3.1:

(1) Scenario Generation:

Generate scenarios Z1, Z2, . . . , Zk independently from the distribution FZ .
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(2) First Stage Sampling:

Sample U1, U2, . . . , Un0 independently from a uniform distribution.

For each i = 1, 2, . . . , k and j = 1, 2, . . . , n0, compute Xij := Xi(Uj).

(3) Screening:

For each i = 1, 2, . . . , k, compute the sample average X̄i(n0) and sample variance

S2
i (n0) of Xi1, Xi2, . . . , Xin0.

Sort to produce a permutation π0 of {1, 2, . . . , k} such that X̄π0(i)(n0) is nonde-

creasing in i.

Compute S̃2(n0) := maxi=1,2,...,⌈kp⌉ S2
π0(i)

and d according to Equation (3.2).

Initialize I ← {1, 2, . . . , ⌈kp⌉} and i← k.

(a) Screening of scenario π0(i): Initialize b← 0 and j ← 1.

(i) Compute the sample variance S2
π0(i)π0(j) of Xπ0(i)1 − Xπ0(j)1, Xπ0(i)2 −

Xπ0(j)2, . . ., Xπ0(i)n0
−Xπ0(j)n0

.

(ii) If X̄π0(i)(n0) > X̄π0(j)(n0) + dSπ0(i)π0(j)/
√

n0, scenario π0(i) beats sce-

nario π0(j): set b← b + 1.

(iii) If b ≥ ⌈kp⌉, scenario π0(i) is screened out: go to Step (3b). Otherwise,

set j ← j + 1.

(iv) If j < i, go to Step 3(a)i. Otherwise, scenario π0(i) survives screening:

set I ← I ∪ {π0(i)}.

(b) Loop: Set i← i− 1. If i > ⌈kp⌉, go to Step (3a).

(4) Restarting and Second Stage Sampling:

Discard all payoffs from Step 2.

Compute C1 := C−kn0 or (T−T0)/t, depending on the type of budget constraint.
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For each i ∈ I, compute

(3.7) Ni :=

⌈

C1S
2
i (n0)

∑

j∈I S2
j (n0)

⌉

.

For each i ∈ I and j = 1, 2, . . . , Ni, sample Uij independently from a uniform

distribution and compute Xij := Xi(Uij).

(5) Constructing the Confidence Interval:

For each i ∈ I, compute the sample average X̄i(Ni) and sample variance S2
i (Ni)

of Xi1, Xi2, . . . , XiNi
, and compute si :=

√

S2
i (Ni)/Ni.

Compute

ℓmin := min

{

ℓ : kk
(p

ℓ

)ℓ
(

1− p

k − ℓ

)k−ℓ

≥ c

}

and

ℓmax := max

{

ℓ : kk
(p

ℓ

)ℓ
(

1− p

k − ℓ

)k−ℓ

≥ c

}

,

respectively, the smallest and largest numbers of scenarios to use in estimating

ES, where c is the threshold in the empirical likelihood estimator.

Initialize the lower confidence limit L̂←∞. Compute Nlo(⌈kp⌉) := mini=1,2,...,⌈kp⌉ Nπ0(i)

and s(⌈kp⌉) := maxi=1,2,...,⌈kp⌉ sπ0(i), which are respectively the smallest sample

size and the largest standard error associated with any of the ⌈kp⌉ scenarios with

the lowest first-stage sample averages.

The following loop computes the lower confidence limit as a minimum of lower

bounds associated with different numbers ℓ of scenarios that could be used in

estimating ES. For ℓ = ⌊kp⌋ , ⌊kp⌋+ 1, . . . , ℓmax,
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(a) Compute zlo(ℓ) := t1−αlo,Nlo(ℓ)−1,

(3.8) ∆(ℓ) :=

√
√
√
√ max

w∈S(ℓ)

ℓ∑

i=1

(w′
i)

2,

and B0(ℓ) := s(ℓ)∆(ℓ), which serves to bound standard error in estimating

ES using ℓ scenarios.

(b) Set

(3.9) L̂← min

{

L̂, min
w∈Sℓ(k)

ℓ∑

i=1

w′
iX̄π0(i)(Nπ0(i))− zlo(ℓ)B0(ℓ)

}

.

(c) Compute Nlo(ℓ+1) := min{Nlo(ℓ), Nπ0(ℓ+1)} and s(ℓ+1)← max{s(ℓ), sπ0(ℓ+1)}.

Sort to produce a mapping π1 from {1, 2, . . . , |I|} to I such that X̄π1(i)(Nπ1(i)) is

nondecreasing in i.

Initialize the upper confidence limit Û ← −∞ and the largest standard error

associated with any scenario s̄ := maxi=1,2,...,k si.

Compute the smallest sample size associated with any scenario that survived

screening, Nhi := min{Nπ1(1), Nπ1(2), . . . , Nπ1(|I|)}, and zhi := t1−αhi,Nhi−1.

The following loop computes the upper confidence limit as a maximum of upper

bounds associated with different numbers ℓ of scenarios that could be used in

estimating ES. For ℓ = ℓmin, ℓmin + 1, . . . , ⌈kp⌉,

(a) Compute ∆(ℓ) as in Equation (3.8) and BS(ℓ) := s̄∆(ℓ) to bound standard

error in estimating ES using ℓ scenarios..
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(b) Set

(3.10) Û ← max

{

Û , max
w∈Sℓ(k)

ℓ∑

i=1

w′
iX̄π1(i)(Nπ1(i)) + zhiBS(ℓ)

}

.

The confidence interval given in Equations (3.4) and (3.5) is [L̂, Û ].

The maximum in Equation (3.8) is computed by using the Newton method to solve its

KKT conditions. An algorithm for the optimizations in Equations (3.9) and (3.10) is given

in Baysal and Staum (2008). The t-quantiles zlo(ℓ) and zhi may be replaced by normal

quantiles when the second-stage sample sizes are sufficiently large, as they typically are.

3.3. Experimental Results

We tested the simulation procedures by producing a 90% confidence interval (CI) for

ES0.99 in the examples described in Chapter 1.1 and 1.2. The error α = 10% was decom-

posed into αo = 5% for the outer level, αs = 2% for screening, and αlo = αhi = 1.5%

for the inner-level lower and upper confidence limits. In each experiment, we chose our

procedure’s parameters k and n0 according to a method described in Chapter 4. We com-

pare our procedure with the plain procedure in Chapter 2. We ran the plain procedure

with the same number k of scenarios as our procedure. To compare the procedures, we

evaluate their confidence intervals’ coverage probabilities and mean widths given the same

fixed budget. We ran the experiments on a PC with a 2.4 GHz CPU and 4 GB memory

under 64-bit Red Hat Linux. The code was written in C++ and compiled by gcc 3.4.6.

Similar to results reported in Lan et al. (2007a), we found that the plain procedure

and our procedure both had coverage probabilities greater than the nominal confidence
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level of 90% as long as k ≥ 40/p, where p is the tail probability under consideration. In

these examples, p = 1− 0.99 = 0.01.

The following figures report average CI widths for 20 independent runs of the proce-

dures. The error bars in the figures provide 95% confidence intervals for the mean width

of our procedure’s CI. (The width of the CI produced by the plain procedure is less vari-

able, so the error bars for the plain procedure were too small to display.) In each figure,

a horizontal line represents 10% relative error, that is, its value is one tenth of ES0.99.

We include the line for the purpose of comparing the CI widths to a rough measure of

desirable precision. It would not be very useful to attain a relative error far less than

10% because of model risk: that is, risk management models are not generally accurate

enough that precision better than, say, 1% would convey meaningful information. On the

other hand, if the CI width is much greater than 10% relative error, then the simulation

experiment has left us with a great deal of uncertainty about the magnitude of ES0.99. For

these reasons, we ran experiments with computational budgets such that our procedure

yields CI widths in the neighborhood of 10% relative error.

Figure 3.2 shows how average CI width varies with a computational budget of C

replications for the example of selling a put option described in Section 1.1. The much

narrower CI widths achieved by our procedure show that the benefit of screening in

directing more replications to important scenarios outweighs the cost of restarting and

throwing out first-stage replications. In these experiments, our procedure produced a CI

up to 116 times narrower than that produced by the plain procedure. On the log-log plot

in Figure 3.2, the CI width decreases roughly linearly in the budget, with slope about

−0.4 or −0.44. This is unfavorable compared to the usual O(C−1/2) order of convergence
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Figure 3.2. Average confidence interval width in the example of Section 1.1
given a fixed budget of simulation replications.

of ordinary Monte Carlo, but favorable compared to the O(C−1/3) order of convergence

for a two-level simulation estimator of VaR found by Lee (1998) or the O(C−1/4) order of

convergence for the procedure we proposed in Chapter 2.

Figure 3.3 shows similar results from the example of an options portfolio described in

Section 1.2. In this example, larger computational budgets are required to get an precise

estimate of ES. Again, our procedure produced CIs narrower than those from the plain

procedure, up to a factor of 14. For low budgets, our procedure’s advantage was not as

great. For example, when C is 32 million, our best choice was k = 4000 and n0 = 4703,

so that more than half the budget was used up in the first stage before restarting, yet
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Figure 3.3. Average confidence interval width in the example of Section 1.2
given a fixed budget of simulation replications.

the first stage was too small to enable the procedure to screen out most of the scenarios

that do not belong to the tail. When the computational budget is small, our procedure

may not be able to produce a CI narrow enough to be useful. A multi-stage screening

procedure (similar to Lesnevski et al., 2007, 2008) might overcome this problem.

Next we present results when the computational budget limits computing time. The

budget constraint is implemented not by dynamically terminating the procedures when

a given amount of clock time has elapsed, but by choosing values of k and n0 such that

the procedure takes approximately the given amount of time. Our procedure’s running

time is slightly variable, but all experiments’ durations were within 5% of the allotted
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time. A budget expressed in computing time is less favorable to our procedure (relative

to the plain procedure) than a budget for the total number of replications: our procedure

can spend a substantial amount of time in performing comparisons between scenarios as

part of screening, even though it does not generate more replications then. The amount

of time spent on screening when there are k scenarios is O(k2) because there are k2/2

pairs of scenarios that can be compared. This pushes us to choose smaller values of k

(see Chapter 4). For instance, in the example of a single put option (Section 1.1), our

procedure attains a CI width around $0.0427 with a budget of C = 120 million replications

or T = 1, 560 seconds, but if the budget is in replications then we choose k to be about

600,000 scenarios, whereas if the budget is in computing time, we choose k to be about

427,000 scenarios. For budgets so large as to lead to choosing a very large k, the advantage

of our procedure degrades. This can be seen in Figure 3.4, where the curve representing

our procedure’s CI width becomes flatter as the computing time T grows. Still, Figures 3.4

and 3.5 show that our procedure performs much better than the plain procedure when

they are given equal computing times, producing a CI narrower by a factor of as much as

15 or 12 in these two examples.
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CHAPTER 4

Balancing Inner and Outer Level Simulation

Tuning the parameters of the two-level simulation with screening is important to

its efficiency. Two of the parameters, the number of scenarios generated in the outer

level k and the sample size for screening n0, are the most important parameters for the

performance of the two-level simulation. The number of scenarios k represents the effort

spent on simulating the market movement at a future time T . The uncertainty about the

future of the market is the source of the risk. Usually we want k to be large.

The sample size for screening (also called the first-stage sample size), n0, is critical to

the performance of the screening algorithm, and is strongly related to the second stage

sample size Ni, i ∈ I when the total simulation budget (the total number of simulated

payoffs C or the total simulation time T ), is fixed. The second-stage sample size Ni is the

effort we spend on estimating the value of the portfolio conditioned on the scenarios that

are important to the computation of loss. Again, Ni, ∀i ∈ I are desired to be large, but

they are not directly controllable; instead, they are determined indirectly by the number

of scenarios k and the first-stage sample size n0. Roughly speaking, Ni’s are decreasing in

k; but they are not monotone in n0. In all, the two parameters (k, n0) determine the effort

spent on exploring market movement and on estimating the portfolio’s values conditioned

on the generated scenarios. Our goal is to improve the performance of the two-level

simulation by tuning (k, n0) such that exploration of new scenarios and estimating the

portfolio’s values conditioned on the generated scenarios are well balanced.
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In the research field of simulation, there is a long history of research on the “bias-

variance trade-off.” If our procedure did not contain a screening algorithm, then there

would be no n0 to be set and choosing the number of scenarios k is a typical problem

of “bias-variance trade-off.” But the screening algorithm improves the efficiency of the

two-level simulation in Section 3.3. If, on the other hand, the number of scenarios k

were fixed, then screening is a traditional topic in the simulation literature of ranking and

selection. Here we take k sampled scenarios as the alternatives and the ⌈kp⌉ scenarios

with the least ⌈kp⌉ conditional portfolio values as the “best” configurations to be selected.

In this literature, setting the sample size for screening has been studied in several different

aspects. Stein (1945) proposed to determine the sample size for fixed width confidence

interval estimation through a two-stage procedure. Rinott (1978) computed the sample

size of the second stage of a two-stage procedure to guarantee the probability of correct

selection of the best. When a fixed total number of allowable samples and all alternatives

are given, Chen et al. (2000) proposed to compute the sample size of each alternative that

maximizes the probability of correct selection of the best.

In our research, the number of scenarios, k, and the sample size, n0, are chosen together

to minimize the forecasted confidence interval width of expected shortfall through the two-

level simulation. The sample size n0, which is universal to all alternatives, is selected to

help screen out the scenarios not in the tail, while at the same time it is important to keep

n0 as small as possible to save computational budget for valuing the retained scenarios.

Denote the expected width of the confidence interval generated through the two-

level simulation as W , or W (k, n0). The latter notation explicitly shows the relationship

between the parameters, k and n0, and the expected width of the confidence interval. To
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find the optimal parameters k and n0 given the computational budget (simulation time

T or total number of payoffs allowed to be simulated C), we first consider the following

stochastic nonlinear integer problem.

min W (k, n0)

s.t. Γ



kn0 +

|I|
∑

i=1

Ni, C



 ≤ 0 or Γ(Tr(k, n0), T ) ≤ 0

n0 ≥ nmin, k ≥ kmin

k, n0 positive integers

where Γ(a, b) is a function used to express the constraint on the random computational

budget the simulation may cost given (k, n0), kmin, nmin are the minimum values sufficient

for the validity of the two-level simulation, |I| as defined before, is the number of scenarios

after screening, and Tr(k, n0) is the simulation time given (k, n0). When Γ(a, b) = E(a)−b,

the expected computational budget is set to be less than the given budget; and when

Γ(a, b) = P(a > b)− 0.01, the probability that a simulation is accomplished within given

computational budget is required to no less than 0.99. According to Section 3.3, kmin =

⌈40/p⌉ and nmin = 30. It is not possible to solve the problem because the expectations

cannot be evaluated. Solving it empirically by actually performing two-level simulations

at many values of (k, n0) is not practical as these runs are very time consuming.

We need a simple and workable approach to address the challenge. Our strategy is to

run a quick trial of two-level simulation and predict W (k, n0) based on the information

collected from the trial. We denote the simulated data from the trial with k0 scenarios and
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n00 first-stage samples as T (k0, n00). The two-level simulation procedure is complicated:

empirical likelihood estimation and normal-theory inference are applied to deal with the

uncertainties from the outer level and inner level respectively; efficiency techniques, such

as screening and CRN, are introduced to improve the simulation efficiency. All these

make the prediction of the confidence interval width difficult. Instead of a rigorously

justified predictor, we provide two heuristic predictors based on necessary simplifications

and approximations, which work well for all the experiments we tested.

The two heuristic predictors are adopted to forecast the output confidence interval

width and the computational budget that would be consumed with given (k, n0). One is

an approximate most-likely predictor, P1; the other is a pessimistic predictor, P2, used

to predict the “unluckily-wide” output and the “unluckily-expensive” budget that would

be consumed in the simulation. Our decision rule mainly consists of the following two

steps. First we solve a nonlinear programing problem using the approximate most-likely

predictor P1 to find an optimal solution (k∗, n∗
0). Then within a certain neighborhood of

the optimal solution (k∗, n∗
0), we try to solve another nonlinear programing problem with

the pessimistic predictor P2 as the objective function and constraint function instead.

That is, we want to set the procedure parameters so that they are not only suitable for

the most-likely case but also acceptable for some unfavorable cases.

4.1. Approximation of W

To demonstrate how to set up the predictors, we first decompose the expected width

of output confidence interval W into three parts: a part due to the outer-level uncertainty,

W1, a part due to the inner level uncertainty, W2 and the rest of it, W3. By assuming the
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total number of simulated payoffs in the second stage, C1, and the number of scenarios

retained after screening, K1(k, n0), are known, we approximate W1 and W2 by Ŵ1 and

Ŵ2 respectively in Section 4.1.1 and 4.1.2.

The remaining part W3 results from the discrepancy between two orderings of scenar-

ios: the ordering of the scenarios right after screening, and the ordering of scenarios after

second-stage sampling. It seems difficult to find a very accurate approximation of W3.

Yet from empirical study, compared with W1 and W2, the remaining part W3 is typically

negligible. The reason is that when n0 becomes large enough,the first stage makes the

ordering of the retained scenarios close to the true ordering. Meanwhile, when enough

computational budget is reserved for the second-stage sampling,the ordering of the sce-

narios after the second sampling should be very close to the true ordering too. In such

case W3 becomes negligible. On the other hand, if k or n0 is set to some unsuitable val-

ues, i.e. k is extremely large or n0 is relatively small or unnecessarily large, W3 becomes

relatively large and even dominates W1 +W2. This indicates that W3 works like a penalty

function, forcing k and n0 to take values within some region close to their optimum. Due

to this fact, W3 can be substituted by a penalty function Ŵ3, which vanishes when the

two aforementioned orderings agree and is large when the two orderings are dissimilar.

The two predictors P1 and P2 are designed to predict K1(k, n0) and C1 in most likely

and pessimistic cases. The ratio K1(k, n0)/k stands for the effectiveness of the screening

algorithm and the total number of simulated payoffs in the second stage C1 indicates

the time efficiency of the screening algorithm when total allowable running time T is

fixed. The estimation of K1(k, n0), C1, and the predictors P1 and P2, will be addressed

in Section 4.2.
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When we adopt the predictor P1,there is an important assumption upon which we

heavily rely.

Assumption 1. For a relatively wide region of the parameter pairs of (k, n0) around

the optimal settings with certain given computational budget, the performance of the sim-

ulation remains stable; that is when computation budget, C or T , and parameters (k, n0)

are given, for different runs of the simulation, the output confidence interval width and

the internal variables K1(k, n0) and C1 have low variances such that they can be treated

as constants.

For the simulation we are studying, the robustness of simulated output to the pro-

cedure parameters is often observed. That makes the Assumption 1 reasonable which

facilitates our analysis.

Let us decompose W = E
{

Û − L̂
}

into W = W1 + W2 + W3, as described above, in

the following forms.

W = E











¯̌l∑

i=1

¯̌w
′

iX̄π1i
(Ni) + zhiBS(¯̌l)



−





l̃
∑

i=1

w̃
′

iX̄π0i
(Ni) + zlo(l̃)B0(l̃)











= E







¯̌l∑

i=1

¯̌w
′

iX̄π1i
(Ni)−

ľ
∑

i=1

w̌
′

iX̄π1i
(Ni)







︸ ︷︷ ︸

W1

(4.1)

+E
{

zhiBS(¯̌l) + zlo(l̃)B0(l̃)
}

︸ ︷︷ ︸

W2

(4.2)

+E







ľ
∑

i=1

w̌
′

iX̄π1i
(Ni)−

l̃
∑

i=1

w̃
′

iX̄π0i
(Ni)







︸ ︷︷ ︸

W3

(4.3)
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where

w̃ := arg min
w∈S

k∑

i=1

w
′

iXπ0i
(Ni) l̃ := arg minℓmax

l=⌊kp⌋ minw∈S(l)

∑l
i=1 w

′

iXπ0i
(Ni)

w̌ := arg min
w∈S

k∑

i=1

w
′

iXπ1i
(Ni) ľ := arg minℓmax

l=⌊kp⌋ minw∈S(l)

∑l
i=1 w

′

iXπ1i
(Ni)

¯̌w := arg max
w∈S

k∑

i=1

w
′

iXπ1i
(Ni)

¯̌l := arg max
⌈kp⌉
l=ℓmin

maxw∈S(l)

∑l
i=1 w

′

iXπ1i
(Ni).

Despite the messy expressions, the underlying reason for this decomposition is pretty

clear. The first part W1 is constructed as the expected width of a confidence interval from

empirical likelihood estimation on the data set Xπ1i
(Ni), i = 1, 2, . . . , |I|. The second part

W2 involves bounds on standard deviations associated with inner-level uncertainty. In any

case, the number of scenarios retained after screening |I| is larger than ℓmax. Therefore,

when empirical likelihood estimation is applied to construct the confidence interval of

ES, selection bias is inevitable. To cancel it, another permutation of Xi(Ni), i ∈ I,

π0i, i = 1, 2, . . . , |I|, is adopted to compute the lower bound of ES instead of the natural

one, π1i. The last part W3 is designed to capture the effect of replacing π1i with π0i in

the computation of the lower confidence bound of ES.
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Based on the following analysis, we can approximate W by

Ŵ (k, n0) :=
Eo√

k
+

√

K1(k, n0)

C1

(

E

[√

σ2 + ν2Z(1)(K1(k, n0))

]

z1−αlo
∆(⌈kp⌉)

)

+

√

K1(k, n0)

C1

(

E

[√

σ2 + ν2Z(1)(⌈kp⌉)
]

z1−αhi
∆(ℓmin)

)

+
1

l

∑

(i,j)∈J

{
σ∗

ij√
2π

exp

{

−
d2

ij

2σ∗2
ij

}

+ dij

(

Φ(−dij

σ′
ij

)− Φ(−dij

σ∗
ij

)

)}

.(4.4)

The next three sub-sections define the notation and provide intuition for the equation

above.

4.1.1. Approximation of W1

The width of the outer-level empirical likelihood confidence interval W1 is an unknown

function of k. From empirical observations, we can assume that

Assumption 2. Empirical likelihood confidence interval widths are O(k−1/2).

Let Eo/
√

k0 be the width of the outer-level empirical likelihood confidence interval

in T (k0, n00). Based on Assumption 2, the width when there are k scenarios will be

approximately Eo/
√

k. We estimate Eo by

√

k0

(

max
w∈S(k0)

k0∑

i=1

w′
iX̄(i)(n00)− min

w∈S(k0)

k0∑

i=1

w′
iX̄(i)(n00)

)

where X̄(i)(n00) is the ith order statistic of the sample averages in T (k0, n00).
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4.1.2. Approximation of W2

First we make some simplifications regarding the second-stage sample errors. Let s2
i :=

S2
i (Ni)/Ni. As Ni is chosen to be proportional to the first-stage sample variance, s2

i C1/K1(k, n0) =

(S2
i (Ni)/S

2
i (n0))(

∑

j∈I S2
j (n0)/K1(k, n0)). By Assumption 1,

∑

j∈I S2
j (n0)/K1(k, n0) is

the average of the first-stage sample variances S2
j (n0), j ∈ I. It is approximated as

∑K0

i=1 S2
(i)(n00)/K0, where K0 is the nearest integer to K1(k, n0)k0/k. Conditioning on Ni,

S2
i (Ni)/S

2
i (n0) obeys FNi−1,n0−1 distribution. To speed up computation, s2

i is simplified

as a two-moment normal approximation, as shown in Assumption 3.

Assumption 3. s2
i is normally distributed with mean σ2 and variance ν2, where

σ2 =
(n0 − 1)

∑K0

i=1 S2
(i)(n00)

(n0 − 3)K0
,

ν2 =
2(σ2)2(N̄ + n0 − 4)

(N̄ − 1)(n0 − 5)
,

N̄ =
C1

K1(k, n0)
.

Now let us deal with the other two factors in W2, BS(¯̌l) and B0(l̃). The undeter-

mined variables ¯̌l and l̃, standing for the number of scenarios used to construct the upper

and lower bound estimation, are assumed to be constants as a consequence of Assump-

tion 1. Also because BS(¯̌l) and B0(l̃) are insensitive to the values of ¯̌l and l̃, the following

assumption is natural.

Assumption 4. The number of scenarios used to construct the upper bound in empir-

ical likelihood estimation, ¯̌l, and the lower bound, l̃, equal to ℓmin and ⌈kp⌉, respectively.
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Based on assumptions above, with additivity and scalability of maximum operation,

W2 can be approximated by

√

K1(k, n0)

C1

(

E

[√

σ2 + ν2Z(1)(K1(k, n0))

]

z1−αlo
∆(⌈kp⌉)

)

+

√

K1(k, n0)

C1

(

E

[√

σ2 + ν2Z(1)(⌈kp⌉)
]

z1−αhi
∆(ℓmin)

)

(4.5)

where Z(1)(n) is the maximum of n i.i.d standard normal random variables. The ex-

pectation can be computed by numerical integration and ∆(⌈kp⌉) and ∆(ℓmin) can be

computed through the approach described in Appendix A.

4.1.3. Substitute for W3

As mentioned above, for W3, the remaining part of W , instead of looking for an approx-

imation, we find a substitute for it. The substitute, denoted as Ŵ3, changes in a way

similar to W3 with respect to k and n0. When k and n0 are close to the optimal setting

so that the screening algorithm can efficiently eliminate most inferior scenarios and the

order of scenarios in set I right after screening and that after the second-stage sampling

are similar, Ŵ3 is almost negligible as W3 is. When k or n0 takes unsuitable values, the

substitute Ŵ3, although it may be quite different from W3, still dominates W1 + W2.

The intuition for Ŵ3 comes from a simple case with two scenarios. In such a case,

let µ1, µ2 be the conditional portfolio value for scenarios 1 and 2. After the first-stage

sampling, the sample averages X̄1(n0) and X̄2(n0) approximately obey N(µ1, σ
2
1/n0) and

N(µ2, σ
2
2/n0), respectively. The variances σ2

1 and σ2
2 are determined by the randomness

in the simulation conditioned on the corresponding scenarios. The covariance σ2
12 is also
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needed due to CRN at the first stage. All these parameters can be estimated from the

pilot information T (k0, n00). Accordingly, after the second stage, the sample averages

are asymptotically distributed as N(µi, σ
2
i /Ni), i = 1, 2. For notational simplicity, denote

d12 = µ1 − µ2, σ′
12 = σ12

√

1/n0, σ∗
12 =

√

σ2
1/N1 + σ2

2/N2, D1 = X̄1(n0) − X̄1(n0) and

D2 = X̄1(N1)− X̄2(N2). Conditioning on n0 and Ni, i = 1, 2, D1 ∼ N(d12, σ
′2
12) and D2 ∼

N(d12, σ
∗2
12). Ignoring the uncertainty on Ni, i = 1, 2, we can approximate X̄π1(1)(Nπ1(1))−

X̄π0(1)(Nπ0(1)) by

E[|D2| · 1{D1D2 < 0}]

= E[D21{D2 > 0}1{D1 < 0}]

+E[−D21{D2 < 0}1{D1 > 0}]

=
σ∗

12√
2π

exp

{

− d2
12

2σ∗2
12

}

+ d12

(

Φ(−d12

σ′
12

)− Φ(−d12

σ∗
12

)

)

,

where Φ(·) is the c.d.f of the standard normal distribution. The equality at the end is a

consequence of the fact that D1 and D2 are independent.

Then, the substitute Ŵ3 can be written as

Ŵ3(k, n0) :=
1

l

∑

(i,j)∈J

{
σ∗

ij√
2π

exp{−
d2

ij

2σ∗2
ij

}+ dij

(

Φ(−dij

σ′
ij

)− Φ(−dij

σ∗
ij

)

)}

where l = l∗k/k0 and J = {(l − i, l + i + 1)|i = 0, · · · , l ∧ (K1(k, n0) − l) − 1}. The

parameter l∗ is the number of sampled conditional portfolio values selected to construct

the lower bound of ES in the pilot simulation. The substitute Ŵ3 is set up based on the

simplification that ľ = l̃ = l, w̌ = w̃ = {1/l, · · · , 1/l} and any pair of scenarios within J

behaves exclusively and independently in contributing to W3. Again, the substitute Ŵ3
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is not an approximation of W3. It just plays a similar role in Ŵ as W3 does in W with

respect to the two procedure parameters k and n0.

4.2. Measurement and Prediction

In Equation (4.4), most terms can be directly estimated or approximated from the pi-

lot information, T (k0, n00), but the number of scenarios retained after screening K1(k, n0)

and the number of allocated simulated payoffs at the second stage C1 need specific con-

sideration. When the computational budget is given in total simulated payoffs C, C1 can

be easily calculated by C1 = C − kn0. When the computational budget is given by total

allowable running time T , we have to do more work to estimate the running time of the

two-level simulation with parameters k and n0.

4.2.1. When Computational Effort is Given by T

In this case, the number of allocated simulated payoffs for the second stage C1 has to

be calculated by estimating the time left for the second stage sampling T1 and the unit

time required for the sampling of each payoff Rsam. First we need to use a high precision

timer provided by the operating system and assume that the running environment of our

procedure is unchanged between the pilot simulation and the experiment we would like to

run. Then we need to analyze the computational complexity of the two-level simulation.

In Figure 4.1, the first row of the diagram shows the main time-expensive steps of the

two-level simulation. The second row shows the corresponding approximation formula for

time spent on each step. All the constant multipliers (the R’s) are determined from the

observed computation time in the historical or pilot simulation. Some of these are derived
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first stage sampling sorting k scenarios multiple comparision second stage sampling constructing CI

Screening Procedure

kn0Rsam (k log k)Rscrsort (k log k)RcomMn0Rscr2 RsamC1

Figure 4.1. Time-consuming Steps of Two-Level Simulation

from the expected computational complexity. For example, the time spent on “sorting”

has the expected computational complexity of O(k log k) as Quick Sort is adopted, and

we may then approximate the time spent on “sorting” as (k log k)Rscrsort, where Rscrsort is

a constant multiplier. Similar reasoning accounts for the first-stage sampling and second-

stage sampling approximation formulas, where Rsam is the average time spent on the

simulation of unit payoff. The time spent on constructing the confidence interval is

(k
√

k)Rcom. A rough intuition is that the computation of the lower or upper bound limit

of
∑

w∈S(l) w′X̄π.i(Ni) is O(k) for each l ∈ [ℓmin, ℓmax], and ℓmax − ℓmin is asymptotically

O(
√

k). The time spent on the multiple comparisons of the screening procedure is a

function of k and n0, and is monotone in k. But the relationship between the time spent

on the multiple comparisons and the first-stage sample size n0 is complex, due to the fact

that increasing n0 can make it easier to screen out scenarios. What this means is that, the

number of comparisons need to be done, denoted as M , decreases or remains unchanged as

n0 increases; meanwhile, for each comparison, the computational effort on computing the

variance S2
ij(n0), which is dominant in the total computational effort of each comparison,

is a linearly increasing function of n0. We leave the estimation of M to Section 4.2.2. If

the number of comparisons M is already known, the time spent on multiple comparisons
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T (k0, n00)

Figure 4.2. Function of the Predictor of Screening

of the screening procedure can be approximated as Mn0Rscr2, where n0Rscr2 stands for

average time on the calculation of each S2
ij(n0), and Rscr2 is a constant multiplier.

Based on the approximations above, we can estimate C1 as follows:

(4.6) C1 =
T1

Rsam
=

T − kn0Rsam − kRscr − (k log k)Rscrsort − (k
√

k)Rcom −Mn0Rscr2

Rsam
,

where the number of comparisons M is still unknown. The number of scenarios retained

after screening, K1(k, n0), is also an unknown variable that needs to be predicted.

4.2.2. Predictors

Figure 4.2.2 shows the problem we discuss in this section: predicting the number of sce-

narios after screening K1(k, n0) and the number of comparisons to be done M(k, n0) when

the computational effort is given by simulated payoffs C (or clock time T ). A predictor

of the screening procedure is proposed as a function that takes T (k0, n00) and any pair of

(k, n0) as inputs. The outputs are K1(k, n0) and C1. For simplicity and computational

efficiency, based on the pilot information T (k0, n00) for any pair of parameters (k, n0), we

suppose all the k scenarios are re-sampled from the k0 scenarios contained in T (k0, n00)

equally; i.e., for each scenario there are k/k0 duplications in the prediction. Similarly,
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T (k0, n00) k = 2k0 and n0 = 3n00

Figure 4.3. Re-sampling Based on T (k0, n00) for k = 2k0 and n0 = 3n00

all payoffs conditioned on each scenario in the prediction are re-sampled from the pilot

information T (k0, n00) equally again. Each Xij ∈ T (k0, n00), i = 1, · · · , k0 j = 1, · · · , n00

is assumed to repeat (k/k0)(n0/n00) times in the prediction. Figure 4.3 shows that when

k = 2k0 and n0 = 3n00, according to our re-sampling scheme, each payoff in T (k0, n00) re-

peats 6 times, as the colored boxes indicate. It is obvious that the above resampling does

not really needed to be done; indeed, we only need to predict X̄i(n0), S
2
i (n0), i = 1 · · · , k,

etc. on the basis of this re-sampling scheme. Then parameters in Equation (4.4), i.e. dij,

σ∗
ij and σ

′

ij , can also be estimated based on these predictions.

4.2.2.1. The Most-likely Predictor P1. By applying the screening algorithm to the

re-sampled data set, we can compute the number of comparisons M directly. As for the

number of scenarios after screening K1(k, n0), instead of assuming Xi(n0) constant, we

take Xi(n0) ∼ N(µi, σ
2
i ) and Aji(n0) = 1

{

X̄i(n0) > X̄j(n0) + d

√
S2

ij(n0)

n0

}

as a Bernoulli

random variable with the probability of success Φ



d− µi−µj
r

σ∗2
ij

n0



. The parameters µi, σ
2
i

and σ∗2
ij could be approximated from the pilot information T (k0, n00) as mentioned above.

By applying screening algorithm, scenario i is retained or not as determined by whether
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∑k
j=1,j 6=i Aji(n0) < ⌈kp⌉ . From a normal approximation, we get

E

[

1

{
k∑

j=1,j 6=i

Aji(n0) < ⌈kp⌉
}]

≈ Φ

(⌈kp⌉ − 0.5− µB(i)

σB(i)

)

,

where

µB(i) =

k0∑

j=1,j 6=i

k

k0
Pr{Aji(n0)}

σ2
B(i) =

k0∑

j=1,j 6=i

k

k0
Pr{Aji(n0)}(1− Pr{Aji(n0)}).

Thus, we have the approximation

(4.7) K1(k, n0) ≈
k0∑

i=1

k

k0

Φ

(⌈kp⌉ − 0.5− µB(i)

σB(i)

)

.

The following procedure describes how K1(k, n0) and M are actually calculated.

(1) Feed X̄i(n00), S
2
i (n00), π0(i) ∀i = 1, 2, . . . , k0 and S2

ij(n00) for some i, j from

T (k0, n00)
1

(2) Take inputs k and n0.

(3) Initialize K1 = ⌈kp⌉ , M ′ = 0, d = tn0−1,1−αs/((k−⌈kp⌉)⌈kp⌉) , S̃2(n00) = max
⌈kp⌉
i=0 S2

π0(i)
(n00)

and i← k0.

(a) Pre-screening : If X̄π0(i)(n00) > X̄π0(⌈kp⌉)(n00)+d
√

(S2
π0(i)

(n00) + S̃2(n00))/n0,

scenario π0(i) is pre-screened out: go to Step (3c).

(b) Screening : Initialize c← 0, b← 0, µB ← 0, σ2
B ← 0, e← 0 and j ← 1.

1Not all S2
ij(n00) are necessarily computed in the pilot simulation. For those with unknown value, the

variance is computed inline when needed.
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(i) If S2
π0(i)π0(j) is unassigned, compute the sample variance S2

π0(i)π0(j) of

Xπ0(i)1 −Xπ0(j)1, Xπ0(i)2 −Xπ0(j)2, . . ., Xπ0(i)n0 −Xπ0(j)n0 .

(ii) If c < ⌈kp⌉, set M ′ ←M ′ + 1.

(iii) If X̄π0(i)(n00) > X̄π0(j)(n00)+(d+2)Sπ0(i)π0(j)(n00)/
√

n0, scenario π0(j)
2

beats scenario π0(i) for sure: set b← b + k
k0

.

Else if X̄π0(i)(n00) > X̄π0(j)(n00) + (d − 2)Sπ0(i)π0(j)(n00)/
√

n0, sce-

nario π0(j) beats scenario π0(i) with probability a← Φ



d− X̄i(n00)−X̄j(n00)
r

S2
ij

(n00)

n0



:

set µB ← µB + k
k0

a and σ2
B ← σ2

B + k
k0

a (1− a).

Otherwise, scenario π0(j) cannot beat scenario π0(i) for sure: set

e← e + k
k0

.

(iv) If X̄π0(i)(n00) > X̄π0(j)(n00) + dSπ0(i)π0(j)(n00)/
√

n0, set c← c + k
k0

.

(v) If b ≥ ⌈kp⌉, scenario π0(i) is screened out: go to Step (3c).

Otherwise, set j ← j + 1.

(vi) If j < i, go to Step (3(b)i).

Otherwise, go to Step (3c).

(c) If b ≥ ⌈kp⌉, scenario π0(i) is screened out for sure.

Else if (j − 1) k
k0
− e < ⌈kp⌉, scenario π0(i) can not be screened out for sure:

set K1 ← K1 + k
k0

.

Otherwise, scenario π0(i) is retained with probability Φ
(

⌈kp⌉−0.5−µB(i)
σB(i)

)

: set

K1 ← K1 + k
k0

Φ
(

⌈kp⌉−0.5−µB(i)
σB(i)

)

.

Loop: Set i← i− 1. If i > ⌈k0p⌉, go to Step (3a).

(4) set K1 ← K1

∨
ℓmax.

2For time efficiency, we approximate Φ(x) = 1 and Φ(−x) = 0 when x ≥ 2.
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(5) set M ← k2

k2
0
M ′

For experiments in which the computational effort is measured by the total number

of simulated payoffs, C, only K1(k, n0) is significant. If computational time T is given,

both K1(k, n0) and M are important.

4.2.2.2. The Pessimistic Predictor P2. Due to the fact that optimizing n0 tends to

make it small (but still large enough to screen out a lot of inferior scenarios at the end

of the first stage), the optimized parameters (k, n0), say (k∗, n∗
0), are highly sensitive to

the quality of the approximation, Ŵ (k, n0). That is, n∗
0 may be only slightly too small

yet it may lead to dramatically bad performance for some runs of two-level simulations.

A special step called “robustness” is added right after the optimized (k∗, n∗
0) is achieved

to tailor (k∗, n∗
0) a little bit to stabilize the output performance of the simulation. To

accomplish this goal, the pessimistic instead of most likely predictor is adopted. Unless

explicitly pointed out, all assumptions we made in Section 4.2.2.1 are still applicable here.

From Section 4.2.2.1, the number of scenarios after screening K1(k, n0) can be taken as

the sum of Bernoulli random variables with probability of success equal to Φ
(

⌈kp⌉−0.5−µB(i)
σB(i)

)

.

As shown in Equation (4.7), the expectation is taken as the most likely prediction of

K1(k, n0). As a pessimistic predictor, P2 takes the 95th percentile of K1(k, n0) as the

output. Similar to Equation (4.7), the 95th percentile of K1(k, n0) can be approximated

by the 95th percentile of the normal distribution with mean
∑k0

i=1
k
k0

Φ
(

⌈kp⌉−0.5−µB(i)
σB(i)

)

and

variance
∑k0

i=1
k
k0

Φ
(

⌈kp⌉−0.5−µB(i)
σB(i)

)(

1− Φ
(

⌈kp⌉−0.5−µB(i)
σB(i)

))

.

For the number of comparisons needed to be done, M , a similar method is applicable.

Let M =
∑k

i=⌈kp⌉+1 Mπ0(i), where Mπ0(i) is the number of comparisons needed to be done

for the decision of scenario π0(i). As each comparison is taken as a Bernoulli random
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variable, Mπ0(i) is the smaller of i − 1 or the number of comparisons needed to be done

until the total number of successful comparisons is ⌈kp⌉. For simplification, we assume all

the Bernoulli random variables are independent with the probabilities of success jumping

down from 1 to p̄B and then finally to 0.3 Obviously, Mπ0(i) is now simplified as a

linear transform of a truncated negative binomial random variable. Then the number

of comparisons M can be estimated as

(4.8) E[M ] =

k∑

i=⌈kp⌉+1

E[Mπ0(i)]

where

(4.9)

E[Mπ0(i)] =







⌈kp⌉ , when b > ⌈kp⌉;

i− 1, when i− e− 1 < ⌈kp⌉;

b+
⌈kp⌉ − b

p̄B

NBp̄B
(⌈kp⌉ − b + 1, i− e− ⌈kp⌉ − 2)

+ (1−NBp̄B
(⌈kp⌉ − b, i− e− ⌈kp⌉ − 1))(i− b− 1)

o.w.

and NBp̄B
(x, y) is the c.d.f. of the Negative Binomial Distribution with probability of

success p̄B, the number of successful trials x and the number of failed trials y. Parameters

b and e are computed through the procedure in Section 4.2.2.1 and can be taken as the

number of scenarios that can beat scenario i with probability 1, and the number of sce-

narios that can beat scenario i for some moderate probability, respectively. Appendix C.1

gives further details about how the equation above is set up and how p̄B is computed.

3As the comparisons with high success probability will usually be done first, the statistical inference about
π0(i

′) could be done with fewer comparisons. This simplification will cause Mπ0(i′) to be overestimated.
This is the reason that this method is adopted here instead of in Section 4.2.2.
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4.3. Fixed C Procedure

By approximating W by Ŵ , we simplify the original stochastic nonlinear integer prob-

lem to the following problem:

min Ŵ (k, n0)(4.10)

s.t. C − kn0 = C1(4.11)

k ≥ 40/p(4.12)

n0 ≥ 30(4.13)

where Constraint (4.11) expresses the allocation of computational budget between the

outer level and inner level, Constraint (4.12) stands for the minimal empirical requirement

for k in order to keep the validity from Chapter 3.3, and constraint (4.13) tries to satisfy

the normality assumption for simulated payoffs (see Lesnevski et al. (2008)). These are

just some rough guidelines for large enough sample sizes to get adequate coverage of the

estimated confidence interval, which is guaranteed only as k →∞ and n0 →∞.

The quantitative property of Ŵ (k, n0) depends on the portfolio studied. But for

qualitative analysis only, there are some good properties regardless of portfolios studied.

When n0 is fixed, Ŵ (·, n0) is decreasing then increasing in k and looks like a quasi-convex

function of k. When k is fixed, Ŵ (k, ·) is roughly increasing then decreasing and finally

increasing in n0. This is because of the two-fold function of n0 we discussed before. Yet

in reality, Ŵ (k, ·) usually contains many peaks and valleys due to the discreteness of n0.

These properties of Ŵ (k, n0) require special consideration in regards to global convergence
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when multivariate convex minimization techniques (such as the cyclic coordinate method

(Bazaraa et al., 2005)) are adopted to solve Problem (4.10) – (4.13).

For the k coordinate searching step, the Golden Point Intersection method (Bazaraa

et al., 2005) is adopted. For n0 coordinate searching, considering the complexity of

Ŵ (k, n0), a grid search hybrid with the Armijio method (Bazaraa et al., 2005) is adopted

here. The grid search method simply determines the objective value at each grid point.

It may offer some protection against local minima but it is not very efficient. The Armijio

method is adopted to search around the best grid point to hasten the convergence speed.

The search methods we adopt here can only guarantee a local minimum. If Ŵ (k, n0)

is strictly quasi-convex, the solution is also global. Unfortunately, Ŵ (k, n0) in general

does not have such a property. The application of the grid search method helps to pro-

tect against local minima if the grid points are dense enough. Our experiments show

that dozens of grid points together with the Armijio method can help to find the global

minimum very quickly.

With the optimization techniques described above and the prediction procedure in

Section 4.2.2, locally optimal parameters (k∗, n∗
0) are archived for the optimization of

Ŵ (k, n0). Then the “robustness” step is adopted to fine tune (k∗, n∗
0) locally so that it

makes the two-level simulation work well and be stable.

The (k, n0) tuning procedure for a given total number of simulated payoffs C is de-

scribed as follows.

(1) Initialization

Set the minimum of n0, n0,min, as 30 and set n∗
0 as n00 and k as k0.

Set the minimum allowed value of k, kmin, as 40/p and calculate kmax from
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Constraint (4.11) under given n∗
0 .

Let a← 0 and Ŵ ∗
N ← Ŵ (k0, n00).

(2) Do (with the most likely predictor P1):

(a) Searching for k∗

Golden Method to search for the optimal k∗ ∈ [kmin, kmax) under given n∗
0.

Let kold ← k and k = k∗.

(b) Updating n∗
0

(i) Let nold ← n∗
0.

(ii) If a = 0, Generate grids of n0:

Generate guesses for n0 by computing
d2Sij(n00)

(X̄i(n00)−X̄j(n00))2
for i = ⌈kp⌉ , j =

⌈kp⌉+ 1, ⌈1.5kp⌉, ⌈2kp⌉, . . . , ⌈10kp⌉, ⌈k/4⌉, ⌈k/2⌉, ⌈3k/4⌉, k;

Calculate their corresponding Ŵ (k∗, n0);

Find the n∗
0 that has the minimal Ŵ (k∗, n0) among all grid points;

Take Armijo search along the decreasing direction of n∗
0, keep on up-

dating n∗
0 such that Ŵ (k∗, n∗

0) is the minimum.

Set a← 1.

(iii) Locally optimizing n∗
0:

Perform a climbing-hill search on both sides of n∗
0, keep updating n∗

0.

(iv) Update kmin or kmax:

if n∗
0 > nold, let kmax ← k∗; else let kmin ← k∗.

(v) Update Ŵ ∗
N ← Ŵ (k, n0)

While (|nold − n∗
0| > 0.1nold ∨ 10 or |kold − k∗| > 10/p).

(3) Robustness Step (with the pessimistic predictor P2):
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(a) Set ŴD = Ŵ (k∗, n∗
0) with the prediction procedure in Section 4.2.2.2, a← 0.

Set kmin = 40/p ∨ k∗/4 and kmax = 4k∗.

Set kR = k∗ and nR
0 = n∗

0.

(b) DO (with the prediction procedure in Section 4.2.2.2):

(i) Set nold ← nR
0 and perform a climbing-hill search on both sides of nR

0 ,

keep updating nR
0 .

(ii) Set kold ← kR and use the Golden Method to search for the optimal

kR ∈ [kmin, kmax) under given nR
0 .

(iii) Update kmin or kmax:

if nR
0 > nold, let kmax ← kR; else let kmin ← kR.

(iv) Update Ŵ ∗
D ← Ŵ (k, n0)

While (|nold − nR
0 | > 0.1nold ∨ 10 or |kold − kR| > 10/p) and a < 3.

(c) If Ŵ R
D > 1.1Ŵ ∗

N , set kR = k∗/1.2 and nR
0 = 1.2n∗

0.

(4) Output: (kR, nR
0 ).

4.4. Fixed T Procedure

Similarly, by approximating W by Ŵ , we simplify the original problem to Prob-

lem (4.14)
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min Ŵ (k, n0)(4.14)

s.t. C1 =
T − kn0Rsam − kRscr − (k log k)(Rscrsort + Rcom)−Mn0Rscr2

Rsam
(4.15)

k ≥ 40/p

n0 ≥ 30

where Constraint (4.15) expresses the allocation of computational time between the outer

level and inner level. The other constraints have the same meaning as Constraint (4.12)–

(4.13).

With other factors fixed, Ŵ (k, n0) decreases in C1, the total simulated payoffs at the

second stage, which also decreases in k. Then Ŵ (·, n0) decreases and then increases in k

and looks like a quasi-convex function. However, in most cases, Ŵ (k, ·) does not show any

sort of convexity in n0 due to the fact that Mn0Rscr2 (denoted as Tscr2) goes up, down

and then up as n0 increases, as shown in Figure (4.4). The effect of increasing the first-

stage sample size n0 is two-fold: on one fold, the computation time for each comparison

increases as n0 increases, and on the other fold, the total comparisons need to be done,

M , may decrease as n0 increases. Usually we have such observations: when n0 is pretty

small or relative large, the first effect dominates, then Ŵ (k, ·) increases in n0; otherwise,

the second effect dominates and Ŵ (k, ·) decreases in n0.

The procedure when T is fixed is almost the same as the procedure described in

Section 4.3. The only difference is that kR is set to be k∗/1.1 in the “robustness” step

when Ŵ R
D > 1.1Ŵ ∗

N .
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Figure 4.4. Relation of Tscr2 and n0

4.5. Experiments

In this section, we test the “goodness” of the pair of (k, n0) suggested by our proce-

dures. By “goodness” we mean that (k, n0) is close to the optimal choice and robust to

Monte Carlo variability in different runs of the two-level simulation. As the user usually

does not rerun the same experiment with different random seeds to obtain the average

output, it is important to have the pair (k, n0) suggested by our procedures work robustly

as well as efficiently.

The test problems we used are the experiments of selling a single put option, and

holding a portfolio of options on two stocks discussed in Chapter 1. For simplicity, we

call them Problem 1 and Problem 2. To enrich the test variability, we run experiments on

Problem 2 by adopting different pricing models. Through this trick, we test our procedures
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facing different levels of variances and covariances in the inner level of simulation. These

models were introduced in Chapter 1.

We tested the simulation procedures by producing a 90% confidence interval (CI) for

ES0.99 of Problem 1 and Problem 2. The ES0.99 of Problem 1 is $3.39 and that of Problem 2

is $32.40. Unless specified, the number of macro-replication is 20. The decomposition

of the total allowed error probabilities, α = αo + αs + αhi + αlo, is far less important

to the performance of the two-level simulation than the two parameters (k, n0), where

the terms on the right side are error probabilities allocated to an outer-level confidence

interval, screening, and inner-level lower and upper confidence limits, respectively. The

composition of αo = α/2, αs ≈ α/4, αhi = αlo = (α − αo − αs)/2 works well in all our

experiments.

For all the following experiments, the coverage rates of all the estimated confidence in-

tervals of ES are greater than the nominal 90% when the experiment can be accomplished

within given computational budgets.

We ran the experiments on a PC with a 2.4 GHz CPU and 4 GB memory under 64-bit

Red Hat Linux. The code was written in C++ and compiled by gcc 3.4.6.

We set k0 = 40/p and n00 automatically by the procedure in Appendix C.2.1 to ensure

that T (k0, n00) is accurate enough for the prediction procedures to work well.

4.5.1. Effectiveness and Robustness of the Given C Procedure

To show the effectiveness of our procedure, we compare the estimated confidence interval

width simulated with the chosen (k, n0) of our procedure and those pairs of (k, n0) selected
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evenly from the feasible region. For Problem 1, the number of scenarios k and first-

stage sample size n0 are respectively selected from 250 ≤ k ≤ 128,000 and 10 ≤ n0 ≤

800 for C = 16,000,000. A total of 62 pairs of (k, n0) were systematically selected,

4 more design points are selected around the best design of the 62 pairs. With some

pairs of (k, n0) like (k, n0) = (256,000, 30), the two-level simulation is extremely time-

consuming and the confidence intervals estimated are obviously far from the best. For

such a case, we only ran a small number of macro replications, such as 5 or 10. Otherwise

100 replications were tested for each pair of (k, n0) selected. A total of 4877 macro

replications were run. The selected (k, n0) and corresponding experimental results are

listed in Appendix C.3.1.1. Four typical pairs of (k, n0) and their simulation results are

shown in Figure 4.5. As displayed in the figure, within a relatively wide range of (k, n0),

the variances of the estimated confidence interval width generated by different runs of the

simulation are relatively small, which means that the two-level simulation works stably

with such parameters and it is both feasible and meaningful to find a good pair of (k, n0)

within such a range.

With C = 16,000,000, the procedure to find good parameters was run 20 times with

same k0 but different pilot simulations T (k0, n00). For each of the 20 times our algorithm

generated a pair of (k, n0), with which 20 replications of the two-level simulation were

run. The results are shown in Table 4.1. The first two columns are the pairs of (k, n0)

suggested by our procedure. The sample average and sample variance of the widths of the

simulated confidence intervals are listed in the third and fourth columns. For the number

of scenarios, k, the suggested value ranges from 146,908 to 171,301, changing at most 17%.

The first stage sample size, n0 varies from 65 to 70, changing at most 8%. Meanwhile,
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Figure 4.5. Histogram of Simulation Performance of Problem 1 with Dif-
ferent Pairs of (k, n0)

the magnitudes of the sample variances are roughly 10−2 of those of the sample averages,

which indicates that the simulation performance under the suggested pairs of (k, n0) is

very stable. The experiment shows that our procedure can find a pair of (k, n0) with

which the two-level simulation works robust, and almost as well as possible. On other

hand, the pairs of (k, n0) suggested from our procedure are stable across different pilot

simulations T (k0, n00). Figure 4.6 confirms the description above vividly. The cross points

are the (k, n0) evenly selected from the feasible region.4 The star points are the (k, n0)

suggested by our procedure. The left plot shows that the suggested pairs of (k, n0) cluster

together. In the right plot, we note that all the star points cluster together around the

left bottom corner, which means simulation with suggested (k, n0) perform the best in

4To better illustrate the efficiency of the suggested pairs of (k, n0), we also run some simulations with
parameters (k, n0) from the region ([10,000, 20,000], [50, 80]) that seems most likely to contain the best
choice(s).
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k n0 Average CI Width Variance of CI Width
155781 65 0.100002 1.42e-03
159774 65 0.100571 1.47e-03
155781 65 0.100190 1.45e-03
159464 65 0.100697 2.30e-03
155781 65 0.100622 1.36e-03
163465 65 0.100579 1.79e-03
146908 70 0.102005 2.10e-03
163680 65 0.100867 1.50e-03
155781 65 0.099931 1.47e-03
159292 65 0.100243 1.50e-03
155214 65 0.100557 1.81e-03
155781 65 0.100306 1.69e-03
163808 65 0.101246 1.63e-03
163503 65 0.100272 1.64e-03
155781 65 0.100013 1.63e-03
150402 70 0.102309 2.21e-03
159511 65 0.099805 1.67e-03
154999 65 0.100354 1.47e-03
155664 65 0.099898 1.68e-03
171301 65 0.102626 3e-06

Table 4.1. Experiment Results for Problem 1

terms of accuracy and robustness. Also the algorithm to suggest the (k, n0) works robust

across the different pilot simulations, T (k0, n00), that we tried.

For a different computational budget C or Problem 2, similar experiments have been

done. The simulation results are listed in Appendix C.3.1.2. All results confirm that

our procedure can find efficient and robust pair of parameters (k, n0) for the two-level

simulation.

4.5.2. Effectiveness and Robustness of a Given T Procedure

The efficiency and robustness of our procedure for given computational time T can be

illustrated in a similar way. We define the accomplishment rate as the ratio of the number
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Figure 4.6. Simulation Performance of Problem 1 with (k, n0) Suggested by
our Procedure and Evenly Selected

of replications of the two-level simulation successfully accomplished within a given time

T to the total number of replications we try to run. This is different from the total

computational budget given in the total number of payoffs simulated C, in which case, it

is natural to tell if a pair of (k, n0) is feasible or not without any prior information about

the behavior of the two-level simulation. When the total computational budget is given

by clock time T , the event that a two-level simulation will complete within given time T

is a random event. By assuming that the running environments remain almost the same

between the two-level simulation and the test run to generate T (k0, n00), our procedure
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Figure 4.7. Histogram of Simulation Performance of Problem 2 with Dif-
ferent Pairs of (k, n0)

can find a pair of (k, n0) that is not only likely to be feasible, but also close to the best

attainable in very similar running environments.

With T = 240 seconds, k and n0 were systematically selected from 2000, 4000, 6000, 8000,12000

and 1000, 2000, 4000, 6000, 8000, 12000 respectively. For each choice of settings, 100 repli-

cations of two-level simulation were run. The collective data are shown in Appen-

dix C.3.2.2. Four typical pairs of (k, n0) and their simulation results are shown in Figure

4.7. The experiment results indicate that there is no simple rule to choose (k, n0) for a

given T as the relationships of W and (k, n0) are not monotone, and the two parame-

ters, k and n0, depend on each other. The pair, (k, n0) = (6000, 6000) is very risky and

should not be suggested by our procedure, although sometimes the two-level simulation

can generate very narrow confidence intervals. As shown in Figure 4.8, compared to an

arbitrarily selected (k, n0), the pair of (k, n0) suggested by our procedure is demonstrated
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to be effective and robust. The experiment was done with T = 240 seconds and a total

of 20 pairs of (k, n0) are found with different pilot information T (k0, n00). Twenty repli-

cations of the two-level simulation were run to test the effectiveness and robustness of

each algorithm generated pair of (k, n0). The accomplishment rate of all the experiments

with (k, n0) suggested by our procedure is 100%. The results are also shown in Table 4.2.

Similar to Table 4.1, the first two columns show the suggested pairs of (k, n0). Compared

with results of the simulation of Problem 1, the suggested pairs of (k, n0) vary within a

larger region, that is, the number of scenarios, k, changes at most 50% while the first-stage

sample size, n0, changes at most 64%. This is because of the high variance of the Monte

Carlo simulation of Problem 2. But the average widths of the confidence intervals with

different (k, n0) demonstrate much less variability, around 8%. We confirm again that

the (k, n0) suggested by our procedure are almost the most efficient and robust procedure

parameters; and our procedure is also robust to the Monte Carlo variability in the pilot

simulation T (k0, n00).
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k n0 Average CI Width Variance of CI Width Accomplishment Rate
9734 5862 3.93 1.4e-01 100%
11288 4483 3.87 9e-02 100%
9689 5094 3.86 1.2e-01 100%
11015 4514 3.96 9e-02 100%
9397 5756 4.00 1.2e-01 100%
9186 6361 4.14 1.5e-01 100%
10574 4784 3.89 7e-02 100%
10622 4676 3.91 1.0e-01 100%
10417 4837 3.92 9e-02 100%
10510 5629 4.03 8e-02 100%
10538 4486 3.94 9e-02 100%
9182 6486 4.09 1.1e-01 100%
11512 4340 3.85 1.1e-01 100%
9632 5250 3.86 7e-02 100%
10798 4671 3.92 8e-02 100%
11519 4604 3.95 9e-02 100%
7837 7051 4.06 1.1e-01 100%
11086 4553 3.90 7e-02 100%
10236 5090 3.93 5e-02 100%
11767 4289 3.91 6e-02 100%

Table 4.2. Experiment Results for Problem 2
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CHAPTER 5

Parallelization on GPU

In spite of all the efficiency techniques applied, the two-level simulation is still time-

consuming. Meanwhile, the development of chip-level parallelism in the microprocessor

industry has already brought multicore Central Processing Units (CPUs) and manycore

Graphics Processing Units (GPUs) into the mass market. It has become practicable to

accelerate the two-level simulation through chip-level parallelism on regular workstations,

personal computers or even laptops. In this chapter, the parallelization of two-level simu-

lation is discussed and the experimental results demonstrate that the speedup compared

with the serial implementation in Chapter 3 is applaudable.

5.1. Reason to Adopt “CPUs+GPUs”

Parallel computing has been proved to be effective to solve computationally intensive

scientific problems in diverse disciplines, such as physics, geography, chemistry, biology

and engineering. There has been much research on parallel computing in economics and

finance in the past decade, covering topics from asset pricing to risk management. Yet the

application of parallel computing in financial industry is still limited. Two obstacles exist.

The first is the expensive purchase and maintenance cost of a huge or even medium-scale

super computer. Second, parallel programming is more difficult than serial programming.

Meanwhile, by integrating two or more processing units (cores) into one chip, chip-level

parallelism is an economical solution for parallel computing. Nowadays, multicore CPUs
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are popular in workstations, personal computers and laptops. The number of cores in

such CPUs usually varies from 2 to 8. Typically, main memory in a computer with a

multicore CPU is shared by all cores. Among different types of parallel programming

languages for shared-memory parallelism, OpenMP is widely adopted for its simplicity.

It provides a set of pragma clauses and interfaces to make the messy thread manipulation

invisible to the programmers. Adopting OpenMP to accelerate the two-level simulation

is, of course, the first choice available to us. Nevertheless, lack of scalability makes the

choice less appealing when the computing resource of CPUs is not capable of handling

the two-level simulation in some real challenging applications.

Most modern GPUs are fundamentally manycore processors that provide a high de-

gree of parallelism with relatively affordable cost. Take the NVIDIA GeForce 9800 as an

example. It contains 128 scalar processing elements per chip, and provides a friendly C in-

terface package, called CUDA, through which programmers can take GPUs as additional

computing resources where 128 or even more copies of C codes can be run simultaneously.

The GPU is a massively multithreaded processor which creates, manages, schedules and

executes threads in hardware with lightweight thread creation and zero scheduling over-

head. It supports very fine-grained parallelism, allowing a low granularity decomposition

of problems by assigning one thread to each data element. This property makes the

parallel implementation more natural.

To address the concern of scalability and also fully utilize all computing resources of

current mainstream computers, we adopt “CPUs + GPUs” in our research. The parallel

implementation is on a basis of “OpenMP + CUDA”.
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5.2. How to Integrate GPU with CPU

The GPU organizes the massive threads in a hierarchy of thread→ block→ grid.

When a piece of code, called kernel, is launched on a GPU, a grid is created. A grid

may contain many blocks, and a block may contain up to 512 threads. A grid can choose

to index its blocks in a 1-dimensional, 2-dimensional or 3-dimensional way. A block can

also choose to index its threads in a 1-dimensional, 2-dimensional or 3-dimensional way.

The thread hierarchy is for the ease of 1-to-1 mapping of threads and data elements. For

example, when we generate k market scenarios, we can equip each thread with one random

number generator and make it generate its portion of market scenarios. When the data

processed are 2-dimensional or 3-dimensional, we can choose to index the threads in a

2-dimensional or 3-dimensional way respectively. Threads on CPU are less flexible. Each

thread is assigned with an unique index. Programmers need to maintain the mapping

between threads and their tasks on their own.

Another characteristics of GPU is the visibility of different types of memories. Un-

like a CPU, a GPU exposes the manipulation of different types of on-chip memories to

programmers. Each thread may have its own local storage: registers. Threads within

a block can communicate with each other through shared memory which is up to 16K

per block and as fast as registers. All threads can access the global memory on the chip,

which is larger yet much slower than shared memory and registers. There are some other

types of memory, such as texture and constant memory, similar to the global memory yet

cached for optimized local access. Compared with the beauty of thread manipulation,

use of memory is complex and less efficient due to the data bus limit. Because of these

characteristics of GPU, it is good at data-light massive-thread parallelism and becomes
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less appealing when data accessing happens frequently. However, for most CPUs, there

is on-chip L1/L2 cached memory together with the main memory of the computer. Use

of different types of memories is optimized and invisible for programmers, which makes

the serial implementation on CPUs easy. But such cache mechanism may bring race

conditions for shared memory parallel implementation. Data racing is one of the most

often-seen race conditions, which happens when a slot of shared memory is intended to

be updated by different threads with different contents. For example, as each thread may

have its own copy of the shared memory, two or more threads may write simultaneously

to their own local copies and then update the shared memory whenever necessary. Con-

flict happens during the updates when local copies are different. To reduce data racing

condition, special techniques need to be adopted. This breaks the simplicity of cached

memory and makes the shared memory parallel implementation on GPU complicated.

Obviously, the parallelism of GPU is similar to, and to some extent even simpler than,

shared memory programming on CPUs due to the fact that data racing becomes easier to

handle as the memory of GPU is usually not cached. Yet because of the limited amount

of on-chip fast registers and shared memory, a large amount of data has to be stored in

the global memory with much longer latency. To achieve good performance, the commu-

nication between shared memory (or registers) and global memory needs to be optimized

and the data reuse on shared memory (or registers) should be maximized, which is very

similar to distributed memory programming.1 In other words, it is easy to parallelize

on GPU but there is much more work to make it really efficient. Fortunately, there are

1Distributed-memory super computers are most widely deployed due to the scalability. Each processor
has its own memory and connects to each other through high speed networks. The communication
between the processors is usually the bottleneck of the performance.
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many examples in the field of shared memory and distributed memory programming from

where we can borrow ideas on how to efficiently reduce communication and reuse data to

improve the performance.

The two-level simulation can be taken as a pipeline consisting of the following steps:

generating k market scenarios, first-stage sampling of payoffs, screening, second-stage

sampling of payoffs and computing the confidence interval. In reality, sampling payoffs and

generating market scenarios, are typically the most time-consuming. Fortunately, those

steps are “embarrassingly parallel” problems which can be easily parallelized with linear

speedup with respect to the number of parallel processors used. In some simplified cases,

like Problem 1 in Section 1.1, or when a large amount of computing resources is allocated,

the time spent on screening and computing the confidence interval is not negligible any

more. Then these two steps also need to be parallelized for an effective implementation.

The time-consuming part of screening, as demonstrated in Section 3.2.1, is to compute

the variances of the differences of payoffs simulated conditional on some selected pair of

market scenarios. The selection of pairs is adaptive based on the nondecreasing order

of the estimated values of the portfolio in each scenario. Therefore, synchronization

of the concurrent comparisons and data communication are required to achieve good

performance. The computation of the confidence interval relies on finding the root of a

group of nonlinear equations; see Baysal and Staum (2008). The data dependency between

each iteration of root finding algorithm brings difficulty to parallel implementation. We

take the Problem 1 in Section 1.1 as a representative to demonstrate how to integrate

GPUs with CPUs together for sophisticated simulations in financial engineering.
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5.2.1. Generating Scenarios and Conditional Payoff Sampling

Generating market scenarios and sampling payoffs are typical of Monte Carlo simulation,

which is “embarrassingly parallel”. In this section, parallelism of such Monte Carlo sim-

ulation on multiple GPUs is discussed and some load balancing techniques are adopted

to improve the efficiency.

5.2.1.1. Random Number Generator. A general approach for implementing a ran-

dom number generator for parallel computing is to partition the sequence of a long period

random number generator into disjoint subsequences and use a different subsequence

on each computing node; see L’Ecuyer (1998). We use the random number generator

proposed by L’Ecuyer (1996), implemented in 32-bit integer arithmetic with splitting fa-

cilities of L’Ecuyer and Touzin (2000) to generate uniform variates. For normal variates,

the Box-Muller transform is adopted according to the suggestion of Thomas et al. (2009).

5.2.1.2. Generating Scenarios and the First-stage Sampling. There are two stages

of sampling in the two-level simulation. Usually CRNs are adopted to reduce the vari-

ance in the first stage, and then the storage of each conditional payoff is necessary. For

the second-stage sampling, only the conditional sample means and sample variances are

important. Because of this difference, each stage of sampling has its own implementation.

The GPU can support, and actually expects, thousands of concurrent threads to hide

the latency that may occur when accessing the global memory. The number of market

scenarios, k, may vary from thousands to millions depending on the total computational

budget. The number of threads launched on each GPU is fixed, denoted as N in our

design. Each thread is equipped with a random number generator and deals with k
NG

market scenarios, where G is the number of GPUs. The number of threads N is set to
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4096 and G is 4 by default.2 The sampling of market scenarios and the first-stage sampling

of payoffs are combined here to avoid spending time on accessing market scenarios on the

global memory of each GPU. The sampled payoffs have to be stored in the global memory

because no other memory can accommodate them and the global memory is the only

channel to communicate with the CPUs. For speed of memory access on CPUs, which is

automatically locally cached, we store all the conditional payoffs of a market scenario in

a contiguous linear memory.

An outline of the algorithm for generating market scenarios and the first-stage condi-

tional payoffs is as follows.

CPU’s part:

(1) Create G CPU threads, each having a unique GPU as its additional computing

resource. Let g be the thread ID, starting from 0, and also the index of GPUs. 3

(2) Each CPU thread g computes sequentially N random number seeds starting from

(gN + 1)th stream. Each seed points to the beginning of a unique stream. A

stream is a split of the whole sequence of random numbers (see L’Ecuyer (1998)).

Each CPU thread shares the seed of the 0th stream which is taken as the common

random number seed on all CPU threads and feeds to its own assigned GPU the

N random number seeds.

GPU’s part:

(1) Let i←GPU thread ID, a distinct integer from [0, · · · , N − 1].

2In reality, two or more GPUs are encapsulated in one chip. In our context, GPU stands for a conceptual
Graphics Processing Unit, not a chip. So does CPU.
3There is no necessity to have G CPUs on board, yet if CPU threads take part in time-consuming
computing, it is better to have more than G/2 CPUs on board to avoid CPU threads waiting for CPU
time.
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(2) While i < k
G

(a) Read the (i%N)th random number seed from the global memory, where i%N

stands for the remainder of i/N .4

(b) Generate market scenario i from the random number generator.

(c) Save the state of random number back to the (i%N)th seed on the global

memory of the GPU.

(d) Read the set of common random seed.

(e) Generate n0 payoffs conditional on market scenario i using the common

random seed, and store them contiguously on the global memory.

(f) i← i + N .

5.2.1.3. The Second-stage Sampling. The second-stage sampling is pretty similar

to the first stage sampling described above, except that thread private5 random number

seeds are adopted instead of common seeds and the sample mean and sample variance

are computed instead of storing all sampled payoffs on the global memory on the GPU.

Another issue that needs to be specially addressed is the load-balance of threads on GPUs

especially when the number of market scenarios retained after screening, |I|, is less than

the total number of threads NG. Basically, in that case we assign multiple threads to a

market scenario in the set I instead of the multiple-scenario-one-thread model in the first

stage sampling.

Figure 5.1 demonstrates the policy we adopted here. Each box stands for the number

of payoffs to simulate for the corresponding market scenario. Suppose |I| = 400, and 100

4The (i%N)th random number seed on GPU g copies initial value from the gN+(i%N)th random number
seed on the CPUs.
5A slot of memory that is accessible only by its owner thread is thread private.
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Figure 5.1. Thread Balance when |I| = 400, N = 4096 and G = 4

contiguous scenarios are assigned to each GPU. As an example, suppose the number of

payoffs that need to be simulated on GPU 0 is 122,880 and the number of GPU threads

is 4,000. Then each thread is supposed to simulate about 30 payoffs in order to keep the

load balanced among the GPU threads. Suppose that 1206 payoffs need to be simulated

for scenario 0. In this case, 40 threads are assigned to scenario 0, and each simulates 30

payoffs except the last one simulates 36 payoffs. 6 Through this way the work load is split

almost evenly among all invoked threads. That makes the procedure well parallelized.

5.2.2. Parallel Screening

Two characteristics of the screening algorithm need to be mentioned here. First, the

complexity of the screening algorithm in Chapter 3 is O(k2). When k becomes larger, the

6Such alignments happen frequently in parallel computing. In this thesis, we simplify the discussion by
not explicitly mentioning it repeatedly.
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time spent on screening increases much faster than that for market scenarios or payoffs

which usually share complexity of O(k). Thus it is necessary to implement the screening

algorithm in parallel. Second, the screening algorithm is a data-heavy algorithm. Thus,

the use of memory needs to be specially addressed. To reduce data communication,

we divide screening into two parts: “GPU screening” and “CPU screening”. In “GPU

screening”, the screening operation is performed on subsets of the k scenarios. Each GPU

performs screening on a subset containing k/G scenarios. Hopefully a large number of

inferior market scenarios are screened out. Then the surviving scenarios and their payoffs

are compiled from each GPU to the main memory, and the “CPU screening” is applied on

the remaining scenarios. Compared with the algorithm in Chapter 3, the set of scenarios

retained after the parallel screening is a super set of that retained after serial screening,

due to the fact that early elimination of scenarios in “GPU screening” may help some

scenarios survive “CPU screening”. Yet in our experiments, the sets of scenarios retained

by the two different screening methods are always the same.

The screening algorithm contains two main steps: sorting and multiple comparisons.

Sorting needs to be performed before multiple comparisons to enable the adaptive selection

of the compared pairs of scenarios. Speedup of sorting on a GPU compared with a CPU

is not significant because sorting is a data-heavy operation. When sorting on a GPU, the

bandwidth of GPU memory is the bottleneck. Satish et al. (2009) reported 23% faster

sorting on a GPU compared to a CPU. Sintorn and Assarsson (2008) claimed 6−14 times

faster when data containing only keys are sorted on GPU compared to a CPU. Yet our

experience with the same algorithm applied to sorting key-value pairs shows less benefit
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Figure 5.2. Naive and Group Comparison Parallelism

for doing sorting on GPU. So all sorting operations are performed on CPUs and quick

sort is applied.

For parallelism on a GPU, a naive idea is to assign each thread a comparison. This

method is not efficient because the payoffs of each scenario need to be read repeatedly by

different GPU threads, as shown in the left plot of Figure 5.2. Each thin column stands

for the payoffs simulated conditional on one market scenario. In this figure, thread i needs

to read two columns of payoffs from the global memory. Thread j does the same operation

again even through they share one column of payoffs. In this implementation, the shared

data cannot be reused because either thread i and j may not be in the same block7 or

the fast shared memory may not be able to accommodate the whole column of payoffs or

both.

This type of problem is often seen in distributed memory programming. Data reuse is

the key to improve the efficiency. We assign a group of comparisons to a block of threads,

7Only threads with a block can access the same shared memory. Each block can contains no more than
521 threads.
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so that the data read into the shared memory can be reused to save computational time.

This idea, called group comparison, is shown in the right plot of Figure 5.2. In this figure,

each column still stands for the payoffs simulated conditional on one market scenario.

Initially, a block with 256 threads reads two 16× 16 sub-matrices of the payoffs into the

shared memory.8 The sample variance of the 16 differences is computed simultaneously

in each thread. Then, the block moves on to read the next two 16 × 16 sub-matrices of

payoffs until the sample variance of all n0 differences are computed and comparisons are

done. For example, suppose the pairs of scenarios (i, j) for i = 0, . . . , 15; j = 32, . . . , 47

need to be compared and 256 threads are created for this purpose. According to the naive

method, each thread needs to read 2n0 payoffs from the global memory. Global memory

accesses need to be performed 512 times in total. By the group comparison we proposed

here, each thread needs to read n0

8
payoffs. In total, 2n0 memory accesses are required

due to the fact that 16 memory accesses performed on 16 contiguous threads are coalesced

into one access in our setting. 9 For convenience, we require n0 be a multiplier of 16.

The outline of parallel screening is shown in Figure 5.3. In the figure, Thread 0 to 3 are

the threads on CPUs, each invokes one GPU as an additional computing resource. The

dashed lines enclose the piece of procedure running on a GPU. There are 4096 threads

running on a GPU simultaneously. As indicated in the figure, there are interactions

between the master CPU and its slave GPU during the “GPU screening”, because we

8Each thread only reads 2 conditional payoffs, and the index of thread in a block can be mapped into the
index of payoffs easily.
9On a GPU, if all threads in a half-wrap access “element size” the contiguous memory starting at “16×
element size”, the 16 memory accesses may be coalesced into one access. The “element size” could be 4,
8 and 16 bytes.
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want to keep to chance to terminate early before we compare all possible pairs on a GPU.

This strategy proves to be efficient.

5.3. Computing the Confidence Interval

Baysal and Staum (2008) discuss how to compute empirical likelihood confidence in-

terval for expected shortfall. We adopt the bisection method to compute the confidence

interval in Section 3.2.1, as the Newton method may not converge to the roots we want.

Considering that computing of the confidence lower bound (or upper bound) is the

process of finding the minimum (or maximum) of several candidates, we adopt OpenMP to

create G threads on the CPUs to compute the minimum (or maximum) of each candidate.

To find the minimum (or maximum) of a candidate, we adopt the p-section method instead

of bisection to find a root of the likelihood function, where p is number of sub-intervals

partitioned from the feasible region. We assign each sub-interval to a block of 256 threads.

All threads within a block work together to evaluate the likelihood function value at the

endpoint of the sub-interval. For the interval under consideration, a total of p points are

tested. Two points are selected as the new endpoints of the new interval which has width

1/p of the previous interval.

5.4. Experiments

We ran the experiments on a PC with a 3.0 GHz Core 2 Duo CPU E8400 and 6 GB

memory under 64-bit Ubuntu together with 4 GeForce 9800 GPUs. The code was written

in C/C++ and compiled by gcc 4.2.4.

Unless specified, all experimental settings are the same as the experiments of Problem

1 in Chapter 3.3. We ran 10 macro replications for each setting. We compared the time
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Figure 5.3. Flow of Generating Scenarios, First-stage Sampling and Par-
allel Screening
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C k n0 kn0 |I| C1

2M 21999 48 1.056M 249 0.944M
4M 42265 48 2.029M 463 1.971M
8M 68013 64 4.353M 731 3.647M
16M 125262 64 8.017M 1332 7.983M
32M 214000 80 17.12M 2230 14.88M
64M 359995 80 28.8M 3717 35.2M

Table 5.1. Configurations and Internal Variables of Experiments

consumed by the parallel procedure we propose here and with the serial procedure in

Chapter 3.2.1. The total number of simulated payoffs C, number of market scenarios k

and the first stage sample size n0 for the experiments are shown in Table 5.1. Some internal

variables are also included as they indicate work load in each step of the procedure.

We discuss the parallel implementation for the five time-consuming steps of the two-

level simulation. Among them, generating k market scenarios, the first-stage sampling

and the second-stage sampling are “embarrassingly parallel.” The speedups of parallel

implementation on “CPUs+GPUs” of the three steps are most notable. Figure 5.4 shows

the running time of the second-stage sampling of the parallel and serial procedures. It

shows that the speedup of the Monte Carlo simulation ranges from 73 to 457 in our

experiments, increasing with the number of simulated payoffs in the second stage.

On the other hand, screening and computing the confidence interval are difficult to

parallelize due to data dependency in the algorithms. For screening, we reduce the heavy

data communication by reusing fast shared memory. The speedup varies from 18 to

65, increasing with the problem size kn0. Yet, for computing the confidence interval,

the speedup by introducing p-section on GPU and multiple threads on CPU is limited.

Figure 5.5 demonstrates the difference of running time for computing the confidence
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Figure 5.4. Time Spent on the 2nd Stage Sampling

interval of the parallel and serial procedures. The speedup is from 1.5 to 12, increasing as

the number of scenarios retained after screening, |I|, increases. The speedup of computing

the confidence interval is not so appealing compared with the speedup of Monte Carlo

simulation. One of the reasons is the speedup of p-section over bisection is only log2 p. We

have not yet found any viable alternatives due to heavy data dependency. The good news

is that the fraction of the overall running time used to compute the confidence interval

is less than 8% even for the worst case in the parallel implementation. It is not really

necessary to worry about the speedup of this part.
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Figure 5.5. Time Spent on Computing the Confidence Interval

Overall, the speedup of the parallel procedure relative to the serial procedure is shown

in Figure 5.6. The speedup ranges from 10 to 70, increasing as the total computational

budget C becomes larger. For a real problem where sampling payoffs is dominant in

computational time, the parallel procedure would become even better because, as demon-

strated in Figure 5.4, the Monte Carlo simulation is really good for parallelism.



99

 0.01

 0.1

 1

 10

 100

2 8 32 64

A
ve

ra
ge

 R
un

ni
ng

 T
im

e 
(s

)

Computational Budget C (millions of simulated payoffs)

serial procedure
parallel procedure

Figure 5.6. Running Time of the Parallel and Serial Procedures



100

References

Abbas-Turki, L. and Vialle, S. (2009). European option pricing on a GPU cluster. Tech-

nical report, ANR Supelec.

Acerbi, C. and Tasche, D. (2002). On the coherence of expected shortfall. Journal of

Banking and Finance, 26:1487–1503.

Banerjee, S. (1961). On confidence interval for two-means problem based on separate

estimates of variances and tabulated values of t-table. Sankhyā, A23:359–378.
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APPENDIX A

Computation of the Maximum in Equation (3.8)

By the definition of w′ in Equation (2.2), the computation of ∆(ℓ) :=
√

maxw∈S(ℓ)

∑ℓ
i=1(w

′
i)

2

in Equation (3.8) is equivalent to maximizing
∑ℓ

i=1 w2
i /p

2 over the set:

S(ℓ) :=

{

w : w ≥ 0,
k∑

i=1

wi = 1,
ℓ∑

i=1

wi = p,
k∏

i=1

wi ≥ c k−k

}

.

Choosing wℓ+1 = wℓ+2 = · · · = wk = (1− p)/(k− ℓ) has no effect on the objective and

leads to the loosest possible constraint on w1, w2, . . . , wℓ, namely
∏ℓ

i=1 wi ≥ ck−k((1 −

p)/(k− ℓ))−(k−ℓ). Thus, letting xi = wi/p for i = 1, 2, . . . , ℓ, we have reduced the problem

to the ℓ-dimensional problem

max f(x) subject to x ∈ X := {x : x ≥ 0, g(x) ≥ 0, h(x) = 0}

where f(x) =
∑ℓ

i=1 x2
i , g(x) =

∑ℓ
i=1 log xi + ℓ log p− log c + k log k − (k− ℓ)(log(k − ℓ) +

log(1 − p)) and h(x) =
∑ℓ

i=1 xi − 1. The function f is convex and the feasible set X

is non-empty, closed, bounded, and convex. Therefore the maximum is attained at an

extreme point of X (Rockafellar, 1970, Cor. 32.3.2).

We next turn to necessary conditions on the gradients ∇f , ∇g, and ∇h at any point

x∗ where the maximum is attained. The gradients of the objective and of the active

constraints are given by (∇f(x))i = 2xi, (∇g(x))i = 1/xi, and (∇h(x))i = 1. The

constraint x ≥ 0 is not active at any x ∈ X because having xi = 0 for any i leads to a
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violation of the constraint g(x) ≤ 0. Because x∗ is an extreme point of X , its coordinates

are not all equal, so the rank of [∇g(x) ∇h(x)] is two. Because this equals the number of

active constraints, there exist λ ≥ 0 and µ ≥ 0 such that∇f(x∗)+λ∇g(x∗)+µ∇h(x∗) = 0

(Sundaram, 1996, Thm. 6.10). That is, 2x∗
i + λ/x∗

i + µ = 0 for all i = 1, 2, . . . , ℓ. This

equation has at most two positive real roots. Therefore any point x∗ where the maximum

is attained is an extreme point of X with the property that the set {x∗
1, x

∗
2, . . . , x

∗
ℓ} contains

at most two distinct values.

The only remaining questions are what those two values are and how many of the

coordinates x∗
1, x

∗
2, . . . , x

∗
ℓ take on each of the two values—by symmetry, it does not matter

how the coordinates are permuted. Consider an extreme point x(m) of X such that m

coordinates take on one value, a(m), while the other ℓ −m coordinates take on another

value, b(m). Because the order does not matter, we take x
(m)
1 = x

(m)
2 = · · · = x

(m)
m = a(m)

while x
(m)
m+1 = x

(m)
m+2 = · · ·x(m)

ℓ = b(m). To satisfy the constraint h(x(m)) = 0, we must have

b(m) = (p −ma(m))/(ℓ −m). For each m = 1, 2, . . . , ℓ − 1, we compute a(m) by solving

g(x(m)) = 0. Finally, we compute ∆(ℓ) = max{f(x(m)) : m = 1, 2, . . . , ℓ− 1}.
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APPENDIX B

Proofs of Chapter 3

The procedure in Section 3.2.1 yields a confidence interval [L̂, Û ] where L̂ is defined

by Equation (3.4) and Û is defined by Equation (3.5). This section presents a proof that

[L̂, Û ] has asymptotic coverage at least 1 − α as the number of scenarios k → ∞, if the

payoffs are normally distributed. In reality and in the example on which our experiments

are run, payoffs are not normally distributed. However, sample averages of payoffs are

approximately normal because of the central limit theorem if the sample sizes n0 and Ni

are large enough.

Theorem 1. Suppose that for any scenario Z, the conditional distribution of the

payoff X given Z is normal. Let [L̂, Û ] represent the CI written in Equations (3.4) and

(3.5), as produced by the procedure. Then limk→∞ Pr{L̂ ≤ ES1−p ≤ Û} ≥ 1− α.

The proof is within the framework of Chapter 2.2 for showing the asymptotic validity

of a confidence interval generated by two-level simulation. Baysal and Staum (2008) show

that the asymptotic probability that ES1−p is contained in the outer-level confidence

interval of Equation (2.3) is at least 1− αo as k → ∞. By the results of Chapter 2.2, it

then suffices to construct a confidence region V such that

(1) the probability that V contains the vector of true values V = (V1, V2, . . . , Vk) is

at least 1− αi, and
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(2) the two-level simulation confidence limits in Equations (3.4) and (3.5) arise as

follows:

(B.1) L̂ = min
v∈V ,w∈S(k)

k∑

i=1

w′
ivπv(i) and Û = max

v∈V ,w∈S(k)

k∑

i=1

w′
ivπv(i),

where S(k) is defined in Equation (2.1) and πv is a permutation of {1, 2, . . . , k}

such that vπv(i) is nondecreasing in i.

We first describe V. Define the t-quantiles

zlo(ℓ) := t1−αlo,mini=π0(1),...,π0(ℓ){Ni−1} and zhi := t1−αhi,mini=π1(1),...,π1(|I|){Ni−1}.

The degrees of freedom in these formulae are the minimum degrees of freedom available

in estimating any of the relevant standard deviations. Also define

B0(ℓ) := max
w∈Sℓ(k)

√
√
√
√

ℓ∑

i=1

(w′
i)

2
S2

π0(i)
(Nπ0(i))

Nπ0(i)

and

BS(ℓ) := max
w∈Sℓ(k)

√
√
√
√

ℓ∑

i=1

(w′
i)

2
S2

πs(i)
(Nπs(i))

Nπs(i)

to be used as bounds on standard deviations of weighted averages. Our confidence region

V for V is the set containing all vectors v such that

(B.2) ∀i /∈ I, vi ≥ vπv(⌈kp⌉),

(B.3) min
ℓ=⌊kp⌋,...,ℓmax

(

min
w∈Sℓ(k)

ℓ∑

i=1

w′
iX̄π0(i)(Nπ0(i))− zlo(ℓ)B0(ℓ)

)

≤ min
w∈S(k)

k∑

i=1

w′
ivπv(i),
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and

(B.4) max
ℓ=ℓmin,...,⌈kp⌉

(

max
w∈Sℓ(k)

ℓ∑

i=1

w′
iX̄π1(i)(Nπ0(i)) + zhiBS(ℓ)

)

≥ max
w∈S(k)

k∑

i=1

w′
ivπv(i).

This construction makes Equation (B.1) hold: compare Equation (3.4) with Equation (B.3)

and Equation (3.5) with Equation (B.4).

The event that the confidence region V includes the true values V can be understood

by plugging in V for v in the definition of V. If we do so, then the constraints defining V

take on the following interpretations.

• Equation (B.2) is equivalent to correct screening: γ := {πV (1), πV (2), . . . , πV (⌈kp⌉)} ⊆

I.

• Equation (B.3) implies that the two-level lower confidence limit L̂ ≤ minw∈S(k)

∑k
i=1 w′

iVπV (i),

the outer-level lower confidence limit.

• Equation (B.4) implies that the two-level upper confidence limit Û ≥ maxw∈S(k)

∑k
i=1 w′

iVπV (i),

the outer-level upper confidence limit.

By the Bonferroni inequality, the probability that V /∈ V is bounded above by the sum

of the probabilities

• that V does not satisfy Equation (B.2),

• that V does not satisfy Equation (B.3), and

• that V satisfies Equation (B.2) and does not satisfy Equation (B.4).

In Appendix B.1 we will show that the probability that V does not satisfy Equation (B.2)

is bounded above by αs. In Appendix B.2 we will show that the other two probabilities
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are bounded above by αlo and αhi, respectively. Because αi = αs + αlo + αhi, this proves

that Pr{V ∈ V} ≥ 1− αi .

B.1. Screening

Here we show that the probability of correct screening Pr{γ ⊆ I} ≥ 1 − αs, where

γ = {πV (1), · · · , πV (⌈kp⌉)}. Let

Bij := 1{X̄i(n0) > X̄j(n0) + dSij(n0)/
√

n0}

be the indicator function which is 1 when scenario j beats scenario i. We have

Pr{γ ⊆ I} ≥ Pr {∀i ∈ γ, j /∈ γ, Bij = 0} ≥ 1−
∑

i∈γ

∑

j /∈γ

Pr{Bij = 1}

by the Bonferroni inequality. For i ∈ γ and j /∈ γ, Vi ≤ Vj. Therefore each

Pr{Bij = 1} = Pr

{
X̄i(n0)− X̄j(n0)

Sij(n0)/
√

n0
> d

}

≤ αs

⌈kp⌉ (k − ⌈kp⌉) ,

using d = tn0−1,1−αs/(k−⌈kp⌉)⌈kp⌉.

B.2. Confidence Region

In this section, we deal with the second-stage inner-level simulation, after screening

and restarting have occurred. We can think of the first stage as randomly generating a

simulation problem which the second stage solves. The first stage produces I and Ni for

each i ∈ I. This is an experimental design for the second stage, specifying which scenarios

to consider and how many payoffs to simulate from each of them.
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To prove V is a confidence region for V, we first prove two lemmas. The first lemma

addresses the following issue. On the left side of Equation (B.3), the minimization is over

ℓ ∈ {⌊kp⌋ , . . . , ℓmax} and then over w ∈ Sℓ(k). On the right side, the minimization is

over w ∈ S(k), which is equivalent to minimization over ℓ ∈ {ℓmin, . . . , ℓmax} and then

over w ∈ Sℓ(k), according to the definition of S(k) in Equation (2.1). We formulated

Equation (B.3) in this way so that the procedure can save time by minimizing over the

smaller range ℓ ∈ {⌊kp⌋ , . . . , ℓmax} instead of {ℓmin, . . . , ℓmax}. For the same reason,

in Equation (B.4) on the left side, we maximized over ℓ ∈ {ℓmin, . . . , ⌈kp⌉} instead of

over {ℓmin, . . . , ℓmax}. This formulation of the confidence region complicates the proof of

Theorem 2, in which we use Lemma 1 to show that we can minimize and maximize over

these smaller ranges and still get the desired coverage for the confidence region.

Lemma 1. For any k-vector v and ℓ ∈ {1, 2, . . . , ⌊kp⌋ − 1}, there exists ℓ′ ≥ ⌊kp⌋

such that

min
w∈Sℓ(k)

ℓ∑

i=1

w′
ivπv(i) ≥ min

w∈Sℓ′(k)

ℓ′∑

i=1

w′
ivπv(i).

Similarly, for any k-vector v and ℓ ∈ {⌈kp⌉+ 1, ⌈kp⌉+ 2, . . . , k}, there exists ℓ′ ≤ ⌈kp⌉

such that

max
w∈Sℓ(k)

ℓ∑

i=1

w′
ivπv(i) ≤ max

w∈Sℓ′(k)

ℓ′∑

i=1

w′
ivπv(i).

Proof: We prove the first part of the lemma in detail. For any ℓ ∈ {1, 2, . . . , ⌊kp⌋ − 1},

define

w(ℓ) :=

(

wℓ,1, wℓ,2, . . . , wℓ,ℓ,
1− p

k − ℓ
, . . . ,

1− p

k − ℓ

)
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where wℓ,1, wℓ,2, . . . , wℓ,ℓ are chosen so that

ℓ∑

i=1

w′
ℓ,ivπv(i) = min

w∈Sℓ(k)

ℓ∑

i=1

w′
ivπv(i).

By optimality of w, wℓ,1 ≤ wℓ,2 ≤ · · · ≤ wℓ,ℓ. Because ℓ < kp implies (1 − p)/(k −

ℓ) < (1 − p)/(k − kp) = 1/k and the weights sum to 1, one of the weights must exceed

(1−p)/(k− ℓ). Combining the previous two statements, there exists an integer s between

0 and ℓ such that wℓ,i < (1− p)/(k − ℓ) for all i = 1, . . . , s and wℓ,i ≥ (1− p)/(k − ℓ) for

all i = s + 1, . . . , ℓ.

First we consider the case in which the tail probability p < 0.5. The following con-

struction shows there is an integer ℓ′ ≥ ⌊kp⌋ and a weight vector w(ℓ′) ∈ Sℓ′(k), whose

ith component is to be denoted wℓ′,i, such that
∑ℓ

i=1 w′
ivπv(i) ≥

∑ℓ′

i=1 w′
ℓ′,ivπv(i).

(1) Choose ℓ′ to be the largest integer such that
∑s

i=1 wℓ,i+(ℓ′−s)(1−p)/(k−ℓ) ≤ p.

From the definition of s and ℓ′, p < 0.5, and ℓ < ⌊kp⌋, which implies (1−p)/(k−

ℓ) < 1/k, it follows that ℓ′ = ℓ′ − s + s ≤ ℓ′ − s + (
∑s

i=1 wℓ,i)(k − ℓ)/(1 − p) ≤

p(k−ℓ)/(1−p) < k−ℓ and (ℓ′+1)/k >
∑s

i=1 wℓ,i +(ℓ′+1−s)(1−p)/(k− l) > p.

Putting these together, k − ℓ > ℓ′ ≥ ⌊kp⌋ > ℓ. Initialize w(ℓ′) to

(

wℓ,1, . . . , wℓ,s,
1− p

k − ℓ
, . . . ,

1− p

k − ℓ
, wℓ,s+1, . . . , wℓ,ℓ

)

,

where wℓ,s+1 is the (k + s + 1 − l)th component. That is, this weight vector is

derived from w by switching the weights of components s + 1, . . . , ℓ with the

weights of components k − ℓ + s + 1, . . . , k. This weight vector may not be in
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Sℓ′(k) because
∑s

i=1 wℓ,i+(ℓ′−s)(1−p)/(k−ℓ) may be less than p. The following

steps adjust w(ℓ′) to make
∑ℓ′

i=1 wℓ′,i = p. Initialize m← 0.

(2) Do while
∑ℓ′

i=1 wℓ′,i + (wℓ,ℓ−m − (1− p)/(k − ℓ)) ≤ p:

(a) Switch the weights in components ℓ′ −m and k −m: let wℓ′,ℓ′−m ← wℓ,ℓ−m

and wℓ′,k−m ← (1− p)/(k − ℓ).

(b) Set m← m + 1, end while.

(3) Because of the termination criterion of Step 2, at the present point in the con-

struction,
∑ℓ′

i=1 wℓ′,i+(wℓ,ℓ−m − (1− p)/(k − ℓ)) > p. From this fact,
∑ℓ

i=1 wℓ,i =

p, and ℓ′ > ℓ, it follows that at the present point, m < ℓ − s and ℓ′ − s −m ≥

2. Then there exists ∆ ≥ 0 satisfying wℓ,ℓ−m − ∆ > (1 − p)/(k − ℓ) and

∑ℓ′

i=1 wℓ′,i + ∆ = p. Add ∆ to component ℓ′ − m and subtract it from com-

ponent k −m: set wℓ′,ℓ′−m ← (1− p)/(k − ℓ) + ∆ and wℓ′,k−m ← wℓ,ℓ−m −∆.

In the end, this produces a weight vector w(ℓ′) ∈ Sℓ′(k) such that
∑ℓ

i=1 w′
ivπv(i) ≥

∑ℓ′

i=1 w′
ℓ′,ivπv(i).

In the case where p > 0.5, the proof is similar. In this case there is an integer s′

such that
∑s′

i=1 wℓ,i + (1− p) ≤ p. Likewise, the proof of the second part of the lemma is

similar, except that we will be choosing ℓ′ < ℓ. 2

The next lemma provides a tool like a t-test for weighted sums of independent normal

random variables.

Lemma 2. Suppose Xij are independent for i = 1, . . . , ℓ and j = 1, . . . , Ni, normally

distributed with mean Vi and variance σ2
i . Let X̄i and S2

i be respectively the sample mean

and sample variance of Xi1, . . . , XiNi
. Suppose w is a nonnegative ℓ-vector whose elements
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sum to 1 and π is a permutation of i = 1, 2, . . . , ℓ. Define A :=
∑ℓ

i=1 wi(X̄π(i)−Vπ(i)) and

S2 :=
∑ℓ

i=1 w2
i

(

S2
π(i)/Nπ(i)

)

. If 0 < ǫ < 0.5 then Pr
{
A ≥ −t1−ǫ,mini=1,...,ℓ{Ni−1}S

}
≥ 1− ǫ.

Proof: Because of the independence, A is normal with mean 0 and variance
∑ℓ

i=1 w2
i σ

2
π(i)/Nπ(i),

and it is independent of S2
1/N1, S

2
2/N2, . . . , S

2
ℓ /Nℓ, which are themselves mutually inde-

pendent. We can write

S2 =

ℓ∑

i=1

w2
i

(

S2
π(i)

Nπ(i)

)

= σ2
A

ℓ∑

i=1

w2
i

σ2
A

(

σ2
π(i)

Nπ(i)

)(

S2
π(i)

σ2
π(i)

)

where σ2
A :=

∑l
i=1 w2

i σ
2
π(i)/Nπ(i). Also define λi := (w2

i /σ
2
A)(σ2

π(i)/Nπ(i)). Notice that

λ1, . . . , λℓ are nonnegative weights that sum to 1. The distribution of (Nπ(i)−1)S2
π(i)/σ

2
π(i)

is chi-squared with Nπ(i) − 1 degrees of freedom. By a property of the t distribution,

t21−ǫ,mini=1,...,ℓ{Ni−1} ≥ t21−ǫ,Ni−1 for all i = 1, 2, . . . , ℓ. Because ǫ < 0.5,

Pr
{
A ≥ −t1−ǫ,mini=1,...,ℓ{Ni−1}S

}
=

1

2
+

1

2
Pr

{

A2

σ2
A

≥ t21−ǫ,mini=1,...,ℓ{Ni−1}

ℓ∑

i=1

w2
i

σ2
A

(

σ2
π(i)

Nπ(i)

)(

S2
π(i)

σ2
π(i)

)}

≥ 1

2
+

1

2
Pr

{

A2

σ2
A

≥
ℓ∑

i=1

t21−ǫ,Nπ(i)−1λi

(

S2
π(i)

σ2
π(i)

)}

.

By Banerjee’s Theorem Banerjee (1961),

Pr
{
A ≥ −t1−ǫ,mini=1,...,ℓ{Ni−1}S

}
≥ 1

2
+

1

2
(1− 2ǫ) = 1− ǫ.

2

Using this lemma, we can prove the main result, that V defined by Equations (B.2),

(B.3) and (B.4) is a confidence region for V with confidence level 1 − αi, where αi =

αs + αhi + αlo.
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Theorem 2. Suppose that for any scenario Z, the conditional distribution of the payoff

X given Z is normal. If the payoffs are simulated independently, then Pr{V ∈ V} ≥ 1−αi.

Proof: To condense notation, define V(CS) as the set containing v satisfying Equa-

tion (B.2), which relates to screening, L as the set containing v satisfying Equation (B.3),

which relates to the lower confidence limit, and U as the set containing v satisfying

Equation (B.4), which relates to the upper confidence limit. Then the confidence region

V = V(CS) ∩ L ∩ U and the probability that it contains the vector V of true values is

Pr {V ∈ V} = Pr {V ∈ {V(CS) ∩ L ∩ U}} ≥ 1− Pr {V /∈ L} − Pr {V /∈ {U ∩ V(CS)}} .

Define

ℓ := arg min
ℓ=⌊kp⌋,...,ℓmax

(

min
w∈Sℓ(k)

ℓ∑

i=1

w′
iVπV (i)

)

.

By Lemma 1, ℓ is the number of scenarios that would lead to the lower confidence limit

for ES if the true values V were known:

(B.5) min
w∈S(k)

k∑

i=1

w′
iVπV (i) = min

w∈Sℓ(k)

ℓ
∑

i=1

w′
iVπV (i).

Also define the weight vector w that minimizes ES using the true values of the ℓ scenarios

with the lowest sample averages after the first stage,

w := arg min
w∈Sℓ(k)

ℓ
∑

i=1

w′
iVπ0(i).

Because VπV (1), VπV (2), . . . , VπV (ℓ) are the lowest ℓ values among V1, V2, . . . , Vk, while the

elements of w′ are negative, using any weight vector w and switching to the wrong ordering
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of the true values decreases the weighted average, so

(B.6) min
w∈Sℓ(k)

ℓ
∑

i=1

w′
iVπV (i) ≥ min

w∈Sℓ(k)

ℓ
∑

i=1

w′
iVπ0(i).

Let F0 represent the information produced by the first stage of the procedure. Using

Equations (B.5)–(B.6), the error probability related to the lower confidence limit

Pr {V /∈ L|F0}

= Pr

{

min
w∈S(k)

k∑

i=1

w′
iVπV (i) < min

ℓ=⌊kp⌋,...,ℓmax

(

min
w∈Sℓ(k)

ℓ∑

i=1

w′
iX̄π0(i)(Nπ0(i))− zlo(ℓ)B0(ℓ)

)∣
∣
∣
∣
∣
F0

}

= Pr

{

min
w∈Sℓ(k)

ℓ
∑

i=1

w′
iVπV (i) < min

ℓ=⌊kp⌋,...,ℓmax

(

min
w∈Sℓ(k)

ℓ∑

i=1

w′
iX̄π0(i)(Nπ0(i))− zlo(ℓ)B0(ℓ)

)∣
∣
∣
∣
∣
F0

}

≤ Pr

{

min
w∈Sℓ(k)

ℓ
∑

i=1

w′
iVπ0(i) < min

ℓ=⌊kp⌋,...,ℓmax

(

min
w∈Sℓ(k)

ℓ∑

i=1

w′
iX̄π0(i)(Nπ0(i))− zlo(ℓ)B0(ℓ)

)∣
∣
∣
∣
∣
F0

}

≤ Pr

{
ℓ
∑

i=1

w′
iVπ0(i) <

ℓ
∑

i=1

w′
iX̄π0(i)(Nπ0(i))− zlo(ℓ)B0(ℓ)

∣
∣
∣
∣
∣
F0

}

= Pr

{
ℓ
∑

i=1

w′
i(X̄π0(i)(Nπ0(i))− Vπ0(i)) > zlo(ℓ)B0(ℓ)

∣
∣
∣
∣
∣
F0

}

.

Because we restart after the first stage, the second-stage data that we use here are inde-

pendent of first-stage data, and in particular of the first-stage ordering π0(·). Therefore

the conditional distribution of
∑ℓ

i=1 w′
i(X̄π0(i)(Nπ0(i)) − Vπ0(i)) given F0 is normal with

mean 0 and variance
∑ℓ

i=1(w
′
i)

2σ2
π0(i)

/Nπ0(i). By Lemma 2,

Pr

{
ℓ
∑

i=1

w′
i(X̄π0(i)(Nπ0(i))− Vπ0(i)) > zlo(ℓ)B0(ℓ)

∣
∣
∣
∣
∣
F0

}

≤ αlo.

Thus Pr {V /∈ L} = E [Pr {V /∈ L|F0}] ≤ αlo.
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Similarly, turning our attention from the lower confidence limit to the upper confidence

limit and screening,

Pr {V /∈ U ∩ V(CS)} = Pr {V /∈ V(CS)}+ Pr {V ∈ V(CS),V /∈ U}

≤ αs + E [Pr {V /∈ U|F0} 1 {V ∈ V(CS)}] .

Define

ℓ̄ := arg max
ℓ=ℓmin,...,⌈kp⌉

{

max
w∈Sℓ(k)

ℓ∑

i=1

w′
iVπV (i)

}

and w̄ := arg max
w∈Sℓ̄(k)

ℓ̄∑

i=1

w′
iVπV (i).

By Lemma 1, the upper confidence limit for ES if the true values V were known is attained

by using ℓ̄ scenarios and weight vector w̄:

(B.7) max
w∈S(k)

k∑

i=1

w′
iVπV (i) =

ℓ̄∑

i=1

w̄′
iVπV (i).

As shown by Baysal and Staum (2008), by optimality of w̄, w̄′
1, w̄

′
2, . . . , w̄

′
ℓ̄
is negative and

non-decreasing, so

(B.8)
ℓ̄∑

i=1

w̄′
iX̄π1(i)(Nπ1(i)) ≥

ℓ̄∑

i=1

w̄′
iX̄πV (i)(NπV (i)).
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Using Equations (B.7)–(B.8), the error probability related to the upper confidence limit

Pr {V /∈ U|F0}

= Pr

{

max
w∈S(k)

k∑

i=1

w′
iVπV (i) > max

ℓ=ℓmin,...,⌈kp⌉

{

max
w∈Sℓ(k)

ℓ∑

i=1

w′
iX̄π1(i)(Nπ1(i)) + zhiBS(ℓ)

}∣
∣
∣
∣
∣
F0

}

= Pr

{
ℓ̄∑

i=1

w̄′
iVπV (i) > max

ℓ=ℓmin,...,⌈kp⌉

{

max
w∈Sℓ(k)

ℓ∑

i=1

w′
iX̄π1(i)(Nπ1(i)) + zhiBS(ℓ)

}∣
∣
∣
∣
∣
F0

}

≤ Pr

{
ℓ̄∑

i=1

w̄′
iVπV (i) >

ℓ̄∑

i=1

w̄′
iX̄π1(i)(Nπ1(i)) + zhiBS(ℓ̄)

∣
∣
∣
∣
∣
F0

}

≤ Pr

{
ℓ̄∑

i=1

w̄′
iVπV (i) >

ℓ̄∑

i=1

w̄′
iX̄πV (i)(NπV (i)) + zhiBS(ℓ̄)

∣
∣
∣
∣
∣
F0

}

= Pr

{
ℓ̄∑

i=1

w̄′
i(X̄πV (i)(NπV (i))− VπV (i)) < −zhiBS(ℓ̄)

∣
∣
∣
∣
∣
F0

}

.

The conditional distribution of
∑ℓ̄

i=1 w̄′
i(X̄πV (i)(NπV (i)) − VπV (i)) given F0 is normal with

mean 0 and variance
∑ℓ̄

i=1(w̄
′
i)

2σ2
πV (i)/NπV (i). If V ∈ V(CS), then

B2
S(ℓ̄) =

(
s̄∆(ℓ̄)

)2
=

(

max
i=1,...,k

S2
i (Ni)

Ni

)(

max
w∈S(ℓ̄)

ℓ̄∑

i=1

(w′
i)

2

)

≥
ℓ̄∑

i=1

(w′
i)

2S2
πV (i)

NπV (i)

,

and so by Lemma 2,

Pr

{
ℓ̄∑

i=1

w̄′
i(X̄πV (i)(NπV (i))− VπV (i)) < −zhiBS(ℓ̄)

∣
∣
∣
∣
∣
F0

}

1 {V ∈ V(CS)} ≤ αhi.

Therefore E [Pr {V /∈ U|F0}1 {V ∈ V(CS)}] ≤ αhi, and so Pr {V /∈ U ∩ V(CS)} ≤ αs +

αhi.

In total, Pr {V ∈ V(CS) ∩ L ∩ U} ≥ 1− αlo − αs − αhi = 1− αi. 2
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APPENDIX C

Appendix of Chapter 4

C.1. Proof of Equation (4.9)

The number of comparisons needed to be done, M , can be predicted as:

E[M ] = E





k∑

i′=⌈kp⌉+1

Mπ0(i′)



 .

As shown in Figure C.1, by assuming the probability of the event that the market scenario

π0(i
′) is beaten by π0(j

′) is given by the following step function

(C.1) Pr{π0(j
′) beats π0(i

′)} =







1, j′ ≤ b;

p̄B, b < j′ < i′ − e− 1;

0, i′ − e− 1 ≤ j′ ≤ i′ − 1.

we can simplify the calculation of E[Mπ0(i′)] while keeping the approximation close to

reality. In Equation (C.1), b and e depend on i′. For simplicity of notation, we do

not explicitly show such dependence. Variables b and e can be computed through the

procedure described in Section 4.2.2, as can the average probability p̄B.
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1.0

1 j’i’−1

0.0

p̄B

Pr{π0(j
′) beat π0(i

′)}
Idealized curve of Pr{π0(j

′) beats π0(i
′)} j′ = 1, · · · , i′ − 1

One possible real curve of Pr{π0(j
′) beats π0(i

′)} j′ = 1, · · · , i′ − 1

Figure C.1. Probability of π0(j
′) Beating π0(i

′)

Under all the above assumptions, we have

(C.2)

E[Mπ0(i′)] =







⌈kp⌉ , when b > ⌈kp⌉;

i′ − 1, when i′ − e− 1 < ⌈kp⌉;

b+

i′−1−e−b∑

h=⌈kp⌉−b

h

(
h− 1

⌈kp⌉ − b− 1

)

p̄
⌈kp⌉−b
B (1− p̄B)h+b−⌈kp⌉

+ (1− NBp̄B
(⌈kp⌉ − b, i′ − e− ⌈kp⌉ − 1))(i′ − b− 1).

o.w.

Since h
(

h−1
⌈kp⌉−b−1

)
p̄
⌈kp⌉−b
B (1 − p̄B)h+b−⌈kp⌉ = ⌈kp⌉−b

p̄B

(
h

⌈kp⌉−b

)
p̄
⌈kp⌉−b+1
B (1 − p̄B)h+b−⌈kp⌉, we can

further simplify Equation (C.2) to Equation (4.9).

C.2. Parameters k0 and n00 of the Test Run

Until now, we have assumed that T (k0, n00) contains information necessary for the

prediction of k and n0. Here we discuss how to determine the k0 and n00 of the test run

upon which k and n0 are predicted.

For k0, we have demonstrated that when the number of scenarios k ≥ 40/p, the

coverage rate of the estimated confidence interval of the expected shortfall ES1−p is no
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less than the nominal confidence level (Lan et al., 2007a). That is, when k ≥ 40/p, the

asymptotic correctness of our procedure holds. We then also require that k0 ≥ 40/p. In

our experiments, p = 0.01, we took k0 = 4000, which worked well for all tested problems.

The behavior of screening procedure under (k, n0) is predicted by using
X̄i(n00)−X̄j(n00)

Sij(n00)
, i, j =

1, . . . , k0 repeatedly. We need to set n00 large enough such that
X̄i(n00)−X̄j(n00)

Sij(n00)
is close to

its true value. Suppose that
τ2
ij

n00
is the variance of

X̄i(n00)−X̄j(n00)

Sij(n00)
, then we can determine

n00 by

n00 ≥
τ 2
ij

(X̄i(n′
00)−X̄j(n′

00))2

S2
ij(n

′
00)

a2
∀i, j = 1, . . . , k0,

where a stands for the ratio of standard variance to mean value and is set to 0.05 in

all experiments, n′
00 is the size of samples used to estimate n00, usually chosen as 160

or even larger because all the data can be reused in the test run. Let Yh(i, j) = Xi,h −

Xj,h h = 1, . . . , n′
00. We often drop (i, j) and write Yh(i, j) as Yh when the context is

clear. Suppose y1, y2, . . . are the non-central moments of Yh. We denote ŷ1, ŷ2, . . . as the

ordinary estimators of y1, y2, . . ., that is, ŷ1 =
∑n′

00
h=1 Yh, ŷ2 =

∑n′
00

h=1 Y 2
h and so on. From

the ∆-method, we can estimate τ 2
ij by

τ̂ 2
ij =

1

(ŷ2 − ŷ2
1)

3

{

ŷ2
1 ŷ4 −

1

4
ŷ2

1ŷ
2
2 − ŷ1ŷ2ŷ3 + ŷ3

2

}

.

Then we can estimate the lower bound of n00 by

(C.3) max
i,j

400

(ŷ2 − ŷ2
1)

2ŷ2
1

{

ŷ2
1 ŷ4 −

1

4
ŷ2

1 ŷ
2
2 − ŷ1ŷ2ŷ3 + ŷ3

2

}

.
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Usually i = 1, j ∈ {π0(k0p), π0(k0)} is taken instead of the whole possible set of i, j to save

computation. See Appendix C.2.1 for the procedure on how to determine n00 adaptively

and generate the test run data T (k0, n00).

C.2.1. Procedure for T (k0, n00)

We introduce the procedure used to generate the test run data T (k0, n00) adaptively.

(1) Initialization:

Set n00 ← 240 (default value), k0 ← 40/p and nmax = 109/k0 (limited by the

memory the computer can provide).

Set a← 0.

(2) Generating Scenarios:

Generate k0 scenarios independently and calculate the unit time used on gener-

ating market scenario Rsce.

(3) Simulation of Portfolio Payoffs

(a) Set nold ← 0

(b) Do:

(i) Generate additional n00 − nold payoffs for each market scenario with

Common Random Numbers.

(ii) Set nold ← n00.

(iii) Update n00 according to Equation (C.3).

(iv) Set n00 ← n00 ∧ nmax and a← a + 1.

While(n00 > nold and a < 3)

(c) Set n00 ← nold.
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(d) Calculate the unit time spent on simulation of one payoff Rsam.

(4) Screening:

Perform the screening operation on all the k0 scenarios.

Record X̄i(n00), S
2(n00), π0(·) and S2

ij(n00).

Calculate the time related coefficients Rscr1, Rscrsort and Rscr2.

(5) Computing the Empirical Likelihood Estimator:

Compute the Empirical Likelihood estimation with data X̄π0(1)(n00), . . . , X̄π0(|I|)(n00).

Calculate coefficient Eout and Rcom.

C.3. Experimental Data

C.3.1. Experiments for Given C Procedures

Table C.1: Experiment Results for Problem 1 with C = 16000000

Width of CI when C=16000000

k n0 Average CI Width Variance of CI Width

1000 80 0.73 4.9e-02

32000 70 0.155 5.7e-05

128000 100 0.119 2.0e-06

32000 80 0.156 5.7e-05

128000 30 0.68 2.4e-01

4000 100 0.41 3.7e-03

128000 50 0.094 1.4e-06

4000 150 0.41 3.7e-03

128000 60 0.097 2.6e-06

Continued on next page
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Table C.1 – continued (C = 16000000)

k n0 Average CI Width Variance of CI Width

4000 300 0.41 3.7e-03

128000 70 0.101 2.0e-06

4000 30 0.74 2.8e-01

128000 72 0.101 2.7e-06

4000 500 0.41 3.7e-03

128000 74 0.102 1.9e-06

4000 50 0.41 3.7e-03

128000 76 0.103 1.7e-06

4000 60 0.41 3.7e-03

128000 80 0.105 3.0e-06

4000 70 0.41 3.7e-03

16000 100 0.211 2.4e-04

4000 800 0.41 3.7e-03

16000 10 0.41 3.4e-03

4000 80 0.41 3.7e-03

16000 150 0.21 2.4e-04

125262 67 0.099 3.7e-06

16000 20 0.46 2.0e-02

16000 300 0.21 2.4e-04

16000 30 0.47 6.9e-02

16000 500 0.22 2.3e-04

500 80 0.93 1.7e-01

16000 50 0.21 2.4e-04

64000 100 0.120 9.4e-06

16000 60 0.21 2.4e-04

Continued on next page
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Table C.1 – continued (C = 16000000)

k n0 Average CI Width Variance of CI Width

64000 150 0.126 1.2e-05

16000 70 0.21 2.4e-04

64000 30 0.37 5.1e-02

16000 800 0.23 2.6e-04

64000 50 0.116 1.3e-05

16000 80 0.21 2.4e-04

64000 60 0.117 1.2e-05

171803 74 0.112 3.4e-06

64000 70 0.117 1.3e-05

2000 80 0.56 1.3e-02

64000 80 0.118 1.2e-05

250 80 0.78 1.7e-01

8000 100 0.29 9.3e-04

256000 30 1.5 1.5e+00

8000 150 0.29 9.3e-04

256000 50 0.106 3.1e-06

8000 300 0.29 9.4e-04

256000 60 0.204 1.0e-05

8000 30 0.60 1.4e-01

300 80 0.83 2.0e-01

8000 500 0.30 9.4e-04

32000 100 0.156 5.6e-05

8000 50 0.29 9.3e-04

32000 150 0.157 5.5e-05

8000 60 0.29 9.3e-04

Continued on next page
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Table C.1 – continued (C = 16000000)

k n0 Average CI Width Variance of CI Width

32000 300 0.165 5.4e-05

8000 70 0.29 9.3e-04

32000 30 0.41 3.1e-02

8000 800 0.30 9.4e-04

32000 50 0.155 5.7e-05

8000 80 0.29 9.3e-04

32001 60 0.155 5.7-05

C.3.1.1. Problem 1.
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Table C.2: Experiment Results for Problem 2 using Strategy CRN2 with

C = 128000000

Width of CI when C=128000000

k n0 Average CI Width Variance of CI Width

9140 8031 4.6 1.5e+00

4000 8000 5.5 2.3e+00

12000 8000 6.7 2.1e+01

9930 7014 6.2 1.5e+01

14000 8000 9.6 6.7e+01

6000 12000 4.7 9.2e-01

16000 4000 16 9.0e+01

64000 40 69 2.7e+02

16000 40 37 2.8e+02

8000 12000 5.0 7.7e-01

32000 40 49 2.7e+02

8000 4000 9.7 2.0e+01

4000 12000 5.1 8.4e-01

8000 8000 5.4 6.1e+00

4000 4000 8 1.0e+01

6872 9408 5.0 2.7e+00

4000 40 28 2.9e+02

9000 12000 5.5 2.0e+00

C.3.1.2. Problem 2.
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Table C.3: Experiment Results for Problem 2 using Strategy CRN with

C = 128000000

Width of CI when C=128000000

k n0 Average CI Width Variance of CI Width

14000 8000 6.7 2.7e-01

4000 40 28 2.2e+02

16000 2000 9 2.5e+01

4000 8000 5.2 7.9e-01

16000 4000 5.3 3.4e+00

6000 12000 4.8 3.9e-01

16000 40 36 2.2e+02

64000 40 66 2.2e+02

16000 6000 5.6 6.7e-01

8000 2000 7.1 8.5e+00

24000 2000 12 5.2e+01

8000 4000 4.8 7.1e-01

24000 4000 8.5 1.6e+01

8000 40 31 2.2e+02

32000 2000 17 1.1e+02

8000 6000 4.4 2.2e-01

32000 40 47 2.1e+02

8000 8000 4.5 2.5e-01
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Table C.4: Experiment Results for Problem 2 using Strategy NAIVE

with C = 128000000

Width of CI when C=128000000

k n0 Average CI Width Variance of CI Width

12000 8000 9.2 6.7e+00

5133 13713 5.8 3.7e-01

14000 8000 13.8 2.5e+01

7625 8633 6.1 7.4e-01

16000 4000 26 3.7e+02

6000 12000 5.6 2.4e-01

16000 40 62 4.0e+02

6000 14000 5.9 2.5e-01

32000 4000 0.0 0.0e+00

6000 18000 7.3 1.9e-01

32000 40 80 4.2e+02

64000 40 110 4.2e+02

4000 12000 5.7 8.3e-01

8000 12000 6.6 2.2e-01

4000 14000 5.8 8.4e-01

8000 4000 13.9 8.1e+01

4000 18000 5.926545 8.1e-01

8000 40 51 4.0e+02

4000 4000 11 3.5e+01

8000 8000 6.5 1.6e+00

4000 40 46 3.9e+02

4642 14572 5.8 5.7e-01

Continued on next page
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Table C.4 – continued (C = 128000000)

k n0 Average CI Width Variance of CI Width

4000 8000 6.1 1.1e+00

9000 12000 8.0 4.4e-01
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Table C.5: Experiment Results for Problem 2 using Strategy NATURE

with C = 128000000

Width of CI when C=128000000

k n0 Average CI Width Variance of CI Width

14000 8000 4.9 1.0e-01

32000 40 36 2.0e+02

16000 2000 4.9 3.5e+00

32000 6000 0.0 0.0e+00

16000 4000 3.7 2.1e-01

4000 40 26 2.9e+02

16000 40 30 3.0e+02

4000 8000 4.9 7.3e-01

16000 6000 4.2 9.2e-02

15525 4943 3.7 1.0e-01

18000 5000 4.1 9.2e-02

6000 12000 4.4 3.6e-01

20000 4000 3.9 1.5e-01

64000 40 48 2.9e+02

24000 2000 6 8.7e+00

8000 2000 4.7 8.8e-01

24000 4000 4.7 3.3e-01

8000 4000 4.1 2.6e-01

24000 6000 0.0 0.0e+00

8000 40 27 2.9e+02

32000 2000 7.8 2.1e+01

8000 6000 4.0 1.8e-01

Continued on next page
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Table C.5 – continued (C = 128000000)

k n0 Average CI Width Variance of CI Width

32000 4000 0.0 0.0e+00

8000 8000 4.0 2.0e-01
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C.3.2. Experiments for Given T Procedures

Table C.6: Experiment Results for Problem 1 with T = 60

Width of CI when T=60

k n0 Width Var Accomplishment Rate

1000 80 0.70 4.8e-02 100.0%

4000 80 0.39 3.7e-03 100.0%

112000 120 0.0 0.0e+00 0.0%

93820 68 0.091 6.1e-06 100.0%

112000 60 0.10 0.0e+00 5.0%

48000 120 0.119 2.7e-05 100.0%

144000 120 0.0 0.0e+00 0.0%

48000 40 0.15 9.8e-03 100.0%

144000 40 0.0 0.0e+00 0.0%

48000 60 0.118 2.7e-05 100.0%

144000 60 0.0 0.0e+00 0.0%

48000 80 0.118 2.5e-05 100.0%

144000 80 0.0 0.0e+00 0.0%

500 80 0.91 1.7e-01 100.0%

16000 120 0.20 2.9e-04 100.0%

8000 120 0.28 1.0-03 100.0%

16000 40 0.20 2.9e-04 100.0%

8000 40 0.28 1.0e-03 100.0%

16000 60 0.20 2.9e-04 100.0%

8000 60 0.28 1.0e-03 100.0%

16000 80 0.20 2.4e-04 100.0%

Continued on next page
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Table C.6 – continued (T = 60)

k n0 Width Var Accomplishment Rate

8000 80 0.28 9.3e-04 100.0%

2000 80 0.55 1.3e-02 100.0%

96000 120 0.0 0.0e+00 0.0%

24000 120 0.165 8.4e-05 100.0%

96000 40 0.13 9.0e-03 80.0%

24000 40 0.19 9.8e-03 100.0%

96000 60 0.089 5.3e-06 100.0%

24000 60 0.165 8.5e-05 100.0%

96000 80 0.110 5.2e-05 100.0%

24000 80 0.165 8.3e-05 100.0%

C.3.2.1. Problem 1.
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Table C.7: Experiment Results for Problem 2 using Strategy CRN2 with

T = 240

Width of CI when T=240

k n0 Average CI Width Variance of CI Width Accomplishment Rate

1000 12000 8.7 4.1e+00 100.0%

10515 5436 4.0 2.4e-01 95.0%

1000 6000 8.8 3.6e+00 100.0%

4813 11233 4.6 6.0e-01 100.0%

1000 8000 8.7 4.0e+00 100.0%

6000 1000 13 3.9e+01 100.0%

11233 4813 4.1 2.9e-01 95.0%

6000 12000 4.4 3.4e-01 100.0%

12000 1000 0.0 0.0e+00 0.0%

6000 2000 7.5 2.2e+01 100.0%

12000 2000 6.2 2.4e+01 65.0%

6000 4000 4.6 6.3e-01 100.0%

12000 4000 4.4 2.5e+00 100.0%

6000 6000 4.4 3.8e-01 100.0%

12000 6000 4.8 5.1e+00 100.0%

6000 8000 4.4 4.2e-01 100.0%

12000 8000 5.6 3.0e+00 100.0%

8000 1000 20 2.8e+02 70.0%

2000 12000 6.7 2.0e+00 100.0%

8000 12000 4.3 2.2e-01 100.0%

2000 6000 6.8 2.0e+00 100.0%

8000 2000 11 1.7e+02 100.0%

Continued on next page
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Table C.7 – continued (T = 240)

k n0 Average CI Width Variance of CI Width Accomplishment Rate

2000 8000 6.8 2.0e+00 100.0%

8000 4000 4.7 1.8e+00 100.0%

4000 12000 4.9 7.8e-01 100.0%

8000 6000 4.1 2.0e-01 100.0%

4000 6000 5.0 8.3e-01 100.0%

8000 8000 4.1 2.3e-01 100.0%

4000 8000 4.9 8.2e-01 100.0%

C.3.2.2. Problem 2.
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Table C.8: Experiment Results for Problem 2 using

Strategy CRN with T = 240

Width of CI when T=240

k n0 Average CI Width Variance of CI Width Accomplishment Rate

12000 8000 5.822798 1.6e+01 40.0%

500 8000 11 3.1e+01 100.0%

2000 8000 6.6 6.8e-01 100.0%

6000 8000 4.6 1.4e+00 100.0%

4000 8000 5.1 5.8e-01 100.0%

8000 8000 3.6 2.3e+00 90.0%

6802 8305 4.8 3.0e+00 95.0%
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Table C.9: Experiment Results for Problem 2 using Strategy CRN with

T = 240

Width of CI when T=240

k n0 Average CI Width Variance of CI Width Accomplishment Rate

11205 6723 4.0 5.4e-01 100%

10227 6706 4.0 8.5e-02 100%

9628 8353 3.9 1.1e-01 100%

9553 7865 4.2 1.0e-01 100%

8536 8550 4.0 1.9e-01 100%

10746 6218 4.0 1.3e-01 100%

10030 7436 3.9 1.0e-01 100%

8564 9277 4.0 7.5e-02 100%

10824 6651 3.9 8.1e-02 100%

11425 5844 3.9 8.2e-02 100%

9195 7857 3.9 2.2e-01 100%

11107 6547 4.0 1.7e-01 100%

11598 5774 3.9 2.1e-01 100%

10124 7284 3.9 1.4e-01 100%

9976 6875 3.9 1.0e-01 100%

9297 7750 4.0 1.3e-01 100%

9123 7872 3.8 8.8e-02 100%

10895 6788 3.9 8.5e-02 100%

9177 8328 4.009364 1.0e-01 100%

10747 6625 3.9 1.7e-01 100%
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Table C.10: Experiment Results for Problem 2 using

Strategy CRN with T = 120

Width of CI when T=120

k n0 Average CI Width Variance of CI Width Accomplishment Rate

1000 3000 9.3 6.6e+00 100.0%

4000 8000 5.8 6.2e-01 100.0%

1000 8000 9.6 6.6e+00 100.0%

5350 7461 9 6.6e+01 90.0%

2000 3000 7.2 2.0e+00 100.0%

500 3000 11 1.8e+01 100.0%

2000 8000 7.0 5.8e-01 100.0%

500 8000 11 3.1e+01 100.0%

250 3000 10 2.6e+01 100.0%

6000 3000 5.3 2.8e+00 100.0%

250 8000 11 9.6e+01 100.0%

6000 8000 4.9 3.6e+00 90.0%

4000 3000 5.7 8.0e-01 100.0%
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Table C.11: Experiment Results for Problem 2 using Strategy NAIVE

with T = 240

Width of CI when T=240

k n0 Average CI Width Variance of CI Width Accomplishment Rate

10000 6000 18 1.2e+02 30.0%

6000 8000 10 2.0e+01 95.0%

10000 8000 0.0 0.0e+00 0.0%

7248 5734 10 2.0e+01 55.0%

2000 6000 8.9 3.9e+00 100.0%

8000 1000 24 1.1e+03 2.0%

4000 12000 7.0 7.9e-01 100.0%

8000 12000 0.0 0.0e+00 0.0%

4000 6000 9 2.3e+01 100.0%

8000 2000 10 8.9e+01 3.0%

4000 8000 7.2 1.9e+00 100.0%

8000 500 84 2.1e+02 100.0%

5057 9035 7.5 5.9e+00 100.0%

8000 6000 15 9.7e+01 59.0%

6000 12000 57 9.2e+02 55.0%

8000 8000 25 3.8e+02 46.0%

6000 6000 20 1.3e+03 80.0%
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Table C.12: Experiment Results for Problem 2 using Strategy NAIVE

with T = 240

Width of CI when T=240

k n0 Average CI Width Variance of CI Width Accomplishment Rate

4000 14071 6.9 6.6e-01 100%

4000 14092 7.0 7.7e-01 100%

4000 12603 6.7 4.2e-01 100%

4000 17172 8.1 1.1e+00 100%

5080 8701 6.8 1.4e+00 100%

4980 10183 7.1 6.7e-01 100%

4504 10680 7.6 4.1e+00 100%

5595 8383 7.0 8.7e-01 95%

5584 8400 8.6 1.9e+01 100%

4518 10267 6.6 5.7e-01 100%

4538 10888 7.5 3.3e+00 100%

4641 9728 6.6 8.3e-01 100%

4000 13639 6.9 6.1e-01 100%

4000 13155 6.9 5.1e-01 100%

4681 10269 6.6 5.1e-01 100%

5593 8325 7.0 7.7e-01 95%

4481 11187 6.8 6.3e-01 100%

5423 9236 7.1 8.5e-01 95%

5261 9272 7.9 7.3e+00 100%

4047 14343 7.3 6.5e-01 100%



141

Table C.13: Experiment Results for Problem 2 using Strategy NATURE

with T = 240

Width of CI when T=240

k n0 Width Var Accomplished Rate

1000 12000 8.7 3.8e+00 100.0%

4000 8000 4.9 7.4e-01 100.0%

1000 6000 8.7 3.6e+00 100.0%

4813 11233 4.7 6.0e-01 100.0%

1000 8000 8.7 3.7e+00 100.0%

6000 1000 14 2.6e+01 100.0%

11233 4813 4.1 1.3e-01 100.0%

6000 12000 4.6 3.4e-01 100.0%

12000 1000 2.5 1.3e+01 10.0%

6000 2000 5.1 1.3e+00 100.0%

12000 2000 4.5 7.6e-01 85.0%

6000 4000 4.4 4.2e-01 100.0%

12000 4000 4.2 7.4e-01 100.0%

6000 6000 4.3 4.0e-01 100.0%

12000 6000 5.2 1.5e-01 100.0%

6000 8000 4.4 4.1e-01 100.0%

12000 8000 0.0 0.0e+00 0.0%

8000 1000 24 1.1e+03 45.0%

2000 12000 6.7 2.2e+00 100.0%

8000 12000 0.0 0.0e+00 0.0%

2000 6000 6.8 2.1e+00 100.0%

8000 2000 8 1.2e+02 100.0%

Continued on next page
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Table C.13 – continued (T = 240)

k n0 Width Var Accomplished Rate

2000 8000 6.7 2.1e+00 100.0%

8000 4000 4.1 2.7e-01 100.0%

4000 12000 4.9 7.3e-01 100.0%

8000 6000 4.1 1.7e-01 100.0%

4000 6000 4.9 7.4e-01 100.0%

8000 8000 4.3 1.8e-01 100.0%
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