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Paradigms for Repeated Financial Simulations

Run-oriented paradigm: one run per expectation approximated

On each day i = 1, 2, . . ., for each security j = 1, . . . , J,
run a simulation to approx. µ(θi , ψj) by 1

n

∑n
h=1 Y (ωijh, θi , ψj).

SIMULATION EFFORT = COMPUTATIONAL EXPENSE

Day 1: Security 1, Security 2: déjà vu
Day 2: déjà vu all over again data is wasted; no learning

Problem-oriented paradigm: one experiment per problem

1 Perform an experiment with multiple simulation runs.

2 Use results to approx. any µ(θ, ψ).

SIMULATION EFFORT = COMPUTATIONAL INVESTMENT

Goals: reduce computational cost, simulation on demand
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Fixed Sets of Tasks

Example (many options)

Value k options differing only in ψ = (strike, maturity),
want to know µ(ψ1), . . . , µ(ψk).

Run-oriented paradigm:

For all j , simulate paths ωj1, . . . , ωjn, and
approximate µ(ψj) by 1

n

∑n
h=1 Y (ωjh, ψj).

A standard problem-oriented efficiency technique: reuse paths.

1 Simulate paths ω1, . . . , ωn.

2 For all j = 1, . . . , k , approx. µ(ψj) by 1
n

∑n
h=1 Y (ωh, ψj).

Even more problem-oriented:

To approx. µ(ψj), also use simulation runs with ψ 6= ψj .
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Sequence of Repeated Tasks

Example (moving markets)

Value a security every day, given newly calibrated model
parameters Θ: approx. µ(Θ1), µ(Θ2), . . .

Run-oriented paradigm:

Each day i , simulate paths given Θi , use them to approx. µ(Θi ).

Problem-oriented paradigm:

1 Perform simulations conditional on θ1, . . . , θk ;
store some information.

2 Use it in approximating µ(Θi ).
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Nested Simulation I

Example (portfolio risk measurement)

1 Sample scenarios Θ1, . . . ,ΘK .

2 In each scenario, approx. portfolio value µ(Θi ) by µ̂(Θi ).

3 Evaluate the risk measure on µ̂(Θ1), . . . , µ̂(Θk).

Run-oriented paradigm (step 2):

For each i , run simulation conditional on Θi to get µ̂(Θi ).

Problem-oriented paradigm (step 2):

Run simulations conditional on each θ1, . . . , θk where k � K .

Use them in approximating µ(Θi ) for i = 1, . . . ,K .

bias Frye (1998), “Monte Carlo by Day.”
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Nested Simulation II

Example (American option pricing)

1 Simulate paths S
(i)
1 , . . . ,S

(i)
T for i = 1, . . . , n.

2 Approx. continuation value C (t,S
(i)
t ) for each step and path.

3 When to exercise on each path? τ̂i .

4 Approx. price by 1
n

∑n
i=1 Y (τ̂ , S

(i)
τ̂i

).

Run-oriented paradigm (step 2):

For each step and path, conditional on steps 1, . . . , t of path i ,

run simulations to approximate C (t,S
(i)
t ), discard them.

Problem-oriented paradigm (step 2):

Use all time steps of all paths to approximate each C (t,S
(i)
t ).
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Regression Monte Carlo: problem-oriented

(Longstaff&Schwartz; Tsitsiklis&Van Roy)

Choose basis functions b (vector-valued).

Backward recursion to approx. the continuation values C (t,S
(i)
t ):

For i = 1, . . . , n, Ĉ (T , S
(i)
T ) = 0.

For t = T , . . . , 1,

1 V̂ (t, S
(i)
t ) = max{Y (t, S

(i)
t ), Ĉ (t, S

(i)
t )}.

2 Multiple regression of V̂ (t, S
(1)
t ), . . . , V̂ (t, S

(n)
t ) on

b(S
(1)
t−1), . . . , b(S

(n)
t−1) yields β̂t .

3 Ĉ (t − 1, S
(i)
t−1) = b(S

(i)
t−1)β̂t .

Bias depends on goodness of fit,
which depends on choice of basis functions (problem-specific).

Essential idea: metamodel Ĉ (t, ·) of C (t, ·).
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Jeremy Staum Efficiency in Repeated Financial Simulations



Regression Monte Carlo: problem-oriented

(Longstaff&Schwartz; Tsitsiklis&Van Roy)

Choose basis functions b (vector-valued).

Backward recursion to approx. the continuation values C (t,S
(i)
t ):

For i = 1, . . . , n, Ĉ (T , S
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Metamodeling

Run-oriented: to learn about µ(θ), run the simulation model at θ.

Problem-oriented metamodeling:

To learn about the function µ,

1 Perform a simulation experiment with runs at θ1, . . . , θk .

2 Use simulation output to approx. µ by the metamodel µ̂.

The metamodel’s µ̂(θ) is faster but less accurate
than a long simulation run at θ.

Goals of metamodeling:

reduce computational cost

simulation on demand (Monte Carlo by day)

Greeks from ∇µ̂

http://users.iems.northwestern.edu/~staum/MonteCarloFinance.pdf
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Metamodeling: there ain’t no such thing as a free lunch

Inference about µ(θ) without simulating at θ needs assumptions:

about spatial variability in µ

about noise in simulation output

Simulation output at θi with n replications is

Y (θ; n) = µ(θ) +
1

n

n∑
j=1

εj(θ).

Beware metamodel misspecification which causes bad µ̂.

http://www.informs-sim.org/wsc09papers/011.pdf

http://users.iems.northwestern.edu/~nelsonb/SK/StaumTutorialWSC09.pdf
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Regression Metamodeling?

Assumptions:

µ(θ) = b(θ)β for
known b and some β.

All εj(θ) are independent.

OLS: εj(θ) ∼ N(0, v).

WLS: εj(θ) ∼ N(0, v(θ)).

Legend: (quadratic metamodels)

black line = truth, ◦ = data

fit to data: OLS, WLS

red dots = best fit to truth

Misspecification: best fit may be bad.

Challenge of handling noise: dangers of WLS and OLS.
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Metamodeling: Nonparametric Regression!

Does µ = bβ, a linear combination of basis functions?

NO. The true form of µ is unknown.

Should we try to filter out the noise?

YES. Monte Carlo produces noise.
Independence across simulation runs ⇒ noise can be filtered.
Heteroscedasticity ⇒ filtering is nontrivial.
Variance of each run can be estimated using multiple replications.

Approach: nonparametric regression

smoothing splines

kernel smoothing

moving least squares (local regression)

Challenges: µ non-differentiable, discontinuous, high-dimensional
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Stochastic Kriging

Simulation output at θi is Y (θi ; ni ) = µ(θi ) + 1
ni

∑ni
j=1 εj(θi ).

Assumptions: (smoothing splines family)

εj(θ) ∼ N(0, vj), “intrinsic” variance, all are independent.

µ is a random field

µ(θ) is normal with mean b(θ)β.
µ(θ) and µ(θ′) have “extrinsic” covariance σ2(θ, θ′),
data-driven spatial correlation modeling.

Prediction at θ given data Y = [Y (θ1; n1), . . . ,Y (θk ; nk)]> is

µ̂(θ) = b(θ)β + w(θ)(Y − Bβ),

where Y − Bβ = residuals at design points.

Behavior: between regression and interpolation.

http://stochastickriging.net
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DataBase Monte Carlo (DBMC)

DBMC vs. metamodeling

Both store info from simulation not at θ to learn about µ(θ).

Does estimating µ(θ) require a simulation at θ?
DBMC—yes, metamodeling—no

Is µ̂(θ) biased? DBMC—no, metamodeling—yes

DBMC exploits structure of Y (ω, ·) vs. µ(·) = E [Y (ω, ·)]

DBMC strategy

1 simulation run of N replications at θ0 to generate
database (ω1,Y (ω1, θ0)), . . . , (ωN ,Y (ωN , θ0))

2 use database to do variance reduction while simulating n� N
replications at θ to approximate µ(θ)

Due to Pirooz Vakili et al. Overview in:

http://users.iems.northwestern.edu/~staum/MonteCarloFinance.pdf
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DBMC with Control Variates

Motivation: If for θ near θ0, the payoff Y (ω, θ)
is highly correlated with Y (ω, θ0), good control variate.

Problem: µ(θ0) = E [Y (ω, θ0)] is unknown.

Solution: Y (ω, θ0) is a quasi-control variate.
Approximate E [Y (ω, θ0)] well using the database of large size N.
Sample n� N random variates u1, . . . , un,

µ̂(θ) =
1

n

n∑
j=1

Y (uj , θ)− β
(1

n

n∑
j=1

Y (uj , θ0)− 1

N

N∑
j=1

Y (ωj , θ0)︸ ︷︷ ︸
from database

)
.

http://www.informs-sim.org/wsc08papers/037.pdf
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Structured Database Monte Carlo with Stratification

SDMC strategy

1 generate database (ω1,Y (ω1, θ0)), . . . , (ωN ,Y (ωN , θ0))

2 structure the database, e.g., by sorting on Y (ω, θ0)

3 use database to do variance reduction at θ

Stratification after sorting

1 partition {ω1, . . . , ωN} into n contiguous strata

2 stratified resampling of u1, . . . , un from {ω1, . . . , ωN}
3 µ̂(θ) =

∑n
j=1 Y (uj , θ)/n if strata are size N/n.

Advantages vs. manual stratification of hypercube:

don’t need stratum probabilities or conditional sampling

automatically creates good strata if Y (·, θ) and Y (·, θ0) are
nearly comonotone

http://www.informs-sim.org/wsc08papers/036.pdf and references therein
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Simulation on Demand for Pricing Many Securities

Goal: accurate approximation of µ(θ, ψ1), . . . , µ(θ, ψJ)
where θ = market scenario, ψj = security j parameters.

Stochastic kriging (SK) metamodels µ̂(·, ψj)

1 Establish likely region Θ for future scenarios.

2 Simulate accurately at θ1, . . . , θk chosen to fill Θ.

3 Build and cross-validate SK metamodels µ̂(·, ψ1), . . . , µ̂(·, ψJ).

4 If they don’t pass, add more scenarios or simulation effort,
return to Step 2.

Result: After 2.2 hours on one PC for J = 75 securities,
all root average relative MSEs were < 0.75%.

Easy to parallelize.

http://users.iems.northwestern.edu/~nelsonb/SK/valuation.pdf
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Expected Shortfall with Stochastic Kriging

Nested simulation of expected shortfall = CVaR at level p

1 Simulate scenarios Θ1, . . . ,ΘK .

2 In each scenario, approx. portfolio value µ(Θi ) by µ̂(Θi ).

3 Choose V1, . . . ,VKp to be lowest values in µ̂(Θ1), . . . , µ̂(ΘK ).

4 Approx. ES by −
∑Kp

i=1 Vi . (Only tail scenarios matter.)

Jeremy Staum Efficiency in Repeated Financial Simulations



Expected Shortfall with Stochastic Kriging

Stochastic kriging (SK) for
portfolio valuation

1 Simulate at scenarios
chosen to fill space.

2 Use SK to choose
scenarios likeliest to be in
the tail, simulate at them.

3 Increase replications.

4 Final SK metamodel.

Result: RMSE 50 times better than standard nested simulation

http://users.iems.northwestern.edu/~staum/skes.pdf
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Some Future Applied Research

Nested simulation:
apply metamodeling (Hong&Juneja; Liu&Staum) or DBMC

adaptive allocation (Broadie,Du&Moallemi; Gordy&Juneja; Liu&Staum)

achieve rate of MSE convergence closer to 1/C?

American options: what nonparametric regression ideas to use?
(Carrière; Tompaidis&Yang)

reduce the need for problem-specific basis functions

tailor to the yes/no objective

In general: algorithm design
for computational efficiency, validation, updating
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Some Future Methodological Research

Metamodeling:

When to use what nonparametric regression techniques?

Estimate variance at each θ from multiple replications?
How to use these estimates?

Analyze and reduce bias.

Experiment design:
place design points, allocate effort, manage noise-to-signal ratio

Metamodeling: lots known from statistics,
more to do for simulation (adaptive; many replications)

DBMC: open

Combining metamodeling and DBMC
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A Green Vision for Financial Computing

When introducing a model:

1 Establish a domain Θ of parameters (e.g. strike, vol)

2 Run simulations until metamodel µ̂ is good in domain Θ.

When using a model at θ:

Expand domain if θ /∈ Θ.

For low-fidelity applications, use the metamodel: µ̂(θ).

For high-fidelity applications,
1 Run more simulations at θ until metamodel is good at θ.
2 Update the metamodel.

Efficient computing: reduce and reuse!

Store output (possibly condensed) of every simulation run
in the metamodel or the database(s).

Discard output data only when model is abandoned.
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