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FUNDAMENTAL THEOREMS OF ASSET PRICING FOR GOOD
DEAL BOUNDS

JEREMY STAUM
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We prove fundamental theorems of asset pricing for good deal bounds in incom-
plete markets. These theorems relate arbitrage-freedom and uniqueness of prices for
over-the-counter derivatives to existence and uniqueness of a pricing kernel that is
consistent with market prices and the acceptance set of good deals. They are proved
using duality of convex optimization in locally convex linear topological spaces. The
concepts investigated are closely related to convex and coherent risk measures, exact
functionals, and coherent lower previsions in the theory of imprecise probabilities.
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1. INTRODUCTION

The problem of pricing and hedging in incomplete markets demands a synthesis of the
approaches of mathematical finance and economics: How does one hedge risks and es-
tablish preferences over residual, unhedgeable risks, and what implications does this have
for pricing risks? At the same time, one must take account of the cost of hedging, as
determined by current market prices, and of beliefs about future market prices and of
fundamental preferences, which do not derive solely from current or historical market
prices. In mathematical terms, the problem of pricing in incomplete markets is the prob-
lem of extending a function that gives the prices of marketed cashflows to a larger space
of cashflows. The cashflows in the larger space but not the smaller marketed space are
potential over-the-counter securities. The extension should have economic justification
and be suitable for implementation by financial decision makers. The problem is impor-
tant because the incorporation of features such as price jumps, transaction costs, and
illiquidity into a model often yields incompleteness.

One approach to this problem arises from the consideration of equivalent martingale
measures (EMMs) in no-arbitrage pricing theory. Under some conditions, market prices
equal expected discounted terminal values, with the expectation taken under an EMM
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(Delbaen and Schachermayer 1999). In incomplete markets, there can be many EMMs,
and one may propose criteria for selecting one. Expectation under this most-favored
EMM is then the chosen extension of the market price function. Two criteria that have
attracted extensive attention are minimization of hedging residual variance (Schweizer
1996) and minimization of the relative entropy between the EMM and a subjective prob-
ability measure (Frittelli 2000b).

Another approach arises from consideration of the lower and upper no-arbitrage
bounds for prices of nonredundant contingent claims. It analyzes tighter good deal bounds,
which arise from the exclusion not only of arbitrages, but a larger acceptance set of good
deals (Cochrane and Saá-Requejo 2000). Recently, research in this area has taken inspira-
tion from the work by Artzner et al. (1999) on coherent risk measures. It explicitly aims at
creating a theory that occupies an intermediate position between no-arbitrage theory and
expected utility theory, being more useful than the former and more robust than the lat-
ter. Recent papers include Carr, Geman, and Madan (2001), Černý and Hodges (2001),
Jaschke and Küchler (2000), and Roorda (2002). An investigation that similarly seeks
to interpolate between no-arbitrage and expected utility theories, although not explicitly
treating price bounds, is Frittelli (2000a). See Carr et al. and Černý and Hodges for further
discussion of the relative merits and disadvantages of no-arbitrage and expected utility
theories, as well as references to previous work along the same lines by economists not
drawing on the coherent risk measure concept. The present paper continues the approach
inspired by coherent risk measures, but is not restricted to the coherent case.

This paper extends the results of Jaschke and Küchler (2000). We drop some assump-
tions of coherence and resolve some difficulties surrounding the converse in the funda-
mental theorem of asset pricing. The main tool is the duality theory of optimization
in locally convex linear topological spaces. We use as a recurring example the case of
bounded random variables, which several authors have treated in different contexts:
Delbaen (2002) and Föllmer and Schied (2002a, 2002b, 2002c) on coherent and con-
vex risk measures, Maaß (2002) on exact functionals, and Walley (1991) on imprecise
probabilities. In Section 2 we formulate no-good-deal price bounds and conditions for
them to avoid arbitrage. Section 3 covers financial interpretations of the mathematical
hypotheses needed for subsequent results. Sections 4 and 5 develop respectively the dual
and primal results required for proving versions of the fundamental theorems of asset
pricing, which occupy Section 6. In Section 7 we focus on the important special case of
bounded random variables. We conclude and discuss directions for future research in
Section 8.

2. ACCEPTANCE AND PRICING

Let L be a linear space of cashflows for which we desire to establish bid and ask prices.
We will derive results for pricing where L is endowed with a locally convex topology and
paired with a dual space (see Section 4). The reader may consult the appendix of Jaschke
and Küchler (2000) for an introduction to locally convex linear topological spaces and
their duality theory.

Let L+ ⊂ L be the subset of nonnegative cashflows. We assume that it is a cone, meaning
a convex, absolutely homogeneous set, where “absolutely homogeneous” means positively
homogeneous and containing 0. We do not assume that it has any “nice” topological
properties, such as closedness or nonempty interior; Example 3.1 in Section 3 is an
example where it has empty interior.
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STANDING ASSUMPTION 2.1. L is a linear space and L+ ⊆ L is a cone.

We model the market with a function π : L �→ (−∞, ∞] giving market prices. It has
the interpretation of an ask price; that is, if you purchase x, you must pay π (x), whereas
if you sell x, you receive π (−x). Naturally, the 0 cashflow costs 0. To avoid some trivial
cases, we assume there exist cashflows of both positive and negative price.

STANDING ASSUMPTION 2.2. There is a market ask pricing function π : L → (−∞, ∞]
taking both positive and negative values, and with π (0) = 0.

The effective domain of π is the subset R ⊆ L of cashflows that are marketed, or
replicable; elsewhere π takes the value ∞. Our goal is to establish bid and ask prices for
over-the-counter securities providing cashflows in L\R.

Important special cases are those in which π is linear on a linear effective domain
R, sublinear (convex and absolutely homogeneous), or convex. Linearity corresponds
to frictionless markets. Sublinearity allows for proportional transaction costs—that is, a
fixed bid-ask spread for any transaction size. Convexity is consistent with more general
transaction costs, trading constraints, and liquidity effects.

The set of cashflows you can have for free is M := {x | π (x) ≤ 0} − L+; the set of
valuable and riskless cashflows is L+\{0} and the set of cashflows you can sell for cash
now is C := {x | π (−x) < 0}. An element of M ∩ (L+\{0}) is an arbitrage. An element of
M ∩ C will be called a cashout. It is sometimes also called an arbitrage, but the distinction
between these concepts is important enough here to warrant different names. Let a near-
arbitrage be an element of cl(M) ∩ (L+\{0}). The financial significance of being “near”
depends on the topology in which the closure is taken.

REMARK 2.1. If the topology is the strong topology of the ‖ · ‖∞-norm, a near-
arbitrage is known as a free lunch with vanishing risk (see Delbaen and Schachermayer
1999).

Let A ⊆ L denote an acceptance set—that is, the set of cashflows that one is willing to
accept without compensation. Say a set A is monotone when A + L+ ⊆ A. We will assume
the acceptance set is monotone; this represents a modicum of financial rationality.

STANDING ASSUMPTION 2.3. A is nonempty and monotone.

For purposes of derivative security pricing, one interprets x ∈ L as a change in wealth,
so 0 is the status quo. Then it makes sense to have 0 ∈ A. (From the perspective of
portfolio optimization, x ∈ L is a wealth, and 0 might very well not be acceptable.)
Monotonicity and 0 ∈ A imply L+ ⊆ A. Pure losses should be unacceptable: A ∩ (L−\
{0}) = ∅. Monotonicity, acceptability of the status quo, and unacceptability of pure losses
are together equivalent to a subset of the axioms for coherent risk measures of Artzner
et al. (1999). Another interesting property is convexity of A, which corresponds to risk
aversion. We do not assume that any of these properties other than monotonicity holds,
but they feature as hypotheses of some results.

REMARK 2.2. Both π and A may depend on one’s current portfolio. For instance,
considerations of credit risk suggest that the price received for issuing liabilities in a state
of the world depends on one’s wealth in that state. A contingent claim’s acceptability may
depend on whether it hedges or exacerbates risks already present in the portfolio.



144 J. STAUM

When we are willing to accept any claim x ∈ A, from our counterparty’s point of view,
the set of cashflows to be had for free is M − A. We can also describe the set A − M
as our hedging-aware acceptance set. We would like this set to satisfy the following
conditions:

NC(π, A): (M − A) ∩ C = ∅ (No Cashout)

NA: (M − A) ∩ L+\{0} = ∅ (No Arbitrage)

NNA(π, A): cl(M − A) ∩ L+\{0} = ∅ (No Near–Arbitrage)

REMARK 2.3. Although the concepts are not quite equivalent, the condition NA(π, A)
relates to (the absence of) Jaschke and Küchler’s (2000) good deals of the first kind, and
NC(π, A) relates to their good deals of the second kind, or good deals simply.

Define our ask and bid prices for a cashflow x as

aπ,A(x) := inf
y∈L

{π (y) | y − x ∈ A} = inf
y∈R

{π (y) | y − x ∈ A}(2.1)

and

bπ,A(x) := −aπ,A(−x) = sup
y∈R

{−π (y) | x + y ∈ A}.(2.2)

We should interpret aπ,A(x) as an unattained infimum selling price for x. Receiving
any amount more than aπ,A(x) while taking on the cashflow −x, we will be able to
hedge acceptably and retain some profit. Getting exactly aπ,A(x) would result at best in
indifference.

Using L+ as an acceptance set, we get the no-arbitrage bounds aπ,L+ and bπ,L+ for
pricing and hedging in incomplete markets. If L+ ⊆ A, then bπ,A ≥ bπ,L+ and aπ,A ≤
aπ,L+ , so we get a bid-ask spread no less tight than the no-arbitrage bounds. If there is
no arbitrage in market prices, then for all y ∈ R, π (y) = aπ,L+ (y).

PROPOSITION 2.1. The ask aπ,A is monotone. If 0 ∈ A, then aπ,A ≤ π . If A and π are
convex, then aπ,A is convex. If A and π are positively homogeneous, then aπ,A is positively
homogeneous; if moreover 0 ∈ A, then aπ,A is absolutely homogeneous.

Proof . Monotonicity of aπ,A follows from monotonicity of A: If x2 ≥ x1, then x2 +
A ⊆ x1 + A, so the infimum in aπ,A(x2) is taken over a smaller set. If 0 ∈ A, then x − x ∈ A,
so aπ,A(x) ≤ π (x).

Consider x1, x2 ∈ L and y1, y2 ∈ R such that y1 − x1, y2 − x2 ∈ A; that is, y1 and
y2 are feasible in computing aπ,A(x1) and aπ,A(x2) respectively. If A is convex, for
γ ∈ [0, 1], γ (y1 − x1) + (1 − γ )(y2 − x2) ∈ A. Because

γ (y1 − x1) + (1 − γ )(y2 − x2) = (γ y1 + (1 − γ )y2) − (γ x1 + (1 − γ )x2),

this shows that γ y1 + (1 − γ )y2 is feasible in computing aπ,A(γ x1 + (1 − γ )x2). If π is
convex, then π (γ y1 + (1 − γ )y2) ≤ γπ (y1) + (1 − γ )π (y2), so

aπ,A(γ x1 + (1 − γ )x2) ≤ γ aπ,A(x1) + (1 − γ )aπ,A(x2)

and aπ,A is convex.
Consider x ∈ L and y ∈ R such that y − x ∈ A. If A is positively homogeneous, then for

λ > 0, λ(y − x) ∈ A. If π is positively homogeneous, then π (λy) = λπ (y). So aπ,A(λx) ≤
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λaπ,A(x). But x = (1/λ)(λx), so aπ,A(x) ≤ (1/λ)aπ,A(λx). Therefore aπ,A(λx) = λaπ,A(x).
Because π (0) = 0, if moreover 0 ∈ A, aπ,A(0) = 0. �

We now formulate conditions under which the policy of selling a cashflow x for any
price more than an ask a(x) does not backfire by giving away a cashout or a near-arbitrage.
These conditions are generalizations of NC(π, A) and NNA(π, A), which dealt only with
transactions taking place at an infimum price of zero; see Proposition 5.3 for more about
this relationship.

� NC(π, a): For any x ∈ L, a(x) + aπ,L+ (−x) ≥ 0.
� NNA(π, a): For any x ∈ L and z ∈ L+\{0}, a(x) + aπ,L+ (z − x) > 0.

When NC(π, aπ,A) holds, aπ,A does not give away a cashout; we can rewrite NC(π, aπ,A)
as aπ,A(x) ≥ bπ,L+(x), which shows that our counterparty must pay more than the lower
no-arbitrage bound for x. On the other hand, suppose NC(π, aπ,A) fails; that is, d :=
bπ,L+ (x) − aπ,A(x) > 0. For any ε > 0, there exists yε ∈ R such that x + yε ∈ L+ and
π (yε) ≤ ε − bπ,L+ (x). Our counterparty could buy x from us for price p := aπ,A(x) + d/3,
choose ε = d/3, and buy yd/3 on the market. This strategy has cost π (yd/3) + p ≤ (d/3 −
bπ,L+ (x)) + (bπ,L+ (x) − d + d/3) = −d/3 < 0, so our counterparty would get a cashout:
a negative cost now with no future risk from x + yε ≥ 0.

Likewise, we can rewrite NNA(π, aπ,A) as aπ,A(x) > bπ,L+ (x − z). Suppose this fails.
For any ε > 0, there exists yε ∈ R such that x − z + yε ∈ L+ and π (yε) ≤ ε − bπ,L+ (x − z).
For any δ > 0, our counterparty could buy x from us for price p := aπ,A(x) + δ/2 and buy
yδ/2 on the market. This strategy has cost π (yδ/2) + p ≤ (δ/2 − bπ,L+ (x − z)) + (aπ,A(x) +
δ/2) ≤ δ and results in the cashflow x + yδ/2 ≥ z > 0. So our counterparty can get as
least as much as the fixed, desirable cashflow z > 0 for any positive price δ, no matter
how small. This would not be giving away an arbitrage but it would be arbitrarily close
to doing so.

REMARK 2.4. One might consider demanding more, for instance that one does not
give away a cashout in the course of selling several cashflows x1, . . . , xn:

n∑
i=1

aπ,A(xi ) ≥ bπ,L+

(
−

n∑
i=1

xi

)
.

This relates to Walley’s (1991) criterion of “avoiding sure loss.” However, it appears
financially inappropriate for two reasons. First, one’s acceptance set should change after a
trade. Suppose that before the trade, one possessed the cashflow v and had the acceptance
set A for changes. This corresponds to an acceptance set v + A for cashflows. If the trade
does not change one’s beliefs or preferences, then after selling x and acquiring the hedge y,
one’s position is v + y − x, and the new acceptance set for changes should be A + x − y.
Second, the act of acquiring the hedge y may have an effect on market prices, due to
limited liquidity. (See Çetin, Jarrow, and Protter, 2002, for an approach to understanding
and modeling liquidity costs.) To ignore the effect of one’s trades on market prices is
tantamount to assuming that the market pricing function π is subadditive, as it would
be possible to acquire y = ∑n

i=1 yi for no more than
∑n

i=1 π (yi ) by making n purchases
in rapid succession. These considerations suggest that we may focus on a single pricing
decision.
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3. FINITE-COST HEDGING AND CONTINUITY

Some later results involve the hypothesis that the ask price of any cashflow is finite. Like
the mathematical conditions discussed so far, such as monotonicity and convexity, this
has a financial meaning and is not merely a technical condition. It can be verified without
actually computing the ask by analyzing the relationship between the acceptance set A
and the market pricing function π .

DEFINITION 3.1 (Full domain). Full Domain for a function f means dom f = L; that
is, ∀x ∈ L, f (x) < ∞.

What dom aπ,A = L says is that for all x ∈ L there exists y ∈ R such that y − x ∈ A.
Because L is linear, −x is always in L too, so this is equivalent to saying that every cashflow
becomes acceptable after hedging at finite cost. This condition could fail, in which case
we would need either a different approach than the present for establishing fundamental
theorems, or to respecify the problem. One could attempt to price only cashflows that
can be acceptably hedged—that is, restrict L to be dom aπ,A—or one could enrich A to
include some hedging residuals of the troublesome elements of L.

The following examples, which illustrate these points, have L = L0(R,B, P), with B
the Borel sigma-algebra on R, and P a probability measure. This is a space of random
variables, interpreted as contingent claims. It makes sense to say L+ is the set of P-almost
surely nonnegative contingent claims. First we observe that L+ has empty interior under
any vector topology T .

EXAMPLE 3.1 (Empty interior of L0
+). Any x ∈ L+ has a finite essential infimum.

Consider the non-null event E = {ω ∈ R | x(ω) < inf x + 1} that it takes a value within
1 of its essential infimum. There is some other random variable xE that is essen-
tially unbounded below on E. Then L+ is not radial at x: for any δ > 0, x + δxE is
not almost surely bounded below, so it is not in L+. Therefore x is not in the T -
interior of L+ because any T -open set is radially open (Jaschke and Küchler 2000,
Prop. 17).

In the following example, aπ,A does not have full domain, and we consider a way of
restricting the space L of cashflows to be priced in order to give aπ,A full domain.

EXAMPLE 3.2 (Restricting aims). Let A be any acceptance set containing only con-
tingent claims that are almost surely bounded below by some K ≤ 0. That is, −K is a
maximum acceptable loss, or risk capital. Suppose the only marketed instrument is a risk-
less bond whose payoff is 1, and its unit price is 1 for transactions of any size. Then the
marketed subset R = R is the linear subspace of constants, and π is effectively the iden-
tity. If x is not almost surely bounded below, then it cannot be acceptably hedged. For any
c ∈ R, x + c is still not almost surely bounded below, so aπ,A(−x) = ∞. We could restrict
L to be the linear subspace of almost surely bounded contingent claims, L∞(R,B, P). If
x is almost surely bounded by K, then x + K ∈ L+ ⊆ A, so x can be hedged acceptably
at a cost of K.

The final example considers expanding the acceptance set so that aπ,A has full domain.
The new acceptance set need not be convex: this is an example of how risk-seeking
behavior may arise.
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EXAMPLE 3.3 (Limited liability). The setting is the same as in Example 3.2. Now
suppose that the decisionmaker enjoys limited liability and suffers the same consequences
whenever the contingent claim pays off less than K. This might be a trader who can
at worst lose his job, or a proprietor of a business empire who can at worst see the
group’s bank go bankrupt. Let u be a utility function on R, unbounded above. In the
absence of risk management, the acceptance set A might include any contingent claim x
such that EP[u(x)1{x ≥ K}] + u(K)P[x < K] ≥ 0. This is an expected utility calculation,
accounting for a fixed loss in the case of ruin. (Because u(x)1{x ≥ K} is almost surely
bounded below, the expectation exists, although it might be ∞.) Now every x ∈ L can
be acceptably hedged at finite cost, as follows. Pick c, d ∈ R such that P[x ≥ c] > 0 and
u(d) ≥ −u(K)P[x < c]/P[x ≥ c], and let z = x − c + d. Then

EP[u(z)1{z ≥ K}] + u(K)P[z < K ]

= EP[u(z)1{z ≥ d}] + EP[u(z)1{K ≤ z < d}] + u(K)P[z < K ]

≥ u(d)P[z ≥ d] + u(K)P[K ≤ z < d] + u(K)P[z < K ]

= u(d)P[x ≥ c] + u(K)P[x < c]

because {z ≥ d} = {x ≥ c} by definition of z. By definition of d, this quantity is
nonnegative, so z ∈ A, which shows that x can be acceptably hedged for the finite
cost d − c.

In using duality theory in Section 4, we will also be concerned with continuity of ask
prices with respect to some locally convex vector topology T on L.

DEFINITION 3.2 (Semicontinuity). A function f is lower (upper) semicontinuous when,
equivalently,

� for any sequence {xn}n∈N converging to x, f (x) ≤ lim infxn→x f (xn), respectively
f (x) ≥ lim supxn→x f (xn)

� for any α ∈ R, the set {x | f (x) ≤ α} is closed, respectively {x | f (x) ≥ α} is closed
� for any α ∈ R, the set {x | f (x) > α} is open, respectively {x | f (x) < α} is open.

Together, the two semicontinuities imply ordinary continuity. Because T is a vector
topology, lower semicontinuity of aπ,A is equivalent to upper semicontinuity of bπ,A, as
follows. Lower semicontinuity of aπ,A is openness of {x | aπ,A(x) > α} = {x | − bπ,A(−x) >

α} = −{x | bπ,A(x) < −α} for all α, which is equivalent to openness of {x | bπ,A(x) < α}
for all α.

REMARK 3.1. The Fatou property for risk measures discussed by Delbaen (2002) is
lower semicontinuity with respect to the topology of bounded convergence in probability.
See also Example 4.1.

It turns out that in the sublinear case, finite-cost hedging is a sufficient condition for
the existence of a topology with respect to which the ask price is continuous. This will
help us in our analysis of duality, where we will want to choose some such topology in
order to look at an appropriate dual space of continuous linear functionals, because we
can be sure that one exists. Here we prove that the lc-topology, the finest locally convex
vector topology, makes the ask continuous.
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PROPOSITION 3.1. If π is sublinear, A is a cone, and dom aπ,A = L, then aπ,A is
lc-continuous.

Proof . From Proposition 2.1, it follows that aπ,A is sublinear.
First, we show that aπ,A is upper semicontinuous with respect to the lc-topology. This

means showing that the set a−1
π,A([−∞, α)) = {x | aπ,A(x) < α} is lc-open for all α ∈ R. Any

convex, radially open set is lc-open (Jaschke and Küchler 2000, Lem. 10(iv)). Because
aπ,A is convex, a−1

π,A([−∞, α)) is convex. It remains to show that it is radial at all its points.
Consider x such that aπ,A(x) < α and any u ∈ L. If aπ,A(u) ≤ 0, then, for any γ ≥ 0,

aπ,A(x + γ u) ≤ aπ,A(x) + γ aπ,A(u) ≤ aπ,A(x) < α,

where the first inequality follows from sublinearity of aπ,A. If aπ,A(u) > 0, pick a positive
δ < (α − aπ,A(x))/aπ,A(u), which is positive and finite. Then, for any γ ∈ [0, δ],

aπ,A(x + γ u) ≤ aπ,A(x) + γ aπ,A(u) ≤ aπ,A(x) + δaπ,A(u) < α.

Whether aπ,A(u) is positive or not, x + γ u is in a−1
π,A([−∞, α)) for all sufficiently small

nonnegative γ , so it is radially open.
Finally, we show that aπ,A is lower semicontinuous with respect to the lc-topology. This

means showing that the set a−1
π,A([−∞, α]) is lc-closed for all α ∈ R. Any convex, radially

closed set with nonempty radial interior is lc-closed (Jaschke and Küchler 2000, Prop.
19). Because aπ,A is convex, a−1

π,A([−∞, α]) is convex. It contains a−1
π,A([−∞, α)), which

has just been shown to be radially open, and is nonempty by the following Lemma 3.1.
Therefore it has nonempty radial interior, and it remains to show that it is radially
closed or, equivalently, that a−1

π,A((α, ∞]) is radially open. Consider any point w at which
a−1

π,A((α, ∞]) is not radial. There exists u ∈ L such that, for all δ > 0, there exists γ ∈ [0, δ]
such that aπ,A(w + γ u) ≤ α. By definition of the ask, the sale of w + γ u can be hedged
acceptably for any cost exceeding α: for all ε > 0, there exists yε such that π (yε) ≤ α + ε

and yε − (w + γ u) ∈ A. Because dom aπ,A = L, there exists yu such that π (yu) < ∞ and
yu + u ∈ A. Because A is a cone, the combination of acceptable cashflows is acceptable:

(yε − (w + γ u)) + γ (yu + u) = yε − w + γ yu ∈ A.

Because π is sublinear,

π (yε + γ yu) ≤ π (yε) + γπ (yu) ≤ α + ε + γπ (yu).

So aπ,A(w) is less than or equal to this quantity, for arbitarily small positive ε and γ .
Because π (yu) < ∞, this proves aπ,A(w) ≤ α, i.e. w /∈ a−1

π,A((α, ∞]). Therefore a−1
π,A((α, ∞])

is radial at all its points. �

LEMMA 3.1. If π is positively homogeneous and 0 ∈ A, then for all α ∈ R there exists
x such that aπ,A(x) < α.

Proof . It suffices to prove this for α < 0. By Assumption 2.2, there exists x0 such
that π (x0) < 0. Choose λ > α/π(x0), which is positive. Then by positive homogeneity,
π (λx0) = λπ (x0) < α. Because 0 ∈ A, aπ,A ≤ π , by Proposition 2.1. �
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4. DUALITY

In this section, we establish a framework for dualization and find a dual representation
for the ask aπ,A and bid bπ,A. This dual representation is of computational interest and
is an ingredient in the fundamental theorems of Section 6.

We say (L, T ) and (L′, T ′) are paired spaces when T and T ′ are locally convex vector
topologies and there is a bilinear form 〈·, ·〉 : L × L′ → R such that {〈·, x′〉 | x′ ∈ L′} is the
set of continuous linear functionals on L, and vice versa. For this, ∀x′ ∈ L′, 〈x, x′〉 = 0
must imply x = 0, and vice versa.

REMARK 4.1. The largest space L′ for which this can be done is L×, the algebraic dual
of L, consisting of all linear functions on L, in which case L must be equipped with the
lc-topology, the finest in which it is locally convex.

STANDING ASSUMPTION 4.1. (L, T ) and (L′, T ′) are paired spaces.

EXAMPLE 4.1 (Two pairings). The space of bounded random variables L∞(�,F, P),
under the strong topology T∞ of the ‖ · ‖∞-norm, pairs with ba(�,F, P), the space of
finitely additive measures absolutely continuous with respect to P. However, we might
prefer to pair it with ca(�,F, P), the space of σ -additive measures absolutely continuous
with respect to P. To do so requires a coarser topology on L∞(�,F, P), with fewer open
sets and more convergence, in order to support fewer continuous linear functionals—
that is, pair with a smaller space. This coarser topology turns out to be the topology of
bounded convergence in probability. This can be verified directly from the definition of the
topology induced on L∞(�,F, P) by ca(�,F, P) (Dunford and Schwartz 1958, V.3.2).
It can also be seen from results in Delbaen (2002) and Föllmer and Schied (2002b), where
the Fatou property for a coherent or convex risk measure, which is lower semicontinuity
with respect to bounded convergence in probability, is shown to be equivalent to existence
of a dual representation of the risk measure in terms of σ -additive probability measures.

Jaschke and Küchler (2000, Cor. 9) have a version of the first fundamental theorem
of asset pricing which involves the condition that A − M be a closed cone, so that the
bipolar theorem applies to it. They suggest finding conditions for closedness or a way
to alter the set M so that A − M would be closed. Instead, we shift focus to a different
set,

B := {x | bπ,A(x) ≥ 0} = {x | aπ,A(−x) ≤ 0},(4.1)

which turns out to be the closure in question, under some conditions.
The right and left polar cones of a set B ⊆ L and of a set B′ ⊆ L′ are, respectively,

B∗ := {x′ ∈ L′ | ∀x ∈ B, 〈x, x′〉 ≥ 0} and ∗B′ := {x ∈ L | ∀x′ ∈ B′, 〈x, x′〉 ≥ 0}.
The bipolar theorem implies that B = ∗(B∗) if B is a closed cone.

PROPOSITION 4.1. If π is sublinear, A is a cone, and aπ,A is continuous, then cl(A − M) =
B = ∗(B∗).

Proof . It follows from Proposition 2.1 that B is a cone. If aπ,A is lower semicontinuous,
then B is closed. Once B is a closed cone, the bipolar theorem (Jaschke and Küchler 2000,
Thm. 20) applies. It follows from the definition of B that it contains A − M. Therefore
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it suffices to show that the radial interior of B is a subset of A − M to establish that
B is the radial closure of A − M. Consider any x in the radial interior of B. For all
u ∈ L, there exists δ > 0 such that x + δu ∈ B; that is, for all ε > 0, there is a y such that
π (y) ≤ ε and x + δu + y ∈ A. Choose u such that π (u) < 0. Then π (δu + y) ≤ δπ(u) + ε

by subadditivity. This is negative for small enough positive ε. Therefore, x ∈ A − M. This
establishes that B is the radial closure of A − M. By Lemma 3.1 and upper semicontinuity
of aπ,A, it has nonempty interior. When a convex set has nonempty interior, its closure
equals its radial closure (Jaschke and Küchler 2000, Prop. 18). �

REMARK 4.2. Radial closure is the condition given by Föllmer and Schied (2002a)
for an acceptance set that generates a convex risk measure to equal the acceptance set
generated by that convex risk measure.

The translation invariance property of Jaschke and Küchler’s numéraire allows them to
prove a fundamental theorem of asset pricing as a direct consequence of the comparison
of A − M and ∗((A − M)∗). The connection does not seem so direct here. Instead, we
apply duality theory to the ask aπ,A in the usual way for minimizations, resulting in
Theorem 4.1.

Define the penalty function � on L′ by

�(x′) := sup
x∈A

(−〈x, x′〉) + sup
y∈R

(〈y, x′〉 − π(y)).(4.2)

The first term has an interpretation as the extent to which x′ disagrees about the desir-
ability of cashflows in A. It is (in a more abstract setting) the minimal penalty function in
the convex risk measure representation theorems of Föllmer and Schied (2002a), up to
change of sign. Likewise, the second term measures the disagreement between x′ and mar-
ket prices, which π specifies. Now we can find a dual representation for the ask and bid,
in the same spirit as the representation theorems for coherent and convex risk measures.
This is the dual ingredient in the fundamental theorems.

THEOREM 4.1. For all x ∈ L,

bπ,A(x) ≤ inf
x′∈L′

(〈x, x′〉 + �(x′))(4.3)

aπ,A(x) ≥ sup
x′∈L′

(〈x, x′〉 − �(x′)).(4.4)

If, moreover, aπ,A is lower semicontinuous, and π and A are convex, then equality holds.

Proof . The statements about bπ,A and aπ,A are equivalent. We focus on aπ,A because
its primal problem is a minimization, which is more usually studied in the convex op-
timization literature. The primal value is infy∈L{π(y) | y − x ∈ A}. Our framework for
dualization is the function F : L × L → (−∞, ∞] given by

F(y, u) =
{

π (y) if y − (x + u) ∈ A

+∞ otherwise

where u has the interpretation of a perturbation to x, the cashflow to be priced. The
optimal value function is

φ(u) = inf
y∈L

F(y, u) = inf
y∈L

{π (y) | y − (x + u) ∈ A} = aπ,A(x + u).
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The Lagrangian K : L × L′ → [−∞, ∞] is given by K(y, x′) = infu∈L(F(y, u) + 〈u, x′〉)
and the dual objective by g(x′) = infy∈L K(y, x′), so we get

g(x′) = inf
y,u∈L

(F(y, u) + 〈u, x′〉) = inf
y,u∈L

{π (y) + 〈u, x′〉|y − (x + u) ∈ A}.

The dual value is supx′∈L′ g(x′) = supx′∈L′ g(−x′), so we can exclude from this maximiza-
tion those values of x′ such that g(−x′) = −∞. We substitute z = y − (x + u) so the
constraint in the minimization that yields g(−x′) is z ∈ A. The objective is

π (y) − 〈u, x′〉 = π (y) − 〈y − x − z, x′〉 = 〈x, x′〉 + 〈z, x′〉 + (π (y) − 〈y, x′〉).

Therefore,

g(−x′) = 〈x, x′〉 + inf
z∈A

〈z, x′〉 + inf
y∈L

(π (y) − 〈y, x′〉)
= 〈x, x′〉 − sup

z∈A
(−〈z, x′〉) − sup

y∈L
(〈y, x′〉 − π (y)) ,

which is the supremand in formula (4.4). Duality theory asserts that the primal value is
greater than or equal to the dual value, justifying the inequality in (4.4). If A and π are
convex, then F is convex. When F is convex, the dual value is lim infu→0φ(u) (Rockafellar
1974, Thm. 7). The primal value is φ(0), so lower semicontinuity of aπ,A (hence of φ)
implies no duality gap. �

When equality holds, −bπ,A is a convex risk measure. Föllmer and Schied (2002a)
defined a convex risk measure to have ρ(1) = −1 for mathematical convenience. If one
were to adopt instead the definition of Artzner et al. (1999), that the risk measure should
merely be additive with respect to some numéraire 1 of unit price, then the following
proposition would hold with the hypothesis that π (c1) = c for all c ∈ R.

PROPOSITION 4.2. If π (c) = c for all c ∈ R, then − infx′∈L′ (〈·, x′〉 + �(x′)) is a convex
risk measure.

Proof . As in the proof of Theorem 5 of Föllmer and Schied (2002a), fx′ (x) :=
〈x, x′〉 + �(x′) is concave, monotone, and constant-additive for each x′, and these
properties are preserved by taking the infimum. If 〈·, x′〉 is monotone, fx′ is mono-
tone. If not, there exists y ∈ L+ such that 〈y, x′〉 < 0. By Assumption 2.3, there exists
z ∈ A such that for all λ ≥ 0, z + λy ∈ A. Therefore supx∈A(−〈x, x′〉) ≥ supλ≥0(−〈z +
λy, x′〉) = supλ≥0(−〈z, x′〉 − λ〈y, x′〉) = ∞. So fx′ (x) = �(x′) = ∞, which is monotone
anyway. Similarly, if 〈c, x′〉 = c for all c ∈ R, we have constant-additivity, and, if
not, supy∈R(π (y) − 〈y, x′〉 ≥ supc∈R(c − 〈c, x′〉) = ∞ and we get constant-additivity any-
way because ∞ + c = ∞. �

5. SUBLINEARITY AND CONES

In this section, we relate the case where π is sublinear and A is a convex cone, described
in Propositions 3.1 and 4.1, to the more general case, where π and A need not have these
properties. We rely on some definitions and notation relating sets to cones and functions
to sublinear functions. For any set C, let C∨ be the smallest cone containing C. For any
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function f , let conv f be given by

(conv f )(x) := inf

{
n∑

i=1

λi f (xi )

∣∣∣∣∣
n∑

i=1

λi xi = x,

n∑
i=1

λi = 1, xi ∈ dom f , λi ≥ 0

}
.

This is the greatest convex function dominated by f . Let ah f be given by

(ah f )(x) := inf{λ f (x/λ) | λ > 0}
for x �= 0, and (ah f )(0) := 0. If f is convex, f (0) < ∞, and f �= ∞, this is the greatest
absolutely homogeneous function dominated by f ; see Rockafellar (1970, §5). Let f∨ :=
conv ah f , which is given by

f∨(x) = inf

{
n∑

i=1

λi f (xi )

∣∣∣∣∣
n∑

i=1

λi xi = x, xi ∈ dom f , λi ≥ 0

}
.

This is the greatest sublinear function dominated by f . In what follows, we may write
down only the interesting constraints in this minimization.

The greatest sublinear function dominated by the ask aπ,A is the ask generated from
the acceptance set A∨ and market pricing function π∨.

PROPOSITION 5.1. (aπ,A)∨ = aπ∨,A∨ .

Proof . Making the substitutions y = ∑n
i=1 λi yi and zi = yi − xi,

(conv ah aπ,A)(x) = inf

{
n∑

i=1

λi aπ,A(xi )

∣∣∣∣∣
n∑

i=1

λi xi = x

}

= inf

{
n∑

i=1

λiπ (yi )

∣∣∣∣∣ yi − xi ∈ A,

n∑
i=1

λi xi = x

}

= inf

{
π∨(y) | zi ∈ A,

n∑
i=1

λi zi = y − x

}

= inf{π∨(y) | y − x ∈ A∨}.
�

Define the marginal ask and bid by

ãπ,A(x) := lim inf
λ→∞

λaπ,A(x/λ) and b̃π,A(x) := lim sup
λ→∞

λbπ,A(x/λ).(5.1)

These are the most favorable prices that a counterparty who wants to execute a small trade
can come close to attaining. The following proposition gives conditions under which these
also equal the prices generated from the acceptance set A∨ and market pricing function
π∨.

LEMMA 5.1. If f is convex and f (0) ≤ 0, then (ah f )(x) = limλ→∞λf (x/λ).

Proof . By convexity, for λ1 ≥ λ2 > 0,

f (x/λ1) ≤
(

1 − λ2

λ1

)
f (0) +

(
λ2

λ1

)
f (x/λ2),
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so λ1f (x/λ1) ≤ (λ1 − λ2)f (0) + λ2f (x/λ2) ≥ λ2f (x/λ2). Hence λf (x/λ) is nondecreasing
as a function of λ > 0. Thus the infimum in the definition of (ah f ) is a limit. �

PROPOSITION 5.2. If A is convex and contains 0, and π is convex, then ãπ,A = aπ∨,A∨ =
limλ→∞ λaπ,A(x/λ) and b̃π,A = bπ∨,A∨ = limλ→∞ λbπ,A(x/λ).

Proof . By Proposition 2.1, aπ,A is convex and has aπ,A(0) ≤ 0. By Lemma 5.1, the
limit exists, so

ãπ,A(x) = lim inf
λ→∞

λaπ,A(x/λ) = lim
λ→∞

λaπ,A(x/λ) = (ah aπ,A)(x) = (aπ,A)∨(x) = aπ∨,A∨ (x)

because aπ,A is already convex, and using Proposition 5.1. Then bπ∨,A∨ (x) =
−aπ∨,A∨ (−x) = −limλ→∞−λbπ,A(x/λ) = limλ→∞ λbπ,A(x/λ). �

Next we prove a result, relating conditions on π and A to conditions on π∨ and A∨,
that is the primal ingredient in the fundamental theorems. In a sense, we are a considering
a fictitious market in which π∨ gives the prices and A∨ is our acceptance set. This enables
us to connect the case actually under consideration with the sublinear case, in which
Propositions 3.1 and 4.1 will apply.

Let M̃ := {x | π∨(x) ≤ 0} − L+ and C̃ := {x | π∨(−x) < 0} be the set of cashflows you
could respectively have for free and sell for cash now if π∨ gave market prices. Likewise
let B̃ := {x | aπ∨,A∨ (−x) ≤ 0}. These are not necessarily the same as M∨, C∨, and B∨.

LEMMA 5.2. The following are monotone cones: A∨ ⊆ A∨ − M̃ ⊆ B̃.

Proof . Because π∨(0) = 0, 0 ∈ M̃, so A∨ ⊆ A∨ − M̃. If x = z − y where z ∈ A∨ and
π∨(y) ≤ 0, then x + y ∈ A∨, so bπ∨,A∨ (x) ≥ −π∨(y) ≥ 0, and x ∈ B̃. This shows A∨ −
M̃ ⊆ B̃. By construction, A∨ and M̃ are cones, which makes A∨ − M̃ a cone. By Propo-
sition 2.1, aπ∨,A∨ is convex and absolutely homogeneous, so B̃ is a cone. By Assump-
tion 2.3, A is nonempty and monotone, so any cone containing A contains L+. Any
cone K has the property K + K ⊆ K, so L+ ⊆ K implies K + L+ ⊆ K; that is, K is
monotone. �

PROPOSITION 5.3. Among the conditions

(i) NC(π, A): (M − A) ∩ C = ∅
(ii) NC(π, aπ,A): aπ,A(x) + aπ,L+ (−x) ≥ 0

(iii) NC(π∨, aπ∨,A∨ ): aπ∨,A∨ (x) + aπ∨,L+ (−x) ≥ 0
(iv) NC(π∨, A∨): (M̃ − A∨) ∩ C̃ = ∅

the following implications hold: (iv) ⇔ (iii) ⇒ (ii) ⇒ (i). If A is convex and contains 0, and
π is convex, then all the conditions are equivalent.

Proof . (iv) ⇒ (iii): Suppose aπ∨,A∨ (x) + aπ∨,L+ (−x) < 0. There exist y1, y2 such
that y1 − x ∈ A∨, y2 + x ∈ L+, and π∨(y1) + π∨(y2) < 0. Then, by monotonicity of A∨,
the sum y1 + y2 ∈ A∨, while by subadditivity of π∨, π∨(y1 + y2) < 0. So A∨ ∩ (−C̃) is
nonempty, and by Lemma 5.2, this is enough.

(iii) ⇒ (iv): Same as (ii) ⇒ (i).
(iii) ⇒ (ii): Because π∨ ≤ π and A ⊆ A∨, aπ,A ≥ aπ∨,A∨ and aπ,L+ ≥ aπ∨,L+.
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(ii) ⇒ (i): Suppose there exists x in the set (M − A) ∩ C, so π (−x) < 0 and x = y − z
where z ∈ A and π (y) ≤ 0. Then aπ,L+ (−x) ≤ π (−x) < 0, while aπ,A(x) ≤ π (y) ≤ 0 be-
cause y − x = z ∈ A. So aπ,A(x) + aπ,L+ (−x) < 0.

(i) ⇒ (iv): Here assume A is convex and contains 0, and π is convex. Suppose there
exists −x ∈ (M̃ − A∨) ∩ C̃. That is, π∨(x) < 0 and x = z − y where z ∈ A∨ and π∨(y) ≤ 0.
By subadditivity, π∨(z) ≤ π∨(x) + π∨(y) < 0. So there exists z ∈ A∨ ∩ (−C̃). For some
λ1 > 0, [0, λ1z] ⊂ A. For some λ2 > 0, π is negative on the line segment (0, λ2z]. Let
λ = min{λ1, λ2}, so (0, λz] ⊂ A ∩ (−C). Therefore A ∩ (−C) is nonempty, containing λz
for some λ > 0. By Lemma 5.2, this is enough. �

This result offers some guidance about choosing an acceptance set A. If π is convex
and we choose a convex (risk-averse) acceptance set A that contains 0 and satisfies (M −
A) ∩ C = ∅, then we can be sure of satisfying the desideratum NC(π, aπ,A).

Having established this connection between results for (π, A) and for (π∨, A∨), we
can now revisit the dual problem (4.4). The dual-feasible set is D′ := {x′ | �(x′) < ∞}.
For use in the fundamental theorems, we consider the dual-feasible set when market
prices are given by π∨ and the acceptance set is A∨. Define �̃ as the penalty function � in
equation (4.2) with these substitutions, and D̃′ := {x′ | �̃(x′) < ∞}. Call an element of D̃′
a consistent pricing kernel: item (iv) below shows that it is consistent with the acceptance
set and market prices. We now collect some properties of these objects.

PROPOSITION 5.4. Given the preceding definitions,

(i) The following are equivalent: x′ ∈ A∗, supx∈A(−〈x, x′〉) ≤ 0, x′ ∈ (A∨)∗, and
supx∈A∨ (−〈x, x′〉) = 0.

(ii) The following are equivalent: 〈·, x′〉 ≤ π, supy∈R(〈y, x′〉 − π (y)) = 0, 〈·, x′〉 ≤ π∨,
and supy∈R(〈y, x′〉 − π∨(y)) = 0.

(iii) The function �̃ takes values in {0, ∞}.
(iv) The set D̃′ = {x′ | �̃(x′) = 0} = {x′ | �(x′) = 0} = (A∨)∗ ∩ {x′ | 〈·, x′〉 ≤ π∨} =

A∗ ∩ {x′ | 〈·, x′〉 ≤ π}, that is, x′ is a consistent pricing kernel if and only if it is
dominated by π and nonnegative on A.

Proof . (i) Recall that the definition of A∗ is {x′ | ∀x ∈ A, 〈x, x′〉 ≥ 0}, which shows
the equivalence of x′ ∈ A∗ and supx∈A(−〈x, x′〉) ≤ 0. The equivalence of x′ ∈ (A∨)∗

and supx∈A∨ (−〈x, x′〉) = 0 is similar, with the added observation that this supremum
is nonnegative because 0 ∈ A∨. From A ⊆ A∨ it follows that (A∨)∗ ⊆ A∗. Now consider
x′ ∈ A∗. Each x ∈ A∨ is a nonnegative linear combination of elements of A, at each of
which 〈·, x′〉 is nonnegative. Therefore 〈·, x′〉 is nonnegative at x, so x′ ∈ (A∨)∗. This shows
A∗ = (A∨)∗.

(ii) Because π∨(0) = π (0) = 0, 〈·, x′〉 ≤ π and supy∈R(〈y, x′〉 − π (y)) = 0 are equiv-
alent, and likewise 〈·, x′〉 ≤ π∨ and supy∈R(〈y, x′〉 − π∨(y)) = 0 are equivalent. From
π∨ ≤ π it follows that 〈·, x′〉 ≤ π∨ implies 〈·, x′〉 ≤ π . Now suppose 〈·, x′〉 ≤ π . For any
nonnegative linear combination

∑n
i=1 λi xi = x, 〈x, x′〉 = ∑n

i=1 λi 〈xi , x′〉 ≤ ∑n
i=1 λiπ (xi ).

So π∨(x) is the greatest lower bound of a set bounded below by 〈x, x′〉; therefore
〈·, x′〉 ≤ π∨.

(iii) Both terms in �̃ are nonnegative and absolutely homogeneous.
(iv) From part (iii), D̃′ = {x′ | �̃(x′) = 0}. Then parts (i) and (ii) imply the

conclusion. �



FUNDAMENTAL THEOREMS FOR GOOD DEAL BOUNDS 155

REMARK 5.1. If π is linear and x′ is a consistent pricing kernel, then 〈·, x′〉 is a linear
extension of π .

6. FUNDAMENTAL THEOREMS

Now we get two versions of the first fundamental theorem of asset pricing (FTAP), one
each for NC(π, aπ,A) and NNA(π, aπ,A). The 0th version does not quite deserve the name,
because it relates only to absence of cashouts, not absence of arbitrage. In interpreting the
hypothesis of lower semicontinuity for aπ∨,A∨ , recall that by Proposition 3.1 dom aπ∨,A∨ =
L is sufficient for the existence of a locally convex topology in which aπ∨,A∨ is continuous.
Moreover, because aπ∨,A∨ ≤ aπ,A, dom aπ∨,A∨ = L is weaker than dom aπ,A = L, the more
natural hypothesis of finite-cost hedging. See also Proposition 7.2 for a simple sufficient
condition for continuity of aπ∨,A∨ in the strong topology of L∞(�,F, P).

THEOREM 6.1 (0th FTAP). The existence of a consistent pricing kernel implies
NC(π, aπ,A). If A is convex and contains 0, π is convex, and aπ∨,A∨ is lower semicontinuous,
then the converse holds.

Proof . By Proposition 5.4, a consistent pricing kernel satisfies �̃(x′) = 0. Then Theo-
rem 4.1 implies bπ∨,A∨ ≤ infx′∈D̃′ 〈·, x′〉 ≤ 〈·, x′〉 ≤ π∨. Therefore π∨(x) < 0 implies x /∈ B̃.
By Lemma 5.2, A∨ − M̃ is a subset of B̃, so this implies that A∨ − M̃ and {x | π∨(x) <

0} = −C̃ are disjoint. This in turn implies NC(π, aπ,A), by Proposition 5.3.
Given the extra hypotheses, NC(π, aπ,A) implies that for all x ∈ L, aπ∨,A∨ (x) +

aπ∨,L+ (−x) ≥ 0, by Proposition 5.3. Because L+ ⊆ A∨, aπ∨,A∨ (0) ≤ aπ∨,L+ (0) ≤ 0,
so aπ∨,A∨ (0) = 0. From Theorem 4.1 and Proposition 5.4 it follows that aπ∨,A∨ (0) =
supx′∈D̃′ 〈0, x′〉 = supx′∈D̃′ 0. Therefore D̃′ �= ∅; that is, a consistent pricing kernel
exists. �

The following theorem deserves to be called a first fundamental theorem of asset
pricing, because NNA(π, aπ,A) rules out giving away arbitrages. By a strictly mono-
tone x′, we mean one for which 〈·, x′〉 is strictly monotone; in other words, for all
x ∈ L+\{0}, 〈x, x′〉 > 0. The theorem shows that existence of a strictly monotone con-
sistent pricing kernel is sufficient, but establishes its necessity only under hypotheses not
only of convexity but also homogeneity, or in relation to the marginal ask.

THEOREM 6.2 (1st FTAP). The existence of a strictly monotone consistent pricing
kernel implies NNA(π, aπ,A). If A is convex and contains 0, π is convex, and aπ∨,A∨ is lower
semicontinuous, then ∀x ∈ L+\{0}, ãπ,A(x) > 0 is equivalent to the existence of a strictly
monotone consistent pricing kernel. If moreover A is a convex cone and π is sublinear,
then NNA(π, aπ,A) is equivalent to the existence of a strictly monotone consistent pricing
kernel.

Proof . Suppose NNA(π, aπ,A) fails, so there are x and z > 0 such that aπ,A(x) +
aπ,L+ (z − x) ≤ 0. Then aπ∨,A∨ (x) + aπ∨,L+ (z − x) ≤ 0 and, equivalently, bπ∨,A∨ (−x) ≥
aπ∨,L+ (z − x). By definition of the bid bπ∨,A∨ and ask aπ∨,L+ , for any ε > 0, there are
ya, yb such that yb − x ∈ A∨, ya + x − z ∈ L+, and π∨(yb) ≤ ε − π∨(ya). Because A∨ is
monotone, we can add to get ya + yb − z ∈ A∨. By subadditivity, π∨(ya + yb) ≤ ε. As
this can be done for all positive ε, bπ∨,A∨ (−z) ≥ 0, so −z ∈ B̃, and B̃ ∩ (L−\{0}) �= ∅. By
the following Lemma 6.1, this implies there is no strictly monotone consistent pricing
kernel.
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Now assume A is convex and contains 0, π is convex, and aπ∨,A∨ is lower semi-
continuous. By Proposition 5.2, ãπ,A = aπ∨,A∨ . Therefore, ∀x ∈ L+\{0}, ãπ,A(x) > 0 is
equivalent to ∀x ∈ L+\{0}, aπ∨,A∨ (x) > 0, which is in turn equivalent to B̃ ∩ (L−\{0}) =
∅. By Lemma 6.1, this is equivalent to the existence of a strictly monotone consistent
pricing kernel.

Now assume A is a convex cone and π is sublinear. Then A = A∨ and π = π∨,
so aπ,A = aπ∨,A∨ . Suppose there is no strictly monotone consistent pricing kernel.
By Lemma 6.1, this implies there exists −z ∈ B̃ ∩ (L−\{0}). Then bπ∨,A∨ (−z) ≥ 0,
so aπ∨,A∨ (z) ≤ 0, and aπ∨,A∨ (z) + aπ∨,L+ (z − z) ≤ 0. That is, aπ,A(z) + aπ,L+ (z − z) ≤ 0,
violating NNA(π, aπ,A) . �

LEMMA 6.1. The existence of a strictly monotone consistent pricing kernel implies B̃ ∩
(L−\{0}) = ∅. If aπ∨,A∨ is lower semicontinuous, then the converse holds.

Proof . Suppose x′ is a strictly monotone consistent pricing kernel. From Theo-
rem 4.1 we get bπ∨,A∨ (x) ≤ 〈x, x′〉. For x < 0, this implies bπ∨,A∨ (x) < 0; therefore, x /∈ B̃.
The converse is an application of the same “exhaustion” argument that underpins
the Halmos-Savage theorem, as explained by Delbaen in the proof of a similar re-
sult (Delbaen 2002, Thm. 3.5). Consider the class of sets C := {C ⊆ L+ | ∃x′ ∈ D̃′ !
∀x ∈ C, 〈x, x′〉 > 0}. From Proposition 5.4 (iv), we can see that D̃′ is convex and con-
tains only nonnegative elements. Therefore class C is stable under countable unions:
take a sequence {Cn}n∈N ⊆ C, and let x′

n ∈ D̃′ be such that for all x ∈ Cn, 〈x, x′
n〉 >

0. Define x′ := ∑∞
n=1 2−n x′

n ∈ D̃′. Then any x ∈ ∪n∈NCn is in Cj ⊆ L+ for some j,
so 〈x, x′〉 = 〈x,

∑
n �= j 2−n x′

n〉 + 〈x, 2− j x′
j 〉 ≥ 2− j 〈x, x′

j 〉 > 0. From stability under count-
able unions, it follows by Zorn’s lemma that C has a maximal element. It is given in
the converse that for any x > 0, bπ∨,A∨ (−x) < 0; that is, aπ∨,A∨ (x) > 0. By Theorem 4.1,
given lower semicontinuity, aπ∨,A∨ (x) = supx′∈D̃′ 〈x, x′〉. Therefore, for any x > 0 there is
an x′ ∈ D̃′ such that 〈x, x′〉 > 0; that is, {x} ∈ C. Thus the only possible maximal ele-
ment of C is L+\{0}, and L+\{0} ∈ C implies the existence of x′ ∈ D̃′ such that for all
x > 0, 〈x, x′〉 > 0, which is a strictly monotone consistent pricing kernel. �

The following example shows that NNA(π, aπ,A) does not imply NNA(π∨, aπ∨,A∨ ),
which is equivalent to the existence of a strictly monotone consistent pricing kernel. This
accounts for the difficulty in framing a partial converse.

EXAMPLE 6.1 (Trouble with nonclosed cones). Let L = R
2, the space of contingent

claims in a two-state, one-period economy, T be the Euclidean norm topology, and the
acceptance set A = L+ ∪ {x | x2 ≥ x2

1}, which is closed, convex, monotone, and contains
0. Then A∨ = L+ ∪ {x | x2 > 0}, as follows. First we show L+ ∪ {x | x2 > 0} ⊆ A∨. It is
clear that L+ ⊆ A ⊆ A∨. For the other points x, for which x1 < 0 and x2 > 0, define λ :=
x2

1/x2 ∈ (0, ∞), so x2/λ = (x1/λ)2. Such a point is thus a positive multiple of an element
of A, hence in A∨. Next we show A∨ ⊆ L+ ∪ {x | x2 > 0}, equivalently, (L+ ∪ {x | x2 >

0})C ⊆ AC
∨. The set (L+ ∪ {x | x2 > 0})C = {x | x2 < 0} ∪ {x | x1 < 0, x2 = 0}, which is a

positively homogeneous set disjoint from A, which is convex. Therefore it is also disjoint
from A∨. The new conic acceptance set A∨ is still disjoint with L−\{0}, but its closure is
not, which causes a problem. Let M be the embedding of R, namely {x | x2 = x1}, and
π (c) = c = π∨(c). Consider a contingent claim z = (d, 0) with d > 0, which is in L+\{0}.
Letting x = z, NNA(π∨, aπ∨,A∨ ) is violated, because aπ∨,A∨ (x) = 0 and aπ∨,L+ (z − x) =
0. On the other hand, NNA(π, aπ,A) is not violated here because aπ,A(x) = d + (1 −√

1 + 4d)/2 > 0 and aπ,L+ (z − x) = 0. A pricing kernel is a point x′ ∈ R
2, using the usual
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Euclidean inner product 〈x, x′〉 = x1x′
1 + x2x′

2. A consistent pricing kernel must have
〈x, x′〉 ≥ 0 for all x ∈ A, and in particular for (−d, d2) where d > 0. But d(dx′

2 − x′
1) =

−dx′
1 + d2x′

2 ≥ 0 for all d > 0 implies x′
1 = 0, so a consistent pricing kernel cannot be

strictly monotone.

Next we have a kind of second fundamental theorem of asset pricing, relating unique-
ness of pricing to uniqueness of consistent pricing kernel.

THEOREM 6.3 (2nd FTAP). First, if bπ,A = aπ,A, then D′ and D̃′ contain at most one
element. If moreover aπ,A is lower semicontinuous, A is convex and contains 0, and π is
convex, then D′ = D̃′ is a singleton. Second, if there is a unique consistent pricing kernel
x′ and A is convex and contains 0, π is convex, and aπ∨,A∨ is lower semicontinuous, then
the marginal bid and ask are equal: b̃π,A = ãπ,A = 〈·, x′〉. If moreover π is sublinear, A is a
cone, and aπ,A is lower semicontinuous, then bπ,A = aπ,A = 〈·, x′〉.

Proof . First, given bπ,A = aπ,A, consider x′
1, x′

2 ∈ D′. The inequalities in expressions
(4.3) and (4.4) imply

max{〈x, x′
1〉 − �(x′

1), 〈x, x′
2〉 − �(x′

2)} ≤ aπ,A(x)

= bπ,A(x) ≤ min{〈x, x′
1〉 + �(x′

1), 〈x, x′
2〉 + �(x′

2)}.
Now suppose x′

1 �= x′
2. Then there exists x̃ such that the difference d = 〈x̃, x′

1 − x′
2〉 �= 0.

We know �(x′
1) + �(x′

2) < ∞ by definition of D′. So we can pick a real number λ >

(�(x′
1) + �(x′

2))/d, and let x = λx̃. Now

〈x, x′
1〉 − �(x′

1) > (〈x, x′
2〉 + �(x′

1) + �(x′
2)) − �(x′

1) = 〈x, x′
2〉 + �(x′

2).

This contradicts the above inequality, so x′
1 = x′

2; that is, D′ contains at most one element.
From Proposition 5.4 it follows that D̃′ ⊆ D′. Under the additional hypotheses, equal-
ity holds in Theorem 4.1. This implies 〈·, x′〉 − �(x′) = aπ,A = bπ,A = 〈·, x′〉 + �(x′), so
�(x′) = 0; in other words, x′ ∈ D̃′.

Second, given D̃′ = {x′} and the initial hypotheses, from Theorem 4.1 we get bπ∨,A∨ =
〈·, x′〉 = aπ∨,A∨ , and from Proposition 5.2, aπ∨,A∨ = ãπ,A and bπ∨,A∨ = b̃π,A. Given the
further hypotheses, by Proposition 2.1, the bid and ask are already sublinear, so
bπ,A = (bπ,A)∨ and aπ,A = (aπ,A)∨. By Proposition 5.1, (bπ,A)∨ = bπ∨,A∨ and (aπ,A)∨ =
aπ∨,A∨ . �

There are other approaches to framing a second fundamental theorem of asset pricing.
Carr et al. (2001) relate uniqueness of a certain pricing kernel to a notion of “acceptable
completeness.” An acceptably complete market is one in which all cashflows can be
hedged so that they are barely acceptable— that is, one is indifferent between the hedged
cashflow and 0. Mathematically speaking, the barely acceptable hedged cashflow is on
the boundary of the closed acceptance set. Jarrow and Madan (1999) related uniqueness
of a signed equivalent local martingale measure to completeness in the traditional sense
of exact replicability of contingent claims.

7. BOUNDED RANDOM VARIABLES

To make matters more concrete, we examine the case where L = L∞ = L∞(�,F, P), the
space of P-equivalence classes of bounded F-measurable random variables (functions)
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on �. Here we can draw connections to the established theories of exact functionals,
imprecise probabilities, and convex risk measures. In this setting, we can identify simple
sufficient conditions for finite cost hedging and continuity of aπ∨,A∨ .

Our primal space is L∞ with the strong topology of the ‖ · ‖∞-norm, under which it is a
Banach space. Its positive orthant L∞

+ = {x ∈ L∞ | x ≥ 0} with the usual partial ordering
generated by the essential infimum: x1 ≤ x2 when ess inf(x2 − x1) ≥ 0.

Our dual space L′ is ba = ba(�,F, P), the Banach space of bounded, finitely additive,
signed measures µ defined on the σ -algebra F and absolutely continuous with respect
to P. Then 〈·, µ〉 will be written Iµ(·) to denote a (Radon) integral, and {Iµ | µ ∈ ba} is
the strong dual of bounded linear functionals on L. For the pairing, it has the weak∗

topology. The positive orthant ba+ contains those measures µ such that µ(E) ≥ 0 for
every event E in F ; equivalently, it can be viewed as containing those monotone linear
functionals Iµ such that x1 ≤ x2 ⇒ Iµ(x1) ≤ Iµ(x2). We also have a norm on the dual
given by ‖ µ‖ = ‖Iµ‖ = sup‖ x‖ ∞≤1 |Iµ(x) |, which is Iµ(1) = µ(�) when µ ∈ ba+.

It can be convenient to assume that one can buy or sell unlimited amounts of a riskless
bond with payoff 1. This assumption is equivalent to R ⊆ R. We get by with the weaker
hypothesis that every contingent claim is dominated by a marketed claim. This is equiv-
alent to R ⊆ R − L+, the availability of a marketed claim dominating any number of
riskless bonds.

PROPOSITION 7.1. If R ⊆ R − L+ then dom aπ,A = L.

Proof . By Assumption 2.3, there exists z0 such that z ≥ z0 implies z ∈ A. The hypoth-
esis implies that for any x ∈ L, there exists y ∈ R such that y ≥ ess sup x + ess sup z0, so
y − x ≥ z0 and thus is in A. Therefore aπ,A(x) ≤ π (y) < ∞. �

To prove continuity of aπ∨,A∨ , we use the hypothesis that any contingent claim would
be dominated by a marketed claim if prices were given by π∨. Letting R̃ be the effective
domain of π∨, this is equivalent to 1 ∈ R̃ − L+, a weaker hypothesis than R ⊆ R − L+.

PROPOSITION 7.2. If 1 ∈ R̃ − L+, then aπ∨,A∨ is continuous.

Proof . Consider any α ∈ R and x ∈ L such that aπ∨,A∨ (x) > α. There exists γ > α

such that π∨(y) < γ implies y − x /∈ A∨. There exists y1 ∈ R̃ such that y1 ≥ 1. Pick
β ∈ (α, γ ) and δ := (γ − β)/ | π∨(y1) | ∈ (0, ∞]. Consider any y with π∨(y) < β. By sub-
additivity, π∨(y + δy1) ≤ π∨(y) + δπ∨(y1) < γ , so y + δy1 − x /∈ A∨. For any u in the
δ-ball at x, u ≥ x − δ ≥ x − δy1, so by monotonicity, y − u ≤ y + δy1 − x is also not
in A∨. Therefore, aπ∨,A∨ (u) ≥ β > α and {x | aπ,A(x) > α} is open. Thus aπ∨,A∨ is lower
semicontinuous.

Now consider any α ∈ R and x ∈ L such that aπ∨,A∨ (x) < α. There exists y ∈ R̃ such
that π∨(y) < α and y − x ∈ A∨. Again, there exists y1 ∈ R̃ such that y1 ≥ 1. Let δ :=
(α − π∨(y))/(2 max{1, π∨(y1)}). For any u in the δ-ball at x, u ≤ x + δ, so δy1 + y − u ≥
y − x + δ(y1 − 1) ≥ y − x, and hence, by monotonicity, δy1 + y − u ∈ A∨. By subadditiv-
ity, π∨(δy1 + y) ≤ δπ∨(y1) + π∨(y) ≤ (α − π∨(y))/2 + π∨(y) < α. Therefore aπ∨,A∨ (u) <

α, and {x | aπ,A(x) < α} is open. Thus aπ∨,A∨ is upper semicontinuous. �

We now draw connections with the theory of exact functionals, for which see Maaß
(2002). An absolutely homogeneous, superadditive, real-valued functional is called super-
linear. In particular, it is concave. A monotone, superlinear functional is called supermod-
ular. A constant additive, supermodular functional is called exact. Constant additivity
of a functional � is �(x + c) = �(x) + �(c) when c ∈ R.



FUNDAMENTAL THEOREMS FOR GOOD DEAL BOUNDS 159

The theory of exact functionals centers on operators similar to the convexity and
absolute homogeneity operators defined in Section 5, but with the opposite conventions,
of concavity. For instance, one considers the least monotone functional dominating �.
To get a supermodular functional, one applies successively the operators for positive
homogeneity, superadditivity, and monotonicity. Because the application of each operator
does not spoil the properties of the previous, the resulting functional given by

�∧(x) := (≤ sa ah �)(x)

= sup

{
n∑

i=1

λi�(xi )

∣∣∣∣∣
n∑

i=1

λi xi ≤ x, n ∈ N, ∀iλi ≥ 0, xi ∈ dom �

}

is indeed monotone, superadditive, and absolutely homogeneous. Therefore it is super-
modular as long as it is real-valued. Define the “norm” |�| := �∧(1). It is nonnegative by
monotonicity and homogeneity, which implies �∧(0) = 0. It is a pseudonorm on a linear
space of exactifiable functionals on which it is finite-valued (Maaß 2002, Prop. 2). When
|�| is finite, �∧ is real-valued and may be called the natural supermodularification of �.
When |�| < ∞, we may call � supermodularifiable.

The natural exactification of an exactifiable functional � is �• := (≤ ca sa ah �) given
by

�•(x) = sup

{
n∑

i=1

λi�(xi ) + c |�|
∣∣∣∣∣

n∑
i=1

λi xi + c ≤ x, c ∈ R, n ∈ N,

∀ iλi ≥ 0, xi ∈ dom �

}
.

When |�| < ∞, �• is exact; in particular, it is real-valued (Maaß 2002, Thm. 2), and �

is called exactifiable; this is the same thing as supermodularifiability. Thus our concern
with A∨, the cone generated by the acceptance set A, and with π∨, the greatest sublinear
function dominated by the market pricing function π , appears entirely analogous to the
process of exactification.

The natural exactification of an exactifiable functional � is the least exact functional
extending � and having the same norm as � (Maaß 2002, Prop. 4). When � is exact, �• is
called its natural extension, and |�| coincides with the norm ‖�‖ ordinarily given to linear
operators. This paper analyzes unnatural extensions aπ,A and bπ,A of market prices.

Very similar mathematical objects have been studied under different names. An exact
functional with unit norm is a coherent lower prevision, and an exactifiable functional
with unit norm is a lower prevision avoiding sure loss (Walley 1991). When � is an exact
functional, −� is a coherent risk measure (Artzner et al. 1999). This makes −� absolutely
homogeneous, subadditive, constant additive, and antimonotone. A convex risk measure
is a convex, constant additive, antimonotone functional (Föllmer and Schied 2002a).

8. CONCLUSIONS AND DIRECTIONS

This paper provides fundamental theorems of asset pricing for good deal bounds. The
intention is to enable the use of good deal bounds to establish bid-ask spreads for over-
the-counter derivatives in incomplete markets. When no-arbitrage bounds are too wide to
use as bid-ask spreads, one may use narrower good deal bounds based on an acceptance
set of good deals that incorporates one’s beliefs and preferences. At the same time, one
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wants the bid and ask prices to avoid arbitrage given prevailing market prices. For good
deal bounds, this requires some consistency between the acceptance set and market prices.
Theorems 6.1 and 6.2 express this consistency in terms of the existence of a consistent
pricing kernel, or one that is strictly monotone.

These results supply conditions for choosing an acceptance set: it is safe to use an
acceptance set that admits the existence of a strictly monotone consistent pricing kernel.
It remains to describe concrete schemes for producing acceptance sets from beliefs and
preferences in a way that is consistent with the goals of traders in over-the-counter deriva-
tives. One such attempt appears in Part II of Staum (2002), taking as a point of departure
the work of Föllmer and Schied (2002b) on robust preferences and risk measures.

The present paper is a generalization of the results of previous authors on good deal
bounds, especially Jaschke and Küchler (2000) and Carr et al. (2001). Although the setting
is rather general here, some significant limitations remain.

First, the fundamental theorems’ necessary conditions involve some convexity hy-
potheses. Given the nature of convex optimization, this seems difficult to avoid. However,
it might be worthwhile to consider the possibility of risk-seeking behavior (nonconvex
acceptance sets) on the part of agents, such as derivatives traders, who participate eco-
nomically in their trading gains to a greater extent than in their losses (see Example 3.3).
An understanding of the incentives faced by such agents, and the objectionable behavior
that may result, could lead to improved risk management. It would also be desirable to
know whether and to what extent market prices are nonconvex, and what impact that
has.

Second, the use of the market price function π obscures potentially important and
challenging aspects of market modeling. A key issue not addressed in the present paper
is the relationship between admissible, self-financing, continuous-time trading strategies
and the market price of attainable contingent claims. This gives the paper a one-period
flavor that is typical of recent research on coherent and convex risk measures, but does
not do justice to the richness of continuous-time finance, particularly not to the funda-
mental theorems of asset pricing described by Delbaen and Schachermayer (1999). To
demonstrate the value of good deal bounds requires some examples in which they pro-
duces practical bid-ask spreads for interesting nonmarketed claims in realistic models of
incomplete markets with continuous-time trading.
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FÖLLMER, H., and A. SCHIED (2002c): Stochastic Finance: An Introduction in Discrete Time.
Berlin: de Gruyter.

FRITTELLI, M. (2000a): Introduction to a Theory of Value Coherent with the No-Arbitrage
Principle, Finance Stoch. 4, 275–297.

FRITTELLI, M. (2000b): The Minimal Entropy Martingale Measure and the Valuation Problem
in Incomplete Markets, Math. Finance 10, 39–52.

JARROW, R., and D. B. MADAN (1999): Hedging contingent claims on semimartingales, Finance
Stoch. 3, 111–134.
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