
Shapley Effects for Global Sensitivity Analysis:

Theory and Computation

Eunhye Song, Barry L. Nelson, Jeremy Staum

Northwestern University

September 15, 2015

Abstract

Variance-based global sensitivity analysis decomposes the variance of the output of a computer

model, resulting from uncertainty about the model’s inputs, into variance components associated

with each input’s contribution. The two most common variance-based sensitivity measures, the

first-order effects and the total effects, may fail to sum to the total variance. They are often used

together in sensitivity analysis, because neither of them adequately deals with interactions in the

way the inputs affect the output. Therefore Owen proposed an alternative sensitivity measure,

based on the concept of the Shapley value in game theory, and showed it always sums to the

correct total variance if inputs are independent. We analyze Owen’s measure, which we call the

Shapley effect, in the case of dependent inputs. We show empirically how the first-order and total

effects, even when used together, may fail to appropriately measure how sensitive the output is to

uncertainty in the inputs when there is probabilistic dependence or structural interaction among

the inputs. Because they involve all subsets of the inputs, Shapley effects could be expensive to

compute if the number of inputs is large. We propose a Monte Carlo algorithm that makes accurate

approximation of Shapley effects computationally affordable, and we discuss efficient allocation of

the computation budget in this algorithm.

1

1 Introduction

A computer model has a collection of rules to map its inputs, which represent the features of the

target system, to one or more outputs. Often, the inputs of the model are uncertain, which means

that the resulting output can be regarded as random. This uncertainty in the inputs can be due to

lack of information on the exact value of an input, e.g., the recovery rate from a disease (Saltelli

et al., 2008), or due to the random nature of an environmental factor that is an input, e.g., the

wind speed at the site of a forest fire (Salvador et al., 2001). In the former case, we may reduce

the uncertainty in the input by investing more resources, e.g., collecting real-world observations or

performing a scientific investigation. In the latter case, the uncertainty is inherent.

Sensitivity analysis studies the fluctuation in a model output caused by changing the model

inputs. Local sensitivity analysis focuses on the sensitivity of the output to perturbing the input

around a particular value. However, as Saltelli et al. (2008) point out, when the input is random,

it is difficult to justify local sensitivity analysis not knowing which value the input will take.

Global sensitivity analysis, on the other hand, measures the uncertainty in the output caused by

the uncertainty in the inputs over the range of possible input values. In this paper, we consider

global sensitivity analysis. Different global sensitivity analysis methods are relevant for different

purposes. Variance-based sensitivity measures serve many of these purposes by decomposing the

variance in the model output and allocating it to each input in the model. Two of the most widely

used measures are first-order and total effects suggested by Homma and Saltelli (1996). A first-

order effect measures the expected reduction in variance of the output when an input is fixed to

a constant, whereas the total effect measures the expected remaining variance of the output when

all other input values are fixed.

One purpose of global sensitivity analysis is to provide guidance for investing resources to mitigate

the uncertainty in a model output by reducing the uncertainty in the inputs: that is, to decide

which input (or a set of inputs) to control or to determine more accurately to reduce the variance

of the output the most. Saltelli et al. (2004) refer to this problem as factor prioritization. The

first-order effects are defined in a way that makes them useful for factor prioritization.

2

Global sensitivity analysis can also be used to create a parsimonious model that includes only a

small fraction of the inputs to which the output is the most sensitive, which has long been discussed

in factor screening (Kleijnen, 2009). This is particularly critical when we have a data-driven model

such that the number of inputs into the model is much larger than the number of observations of

the inputs. Breiman (2001) uses a random forest for factor screening to exclude inputs to which

the model has little sensitivity. As each tree in the random forest is built from a bootstrap sample,

we have the corresponding out-of-bag (oob) observations that can be used to test each tree. The

importance measure of each input is the difference in the number of misspecifications when the

observed values of the input (e.g., genders of participants in a clinical study) in the oob samples are

shuffled randomly from that of the original samples; i.e., if the model is not sensitive to the input

at all, the shuffled oob samples will provide just as good predictions as the original oob samples.

Hence, inputs with low importance can be dropped from the model.

However, when the model is derived from an underlying physical law of the system it is difficult

to eliminate inputs from the model. An alternative to eliminating an input is to fix its value to

a constant, i.e., to ignore uncertainty about the input. Saltelli et al. (2004) refer to this problem

as factor fixing. One benefit of factor fixing is that it allows for lower-dimensional, thus cheaper,

experiment designs in sensitivity analysis. Variance-based sensitivity measures can be used in

factor fixing, to identify inputs whose uncertainty can be ignored without substantially understating

uncertainty about the output.

When the goal is to design a system that is robust to random inputs, global sensitivity analysis

can provide information on how sensitive the output is to the inputs. For instance, an engineer

can identify the environmental factor to which the output of an energy plant is the most sensitive

using variance-based sensitivity measures. Combined with knowledge of the system, the engineer

can then propose an improved design in an attempt to reduce the sensitivity.

Variance-based sensitivity measures can also be useful to manage tensions in a business. In

Section 5 we provide an example where we perform sensitivity analysis to find the product type

whose order placement rate affects the average job completion time the most. In such a situation,

the company may assign especially adept workers to deal with those product types.

3

Finally, global sensitivity analysis can be applied to understand a scientific phenomenon. Saltelli

et al. (2000) perform sensitivity analysis to study the impact of biological and ecological factors on a

fish population for better understanding of the ecosystem. Saltelli and Tarantola (2002) analyze the

impacts of inputs to the “Level E” model, which predicts the radiologic dose to humans over geologic

time scales due to the underground migration of radionuclides from a nuclear waste disposal site.

In Section 5, we present sensitivity analysis of a fire-spread model for Mediterranean shrublands

and identify the environmental factors that affect the spread of fire the most.

In all settings above except for factor prioritization, it is important to decompose the variance

of the model output into variances assigned to each input so that (1) these variances sum to the

total variance, and (2) we have appropriate and easily interpreted information on each input’s

contribution to the total variance. For the latter reason, Saltelli et al. (2004) suggest using the

total effects instead of the first-order effects in factor fixing, as the latter can miss interaction effects

among inputs. However, the total effect can overestimate an input’s effect on the overall variance

when we have a nonlinear model with independent inputs, i.e., the sum of the total effects is greater

than the total variance of the output. As an alternative, Owen (2014) suggests a new sensitivity

measure based on the concept of the Shapley value in game theory (Shapley, 1952), and shows that

it always sums to the total variance of the output. However, his analysis is limited to the case with

independent inputs.

We extend the analysis of this new measure to the case of dependent inputs, showing that the

Shapley values still sum to the total variance of the output. We compare the performance of the

Shapley values to that of the first-order and total effects. When the inputs are correlated, we

discover (a) the sum of first-order effects may exceed the the total variance of the output, and (b)

the sum of the total effects may be lower than the total variance of the output. Both findings

contradict the general folklore on the two effects: that the first-order effect underestimates and

the total effect overestimates the contribution of an input. We argue that neither effect is a good

measure to decompose the variance of the output and suggest the Shapley values as an alternative.

Calculation of the Shapley values may demand substantial computational effort. Castro et al.

(2009) provide an algorithm to estimate Shapley values given a cost function that can be evaluated

4

exactly. We modify their algorithm to achieve better efficiency and to apply in the context of

sensitivity analysis where the cost function needs to be estimated by Monte Carlo simulation.

We suggest a reasonable allocation of the computation budget between Shapley value and cost

function estimation in the algorithm. Our algorithm in R code is available at http://users.

iems.northwestern.edu/~nelsonb/ShapleyEffects. We expect our analysis and software to

facilitate global sensitivity analysis of systems with dependent inputs especially in problems where

correctly allocating the total output variance to each input is important.

The paper is organized in the following way. In Section 2, we review traditional variance-based

sensitivity measures. Section 3 reviews the concept of Shapley value in game theory and formally

defines the Shapley effect followed by an analytical comparison to the first-order and total effects.

Section 4 provides an efficient algorithm to estimate the Shapley effects. Section 5 illustrates the

use of Shapley effects on a simple manufacturing system model and a realistic fire-spread model,

and compares its performance to the first-order and total effects.

2 Variance-based Sensitivity Analysis

Consider a model that has k inputs denoted by XK = {X1,X2, . . . ,Xk}, where XJ indicates the

vector of inputs included in the index set J ⊆ K, and K = {1, 2, . . . , k}. The uncertainty in XK

is represented by the joint cumulative distribution GK. Further, we denote the joint distribution

of inputs included in the index set J as GJ and the marginal distribution of each Xi as Gi. A

design or decision variable whose value can be chosen is not a candidate for variance-based global

sensitivity analysis.

The model response Y is a function of the inputs, i.e., Y = η(XK), and therefore η(XK) is

stochastic due to the uncertainty in XK, although η(·) is deterministic. Often, η(·) has a complex

structure (e.g., computer codes) and does not have a closed-form expression. The overall uncertainty

in the output Y caused by XK is Var[Y], where the variance is taken with respect to the joint

distribution, GK. We are interested in variance-based sensitivity measures that quantify how much

of Var[Y] can be attributed to each Xi.

5

The Sobol’ indices (Sobol’, 1993) were first introduced to measure the sensitivity of the output

to each subset J of K using functional analysis of variance (ANOVA). Under the assumption of

independent inputs, Var[Y] is decomposed as a sum of variance components attributable to each

J . Homma and Saltelli (1996) define the first-order effect Vi of Xi as the Sobol’ index attributable

to the main effect of i:

Vi ≡ Var[E[Y |Xi]] = Var[Y]− E[Var[Y |Xi]]. (1)

By definition, Vi leaves out the variability of Y caused by interactions of Xi with other inputs. The

second expression in (1) can be interpreted as the expected reduction in Var[Y] when we fix the

value of Xi to a constant. To complement the first-order effect, they define the total effect Ti of Xi

as

Ti ≡ Var[Y]−Var[E[Y |X−i]] = E[Var[Y |X−i]], (2)

where X−i = XK\{i}. In words, Ti is the expected remaining variance of Y when the values

of inputs in K\{i} are known. If all inputs are independent and η(XK) is perfectly additive,

i.e., η(XK) =
∑k

i=1 fi(Xi) for some functions f1, f2, . . . , fk, then Vi = Ti. In general, Vi < Ti

when inputs are independent, and they are used together to complement each other. Homma and

Saltelli (1996) show that with independent inputs Ti is the sum of first-order effect Vi and all the

interaction effects by Xi with other inputs. Hence, Ti−Vi is a measure of how much Xi is involved

in interactions. With independent inputs

k∑

i=1

Vi ≤ Var[Y] ≤
k∑

i=1

Ti, (3)

where the equalities hold if the model is perfectly additive.

Although these sensitivity measures based on Sobol’ indices are widely accepted in applications,

their fundamental assumption of independence among inputs limits the scope of problems to which

these measures can be applied. In fact, in Section 3.2 we show that the inequalities in (3) no longer

hold in the case of dependent inputs; under some dependence structures, the sum of total effects

are less than the sum of the first-order effects, which makes it difficult to interpret the two effects.

6

As an alternative to Sobol’ indices, Chastaing et al. (2012) propose a sensitivity index that can

be used under dependent inputs. Based on earlier work by Hooker (2007), they decompose η(XK)

as a sum of hierarchically orthogonal functions of XJ for each J ⊂ K. For a certain class of

density function for XK, they show that this decomposition is unique. Using the decomposition,

they define an effect for each subset J of K that sums to Var[Y]. Therefore, the purpose of their

effects is to decompose Var[Y] and allocate to each subset J , which is different from decomposing

Var[Y] by allocating each input Xi, which is our objective.

In measuring sensitivity for factor fixing and robust system design, or for studying a scientific

phenomenon, it is useful to have a single sensitivity measure for each input that decomposes the

effect of each input on the output variance, both independent of and in interactions with other

inputs regardless of the dependence among inputs. For this purpose, we propose the Shapley effect,

a modified definition of Owen’s Shapley values (Owen, 2014).

3 Shapley Effect

This section provides the definition of the Shapley effect and compares its performance to that of

the first-order and total effects under dependent inputs.

3.1 Definition

In game theory, the Shapley value (Shapley, 1952) is used to evaluate the “fair share” of a player in

a cooperative game. Formally, a k-player game with the set of players K = {1, 2, . . . , k} is defined as

a real-valued function that maps a subset of K to its corresponding cost (or value), i.e., c: 2K → R

with c(∅) = 0. Hence, c(J) represents the cost that arises when the players in the subset J of K

participate in the game. The Shapley value of player i with respect to c(·) is defined as

vi =
∑

J⊆K\{i}

(k − |J | − 1)!|J |!

k!
(c(J ∪ {i})− c(J)) , (4)

where |J | indicates the size of J . In words, vi is the incremental cost of including player i in set J

averaged over all sets J ⊆ K\{i}. Notice that the weight for each incremental cost of size-s subset

7

of K\{i} in (4) can be written as (k−s−1)!s!
k! = 1

k

(k−1
s

)−1
. Hence, it gives equal weight, 1/k, to all

k possible sizes of subsets (s = 0, 1, . . . , k − 1) and equal weight to all
(
k−1
s

)−1
possible subsets of

size s. The notion of Shapley value was generalized to the semivalue by Dubey et al. (1981). The

semivalue of player i with respect to c(·) is defined as

∑

J⊆K\{i}

p|J | (c(J ∪ {i})− c(J)) , (5)

where ps indicates the relative importance of a size-s subset such that

k−1∑

s=0

(
k − 1

s

)
ps = 1.

Therefore, the Shapley value is a special kind of semivalue where ps =
1
k

(k−1
s

)−1
, which gives equal

weight to each of k subset sizes and equal weights among the subsets of the same size. This gives

the Shapley value a distinctive feature among possible semivalues as discussed in Section 3.2.

In the context of global sensitivity analysis, we can think of the set of players K as the set of

inputs of η(·) and define c(·) so that for J ⊆ K, c(J) measures the variance of Y caused by the

uncertainty of the inputs in J . Clearly, we would like c(∅) = 0 and c(K) = Var[Y]. For instance,

Owen (2014) chose

c̃(J) = Var[E[Y |XJ]], (6)

which satisfies the two conditions above. Similar to the first-order effect, we can rewrite (6) to

c̃(J) = Var[Y] − E[Var[Y |XJ]] and interpret it as the expected reduction in the output variance

when the values of XJ are known. Another choice of the cost function that satisfies the conditions

is

c(J) = E[Var[Y |X−J]], (7)

where X−J = XK\J . Similar to the total effect, (7) is interpreted as the expected remaining

variance in Y when the values ofX−J are known. In this case, the incremental cost c(J ∪{i})−c(J)

can be interpreted as the expected decrease in the variance of Y , if we are given the input value

8

of Xi out of all the unknown inputs in J ∪ {i}. The proof of the following theorem is provided in

Appendix A.

Theorem 1. The Shapley values defined using cost function c̃ and c are equivalent.

Therefore, we define the Shapley effect of the ith input, Shi, as the Shapley value obtained by

applying the cost function c̃ or c to Definition (4). In the rest of the paper, we use Shi to denote

the Shapley effect and use vi to denote a generic Shapley value. In Section 4.1, we propose an

algorithm to estimate Shapley effects defined using c instead of c̃. Although both cost functions

result in the same Shapley values, their estimators from Monte Carlo simulation are different.

As Sun et al. (2011) point out, the two-level Monte Carlo simulation estimator of c̃(J) can be

badly biased unless the inner level sample size to estimate the conditional expectation is quite

large. In contrast, the estimator of c(J) is unbiased for all sample sizes. Hence, we chose to

estimate c in our algorithm rather than c̃. As an alternative, one can apply “one-and-a-half-level

simulation,” as suggested by Sun et al., to obtain an unbiased estimator of c̃.

3.2 Comparison to First-Order and Total Effects

The first-order effect Vi and the total effect Ti can be defined as semivalues using the cost function

in (7). For Vi, if we choose ps = 0 for 0 ≤ s ≤ k − 2 and pk−1 = 1, then

Vi = Var[Y]− E[Var[Y |Xi]] = Var[Y]− E[Var[Y |X−K\{i}]] = c(K)− c(K\{i}). (8)

Notice that (8) matches Definition (5) for this choice of ps. Similarly, Ti can be obtained by choosing

p0 = 1 and ps = 0 for 1 ≤ s ≤ k − 1:

Ti = E[Var[Y |X−i]] = c({i}) − c(∅). (9)

Hence, both first-order and total effects fit into the general framework of semivalues. From the

relationship in (15), the first-order and total effects can also be written as semivalues using Owen’s

cost function c̃:${p0 = 1 and ps = 0 for 1 ≤ s ≤ k − 1 gives Vi; {ps = 0 for 0 ≤ s ≤ k − 2 and

9

pk−1 = 1} gives Ti.

One outstanding feature of the Shapley value compared to other semivalues is that it is the only

semivalue such that the values of individual players sum to the total cost c(K) regardless of the

choice of c (Carreras and Giménez, 2011). This supports the benefit of the Shapley effect as

k∑

i=1

Shi = Var[Y]. (10)

In fact, any Shapley values defined by a valid choice of c (c(∅) = 0 and c(K) = Var[Y]) satisfies (10)

even if there is dependence or structural interactions among the elements of XK. As mentioned

in Section 2,
∑k

i=1 Vi ≤ Var[Y] and
∑k

i=1 Ti ≥ Var[Y] with independent inputs. However, the

following theorem applies when we have dependent inputs.

Theorem 2. There exists a joint distribution GK and function η(·) such that
∑k

i=1 Vi > Var[Y] >

∑k
i=1 Ti.

The example in the proof of Theorem 2 in Appendix A has positive correlation between X1

and X2, which makes V1 include some part of the impact caused by X2, as fixing X1 reduces the

variability in X2 as well. On the other hand, the positive correlation takes a part of the impact

caused by X1 from T1, as fixing X2 also reduces the variability in X1. As a result, the effect due

to the correlation of X1 and X2 is included in both V1 and V2, whereas it is overlooked by both T1

and T2, which is the opposite of what we expect in an independent input case.

As the number of inputs increases, and the dependence structure of the inputs and the response

function get more complicated, it becomes more difficult to decide which inputs contribute the most

to Var[Y] by comparing the first-order and total effects. One might argue that we can still use the

first-order and total effects to find which input has the largest impact on the output by comparing

their relative magnitudes. However, in Section 5, we provide two examples that show the sorted

order of the first-order and total effects inputs are different.

10

4 Estimating the Shapley Effect

In this section, we propose an algorithm to estimate the Shapley effects and examine its properties.

We also discuss generating dependent inputs for the algorithm as well as a possible use of a Gaussian

Process emulator as a stand-in for η(·).

4.1 Algorithm

One barrier to using the Shapley value is its computational complexity as all possible subsets of the

players need to be considered. One way to enumerate these subsets is to first consider all possible

permutations of the players. Given a permutation π of all k players, define the set Pi(π) as the

players that precede player i in π. For instance, if k = 5 and π = {1, 3, 2, 4, 5}, then P2(π) = {1, 3}.

Hence, the incremental cost of including player i in Pi(π) is c(Pi(π) ∪ {i}) − c(Pi(π)). Taking all

possible permutations of k players into consideration, we can rewrite the Shapley value vi in (4) as

vi =
∑

π∈Π(K)

1

k!
(c(Pi(π) ∪ {i}) − c(Pi(π))) , (11)

where Π(K) denotes the set of all k! permutations of players in K and the incremental cost from

each permutation is weighted by 1/k!. To calculate the Shapley value from (11), we essentially need

to evaluate c(J) for all J ⊂ K, i.e., 2k − 1 variance components and k! permutations. Instead of

the exact calculation, Castro et al. (2009) provide an approximation algorithm, ApproShapley. Our

Algorithm 1 not only modifies ApproShapley to increase the efficiency, it also includes the Monte

Carlo simulation of the cost function c to estimate the Shapley effects.

In ApproShapley, m permutations π1, π2, . . . , πm in Π(K) are randomly generated and vi is esti-

mated by

v̂i =
1

m

m∑

ℓ=1

(c(Pi(πℓ) ∪ {i}) − c(Pi(πℓ)) , (12)

which is shown to converge in probability to vi. In ApproShapley, if permutation πℓ is generated,

then the incremental cost ∆ic(πℓ) = c(Pi(πℓ)∪{i})−c(Pi(πℓ)) is calculated for each i. For instance,

11

if k = 3 and πℓ = {1, 3, 2}, then ApproShapley calculates

∆1c(πℓ) = c({1}) − c(∅),

∆2c(πℓ) = c({1, 3, 2}) − c({1, 3}),

∆3c(πℓ) = c({1, 3}) − c({1}),

so c({1, 3}) and c({1}) are calculated twice. To reduce these redundant calculations our Algorithm

1 below calculates the costs from the smallest subset of π to the largest, and subtracts the previous

set’s cost to obtain the marginal cost, i.e.,

∆π(j)c(π) = c(Pπ(j)(π) ∪ {π(j)}) − c(Pπ(j)(π)), (13)

where π(j) indicates the input in the jth location of π. For notational convenience, let Pπ(j+1)

denote Pπ(j)(π) ∪ {π(j)} for 0 < j < k. We also assume the function η(·) puts the inputs in

the right order, i.e., η(X{1,3},X2) = η(X1,X2,X3). Note that our cost function c(J) involves a

(conditional) variance of a complicated function η(XK), which Algorithm 1 estimates by Monte

Carlo simulation.

Algorithm 1

1. Choose m,NV , NO, and NI ; set Ŝhi = 0 for i = 1, 2, . . . , k and counter = 0

2. For q = 1, 2, . . . , NV

(a) Sample X
(q)
K from GK

(b) Evaluate Y (q) = η(X
(q)
K)

3. Calculate Ȳ = NV
−1 ∑NV

q=1 Y
(q) and V̂ar[Y] = (NV − 1)−1

∑NV

q=1(Y
(q) − Ȳ)2

4. While counter < m

(a) Generate π ∈ Π(k)

(b) Set prevC = 0

(c) For j = 1, 2, . . . , k

i. If j = k
ĉ(Pπ(j)(π) ∪ {π(j)}) = V̂ar[Y]

12

ii. Else \\ comment: 0 < j < k

A. For l = 1, 2, . . . , NO

Sample X
(l)
−Pπ(j+1)(π)

from G−Pπ(j+1)(π)

For h = 1, 2, . . . , NI

Sample X
(l,h)
Pπ(j+1)(π)

from G
Pπ(j+1)(π)

∣

∣

∣

∣

X
(l)
−Pπ(j+1)(π)

Evaluate Y (l,h) = η
(
X

(l,h)
Pπ(j+1)(π)

,X
(l)
−Pπ(j+1)(π)

)

Calculate Ȳ (l) = NI
−1∑NI

h=1 Y
(l,h)

Calculate V̂ar
[
Y |X

(l)
−Pπ(j+1)(π)

]
= (NI − 1)−1

∑NI

h=1(Y
(l,h) − Ȳ (l))2

B. Calculate ĉ(Pπ(j+1)(π)) = NO
−1 ∑NO

l=1 V̂ar
[
Y |X

(l)
−Pπ(j+1)(π)

]

iii. Calculate ∆̂π(j)c(π) = ĉ(Pπ(j+1)(π)) − prevC

iv. Update Ŝhπ(j) = Ŝhπ(j) + ∆̂π(j)c(π)

v. Set prevC = ĉ(Pπ(j+1)(π))

(d) counter = counter + 1

5. Ŝhi = Ŝhi/m for i = 1, 2, . . . , k

Ignoring the estimation of c for the moment, Algorithm 1 saves the cost of the current set to

prevC to calculate the next marginal cost in Step 4(c)v. For π = {1, 3, 2}, Algorithm 1 performs

∆π(1)c(π) = c({1}) − c(∅) Set prevC = 0,

∆π(2)c(π) = c({1, 3}) − prevC, Set prevC = c({1, 3}),

∆π(3)c(π) = c({1, 3, 2}) − prevC, Set prevC = c({1, 3, 2}),

which only requires three cost function evaluations. Therefore, Algorithm 1 reduces the computa-

tional load of ApproShapley by half.

Taking the estimation of c into account, the total computation budget to estimate Shi grows

by the factor of the sampling budget for the Monte Carlo variance estimation, which can be a

substantial increase. Figure 1 illustrates estimation of the Shapley effects when k = 3. Notice that

the costs are variances estimated from Monte Carlo simulations. For each sampled permutation

πℓ we need k estimated costs; one total variance Var[Y] and E[Var[Y |X−Pπℓ(j)
]] for j = 2, . . . , k.

Shown in Figure 1 is the case when π1 = {1, 3, 2}; we need one V̂ar[Y] for c({1, 3, 2}) and conditional

13





m
p
er
m
u
ta
ti
on

s

π1
= {1, 3, 2}

...

πm−1

πm

∆1ĉ(π1) = ĉ({1}) − ĉ(∅)

∆3ĉ(π1) = ĉ({1, 3}) − ĉ({1})

∆2ĉ(π1) = ĉ({1, 3, 2}) − ĉ({1, 3})

k − 1 conditional variances

V̂ar[η(X1,X2,X3)]
Ê[V̂ar[η(X1,X2,X3)|X2]]

: from X
(1)
2

...

X
(NO)
2

X
(1,1)
{1,3}

...

X
(1,NI)
{1,3}









NO ×NI
samples

Figure 1: Illustration of allocation of the computation budget.

variances for c({1}) and c({1, 3}), respectively. To estimate these costs by Monte Carlo simulation,

three parameters are introduced in Algorithm 1: the number of Monte Carlo samplesNV to estimate

Var[Y]; the number of outer samplesNO and the number of inner samplesNI at each outer sample to

estimate E[Var[Y |X−J]]. Figure 1 shows estimation of c({1, 3}) = E[Var[η(X1,X2,X3)|X2]] as an

example. The outer samples X
(1)
2 ,X

(2)
2 , . . . ,X

(NO)
2 are generated first, and then conditional on each

X
(l)
2 , X

(l,1)
{1,3},X

(l,2)
{1,3}, . . . ,X

(l,NI)
{1,3} are sampled. See Section 4.2 for further discussion on conditional

sampling. Each inner-outer sample pair is used to evaluate η(·). Thus, the total computational

budget for Algorithm 1 is NV +mNINO(k − 1).

Before performing a sensitivity analysis, we would typically estimate Var[Y] as precisely as pos-

sible to measure the overall variability in the output due to the uncertain inputs. If V̂ar[Y] is

negligible compared to the required tolerance for the system, then it can be considered insensi-

tive and further sensitivity analysis would no longer be of interest. If V̂ar[Y] is significant, then

we would proceed to estimate the Shapley effects and V̂ar[Y] can be used in the estimation. To

provide a good estimator of Var[Y], NV should be chosen sufficiently large.

Given the computation budget, there is a trade-off between sampling more permutations (large

m) and more precise estimation of the cost functions (large NI and NO). A reasonable criterion

14

for choosing the values of these parameters is to minimize Var[Ŝhi]. We suggest NI = 3, NO = 1

and having m as large as possible given these choices (See Appendix A).

When the computation budget can be chosen to insure a desired estimation quality of the Shapley

effects, then we recommend performing sequential experiments by increasing m while maintaining

NI = 3 and NO = 1. Notice that Ŝhi is a sample mean of ∆̂ic(π)’s and therefore the standard

error of Ŝhi can be easily estimated from the sample variance of ∆̂ic(π). Since Var[Ŝhi] = O(m−1)

(See Appendix A), the standard errors of the Shapley effects are O(m−1/2). For example, if the

estimated relative error of Ŝh1 is 10% when m = 5,000, then we can decrease it to approximately

5% by increasing m to 20,000.

This example also implies that the number of permutations m needed to obtain the desired

standard errors of the Shapley effects is not directly related to the number of inputs k; it is rather

related to the variance of the model response Y = η(XK). The following theorem shows that the

variance of Ŝhi has an upper bound that is independent of k. The proof can be found in Appendix

A.

Theorem 3. If c is evaluated exactly, then Var[Ŝhi] ≤ (Var[Y])2/m.

Theorem 3 shows that if we add a number of dummy inputs that do not affect the output Y , the

variance of the estimated Shapley effects would have the same bound as before. Hence, even if k is

large, if Var[Y] is small, m does not need to be too large to reduce Var[Ŝhi] to an acceptable level.

Of course, if k is small, e.g., k = 3, then the number of possible permutations is small (3! = 6)

in which case we would rather examine all possible permutations as opposed to randomly sampling

them, and spend more of the budget to estimate the cost functions. Therefore, Step 4a in Algorithm

1 can be modified to go through each permutation exactly once, which gets rid of the uncertainty

in Ŝhi from randomly sampling permutations. In this case, we recommend NI = 3 and setting NO

to consume the remaining budget (See Appendix A).

The first-order and total effects can also be estimated by Algorithm 1 using the semi-value

expressions in (8) and (9), respectively. The estimator of Vi is the sample average of ∆̂ic(π)’s when

i is the last element of the permutation π. The estimator of Ti is the sample average of ∆̂ic(π)’s

when i is the first element of the permutation π. Therefore, the numbers of samples that are used

15

to estimate V1, V2, . . . , Vk (or T1, T2, . . . , Tk) are random. However, each input has probability 1/k

of being the last (or the first) element in each permutation. Therefore, the expected number of

samples available to estimate each Vi or Ti is m/k for all Xi’s.

Saltelli (2002) proposes a more efficient estimation method of the first-order and total effects

than two-level Monte Carlo simulation for the case of independent inputs. His method stores the

sampled input values in two N by k matrices where each of k columns correspond to each input,

then creates a matrix by replacing the ith column of the second matrix with the ith column of the

first matrix. Therefore, the resulting matrix and the first matrix share the same ith column, which

can be seen as two independent sets of N samples of inputs conditional on Xi. Using this shortcut,

the method can estimate the first-order and total effects using only N(k + 2) evaluations of η(·).

Clearly, this method is no longer valid when the inputs are dependent.

4.2 Generating Dependent Inputs

Step 4(c)ii of Algorithm 1 involves conditional sampling of inputs. When there is dependence

among inputs, then we need to correctly define the conditional distribution from which to sample

from.

A popular method when there is correlation among inputs is copula modeling, which defines the

relationship of GK and the marginals, G1, G2, . . . , Gk as

GK(x1, x2, . . . , xk) = C(G1(x1), G2(x2), . . . , Gk(xk)),

where C is a copula (Nelsen, 2013). As long as the correlation structure among inputs can be

modeled by a copula, we can easily sample the correlated inputs in Algorithm 1.

Cario and Nelson (1996) develop ARTA (AutoRegressive To Anything), which obtains the de-

sired autoregressive process by transforming a standardized Gaussian autoregressive process with

a carefully chosen autocorrelation structure. In examples in Section 5, we use NORTA (NORmal

To Anything) suggested by Cario and Nelson (1997) to generate correlated inputs. NORTA, a gen-

eralization of ARTA, finds the correlation matrix of a k-dimensional standard multivariate normal

16

vector Z = {Z1, Z2, . . . , Zk} such that

XK =
[
G−1

1 (Φ(Z1)), G
−1
2 (Φ(Z2)), . . . , G

−1
k (Φ(Zk))

]⊤
(14)

where Φ is the standard normal cumulative distribution function. The resulting XK in (14) has the

desired correlation structure as well as the marginal distribution for each Xi. For the restrictions

on GK to satisfy (14), see Cario and Nelson (1997). In our examples, we impose a rank correlation

between two continuous dependent inputs, then generate a standard bivariate normal vector that

has the same rank correlation, which we transform to the inputs using (14). Since rank correlation

is invariant under strictly increasing transformations, the resulting inputs have the intended rank

correlation.

4.3 Use of a Gaussian Process Emulator

If η(·) is costly to evaluate, then an emulator η̂(·) can be used as a stand-in for η(·) to reduce the

computation cost. Then the effort to estimate c(·) is effectively just the cost of the random-variate

generation of XK. The quality of this approximation depends on the accuracy of the model η̂(·) as

it is based on a limited number of observations of the true surface η(·).

We can also fully account for the uncertainty in η̂(·) instead of simply plugging it in for η(·).

Oakley and O’Hagan (2004) provide an expression for first-order and total effects when a Gaussian

process emulator is used as a stand-in for η(·). Taking a Bayesian point of view, they represent

the mean vector and the covariance matrix of η̂(·) as functions of hyperparameters with prior

distributions. After observing the functional values of η(·) at a number of design points, η̂(XK) can

be represented as a Gaussian process whose parameters have posterior distributions. In Section 3.3

of Oakley and O’Hagan (2004), the authors provide a formula for the posterior mean of the cost

function c̃, i.e., E⋆ [Var[E[Y |XJ]]] for any J ⊂ K, where E⋆ is the expectation with respect to the

posterior distribution of η̂(XK). As shown in Theorem 1, c̃ or c can be used to define the Shapley

effect. Since Shi is a weighted sum of Var[E[Y |XJ]] for all J ⊂ K, we can obtain the posterior

mean of Shi from Oakley and O’Hagan’s expression. Hence, we may replace the cost estimation in

17

Step 4(c)ii with calculating the posterior mean of the cost.

The expression for the posterior mean of the cost function includes integrations of products of

means and variances of the Gaussian process. Typically, these integrations do not have closed-

form expressions for a general choice of GK. We can numerically integrate them by Monte Carlo

simulation, which costs some computational effort. However, if the original η(·) is very expensive

to evaluate, these Monte Carlo integration will still be substantially less costly.

5 Numerical Experiments

In this section, we present two examples where we estimate the Shapley effects and compare them

with the first-order and total effects. The first example is a simple make-to-order manufacturing

system where we have multiple product types modeled as a Jackson network (Jackson, 2004).

Queueing network models are widely used in industrial engineering and operations research to

design and improve manufacturing and service systems. In our example, the order arrival rates,

correlated according to the substitutability and complementarity of the products, change according

to random distributions every month. The goal of the sensitivity analysis is to find the type of

product that causes the largest fluctuation in the expected order completion time of all jobs. This

information may assist the company to manage tension in the manufacturing system to reduce the

fluctuation.

The second example is sensitivity of fire-spread in the Mediterranean shrublands using the model

in Salvador et al. (2001). The model has ten environmental variables representing the physical state

of the shrubland. Salvador et al. (2001) assume these inputs are independent, however, Clark et al.

(2008) show in their data analysis that some of the inputs are correlated. We take this correlation

structure into account in our sensitivity analysis and identify the impacts of the factors on the

speed of fire-spread.

18

5.1 Manufacturing System Model

Suppose the network in Figure 2 represents a manufacturing line that has six workstations, A–F, and

processes six different types of jobs. A job arrives to the manufacturing line once a customer places

an order for the corresponding product type. The daily order arrival rates of six jobs, λ1, λ2, . . . , λ6,

remain constant throughout a month, fluctuating each month. Therefore, the monthly expected

job completion time of this manufacturing line is a function of the arrival rates. In terms of supply

chain management, the fluctuation in this expected time may incur cost to the company. Under

this premise, we apply sensitivity analysis to identify the types of jobs whose arrival rates affect

the variation in the expected completion time the most.

The first workstation where each job is processed depends on the job type; type 1 starts at

workstation A, type 2, 3, and 4 start at workstation B, and type 4 and 6 start at workstation E.

After being processed at its initial station, the job is routed to the next station. Figure 2 shows the

routing probabilities from one station to the others. Each station has one machine that processes

multiple types of jobs. The interarrival times and processing times are exponentially distributed

and independent from each other. The job process rates at stations, denoted by µA, µB, . . . , µF ,

are 1.2, 1.5, 4, 1.8, 3.6, 1.5 jobs per day, respectively.

For all six arrival rates, we used the same marginal distribution whose minimum, maximum,

and mode are 0.5, 0.8, and 0.6, respectively. This type of distribution is typically modeled with

a beta distribution in practice, which we also adopt here. Suppose products of types 1 and 2 are

complementary, therefore, their demands are positively correlated. Products of types 3 and 4, on

the other hand, substitute for each other, which makes the demands negatively correlated. The

rank correlations among the arrival rates are Corr(λ1, λ2) = 0.5 and Corr(λ3, λ4) = −0.5. The

correlated inputs are generated using NORTA as described in Section 4.2.

The Jackson network model of Figure 2, which can be found in Appendix C, provides the expected

completion time of a job Y as a function of λ1, λ2, . . . , λ6. In our problem, these arrival rates are the

random inputs, which cause the expected job completion to be random. Table 1 shows the estimated

first-order, total, and Shapley effects of all inputs. All three effects are calculated from Algorithm

1 in one experiment using NV = 2,000, NO = 100, and NI = 2 with all m = 6! permutations of

19

✲
λ1 ♥A

0.4
✲

0.6
❩
❩
❩
❩❩⑦

❩
❩
❩❩⑦

λ2 + λ3 + λ5

0.5♥B

0.5

✲
❏
❏
❏
❏
❏
❏
❏❏❫

♥C ✲

♥D ✲

✲
λ4 + λ6

0.3

♥E✚
✚
✚
✚✚❃

✲

0.7

♥F ✲

Figure 2: A queueing network with six independent arrival processes.
Table 1: Sensitivity measures of the expected job completion time in hours and standard errors in
parentheses.

i 1 2 3 4 5 6 Sum

Shi 4.23 2.79 0.62 2.45 1.37 3.88 15.34
(0.07) (0.07) (0.03) (0.03) (0.02) (0.02)

Vi 5.91 4.43 0.15 1.85 1.40 3.76 17.50
(0.05) (0.05) (0.07) (0.06) (0.06) (0.05)

Ti 2.54 1.05 1.07 2.94 1.42 4.04 13.06
(0.01) (0.01) (0.01) (0.01) (0.01) (0.02)

inputs.

The right-most column of Table 1 confirms Theorem 2 in Section 3. The sum of the Shapley

effects is the estimated variance of the output. In this example, the sum of the first-order effects is

greater than the output variance, whereas the sum of the total effects is smaller than the output

variance. Neither is desirable if we want to measure the sensitivity of output variance to arrival

rates in absolute terms.

Suppose that the company wishes to know which two arrival rates are most influential on un-

certainty in expected completion time. A common practice in sensitivity analysis is to use both

first-order effects and total effects to measure sensitivity. The first-order effects and total effects

disagree about which two arrival rates are most influential: V1 and V2 are the largest first-order

effects, whereas T4 and T6 are the largest total effects. It would not be easy to combine the first-

order effects and total effects to answer this question. One might rank all of the first-order effects

20

Table 2: Distributions of 10 inputs of the fire-spread model.

Input Symbol and unit Distribution

1 Fuel depth δ (cm) LogN(2.19, 0.517)

2 Fuel particle area-to-volume ratio σ (cm−1) LogN(3.31, 0.294)

3 Fuel particle low heat content h (Kcal kg−1) LogN(8.48, 0.063)

4 Oven-dry particle density ρp (D.W.g cm−3) LogN(−0.592, 0.219)

5 Moisture content of the live fuel ml (H2OgD.W.g−1) N(1.18, 0.377)

6 Moisture content of the dead fuel md (H2OgD.W.g−1) N(0.19, 0.047)

7 Fuel particle total mineral content ST (MIN. g D.W.g−1) N(0.049, 0.011)

8 Wind speed at midflame height U (kmh−1) 6.9LogN(1.0174, 0.5569)

9 Slope tanφ N(0.38, 0.186)

10 Dead fuel loading to total fuel loading P LogN(−2.19, 0.64)

D.W.: dry weight; MIN.: mineral weight

and total effects. The largest two of the first-order effects and total effects are V1 and V2; the total

effects lose out in this comparison. However, it is questionable whether there is a fair comparison

between the actual values of a first-order effect and a total effect, considering that the sum of the

first-order effects exceeds the total variance and the sum of the total effects is less than the total

variance. The Shapley effects identify the arrival rates λ1 and λ6 as most influential on the output

variance. In this way the Shapley effects succeed in resolving which two of the four rates identified

by the first-order and total effects are really the largest contributors to Var[Y]—and therefore to

supply chain cost—allowing the manufacturer to take the the most effective actions to mitigate

their impact.

5.2 Fire-spread Model

The model in Salvador et al. (2001) is based on Rothermel’s fire-spread model (Rothermel, 1972);

its primary output is the rate of the spread of the front point of a fire. Salvador et al. also adopted

the modifications by Albini (1976) on the net fuel loading and the optimum reaction velocity, and

the modifications by Catchpole and Catchpole (1991) on the moisture damping coefficient and the

heat of preignition. The complete set of equations used in this section is provided in Appendix B.

21

The modified model has the 10 inputs given in Table 2, which also provides the distributions used

in our sensitivity analysis experiment. Salvador et al. only considered the fuels with a diameter less

than 6mm as they have the highest influence on the fire behavior. They assume all inputs in Table 2

are independent. However, Clark et al. (2008) show in their data analysis that there is a negative

rank correlation (−0.355) between the wind speed and the moisture content of the dead fuel, i.e.,

the more windy it is, the less moisture the dead fuels contain. For the purpose of our experiment,

three cases were tested: (1) independent inputs, (2) a mild correlation (rank correlation: −0.3)

between md and U , and (3) a stronger correlation (rank correlation: −0.8) between md and U .

All inputs except for the fuel depth (δ), the moisture content of the dead fuel (md), and the wind

speed at midflame height (U) have the same marginal distributions as in Salvador et al. (2001). We

moved the mean of the distribution of the fuel depth (δ) from 24.3 to 10.2 to see more clear impact

of the correlated inputs on the sensitivity measures. Empirical distributions of md and U are not

provided in Salvador et al. (2001), but the means and the coefficients of variation are. Therefore,

we used normal and lognormal distributions for md and U respectively, matching their means and

the coefficients of variation. Notice that we tested their “strong wind” scenario in which the wind

speed U is multiplied by 6.9.

The correlated inputs are generated using NORTA as described in Section 4.2. All negative

values of mℓ, ST , and tanφ are rejected as in Salvador et al. (2001). For P , a ratio of dead fuel

loading to total fuel loading, values over 1 are rejected. Also, any input values of σ less than 3/0.6

are rejected as 3/0.6 is the smallest possible surface area to volume ratio for fuels with a diameter

less than 6mm.

Figure 3 shows the estimated sensitivity measures. Notice that each effect is normalized by the

sum of effects of all inputs. The Shapley effects are estimated from m = 1,500,000 permutations

with NV = 100,000, NI = 3 and NO = 1. The first-order and total effects are estimated directly

from their definitions, Vi = Var[E[η(XK)|Xi]] and Ti = E[Var[η(XK)|X−i]], by two-level Monte

Carlo simulation. Each effect is estimated from 680 inner samples and 680 outer samples which

gives approximately the same budget for the Shapley effects estimation; 680×680×10 ≈ 1,500,000×

3 + 100,000. Standard errors of the effects are also estimated; a batch of size 68 (10 batches) is

22

−
0.

1
0.

1
0.

2
0.

3

δ σ h ρp ml md ST U tan φ P

(a) Independent: first-order

−
0.

1
0.

1
0.

2
0.

3

δ σ h ρp ml md ST U tan φ P

(b) Independent: total

−
0.

1
0.

1
0.

2
0.

3

δ σ h ρp ml md ST U tan φ P

(c) Independent: Shapley

−
0.

1
0.

1
0.

2
0.

3

δ σ h ρp ml md ST U tan φ P

(d) ρs(md, U) = −0.3: first-order

−
0.

1
0.

1
0.

2
0.

3

δ σ h ρp ml md ST U tan φ P

(e) ρs(md, U) = −0.3: total
−

0.
1

0.
1

0.
2

0.
3

δ σ h ρp ml md ST U tan φ P

(f) ρs(md, U) = −0.3: Shapley

−
0.

1
0.

1
0.

2
0.

3

δ σ h ρp ml md ST U tan φ P

(g) ρs(md, U) = −0.8: first-order

−
0.

1
0.

1
0.

2
0.

3

δ σ h ρp ml md ST U tan φ P

(h) ρs(md, U) = −0.8: total

−
0.

1
0.

1
0.

2
0.

3

δ σ h ρp ml md ST U tan φ P

(i) ρs(md, U) = −0.8: Shapley

Figure 3: Sensitivity measures of inputs of the fire-spread model normalized by the sum of effects
of all inputs. White bars indicate the estimated effects are within two standard errors from 0.

23

used to provide an estimate of Var[Vi] for each i (see Asmussen and Glynn, 2007).

The colors of bars in Figure 3 indicate statistical significance; a white bar indicates that the

estimated effect is within two standard errors from 0. Notice that the estimated Shapley effects

that are statistically insignificant are the ones to which the response Y is less sensitive, e.g., the

estimated Shapley effects of ST , and tanφ in the independent input case.

Some of the estimated Shapley effects are negative. This is because the estimator Ŝhi from

Algorithm 1 is a sum of differences of the cost functions and therefore, if Shi is close to 0, Ŝhi can

be negative due to the estimation error. Notice that the Shapley effects with negative estimates in

Figure 3 are statistically insignificant.

In all three settings of independent/dependent inputs, the Shapley effects help us decide which

inputs are more influential when the first-order and total effects identify different sets of inputs to

be influential. For instance, in the independent input case, we would conclude that δ and md have

more impact on Var[Y] than other inputs based on the first-order effects (Figure 3a) or that ml

and U are more important based on the total effects (Figure 3b). The Shapley effects (Figure 3c)

indicate δ and ml are more important, which is the middle-ground between the first-order and

total effects. As md and U become highly correlated (ρs(md, U) = −0.8), there is more discrepancy

between the first-order and total effects. The first-order effects (Figure 3g) show that U,md, and

ml have bigger impacts on Var[Y] than others, whereas the total effects (Figure 3h) indicates that

δ,ml, and σ are more important. From the Shapley effects (Figure 3i), we can conclude that

δ,md, U, and σ have more significant impact on Var[Y].

6 Conclusions

In this paper we identified different purposes for global sensitivity analysis for which we would

like to decompose the variance of the output into each input’s contribution. We adopted Owen’s

sensitivity measure based on the concept of the Shapley value in game theory to define the Shapley

effect. We established the connection between the first-order, total and Shapley effects using the

concept of semi-values. Exploiting the fact that the Shapley value is the only semi-value that sums

24

to the total cost of all players in the game regardless of the cost function, we show the Shapley

effects always decompose the total variance and allocate to each input regardless of the dependence

among inputs or the structure of the output function, whereas the other two measures do not.

We examined the performance of all three measures using a simple manufacturing model and in

a realistic fire-spread model, both involving correlated inputs. In both experiments, the first-order

and total effects identify different subsets of inputs as highly influential, and it would be difficult

for a practitioner to use both measures to identify a small subset of highly influential inputs. The

disagreement between first-order and total effects occurs because they consider different sets of

interactions between inputs; neither considers all interactions. The Shapley effects, which take

proper account of all interactions between inputs both structural and statistical, were useful to

identify a small subset of highly influential inputs.

While the estimation of the Shapley effects may seem computationally prohibitive when the

number of inputs is large, our proposed algorithm makes the Shapley effects estimable for any

number of inputs. The algorithm consists of sampling the permutations of the inputs randomly

and estimating the cost functions via Monte Carlo simulation. We also suggested a reasonable

allocation of the computation budget to reduce the variance of the estimated Shapley effect. We

proved that if the cost function can be calculated exactly, then the variance of the estimator of

the Shapley effect is bounded above by a function of the number of sampled permutations, not the

number of the inputs. Since we actually have to estimate the cost function in general, the variance

may be larger than (Var[Y])2/m, however, it is still in O(m−1) and independent of the number of

the inputs.

When the original η(·) is burdensome to evaluate, we suggest using an emulator η̂ as an alterna-

tive. Depending on the computation budget, one may or may not incorporate emulator uncertainty

into the Shapley effect estimation.

25

References

Albini, F. A. (1976). Estimating wildfire behavior and effects. General technical report INT. Dept.

of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station.

Asmussen, S. and P. Glynn (2007). Stochastic Simulation: Algorithms and Analysis: Algorithms

and Analysis. Stochastic Modelling and Applied Probability. Springer.

Breiman, L. (2001). Random forests. Machine Learning 45 (1), 5–32.

Cario, M. C. and B. L. Nelson (1996). Autoregressive to anything: Time-series input processes for

simulation. Oper. Res. Lett. 19 (2), 51–58.

Cario, M. C. and B. L. Nelson (1997). Modeling and generating random vectors with arbitrary

marginal distributions and correlation matrix. Technical report, Department of Industrial Engi-

neering and Management Sciences, Northwestern University, Evanston, IL.

Carreras, F. and J. M. Giménez (2011). Power and potential maps induced by any semivalue: Some

algebraic properties and computation by multilinear extensions. European Journal of Operational

Research 211 (1), 148–159.

Castro, J., D. Gómez, and J. A. T. Cazorla (2009). Polynomial calculation of the Shapley value

based on sampling. Computers and Operations Research 36 (5), 1726–1730.

Catchpole, E. and W. Catchpole (1991). Modelling moisture damping for fire spread in a mixture

of live and dead fuels. International Journal of Wildland Fire 1, 101–106.

Chastaing, G., F. Gamboa, and C. Prieur (2012). Generalized hoeffding-sobol decomposition for

dependent variables - application to sensitivity analysis. Electron. J. Statist. 6, 2420–2448.

Clark, R. E., A. S. Hope, S. Tarantola, D. Gatelli, P. E. Dennison, and M. A. Moritz (2008).

Sensitivity analysis of a fire spread model in a chaparral landscape. Fire Ecology 4 (1), 1–13.

Dubey, P., A. Neyman, and R. J. Weber (1981). Value theory without efficiency. Mathematics of

Operations Research 6 (1), 122–128.

26

Homma, T. and A. Saltelli (1996). Importance measures in global sensitivity analysis of nonlinear

models. Reliability Engineering and System Safety 52 (1), 1–17.

Hooker, G. (2007). Generalized functional anova diagnostics for high-dimensional functions of

dependent variables. Journal of Computational and Graphical Statistics 16 (3), 709–732.

Jackson, J. R. (2004). Jobshop-like queueing systems. Management Science 50 (12 supplement),

1796–1802.

Kleijnen, J. P. C. (2009). Factor screening in simulation experiments: Review of sequential bifur-

cation. In C. Alexopoulos, D. Goldsman, and J. R. Wilson (Eds.), Advancing the Frontiers of

Simulation, Volume 133 of International Series in Operations Research & Management Science,

pp. 153–167. Springer US.

Nelsen, R. (2013). An Introduction to Copulas. Lecture Notes in Statistics. Springer New York.

Oakley, J. E. and A. O’Hagan (2004). Probabilistic sensitivity analysis of complex models: A

Bayesian approach. Journal of the Royal Statistical Society, Series B 66, 751–769.

Owen, A. B. (2014). Sobol’ indices and Shapley value. SIAM/ASA Journal on Uncertainty Quan-

tification 2 (1), 245–251.

Rothermel, R. C. (1972). A mathematical model for predicting fire spread in wildland fuels. Number

INT-155 in USDA Forest Service Research Paper. Department of Agriculture, Intermountain

Forest and Range Experiment Station.

Saltelli, A. (2002). Making best use of model evaluations to compute sensitivity indices. Computer

Physics Communications 145 (2), 280 – 297.

Saltelli, A., K. Chan, and E. Scott (2000). Sensitivity Analysis: Gauging the Worth of Scientific

Models. Wiley Series in Probability and Statistics. Wiley.

Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Taran-

tola (2008). Global Sensitivity Analysis: The Primer. Wiley.

27

Saltelli, A. and S. Tarantola (2002). On the relative importance of input factors in mathemati-

cal models: Safety assessment for nuclear waste disposal. Journal of the American Statistical

Association 97 (459), pp. 702–709.

Saltelli, A., S. Tarantola, F. Campolongo, and M. Ratto (2004). Sensitivity analysis in practice: a

guide to assessing scientific models. John Wiley & Sons.

Salvador, R., J. Piol, S. Tarantola, and E. Pla (2001). Global sensitivity analysis and scale effects

of a fire propagation model used over mediterranean shrublands. Ecological Modelling 136 (23),

175 – 189.

Shapley, L. (1952). A Value for N-person games. Defense Technical Information Center.

Sobol’, I. M. (1993). Sensitivity estimates for nonlinear mathematical models. Mathematical mod-

eling and computational experiment 1, 407–414.

Song, E. and B. L. Nelson (2015). Quickly assessing contributions to input uncertainty. IIE

Transactions 47 (9), 893–909.

Sun, Y., D. W. Apley, and J. Staum (2011). Efficient nested simulation for estimating the variance

of a conditional expectation. Operations Research 59 (4), 998–1007.

Van Wagner, C. E. (1978). Metric units and conversion factors for forest fire quantities. Technical

report, Petawawa Forest Experiment Station.

Appendices

A. Proofs of Theorems

For the completeness, we restate the theorems with their proofs.

Theorem 1. The Shapley values defined using cost function c̃ and c are equivalent.

28

Proof. For J ⊆ K\{i}

c̃(J ∪ {i})− c̃(J) = Var[E[Y |XJ∪{i}]]−Var[E[Y |XJ]]

= (Var[Y]− E[Var[Y |XJ∪{i}]])− (Var[Y]− E[Var[Y |XJ]])

= E[Var[Y |XJ]]− E[Var[Y |XJ∪{i}]]

= E[Var[Y |X−(A∪{i})]]− E[Var[Y |X−A]]

= c(A ∪ {i}) − c(A), (15)

where A = K\(J ∪ {i}). The second equality follows from the law of total variance. Notice that

for all J ⊆ K\{i}, the corresponding set A is unique. When calculating the Shapley effect from (4)

using c̃, c̃(J ∪ {i}) − c̃(J) is weighted by
(k − |J | − 1)!|J |!

k!
. Since |A|+ |J |+ 1 = k,

(k − |J | − 1)!|J |!

k!
=

|A|!(k − |A| − 1)!

k!
,

which is the weight for c(A ∪ {i}) − c(A) to calculate the Shapley value using c. Therefore, c and

c̃ give exactly the same Shapley values.

Theorem 2. There exists a joint distribution GK and function η(·) such that
∑k

i=1 Vi > Var[Y] >

∑k
i=1 Ti.

Proof. Consider the following simple response function that has k = 2 inputs:

η(XK) = X1 +X2, (16)

where XK = {X1,X2} are jointly normally distributed with E[X1] = E[X2] = 0, Var[X1] =

Var[X2] = 1, and Corr(X1,X2) = ρ. From the definitions of the first-order and total effects in (1)

and (2), we can obtain V1 = V2 = (1+ ρ)2 and T1 = T2 = (1− ρ)2. Hence, it is easy to see that for

ρ > 0, V1 + V2 = 2(1 + ρ)2 > Var[Y] = 2(1 + ρ) > 2(1 − ρ2) = T1 + T2.

Theorem 3. If c is evaluated exactly, then Var[Ŝhi] ≤ (Var[Y])2/m.

29

Proof. Since we assumed c is evaluated exactly, the variance in Ŝhi comes from the random sampling

of permutations in Algorithm 1. Notice that Ŝhi is a sample mean of cost differences ∆ic(πℓ) =

c(Pi(πℓ) ∪ {i}) − c(Pi(πℓ)) for ℓ = 1, 2, . . . ,m. As 0 ≤ c(J) ≤ Var[Y] for all J ⊆ K, ∆ic(πℓ) is

strictly bounded between −Var[Y] and Var[Y]. The variance of ∆ic(πℓ) is maximized when it takes

the values −Var[Y] and Var[Y] with probability 1/2, each. Hence, Var[∆ic(πℓ)] ≤ (−Var[Y])2/2 +

(Var[Y])2/2 = (Var[Y])2, which leads to the conclusion.

B. Optimal Budget Allocation for Algorithm 1

Assume NV simulations have already been conducted to estimate Var[Y]. Then we have compu-

tation budget B that we can allocate to m,NI , and NO so that B = mNINO(k − 1) subject to

NI ≥ 2 to obtain the sample variance. Our criterion to allocate the budget is to minimize the

variance of the estimated Shapley effects. We consider two cases: (a) when k is small, therefore,

all k! permutations are considered, and (b) when k is large and we randomly sample permutations.

As metioned in Section 4.1, if k is small, then we should examine all possible permutations

instead of randomly sampling them. In this case the budget is divided among NI , and NO, i.e.,

B = k!NINO(k − 1).

Claim 1. When all k! permutations are examined in Algorithm 1, the near-optimal allocation of

the computation budget is NI = 3 and NO = C/3 for some constant C.

Proof. Without loss of generality, assume we aim to minimize Var[Ŝh1]. The estimator Ŝh1 from

Algorithm 1 when we exhaust all k! permutations is

Ŝh1 =
1

k!

∑

π∈Π(K)

(ĉ(P1(π) ∪ {1}) − ĉ(P1(π))).

Since all costs are estimated independently,

Var[Ŝh1] =
1

(k!)2

∑

π∈Π(K)

(Var[ĉ(P1(π) ∪ {1})] + Var[ĉ(P1(π))]). (17)

30

Recall that

ĉ(P1(π)) = Ê[V̂ar[Y |X−P1(π)]] =
1

NO

NO∑

l=1

1

NI − 1

NI∑

h=1

(Y (l,h) − Ȳ (l))2,

where Y (l,h) = η
(
X

(l,h)
P1(π)

,X
(l)
−P1(π)

)
and Ȳ (l) = NI

−1∑NI

h=1 Y
(l,h). Letting V̂l =

(NI − 1)−1 ∑NI

h=1(Y
(l,h)− Ȳ (l))2, ĉ(P1(πℓ)) is simply a sample average of V̂1, V̂2, . . . , V̂NO

. Therefore,

Var[ĉ(P1(π))] = Var

[
1

NO

NO∑

l=1

V̂l

]

=
1

NO
Var[V̂l]

=
1

NO

(
E[Var[V̂l|X

(l)
−P1(π)

]] + Var[E[V̂l|X
(l)
−P1(π)

]]
)

=
1

NONI

(
E[M

(l)
4]−

NI − 3

NI − 1
E[(M

(l)
2)2] +NIVar[M

(l)
2]

)
, (18)

where M
(l)
2 and M

(l)
4 are 2nd and 4th central moments of Y (l,h) conditional on X

(l)
−P1(π)

. Notice

that because V̂l is a sample variance of Y (l,h) conditional on X
(l)
−P1(π)

, V̂l is an unbiased estimator of

M
(l)
2 = Var[Y (l,h)|X

(l)
−P1(π)

] conditional on X
(l)
−P1(π)

and we can use the variance expression provided

by Song and Nelson (2015) to derive (18). Given the budget B, C = NONI is constant. Hence, (18)

can be written as

1

C
E[M

(l)
4] +

1

C

(
−
NI − 3

NI − 1
E[(M

(l)
2)2] +NIVar[M

(l)
2]

)
. (19)

Therefore, NI that minimizes h(NI) = −(NI − 3)/(NI − 1)E[(M
(l)
2)2]+NIVar[M

(l)
2] also minimizes

Var[ĉ(P1(π))]. Assuming NI can take real values,

NI
⋆ = argmax

NI

h(NI) =





C, if Var[M
(l)
2] = 0,

min{1 +

√
2E[(M

(l)
2)2]/Var[M

(l)
2], C}, otherwise.

31

Therefore, the optimal integer-valued N⋆⋆
I that minimizes Var[ĉ(P1(π))] is

NI
⋆⋆ =





C, if NI
⋆ = C,

⌊NI
⋆⌋, if h(⌊NI

⋆⌋) ≤ h(⌈NI
⋆⌉)

⌈NI
⋆⌉, otherwise.

Hence, NI
⋆⋆ depends on E[(M

(l)
2)2] and Var[M

(l)
2]. In other words, it depends on the functional

structure of η(·) and the joint distribution GK. For instance, assume we have 2 inputs X1 and X2

which are jointly normally distributed with 0 means, Var[Xi] = σ2
i , and Corr(X1,X2) = ρ. If the

model is η(X1,X2) = X1+X2, then M
(l)
2 = Var[X

(l,h)
1 +X

(l)
2 |X

(l)
2] becomes constant, which makes

Var[M
(l)
2] = 0. Thus, NI

⋆⋆ = C. However, if η(X1,X2) = X1X2, then Var[M
(l)
2] 6= 0 and NI

⋆⋆ = 3.

Also, here we focused on minimizing Var[ĉ(P1(π))], however, it is not guaranteed that the same

setting of NI
⋆⋆ is optimal to minimize Var[ĉ(P1(π)∪{1})]. Moreover, each Xi may have a different

NI
⋆⋆ that minimizes Var[Ŝhi].

Nevertheless, we can show that Var[ĉ(P1(π))] is smaller whenNI = 3 than whenNI = 2 regardless

of η(·) as h(3) ≤ h(2). Also,
∂2

∂NI
2h(NI) ≥ 0 for all NI ≥ 2 regardless of η(·). This implies that even

if NI
⋆⋆ > 3, the gain from increasing NI from 3 decreases as NI increases. Hence, we recommend

NI = 3 and NO = C/3 to other settings.

The next applies to when k is large.

Claim 2. When the permutations are randomly sampled in Algorithm 1, the near-optimal allocation

of the computation budget is NI = 3, NO = 1, and m = C/3 for some constant C.

Proof. If k is large and therefore the permutations must be randomly sampled, then we need to

take m into account for the computation budget allocation. Unlike the previous case, the estimator

of Sh1 from Algorithm 1 is

Ŝh1 =
1

m

m∑

ℓ=1

(ĉ(P1(πℓ) ∪ {1}) − ĉ(P1(πℓ))).

32

where π1, π2, . . . , πm are i.i.d. permutations of k inputs. Therefore,

Var[Ŝh1] =
1

m
(Var[ĉ(P1(πℓ) ∪ {1})] + Var[ĉ(P1(πℓ))]), (20)

and Var[ĉ(P1(πℓ))] is decomposed as

Var[ĉ(P1(πℓ))] = Eπℓ
[Var[ĉ(P1(πℓ))|πℓ]] + Varπℓ

[E[ĉ(P1(πℓ))|πℓ]], (21)

where the outer expectation and variance on the right-hand side are taken with respect to the

random permutation πℓ. Notice that the conditional variance Var[ĉ(P1(πℓ))|πℓ] is the same as the

variance in (18) for the given πℓ. Also, given πℓ, ĉ(P1(πℓ)) is an unbiased estimator of c(P1(πℓ)).

Therefore, (21) becomes

Var[ĉ(P1(πℓ))]

=
1

NINO

(
Eπℓ

[
E[M

(l)
4 |πℓ]

]
−

NI − 3

NI − 1
Eπℓ

[
E[(M

(l)
2)2|πℓ]

]
+NIEπℓ

[
Var[M

(l)
2 |πℓ]

])
+Varπℓ

[c(P1(πℓ))]

=
1

NINO

(
E[M

(l)
4]−

NI − 3

NI − 1
E[(M

(l)
2)2] +NIEπℓ

[
Var[M

(l)
2 |πℓ]

])
+Varπℓ

[
E[M

(l)
2 |πℓ]

]
.

The last equation is from Definition (7) of the cost function c: c(P1(πℓ)) = E[Var[Y (l,h)|X
(l)
−P1(πℓ)

]] =

E[M
(l)
2 |πℓ]. Letting C = mNONI ,

1

m
Var[ĉ(P1(πℓ))] can be written as

1

C
E[M

(l)
4]−

1

C

(
NI − 3

NI − 1
E[(M

(l)
2)2]−NIE

πℓ

[
Var[M

(l)
2 |πℓ]

])
+

NINO

C
Var
πℓ

[
E[M

(l)
2 |πℓ]

]
. (22)

Hence, the optimal NO to minimize (22) is 1. Similar to the previous case, we can show that (22)

is smaller when NI = 3 than when NI = 2, which holds for any πℓ or any inputs other than X1.

Therefore, we recommend NI = 3, NO = 1, and m = C/3 in this case.

33

C. Jackson Network model

The inputs of the Jackson Network model in Section 5.1 are the daily order arrival rates, λ1, λ2, . . . , λ6,

of 6 types of products. The daily order arrival rates of workstations A–F in Figure 2 are

νA = λ1,

νB = 0.4λ1 + λ2 + λ3 + λ5,

νC = 0.3λ1 + 0.15λ4 + 0.15λ6,

νD = 0.6λ1 + 0.3λ4 + 0.3λ6,

(23)

νE = λ4 + λ6,

νF = 0.85λ4 + 0.85λ6 + 0.3λ1.

The expected job completion time of the network is

η(λ1, λ2, . . . , λ6) =





F∑

j=A

νj
µj − νj



×

24∑6
i=1 λi

,

where λA, λB , . . . , λF are given in (23) and µA, µB, . . . , µF are given in Section 5.1. Note that we

multiply by 24 to compute the job completion time in hours.

D. Fire-spread Model

The following set of equations, based on Rothermel’s fire-spread model (Rothermel, 1972), are used

for our experiments. The output of the model is the rate of the spread of the front point of a

fire, R. The inputs to the model are δ, σ, h, ρp,mℓ,md, ST , U, tan φ, and P , whose distributions

and descriptions are in Table 2. Generating the random variates of these inputs is described in

Section 5.2. All the other variables that appear in Equations (24)–(45) are intermediate. The

equations are sorted in the order they should be computed.

We adopted the modifications on (28) and (36) by Albini (1976) and (29), (30), and (31) by Catch-

pole and Catchpole (1991). Also, we conjectured (25), the relationship between the fuel loading

(w0) and the fuel depth (δ), from the fitted sigmoidal curve in Figure 1 of Salvador et al. (2001).

34

Note that the equations from Rothermel (1972) are in imperial units, whereas the inputs in Table 2

are in metric units. The conversion factors between two systems can be found in Van Wagner

(1978).

R =
IRξ(1 + φW + φS)

ρbεQig

Rate of fire spread, ft./min (24)

where:

w0 = 1/(1 + exp((15− δ)/2))/4.8824 Fuel loading, kgm−2 (25)

Γmax = σ1.5(495 + 0.0594σ1.5)−1 Maximum reaction velocity,min−1 (26)

βop = 3.348σ−0.8189 Optimum packing ratio (27)

A = 133σ−0.8189 (28)

θ⋆ = (301.4− 305.87(ml −md) + 2260md)/(2260ml) (29)

θ = min(1,max(θ⋆, 0)) (30)

µM = exp[−7.3Pmd − (7.3θ + 2.13)(1− P)ml] Moisture damping coefficient (31)

µS = 0.174S−0.19
T Mineral damping coefficient (32)

C = 7.47 exp(−0.133σ0.55) (33)

B = 0.02526σ0.54 (34)

E = 0.715 exp(−3.59× 10−4σ) (35)

wn = w0(1− ST) Net fuel loading, lb./ft.2 (36)

ρb = w0/δ Ovendry bulk density, lb./ft.3 (37)

ε = exp(−138/σ) Effective heating number (38)

Qig = 130.87 + 1054.43md Heat of preignition,B.t.u./lb. (39)

β = ρb/ρp Packing ratio (40)

Γ = Γmax(β/βop)A exp[A(1− β/βop)] Optimum reaction velocity,min−1 (41)

ξ = (192 + 0.2595σ)−1 exp[(0.792 + 0.681σ0.5)(β + 0.1)] Progating flux ratio (42)

φw = CUB (β/βop)
−E

Wind coefficient (43)

φS = 5.275β−0.3(tanφ)2 Slope factor (44)

IR = ΓwnhµMµS Reaction intensity,B.t.u./ft.2min (45)

35

