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Abstract

We consider optimizing the expected value of some performance measure of a dynamic stochastic

simulation when the decision variables are discrete, in particular integer-ordered, and the number of

feasible solutions is very large. Our goal is to have inference like the correct-selection guarantee of

ranking and selection without having to simulate all feasible solutions. To accomplish this we learn

and exploit spatial relationships among the decision variables and objective function values within

a discrete optimization via simulation (DOvS) framework based on Gaussian Markov random fields

(GMRFs). Gaussian random fields on continuous domains are already used in deterministic and

stochastic optimization because they facilitate the computation of measures like expected improve-

ment (EI) that balance exploration and exploitation. We show that GMRFs are particularly well

suited to the DOvS problem, both from a modeling and a computational perspective. Specifically,

GMRFs permit the definition of a sensible neighborhood structure, and they are defined by their

precision matrices which can be constructed to be sparse. We also introduce a new EI criterion

that more fully accounts for the spatial relationships as they are learned. Using this framework we

create both single and multiresolution algorithms, prove their asymptotic convergence, and evaluate

their finite-time performance empirically.
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1 Introduction

Optimization plays a central role in operations research. For many important stochastic optimiza-

tion problems that occur in practice, the objective function cannot be evaluated exactly and instead

must be estimated using simulation. For example, if we are interested in minimizing the expected

waiting time for an arbitrary customer contacting a call center that has constraints on its service

budget, and the structure of the call center makes the expected waiting time mathematically in-

tractable, then customer waiting times for any particular staffing assignment must be simulated.

Problems such as this are commonly referred to as optimization via simulation (OvS). OvS prob-

lems in which the decision variables can only assume discrete values are called discrete optimization

via simulation (DOvS) problems, and they present particular challenges. In this paper, we focus

on DOvS with integer-ordered decision variables.

Due to its practical importance, DOvS has been an active area of research for many years,

and the literature on DOvS is plentiful. Remarkable theoretical and practical success has been

achieved using exhaustive search algorithms known collectively as ranking and selection (R&S).

R&S algorithms simulate all feasible solutions and terminate with either a guaranteed probability

of correct selection (frequentist) or posterior assessment of the relative quality of the selected

solution (Bayesian); see Kim [2013] and Frazier [2012], respectively, for surveys. These guarantees

or assessments are comforting because even when all feasible solutions are simulated it is not

possible to promise optimality in finite time except in very special cases.

When the number of feasible solutions is too large to exhaust, then many DOvS algorithms

fall into the category of adaptive random search (ARS). ARS algorithms contain a mixture of both

local and global searching in an effort to explore favorable areas of the feasible region in depth (local

searching), while continuing to explore other areas of the feasible region to avoid getting trapped

at a poor local optimum (global searching). These algorithms attempt to leverage, at least in an

informal way, anticipated spatial structure such as “the decision-variable values of good feasible

solutions tend to be clustered.” ARS algorithms are usually proven to be either globally or locally

convergent as the simulation effort increases without bound, and they may be augmented with

a R&S algorithm to provide either a statistical guarantee of selecting the best solution actually

simulated, or of local optimality. See, for example, the survey in Nelson [2010].
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In this paper we provide a DOvS framework to learn spatial relationships, to balance exploration

and exploitation, and to facilitate a stopping criterion that considers the uncertainty at feasible

solutions that have and have not been simulated for very large-scale problems. Loosely speaking,

we want efficient search with R&S-like conclusions when we stop. We will represent the objective-

function response surface as a Gaussian random field (GRF), because GRFs support assessments of

the benefit of expending simulation effort in various ways, and statistical inference on the potential

of unseen solutions. GRF-based optimization methods were introduced for deterministic computer

experiments in Jones et al. [1998], followed by Huang et al. [2006] which considered computer

experiments with noisy output. Recently, Frazier et al. [2011] and Quan et al. [2013] created

GRF-based optimization methods for DOvS. Other GRF-based methods include Xu [2012], which

combines ARS with stochastic kriging [Ankenman et al., 2010] to help increase the efficiency of

the ARS method, and Gaussian process-based search [Sun et al., 2011], which uses the GRF to

create a sampling distribution that favors feasible solutions likely to be optimal. All of these

methods use a GRF with a continuous domain and then project the problem into the discrete

setting. Unfortunately, the standard covariance functions for continuous domains lead to a dense

covariance matrix, and the inverse of this matrix is used for fitting the GRF and generating inference

that guides the search. Therefore, these methods can be poorly suited for large-scale problems with

many feasible solutions due to slow and ill-conditioned numerical computations.

A central contribution of this paper is introducing a GRF that is appropriate for the DOvS

problem. Specifically, we model the objective function values at the feasible solutions as a realization

of a discrete Gaussian Markov random field (GMRF) [Rue and Held, 2005]. The Markov structure

of GMRFs is intuitive for problems in operations research [Salemi et al., 2013]. For example, if we

are interested in predicting the value of the objective function at a feasible solution, then the values

of the objective function at the feasible solutions in a neighborhood of it would often be sufficient;

other feasible solutions would provide little additional information. This type of structure can be

represented in a GMRF, and the neighborhood is user selected. Further, GMRFs can be defined

on a lattice so the use of GMRFs in DOvS problems is more natural than using a GRF with a

continuous domain. Most importantly, the Markov structure lends itself to efficient and numerically

stable calculations for large-scale problems. The dependence in a GMRF is defined by its precision

matrix, which is the inverse of the covariance matrix. Using the Markov structure of GMRFs, the
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precision matrix can be constructed to be sparse. Thus, we can use sparse matrix techniques to

calculate expressions that involve the precision matrix.

A second contribution is to establish an appropriate expected improvement (EI) guidance and

stopping criterion. Jones et al. [1998] first introduced EI for optimization problems with deter-

ministic computer experiments. In their setting the objective function can be observed without

noise, so their EI criterion does not incorporate the uncertainty in the output from a stochastic

simulation. Huang et al. [2006] and Quan et al. [2013] proposed other EI criteria for the case of

noisy output; however, both criteria treat the value at the current sample-best solution as fixed

instead of as a random variable. We propose an EI criterion similar to that of Williams et al.

[2000], which we call complete expected improvement (CEI). CEI incorporates the uncertainty in

stochastic simulation by treating the value at the current sample-best solution as a random variable,

just like the values of the feasible solutions being considered to improve it. The main difference

between the EI of Williams et al. [2000] and our CEI is the origin of the uncertainty. Williams

et al. [2000] consider deterministic computer experiments with uncertainty introduced by inputs

that contain noise, whereas our uncertainty is introduced by the stochastic noise in the simulation

output. Similar to EI, the Knowledge Gradient (KG) policy [Frazier et al., 2009] can also be used to

guide the allocation of simulation effort and automatically regulate the exploration vs. exploitation

trade-off. However, the KG policy evaluates the benefit of running additional replications at a

feasible solution, whereas EI estimates how much better the unknown true value of another feasible

solution is with respect to the current sample-best solution. This is important because we use the

CEI not only for search guidance, but also to decide when we have sufficiently searched the feasible

region: we stop when the CEI is too small to warrant more searching.

Although our GMRF framework facilitates the use of sparse matrix techniques that support

algorithms for large numbers of feasible solutions, there will nevertheless be a computational limit

on the size of problem we can handle directly. A third contribution of this paper is to extend to the

GMRF approach to a multiresolution framework that can be used to solve DOvS problems with vast

numbers of solutions. The multiresolution framework exploits a region-level GMRF to learn about

the quality of disjoint regions of the solution space, and solution-level GMRFs to learn about the

quality of individual feasible solutions within each region.

The paper presents both a GMRF framework within which algorithms can be designed, and spe-
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cific solution-level and multiresolution DOvS algorithms. The algorithms are shown to converge to

a globally optimal solution as simulation effort increases without bound under very mild conditions

(essentially finite variance). More importantly, however, these algorithms can terminate well short

of infinite effort with statistical assurance of having discovered an optimal or near-optimal solution;

this inference depends on the GMRF assumptions.

In the next section we present the GMRF framework, which includes defining GMRFs and

explaining how they can represent a DOvS problem. Section 3 details a specific solution-level

DOvS algorithm, including parameter estimation and sparse matrix calculation techniques. For

problems with vast numbers of feasible solutions, we extend the framework to a multiresolution

algorithm in Section 4. Results of numerical experiments are found in Section 5, and a brief

summary is provided in Section 6.

2 A Framework for DOvS using GMRFs

A GMRF is a non-degenerate multivariate Gaussian random vector Y = (Y1, Y2, . . . , Yn)> that is

associated with an undirected and labeled graph G = (V , E), where V denotes the set of nodes and

E denotes the set of edges; see Rue and Held [2005]. Each node in V is associated with a unique

element of Y. Two nodes in the graph are called neighbors if they are connected by an edge. If we

denote the mean vector and precision matrix of Y by µ and Q, respectively, then we can write the

probability density function of the GMRF as

(2π)−n/2|Q|1/2 exp

(
−1

2
(y − µ)>Q (y − µ)

)
,

where the positive-definite precision matrix Q is the inverse of the covariance matrix. The diagonal

entries of the precision matrix are the conditional precisions

Prec(Yi|YV\{i}) = Qii, (1)

where YV\{i} is the vector of values of the GMRF observed only at the nodes V \ {i}. The scalar

precision Qii is the reciprocal of the conditional variance. The off-diagonal elements are proportional
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Figure 1: A portion of two graphs G = (V , E) corresponding to a subset of the integer lattice Z
2

with the constraint x1 < x2 and illustrating the neighborhoods N (x) (left) and N+(x) (right).

to conditional correlations, specifically

Corr(Yi, Yj|YV\{i,j}) = − Qij√
QiiQjj

,

where YV\{i,j} is the vector of values of the GMRF observed only at the nodes V \{i, j}. The graph

G determines the non-zero pattern of the precision matrix Q, and vice versa, since for a GMRF

Qij 6= 0 if and only if {i, j} ∈ E . Thus, the precision matrix will be sparse if the set of edges is small

in size, and vice versa. GMRFs are “Markov” because they possess the local Markov property:

Yi ⊥ YV\{i,N (i)}|YN (i) for every i ∈ V ,

where N (i) is the set of neighbors of node i in G; that is, N (i) = {j : {i, j} ∈ E}.

To better understand the local Markov property, consider the left-hand graph G in Figure 1,

which represents a portion of a feasible region where the nodes correspond to solutions x> = (x1, x2)

with constraint x1 < x2. If we observe the values of the GMRF at x = (0, 3), (1, 4), (2, 3) and

(1, 2), then our prediction of the value of the GMRF at (1, 3) is not affected by information about

the GMRF at any other lattice point in the graph. The Markov property does not imply that

nodes far away from one another are independent, however, but rather that if we know the value of

the GMRF at nodes close by, then we can ignore nodes farther away conditional on those values.

To completely specify a GMRF we only need to specify the mean µ and the precision matrix Q,

whose non-zero pattern is associated with the structure of the graph G.
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2.1 A Precision Matrix for DOvS

In a DOvS problem with integer-ordered decision variables, the feasible region X is a finite subset of

the d-dimensional integer lattice Z
d. Thus, the straightforward construction of the graph G = (V , E)

starts with defining the nodes of the graph V to be X . To finish the construction of G, we must

specify the neighborhood structure for any given node/solution.

Two sensible neighborhoods for a solution x ∈ X are N (x) = {x′ ∈ X : ||x− x′||2 = 1}, which

has an upper bound of 2d neighbors in d dimensions, and N+(x) = {x′ ∈ X : ||x − x′||∞ = 1},

which has an upper bound of 3d − 1 neighbors in d dimensions. Both are illustrated in Figure 1 for

d = 2.

Since we are particularly interested in DOvS problems with large feasible regions, and because

(roughly speaking) the more sparse Q is the larger the DOvS problems we can solve, our algorithm

will use the neighborhood structure N (x). For this neighborhood |E| ≤ 2d|X |, and thus the fraction

of non-zero entries in the precision matrix Q is bounded from above by 2d/|X |, which is very small

for large problems. Although we assume this specific neighborhood for efficient computations, our

GMRF framework allows any neighborhood structure and our convergence proof does not depend

on it.

Defining the graph G, and thus the non-zero pattern of the precision matrix, does not specify

the values of the non-zero entries of Q. A standard approach is to have the entries of Q given by

a function p(x, x′; θ), where θ is a vector of parameters; i.e., Qij , p(xi, xj; θ). As one possible

parameterization for the neighborhood N (x), we propose θ = (θ0, θ1, θ2, . . . , θd)
> and

p(x, x′; θ) =






θ0, if x = x′

−θ0θj, if |x− x′| = ej

0, otherwise

(2)

for x, x′ ∈ Z
d, where ej is the jth standard basis vector. Recall that Qii is the conditional precision

of solution i, and −Qij/
√

QiiQjj is the conditional correlation between solutions i and j. Thus, θ0

is the conditional precision of each solution, and θj is the conditional correlation between solutions

that differ by 1 in the jth coordinate direction. That the conditional correlations can depend on

the coordinate direction is important to allow for response surfaces that change more rapidly in
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one direction as compared to another.

Since the conditional precisions must be positive, it follows that θ0 > 0. We also want neighbors

to have non-negative conditional correlations, so we restrict the values of θ1, θ2, . . . , θd to be non-

negative as well. Furthermore, we need θj ≤ 1 for j = 1, 2, . . . , d, since the conditional correlations

must be less than one. Lastly, Q should be positive-definite. We will use these restrictions later

in Section 3.2 when we calculate the maximum likelihood estimates of the parameters. With this

parameterization and these restrictions, Q is a non-singular M -matrix so its inverse is nonnegative,

i.e., [Q−1]ij ≥ 0 for all i and j. In other words, there are no negative unconditional correlations

among nodes in the GMRF, which is a property that makes sense in many DOvS problems.

Our function p leads to a nonstationary GMRF because the unconditional variances of feasi-

ble solutions with more neighbors are larger than the variances of feasible solutions with fewer

neighbors. We are not concerned with the nonstationarity of the GMRF since we only use the

conditional variance, given the observed simulation output, in our framework. We write Q(θ) to

explicitly show the dependence of the precision matrix on the parameters.

2.2 A GMRF Representation of DOvS

We consider the DOvS problem minimize y(x) , E[Y (x)] subject to x ∈ X , where X is a finite

subset of the d-dimensional integer lattice Z
d and n , |X |. The distribution of the random variable

Y (x), as a function of the feasible solution x, is unknown. However, the expectation y(x) , E[Y (x)]

can be estimated using stochastic simulation. More formally, for any feasible solution x we are able

to observe

Yj(x) = y(x) + εj(x) (3)

on replication j = 1, 2, . . . , where {εj(x)} are i.i.d. with mean 0 and finite variance that may depend

on x. Below we will also assume that the εj(x) are normally distributed. While we assume the

ability to make replications in this paper, a single-run steady-state simulation setting could be

accommodated with, say, batch means playing the role of Yj(x).

Let y denote the vector of objective function values (y(x1), y(x2), . . . , y(xn))>. Of course y is
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unknown, so we model it as a realization of the GRF

Y , (Y(x1), Y(x2), . . . , Y(xn))
> ∼ N (µ, Q(θ)−1) (4)

with mean vector µ and precision matrix Q(θ), as defined above.

Similar to virtually all methods for optimization based on GRFs, the essence of our approach

is to use the conditional distribution of the GMRF after having simulated some feasible solutions

as the guidance and inference engine for our search. Throughout the paper we will use the term

“design point” to refer to a feasible solution x that has been simulated for any non-zero number of

replications, and we will use the terms “point” and “feasible solution” interchangeably. Therefore,

we are interested in the conditional distribution of the GMRF given simulation output at the design

points.

Let Ξ2 ⊆ X denote the current set of design points and partition X into the two disjoint sets

Ξ2 and Ξ1 = X \ Ξ2. Thus, Ξ2 is the set of feasible solutions that have been simulated, and Ξ1

is the set of feasible solutions that have not. For simplicity, we use “1” as a subscript to denote

quantities associated with the set Ξ1 and “2” as a subscript to denote quantities associated with

the set Ξ2. For instance, n1 = |Ξ1| and n2 = |Ξ2| are the numbers of solutions in each set.

Using these disjoint sets, we can partition the vectors y, Y, µ, and the precision matrix Q(θ),

and rewrite expression (4) as

(
Y1

Y2

)
∼ N




(

µ1

µ2

)
,




Q11(θ) Q12(θ)

Q12(θ)> Q22(θ)





−1

 .

Let Ȳ2 be the vector of sample means of the simulation output at the design points. Consistent

with the output model (3), we represent Ȳ2 as a realization of the GMRF Y
ε
2 = Y2 + ε, with Y2

and ε independent, and

ε ∼ N (~0n2×1, Q
−1
ε ), (5)

where the matrix Qε, called the intrinsic precision matrix, is the precision matrix of the noise

inherent to the stochastic simulation output Ȳ2. When we simulate design points independently,

Qε is a diagonal matrix, whereas when we simulate with common random numbers (CRN), Qε is a
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dense matrix. The values in Qε also depend on how many replications have been averaged, which

need not be the same at all design points.

In Appendix A we show that the conditional distribution of Y given Y
ε
2 = Ȳ2 is

N
((

µ1

µ2

)
+ Q̄(θ)−1

(
~0n1×1

Qε(Ȳ2 − µ2)

)
, Q̄(θ)−1

)

, (6)

where

Q̄(θ) ,




Q11(θ) Q12(θ)

Q12(θ)> Q22(θ)



+




0n1×n1

0n1×n2

0>
n1×n2

Qε





is the conditional precision matrix, and 0ni×nj
is the ni ×nj matrix of zeros. The sparsity of Q̄(θ)

is inherited directly from the sparsity of Q(θ) and Qε. Furthermore, as will be discussed in Section

3.3, we can avoid direct inversion of Q̄(θ) by solving a sparse linear system whose coefficient matrix

is the sparse matrix Q̄(θ).

2.3 Complete Expected Improvement

The EI criterion we introduce in this paper takes into account both the uncertainty at a candidate

feasible solution x and the uncertainty at the current sample-best solution x̃, the design point with

the smallest sample mean value, by treating both as random variables. Let Y(x) be the Gaussian

random variable from the GMRF Y corresponding to the feasible solution x.

Given the simulation output Ȳ2, the conditional joint distribution of Y(x̃) and Y(x) is bivariate

normal; it can be found from the rows and columns of Equation (6) corresponding to x̃ and x.

Denote the conditional means by M(x̃) and M(x), the conditional variances by V (x̃) and V (x),

and the conditional correlation by ρ(x̃, x). Let

V (x̃, x) , V (x̃) + V (x)− 2ρ(x̃, x)
√

V (x̃)V (x)

be the variance of the difference Y(x̃)−Y(x). Then the CEI of the feasible solution x, denoted by
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CEI(x), is defined as

CEI(x) , E
[
max {Y(x̃) − Y(x), 0}|Ȳ2

]

= (M(x̃) − M(x))Φ

(
M(x̃) − M(x)√

V (x̃, x)

)
+
√

V (x̃, x)φ

(
M(x̃) − M(x)√

V (x̃, x)

)
, (7)

where φ and Φ are the density and cumulative distribution function, respectively, of a standard

normal random variable. We can use the expression for EI in Jones et al. [1998] to derive (7), by

noting that conditional on Ȳ2 the difference Y(x̃)−Y(x) is a Gaussian random variable with mean

M(x̃) − M(x) and variance V (x̃, x).

From the analysis in Jones et al. [1998], we know that CEI(x) is increasing in both M(x̃)−M(x)

and V (x̃, x). Since CEI(x) is increasing in M(x̃)−M(x), CEI(x) is decreasing in M(x). Therefore,

solutions with smaller conditional means will tend to have larger CEIs. As the conditional correla-

tion coefficient ρ(x̃, x) decreases, with V (x̃) and V (x) held constant, V (x̃, x) increases. Similarly,

as V (x) increases with ρ(x̃, x) and V (x̃) held constant, V (x̃, x) increases. Feasible solutions that

are far away from x̃ will tend to have smaller values of ρ(x̃, x), and feasible solutions that are

far away from the design points will tend to have larger values of V (x). Thus, feasible solutions

that are far away from x̃ or far away from the design points will tend to have large CEIs. The

solutions near x̃, on the other hand, tend to have smaller means but larger values of ρ(x̃, x). The

CEI criterion balances these factors.

By treating both the values at the current sample-best solution x̃ and the candidate feasible

solution x as random variables, we take into account their conditional correlation ρ(x̃, x). Thus,

CEI is a more comprehensive assessment than other EI measures proposed for stochastic simulation.

3 A Solution-Level Algorithm

In this section we present an instance of our framework, the Gaussian Markov Improvement Al-

gorithm (GMIA). We refer to it as a “solution-level algorithm” because the nodes of the GMRF

correspond to individual feasible solutions x, and we employ the neighborhood structure N (x) de-

scribed in Section 2.1. An outline is given in Section 3.1, followed by estimation of the parameters

of the GMRF in Section 3.2. We then present a method for efficiently calculating the conditional
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distribution (6) using sparse matrix techniques in Section 3.3. GMIA represents specific choices that

we have made and found effective, but additional enhancements, other neighborhood structures,

and fine-tuning using known properties of a specific problem, and are certainly possible. Even using

sparse matrix techniques, |X | can be so large that direct application of GMIA is computationally

impossible. To address such cases we describe a multiresolution algorithm in Section 4 that exploits

a region-level GMRF, as well as solution-level GMRFs.

3.1 GMIA Outline

GMIA utilizes the CEI to search for solutions to simulate, and terminates when the CEI drops below

a specified threshold δ. This stopping criterion has been suggested in other EI-based methods, such

as Huang et al. [2006].

GMIA

0. Generate a set of ks design points. Simulate r replications for each design point and use

the simulation output to calculate the maximum likelihood estimates (MLEs) for the GMRF

parameters using the method in Section 3.2 and Appendix B.

1. Let x̃, the current sample-best solution, be the design point with the smallest sample mean.

2. Calculate the CEI with respect to x̃, defined in Section 2.3, for each candidate feasible solution.

If the maximum CEI is less than δ, then go to Step 5. Otherwise, go to Step 3.

3. Simulate r replications at both x̃, and the candidate feasible solution x∗
CEI that maximizes

the CEI over the set of all candidate feasible solutions.

4. Update the simulation output at x̃ with the new replications. If x∗
CEI is a design point then

update the simulation output at x∗
CEI and go to Step 1. If x∗

CEI is not a design point, then add

x∗
CEI to the set of design points, add the simulation output obtained at x∗

CEI to the collection

of simulation output, and go to Step 1.

5. Return x̃ as the estimated optimal solution.

The inputs to the algorithm are the initial number of design points ks, the number of replications

to be allocated each time a solution is simulated r (which need not be constant and can be adaptive
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provided r > 0), and the CEI improvement threshold δ. We treat δ like the indifference-zone

parameter in R&S by interpreting it as the smallest practically significant difference in solution

quality that concerns us.

Although the parameters µ, θ of the GMRF must be estimated initially (as described below),

they do not need to be re-estimated each time we obtain additional simulation output. In fact,

results in Diggle et al. [2010] show that a detrimental bias can be introduced in MLE-based param-

eter estimates when design points are selected using “preferential sampling,” which means selecting

design points that are expected to be associated with good regions of the response surface. This

suggests that the initial number of design points ks should not be too small, and should be se-

lected to fill the feasible region to obtain good parameter estimates that need not be updated. Our

experience supports this approach.

3.2 Parameter Estimation

A GMRF is defined by its mean vector and precision matrix, and we have made the precision matrix

a function of a vector of parameters θ. For the mean vector we assume that µ = (β0, β0, . . . , β0)
>;

i.e., we assume a constant mean, which is appropriate when we have no prior information about

the objective function values at the feasible solutions. If, for instance, a parametric trend model is

known to be valid, such as µ(x) = g(x)>β, then its incorporation is straightforward.

We use MLEs for parameters β0 and θ based on the simulation output. Following Ankenman

et al. [2010], we use a plug-in estimator Q̂ε for the intrinsic precision matrix Qε. We use independent

simulation across solutions, giving a diagonal intrinsic precision matrix, because CRN leads to a

dense intrinsic precision matrix, negating the sparsity of Q̄(θ) and therefore inhibiting our ability

to solve large-scale DOvS problems (but not compromising the validity of the algorithm). Of

course, CRN is known to yield sharper comparisons, so we revisit this choice later in our empirical

evaluation. In Appendix B we provide details about how the MLEs may be obtained.
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3.3 Calculating the Conditional Distribution and CEI

Substituting the plug-in estimate for the intrinsic precision matrix and the MLEs for the parameters

of the GMRF into the conditional distribution (6), we obtain the estimated conditional distribution

N
(

β̂0(θ̂)1n×1 + Q̄(θ̂)−1

( ~0n1×1

Q̂ε(Ȳ2 − µ2)

)
, Q̄(θ̂)−1

)

(8)

where

Q̄(θ̂) ,




Q11(θ̂) Q12(θ̂)

Q12(θ̂)> Q22(θ̂)



+




0n1×n1

0n1×n2

0>
n1×n2

Q̂ε



 .

In this conditional distribution, we ignore the variability that is added from estimating β0, so the

conditional covariance matrix is still Q̄(θ̂)−1.

The computationally expensive calculation required to compute the conditional distribution is

the inversion of the matrix Q̄(θ̂). The computational complexity of inverting a dense n×n matrix

is, in general, O(n3). One goal of sparse matrix techniques is to get this down to something close

to O(n2). Here is one way that this can be achieved in our setting.

A red-black coloring of a graph G is possible when the nodes V can be assigned either the color

red or black in such a way that no two neighbors, as defined by the edges E , share the same color. A

red-black ordering renumbers the nodes with the reds first, then the blacks, to obtain the permuted

matrix 


Q̄rr(θ̂) Q̄rb(θ̂)

Q̄rb(θ̂)> Q̄bb(θ̂)



 . (9)

Figure 2 illustrates the red-black coloring and ordering for the example in Figure 1. The reordered

precision matrices Q̄rr(θ̂) and Q̄bb(θ̂) will be diagonal, while Q̄rb(θ̂) will be sparse. This permuted

matrix is very amenable to techniques like sparse Cholesky factorization; for instance, the Matlabr

function chol adjusts for matrix sparsity [Chen et al., 2008]. Our key insight is that a red-black

coloring is always possible for the neighborhood N (x) in any dimension, which is one reason that

we exploit it. Although this particular method depends on the neighborhood N (x), there are other

sparse matrix methods that can be employed for more general neighborhoods; see, for instance,

Saad [2003] and Chen [2005].

Conditional means and covariances from the distribution (8) are needed in each iteration of
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Figure 2: Red-black coloring and relabeling of the graph G = (V , E) from Figure 1.

GMIA to calculate the CEIs, and of course Q̄(θ̂) changes as more solutions are simulated. Once

Q̄(θ̂)−1 is computed in approximately O(n2), there are an additional O(nn2) operations to compute

the conditional means, where n2 is the current number of design points and typically n2 � n.

As a basis for comparison, consider using a Gaussian process model that is defined on a contin-

uous domain, such as the stochastic kriging method of Ankenman et al. [2010], but only evaluating

it at the integer solutions x. In this case only the covariance matrix of the design points needs to

be inverted, which will be dense and therefore require O(n3
2) operations. However, the computation

of the conditional means is O(nn2
2), and the computation of the conditional covariances between

all solutions is O(n2n2). Therefore, we can expect GMIA to be practical for significantly larger

problems, and the multiresolution algorithm described in Section 4 extends its reach even further.

3.4 Asymptotic Convergence of GMIA

GMIA exploits the GMRF framework to terminate when the expected improvement from additional

searching is small. In this section we show that under very mild conditions GMIA, without any

stopping condition, converges with probability 1 to a globally optimal solution. This result does not

depend in any way on the validity of the GMRF framework, but only on the following assumptions:

1. y(x) > −∞ for all x ∈ X .

2. 0 < Var[Y (x)] < +∞ for all x ∈ X .

3. The initial estimated precision matrix Q(θ̂) is positive definite and is not updated thereafter.
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In Appendix C we prove the following theorem:

Theorem 1. The GMIA algorithm without a stopping condition simulates each solution x ∈ X

infinitely often with probability 1 as the number of iterations goes to infinity.

As a consequence of Theorem 1, the fact that the number of feasible solutions n is finite, and

that the estimated optimal solution is the simulated solution with the smallest sample mean, the

asymptotic convergence of GMIA follows by the strong law of large numbers.

Theorem 1 does not depend on our chosen neighborhood structure being “correct,” nor does

it depend on having “good” parameter estimates for the GMRF. In fact, the result will hold with

any neighborhood and GMRF parameterization that satisfies Assumption 3. The efficiency of the

CEI computations, and the validity of the CEI inference, will be improved by good choices and

estimates, however. Further, we can relax Assumption 3 and allow µ̂ and θ̂, and therefore Q(θ̂),

to be updated a finite number of times.

4 The Multiresolution Framework and Algorithm

The core problem in DOvS is balancing exploration and exploitation. Gaussian-process-based opti-

mization obtains this balance by incorporating measures like EI to guide the search. Unfortunately,

to fully benefit from this approach we a need to compute an EI measure for every feasible solution

on every iteration. There will always be feasible regions X that are too large for this to be possible.

What constitutes “too large” depends on a number of implementation-specific and problem-specific

factors.

In this section we show that our GMRF framework lends itself to a powerful multiresolution

extension: We first partition X into m disjoint regions P1,P2, . . . ,Pm, where each region is subset

of X that is connected in the graph G. Then we let the nodes of a region-level GMRF represent

a measure of the overall solution quality within each region, with a neighborhood structure again

defined by proximity (i.e., adjacent regions). The region-level GMRF provides global guidance by

facilitating a CEI comparison among regions. As in the previous section, the quality of individual

solutions within a region Pj is represented by a solution-level GMRF, except that the GMRFs for

Pj and P` for j 6= ` are assumed to be independent.
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Figure 3: Illustration of a region-level GMRF and four solution-level GMRFs in two dimensions.

In this framework the solutions across regions are connected by the region-level GMRF, rather

than by their neighboring individual solutions, and the solutions within a region are connected

by their solution-level GMRF. We want the regions to have a large number of feasible solutions,

to make the independence approximation reasonable, but not so many that we cannot efficiently

calculate the CEI for each individual solution within a region. Further, it is beneficial (but not

required) that the regions be of similar shape and contain a similar number of feasible solutions.

Figure 3 shows a (very small) region-level and four solution-level GMRFs of a rectangular feasible

region for (x1, x2). Conceptually, we are not limited to just two resolutions: a GMRF for regions of

regions could also be defined. Fortunately, region-level and solution-level GMRFs will be sufficient

for many problems of practical interest.

In the multiresolution framework the region-level GMRF describing the quality and spatial

structure of regions has its own mean and precision matrix, as described below. The solution-level

and the region-level GMRFs work together to balance exploration and exploitation, and terminate

when the joint CEIs fall below a threshold. The specific multiresolution algorithm described in

this section is a first step toward realizing this general framework. For an alternative approach

that manages the computational burden by heuristically choosing only a small subset of candidate

feasible solutions from X for which to calculate solution-level CEIs, see Salemi et al. [2014].
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The response associated with the region P` is

z(P`) = |P`|−1
∑

x∈P`

y(x).

That is, the measure of region-level quality z(P`) is the average of the objective-function values of

all solutions in P`. Similar to the solution-level GMRF, we model z = (z(P1), z(P2), . . . , z(Pm))>

as a realization of a region-level GMRF

Z , (Z(P1), Z(P2), . . . , Z(Pm))> ∼ N (η, T(τ )−1)

with mean vector η and precision matrix T(τ ) as a function of parameters τ , which are analogous

to µ, Q(θ), and θ at the solution level. Similar to the solution-level GMRF, our main interest is

to find the conditional distribution of Z given observations from design regions.

Let P = {P1,P2, . . . ,Pm} denote the set of region-level “feasible solutions.” A “design region”

P` is any region for which at least one of its feasible solutions x has been simulated; that is, there

exists x ∈ P` such that x ∈ Ξ2. The set of design regions is denoted by Π2, and Π1 = P\Π2. We

can partition z, Z, η, and T(τ ) using Π1 and Π2 as we did at the solution level. Within design

region P`, let Ξ2(P`) ⊆ P` be the set of feasible solutions in P` that have been simulated, and let

Ξ1(P`) = P`\Ξ2(P`). See Appendix D for a complete specification of the region-level GMRF.

For the solution-level GMRFs, we may choose to fit a different set of parameters for each

region—µ` and θ` for P`—or assume all regions share the same solution-level parameters µ and

θ, which substantially reduces the computation for parameter estimation. We employ the latter

approach.

On each iteration of the algorithm below, we select three regions in which to run simulations: (i)

design region Pmin that contains the solution with the smallest sample mean among all simulated

solutions in X , (ii) design region P̃ that has the smallest region-level estimator Z̄(P`) among P` ∈ Π2

(see Appendix D), and (iii) region P?
CEI that has the largest region-level CEI among all regions

in P . Since it is possible that Pmin is the same as P̃ or P?
CEI, we may only select two regions on

some iterations. Notice that P?
CEI may be a region in which no solution has yet been simulated,

in which case we simulate ks initial design points from P?
CEI. For Pmin and P̃ , and for P?

CEI if it
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already is a design region, we apply the same method as in the GMIA algorithm: at each iteration,

we simulate two solutions, the solution with the smallest sample mean and the solution with the

largest solution-level CEI in that region.

MR-GMIA

0. Choose kr regions as design regions. For each design region, choose ks design points. Simulate

r replications for each design point and use the simulation output to calculate the MLEs for

the region-level and the solution-level GMRF parameters using the method in Section 3.2 and

Appendix B.

1. Let Pmin be the design region that contains the solution with the smallest sample mean among

all simulated solutions. Let P̃ be the design region with the smallest Z̄(P`) among P` ∈ Π2.

2. Estimate the region-level CEI with respect to P̃ for each region in P . Let P?
CEI be the region

with the largest region-level CEI.

3. If P?
CEI is not a design region, then perform Step 3a for P?

CEI and Step 3b for each of Pmin

and P̃. Otherwise, perform Step 3b for each of P?
CEI,Pmin and P̃ .

(a) Sample ks design points within the region and simulate r replications at each solution.

(b) Select two solutions in each region, the solution with the smallest sample mean and

the solution with the largest solution-level CEI, and simulate r replications from each

solution.

4. Update the solution-level GMRFs of Pmin, P̃, and P?
CEI using the replications obtained from

the selected solutions in Step 3. Update the region-level GMRF.

5. If P?
CEI was not a design region, then go to Step 1. Otherwise, go to Step 6.

6. If the region-level CEIs of all regions calculated in Step 2 as well as the solution-level CEIs

of all solutions calculated in Step 3b are less than the threshold δ, then return the solution

with the smallest sample mean as the estimated optimal solution. Otherwise, go to Step 1.
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5 Numerical Experiments

In this section we apply GMIA and MR-GMIA to two problems to evaluate various aspects of their

performance. The first is an inventory optimization problem that exhibits behavior like a practical

DOvS problem. This problem is small enough that we can compare GMIA, MR-GMIA and a R&S

procedure that exhausts all feasible solutions. The second problem is obtained by adding noise to

a difficult response function; we use this problem to study the performance of MR-GMIA as we

move from 10,000 to 1,000,000 feasible solutions.

5.1 (s, S) Inventory Problem

The objective function for the (s, S) inventory problem suggested in Koenig and Law [1985] is the

expected average cost per period of the inventory system over 30 periods. We assume the demand

for inventory in each period is a sequence of i.i.d. Poisson random variables with a common mean of

25. The order and unit shipping costs are $32 and $3, respectively. Furthermore, the holding cost

is $1 per unit, per period, and the back-order cost is $5 per unit, per period. To obtain a simple

rectangular feasible region as in Figure 3, we chose our decision variables to be s and S − s, where

the feasible region is defined by constraints, 1 ≤ s ≤ 100 and 1 ≤ S−s ≤ 100, which leads to 10,000

feasible solutions. The estimated optimal solution to this DOvS problem is s = 18 and S − s = 35

with an expected average cost per period of $106.17 based on 1 million replications of Monte Carlo

simulation at each feasible solution. We assume the minimum difference in the objective function

that is worth detecting is δ = $1, which is used for the stopping criterion in our algorithms.

We first ran GMIA on the problem with ks = 20 initial design points in the feasible region

selected by Latin hypercube sampling. For each design point, we simulated r = 10 replications and

computed MLEs from the simulation output. MLEs were calculated only once at the beginning of

each run. On each iteration, GMIA selects the current sample-best solution x̃ based on the sample

means at the design points, then calculates the CEI for all other solutions in the feasible region and

selects x∗
CEI as the solution with the largest CEI. If the CEI at x∗

CEI is smaller than δ = $1, then the

algorithm stops and returns x̃ as the optimal. Otherwise, it simulates 10 replications each at x̃ and

x∗
CEI, then proceeds to the next iteration. The conditional means and the conditional covariance

matrix, both of which are needed to calculate the CEI for every feasible solution, were obtained

20



0 500 1000 1500 2000

1
0
6

1
0
8

1
1
0

1
1
2

1
1
4

Iteration

C
u
rr

e
n
t 
o
p
ti
m

a
l 

 o
b
je

c
ti
ve

 f
u
n
c
ti
o
n
 v

a
lu

e

Figure 4: The actual objective function value of the current sample-best solution at each iteration
from one run of GMIA for the (s, S) inventory problem.
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Figure 5: The largest CEI at each iteration from one run of GMIA for the (s, S) inventory problem.

using the Cholesky factorization. Specifically, we calculated Q(θ)−1 by calculating the Cholesky

factorization L(θ) of Q(θ), a 10,000×10,000 sparse matrix, and then Q(θ)−1 = (L(θ)>)−1(L(θ)−1).

Figure 4 displays the actual objective function value of the current sample-best solution at

each iteration from one run of GMIA until the algorithm stopped at the 2288th iteration. Notice

that the current sample-best solution became close to the global minimum within the first 100

iterations, although it fluctuates until the 528th iteration due to the stochastic noise. For instance,

at the 527th iteration GMIA chose (10, 41) to be the current sample-best solution based on the

sample mean at this solution, although its actual objective function value is $108.17. However, in

the next iteration, the algorithm quickly realized that (10, 41) is unlikely to be the optimal after

simulating an additional 10 replications of this solution. The current sample-best solution at the

528th iteration was (18, 36) whose objective function value is $106.27 and this remained the sample

best until the algorithm stopped.

Despite the quick convergence of the current sample-best solution as seen in Figure 4, GMIA
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continues its search for many more iterations before meeting the stopping criterion. Figure 5 shows

the trajectory of the maximum CEI of the run. The largest CEI slowly decreases over iterations

until the 2288th iteration when it becomes less than 1, then the algorithm stops. This shows

that even after being very close to the global optimal, GMIA explores and exploits further until

it is statistically confident that there is not much gain from additional search. In fact, in all 2288

iterations the solution with the largest CEI at each iteration was a new design point; that is,

2307 solutions were simulated in total, which is 23% of the feasible solutions. This indicates that

according to the CEI criterion, it was more beneficial to explore new feasible solutions than to

simulate additional replications of the current design points at each iteration.

Figure 6a is a map of simulation replications allocated across the feasible solutions by GMIA for

this run. The large light grey area indicates the solutions that were simulated 10 times, i.e., they

were selected only once. Points with darker shades were selected as the current sample best for one

or more iterations and simulated repeatedly. The darkest point (18, 36) is the solution that GMIA

chose on this run. Notice that the design points are clustered with each other except for a few

initial design points obtained from Latin hypercube sampling. The algorithm did not simulate any

solutions near the upper right and the lower left corners of the feasible region where the objective

function increases steeply. This indicates that the estimated GMRF structure guides the algorithm

to rule out inferior solutions.

We also ran MR-GMIA on the same problem with region-level neighborhood structure as de-

picted in Figure 6b. We divided the same feasible solutions into 25 square regions each of which

contains 400 feasible solutions numbered bottom to top starting from the lower-left corner. No-

tice that the true optimal solution (18, 35) is contained in region P2, while P3 has the smallest

region-level response.

We have two precision matrices: region-level precision matrix T(τ ) and solution-level precision

matrix Q(θ). The former, in this example, is a 25 by 25 matrix and the latter is 400 × 400, both

much smaller than the precision matrix used in the GMIA run. As Cholesky decomposition of a

sparse n×n matrix is O(n2), the smaller dimensions of the precision matrices significantly reduces

the computation time involved in both MLE and CEI calculations.

We chose kr = 5 initial design regions by Latin hypercube sampling. To select the design points

within each region, we used the same Latin hypercube sample of size ks = 10 for all design regions;
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(b) MR-GMIA: Regions are numbered 1–25 bottom to top
from the lower left corner.

Figure 6: Allocations of simulation replications at feasible solutions for the (s, S) inventory problem

in base-10 log scale.

for this reason some of the regions in Figure 6b show the same light grey pattern. From each selected

design point we simulated 10 replications and used the result to compute the MLEs. As in the GMIA

runs, MLEs were computed only once at the beginning of the algorithm and not updated thereafter.

At each iteration, MR-GMIA chooses the region P̃ that has the smallest region-level sample mean

and computes the region-level CEI of all 25 regions. Also at each iteration, the algorithm simulates

solutions from three regions: P̃ , region Pmin that contains the current sample-best solution, and

region P?
CEI that has the largest region-level CEI. The solution-level CEIs are calculated for all

solutions within a design region, if the region was simulated previously. The algorithm stops if the

largest region-level CEI and the largest solution-level CEIs of all three regions drop below δ = $1.

Figure 6b shows that MR-GMIA allocated most of the simulation replications within P2,P3,P4

and P7. The surrounding regions of these four regions were selected once or a few more times

before the algorithm stopped. After the initial sampling, MR-GMIA quickly finds the region that

is likely to contain the global optimal solution using the region-level CEI. Notice that P25 at the

upper right corner whose response z(P25) is the largest among all regions was simulated only once

and never selected again. Also, the neighboring regions of P25 were not simulated. This shows that

the region-level GMRF informed the algorithm correctly that the regions close to P25 are not likely

to contain the optimal solution. Compared to the simulation replication allocation of GMIA in
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Figure 6a, the biggest difference is that MR-GMIA first chooses regions to simulate then selects the

solutions within those regions; therefore, sampling is restricted within the boundaries of selected

regions. This, in fact, helps MR-GMIA concentrate on the regions that are likely to contain the

global optimal solution. Since each region is much smaller than the entire feasible region, it is

easier to visit all solutions within a selected region. If the algorithm does not stop after visiting

all solutions within the region at least once, the solution-level CEI criterion makes the algorithm

revisit the design points that are likely to be the global optimal. From Figure 6b we can confirm

that the ellipsoidal area that includes the global optimal is simulated more frequently than other

parts of the feasible region.

Figure 7 displays the actual objective function value at the current sample-best solution at

each iteration from this run of MR-GMIA. While the trajectory is very similar to that of GMIA

in Figure 4, this MR-GMIA run stopped at an earlier iteration (767th) than the GMIA run above

(2288th iteration). If at each iteration the algorithm had simulated a new design point in each

of P̃ ,Pmin, and P?
CEI by the solution-level CEI criterion, then the number of simulated solutions

would have been roughly 767× 3 = 2301. However, the number of simulated solutions in this run

was actually 1631, 16% of the entire feasible solutions, which confirms that the solution-level CEI

criterion did not always select a new design point. Figure 8 displays the largest region-level CEI

and the largest solution-level CEIs in P̃ ,Pmin, and P?
CEI at each iteration. The region-level CEI

drops below 1 after the 8th iteration, which indicates that the algorithm is quite certain that there

is not much gain from exploring a new region. The largest solution-level CEIs in P̃ and Pmin drop

below 1 by the 385th iteration. MR-GMIA simulated almost all solutions within P̃ and Pmin so

that there is not much improvement gained by simulating additional replications. What keeps the

algorithm from stopping is the largest solution-level CEI in P?
CEI, which shows a decreasing trend

while displaying frequent jumps before finally dropping below 1. Some of the big jumps are caused

when the algorithm selects a new region as P?
CEI. When the algorithm concluded that there was

not much improvement to expect from simulating additional replications from P?
CEI, it stopped.

As a benchmark to evaluate the relative efficiency and the quality of inference provided by our

algorithms, we applied the KN R&S procedure [Kim and Nelson, 2001] to the same (s, S) problem.

KN is an efficient, fully sequential, eliminating procedure that simulates all feasible solutions. When

we apply KN we use CRN, set the number of first-stage replications of each feasible solution to
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Figure 7: The actual objective function value of the current sample-best solution at each iteration
from one run of MR-GMIA for the (s, S) inventory problem.
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Figure 8: The largest region-level CEI and the largest solution-level CEIs in P̃,Pmin, and P?
CEI at

each iteration from one run of MR-GMIA for the (s, S) inventory problem.
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(d) Comparison in the number of replications

Figure 9: (a), (b), (c) Histograms of the difference between the global optimal objective value
and objective values returned by 50 runs of each method. (d) Boxplots of number of replications

required for 50 runs of each method.

n0 = 10, and use α = 0.05 and δ = $1. The role of δ in the GMIA algorithms can be compared to

the role of δ in the KN procedure: KN guarantees that the probability of selecting a feasible solution

whose objective function value is within δ of the optimal is at least 1−α. Thus, δ specifies the set

of feasible solutions that are acceptable for the algorithm to select as optimal; we are indifferent to

which feasible solution in this set is chosen. For the GMIA algorithms, we stop searching for better

feasible solutions when the CEI of every feasible solution is less than δ, which happens well before

every feasible solution is simulated.

Figure 9 compares the quality of the optimal solutions and the number of replications spent in

50 runs of GMIA, MR-GMIA and KN. Notice that the objective function gap between the solutions

selected by both GMIA and KN and the optimal solution are much less than δ = 1 in all 50 runs,

whereas 3 runs of MR-GMIA have gaps larger than 1. The important insight is that GMIA and

MR-GMIA have performance comparable to KN while expending significantly less effort, simulating
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a fraction of the feasible solutions and not using CRN. Notice that the number of replications spent

by KN is more than 10 times larger than that of MR-GMIA on average.

Although the solutions obtained from GMIA are closer to the optimal solution, there is an

advantage of using MR-GMIA when we compare the number of replications. Also, the dimension of

the precision matrices of both algorithms affect the run-time of the algorithms. For the GMIA runs,

the Cholesky decomposition of the 10,000× 10,000 precision matrix, the additional multiplications

to invert it, and computing the conditional mean of all feasible solutions, took 13.61 (standard error

= 0.23), 78.00 (0.92) and 0.000069 (0.000002) seconds, respectively. For the MR-GMIA runs, the

same calculation times for the region-level GMRF took 0.000026 (0.000002), 0.000053 (0.000003),

and 0.00012 (0.00008) seconds, respectively, and those for the solution-level GMRF took 0.0024

(0.0001), 0.0090 (0.0002), and 0.00063 (0.00003) seconds, respectively. Even after considering that

MR-GMIA performs the solution-level matrix calculations for up to three regions at each iteration,

the computation time of MR-GMIA is far less than that of GMIA.

5.2 Griewank Function

The Griewank function (http://www.sfu.ca/~ssurjano/griewank.html) has many local minima,

which makes it a challenging test function for optimization algorithms. Figure 10 shows the two-

dimensional Griewank function on the domain [−5, 5] × [−5, 5]. Within this domain the range of

the function is [0, 2.0044], and the global minimum is at (0, 0). Notice that there are four local

minima near the four corners of the domain and their response values are 0.0086.

To create a DOvS problem, we take as feasible solutions the 100×100 lattice on [−5, 5]× [−5, 5]

where the response at each solution is given by the Griewank function in Figure 10. Normally

distributed simulation noise with mean 0 and variance σ2 is added to the response function to make

it stochastic. As depicted in Figure 11a, we divided the feasible solutions into 25 square regions,

each of which contains 400 solutions. Notice that this is the same number of solutions/regions that

we had when we applied MR-GMIA to the (s, S) inventory problem. To analyze the impact of δ

on the performance of the algorithm, we tested three values of δ: 0.005, 0.01, and 0.02. We chose

these values relative to 0.0086, the difference between the responses at the local minima and the

global minimum, so that we can test the effect of δ on the solution quality of the algorithm. We

adjusted the standard error of the sample mean at each design point when it is first visited to be
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Figure 10: Two-dimensional Griewank function on [−5, 5]× [−5, 5].

relative to δ. Given r, the number of replications at each solution, and δ, we tested three values of

σ/
√

r: δ/2, δ, and 2δ.

For each run, we used a Latin hypercube sample of size 5 to select the initial design regions.

Any time a solution is selected we simulated r = 16 replications.

Figure 11a shows how simulation replications were allocated across the feasible region in one

run of MR-GMIA. Notice that all regions were visited at least once, unlike the (s, S) inventory

problem in Figure 6b. Compared to the (s, S) inventory problem, the response surface of the

Griewank function is harder to predict as the region-level response z(P`) for all 25 regions do not

vary much. Therefore, the region-level CEI did not rule out any region before it was visited at

least once. However, once the regions were visited, the algorithm correctly found the regions that

either contain the global and local minima or are close to them and concentrated the simulation

effort there. Notice that the algorithm simulated solutions in the ellipsoidal area that contains the

global optimal solution most frequently.

Table 1 presents the results of 50 runs of MR-GMIA with the chosen δ and σ values. Common

random numbers were adopted for each case of (δ, σ) in Table 1; that is, each (δ, σ) combination

experienced the same source of randomness. Notice that our algorithm returned the global optimal

solution in all 50 runs of all settings except for (δ, σ) = (0.02, 0.08), and (0.02, 0.16). Even in these

two cases, the average response at the solution is within δ from 0. As expected, both the number

of simulated solutions and the number of replications spent tend to increase as δ decreases and as
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Figure 11: Allocations of simulation replications at feasible solutions of the Griewank function in
Figure 10 in base-10 log scale.

σ increases. However, MR-GMIA is not very sensitive to the choice of δ for smaller σ.

To test the impact of the number of feasible solutions on the performance of the algorithm,

we ran MR-GMIA with (δ, σ) = (0.005, 0.01) but a finer lattice, as depicted in Figure 11b: a

1000×1000 grid instead of 100×100, which results in 1,000,000 feasible solutions. These solutions

are divided into 2500 regions, each of which contains 400 feasible solutions. Figure 11b is a map of

replications spent in the feasible region in one run of MR-GMIA. Notice that the areas in white,

which indicate that they were never simulated, correspond to the peaks of the Griewank function

in Figure 10. Unlike in the 100 × 100 case, the region-level responses actually differ in this case

as we have a finer grid. The region-level CEI effectively rules out the regions that are not likely

to contain the optimal solution using the region-level GMRF structure. Most of the simulation

effort is concentrated in the regions near the global minimum and a local minimum in the lower-left

corner.

The average response at the optimal solutions returned by 50 runs of MR-GMIA is 0.0002

(standard error = 0.00004) and the maximum response was 0.0016, which is smaller than δ = 0.005.

The average number of simulated solutions is 24,696 (1307), which is only 2.5% of the 1 million

feasible solutions. Compared to the 100 × 100 case, which simulated 19% of the feasible solutions

on average, we can confirm that the algorithm works very efficiently even if we have a large number

of feasible solutions. The average number of replications spent is 89,079 (2775), which is less than
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Table 1: Results from 50 runs of MR-GMIA applied to the Griewank functions with different δ and
σ. Standard errors are provided in the parentheses.

δ 0.005 0.01 0.02

σ 0.01 0.02 0.04 0.02 0.04 0.08 0.04 0.08 0.16

Average response 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0015

at optimal solution (0.0001) (0.0006)

Max response

at optimal solution
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0025 0.0219

Average number 1,927 1,945 2065 1,945 2065 2444 2065 2509 2837
of simulated solutions (26) (25) (27) (25) (27) (29) (27) (28) (81)

Average number 108,955 111,229 122,036 111,229 121,974 155,254 121,974 157,207 184,147
of replications (2417) (2377) (2877) (2377) (2872) (2742) (2872) (3007) (6,634)

8 times larger than that of the 100 × 100 case in Table 1. These results show the multiresolution

algorithm scales well as the number of feasible solutions increases.

In this section we used the Griewank function to create a difficult DOvS problem on a lattice.

However, the quality of our results suggest that MR-GMIA could be applied to discretized versions

of continuous-variable OvS problems to exploit the benefits of sparse matrix computations.

6 Summary

In this paper we constructed a DOvS algorithm for problems with integer-ordered decision variables

based on GMRFs. Unlike GRFs with continuous domains, which are defined by dense covariance

matrices that lead to slow and ill-conditioned numerical computations for large-scale problems,

GMRFs are defined by their precision matrices and can be constructed to be sparse. For problems

with very large numbers of solutions, we created a multiresolution GMRF-based algorithm. To

allocate simulation effort in either case, we introduced an expected improvement criterion that

incorporates the uncertainty in stochastic simulation by treating the current sample-best solution

as a random variable.
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Appendix

Results in this appendix are intended for an Online Supplement.

A Derivation of the Conditional Distribution

In this section we derive of the conditional distribution of (Y1, Y2) given observed Y
ε
2 in (6). We

do this by first deriving the joint distribution of (Y1, Y2, Y
ε
2) and then applying Lemma 2.1 of Rue

and Held [2005] to obtain the conditional distribution. To simplify the notation we suppress the

dependence of Q on θ.

Notice that Y1 and Y
ε
2 are conditionally independent, given Y2, because Y is a GMRF and is

also independent of the intrinsic noise. From Theorem 2.5 in Rue and Held [2005], the conditional

distribution of Y1 given Y2 = y2 is

N
(
µ1 − Q−1

11 Q12(y2 − µ2), Q
−1
11

)
.

From our assumption about the simulation output process, the conditional distribution of Y
ε
2 given

Y2 = y2 is N
(
y2, Q

−1
ε

)
. Further,

Y2 ∼ N (µ2, Σ22) = N
(
µ2, [Q22 −Q21Q

−1
11 Q12]

−1
)

using standard results for the inverse of a partitioned matrix. Therefore, the joint distribution

f(y1, y2, y
ε
2) satisfies

f(y1, y2, y
ε
2) ∝ exp

{
−1

2

[
y1 − (µ1 − Q−1

11 Q12(y2 − µ2))
]>

Q11

[
y1 − (µ1 − Q−1

11 Q12(y2 − µ2))
]}

× exp

{
−1

2
(y2 − µ2)

> (Q22 − Q21Q
−1
11 Q12) (y2 − µ2)

}

× exp

{
−1

2
(yε

2 − y2)
>

Qε (yε
2 − y2)

}
. (10)
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A significant quantity of matrix algebra leads to

f(y1, y2, y
ε
2) ∝ exp






−1

2





y1

y2

yε
2





>



Q11 Q12 0

Q21 Q22 + Qε −Qε

0 −Qε Qε









y1

y2

yε
2





+





y1

y2

yε
2





>



Q11µ1 + Q12µ2

Q21µ1 + Q22µ2

0










. (11)

Rue and Held [2005] refer to (11) as being in canonical form, for which their Lemma 2.1 can be

used to show that the conditional distribution of (Y1, Y2) given Y
ε
2 is as in (6).

B MLE for the GMRF Parameters

Denote the design points by x1, x2, . . . , xn2
, and let

S2(x) =
1

r(x)

r(x)∑

j=1

(
Yj(x)− Ȳ (x)

)2
,

where r(x) is the cumulative number of replications that have been allocated to design point x,

Yj(x) is the simulation output at x on the jth replication, and Ȳ (x) is the sample mean of the

simulation output across the r(x) replications at design point x. The plug-in estimator for the

intrinsic precision matrix is

Q̂ε = diag

(
r(x1)

S2(x1)
,

r(x2)

S2(x2)
, . . . ,

r(xn2
)

S2(xn2
)

)
.

Remark: Under our assumptions, S2(x) > 0 with probability 1 once the number of simulation

replications r(x) is large enough. However, if the output Yj(x) has a discrete distribution (e.g.,

Bernoulli), then it is possible that S2(x) = 0 for finite r(x), which makes the estimated intrinsic

precision matrix undefined. To resolve this technical issue, we can modify the definition of S2(x)
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to be

S2(x) =
1

r(x)

r(x)∑

j=1

(
Yj(x)− Ȳ (x)

)2
+

γ

r(x)

for small constant γ > 0. Therefore, S2(x) is still a consistent estimator of the variance as r(x) → ∞

and S2(x) > 0 for finite r(x).

After substituting Q̂ε for Qε, we integrate the conditional distribution over y2 to obtain the

unconditional distribution

Y
ε
2 ∼ N (β01n2×1, Σ22(θ) + Q̂−1

ε ),

where Σ22(θ) , (Q22(θ) − Q12(θ)>Q11(θ)−1Q12(θ))−1, and 1n2×1 is the n2 × 1 vector of ones.

Disregarding terms that do not depend on β0 or θ, the log-likelihood function given the simulation

output is

L(β0, θ|Ȳ2) ,
1

2
log |(Σ22(θ) + Q̂−1

ε )−1|

− 1

2
(Ȳ2 − β01n2×1)

>(Σ22(θ) + Q̂−1
ε )−1(Ȳ2 − β01n2×1).

Miller [1981] provides a method for efficiently calculating (Σ22(θ) + Q̂−1
ε )−1 using only Σ22(θ)−1

and matrix-vector products with the columns of Q̂−1
ε . Furthermore, we can calculate Σ22(θ)−1 =

Q22(θ) − Q12(θ)>Q11(θ)−1Q12(θ) by solving the sparse linear system Q11(θ)X = Q12(θ) and

substituting X for Q11(θ)−1Q12(θ). This sparse linear system can be solved using techniques like

those cited in Section 3.3. Fixing the parameters in θ, the MLE for β0 is

β̂0(θ) = (1>
n2×1(Σ22(θ) + Q̂−1

ε )−11n2×1)
−11>

n2×1(Σ22(θ) + Q̂−1
ε )−1Ȳ2,

where we have written β̂0 as a function of θ to explicitly show dependence. Substituting the MLE

β̂0(θ) into L(β0, θ|Ȳ2), we get the profile log-likelihood function

L(θ|Ȳ2) ,
1

2
log |(Σ22(θ) + Q̂−1

ε )−1|

− 1

2
(Ȳ2 − β̂0(θ)1n2×1)

>(Σ22(θ) + Q̂−1
ε )−1(Ȳ2 − β̂0(θ)1n2×1),

which only depends on θ. The MLE θ̂ for θ is the maximizer of the profile log-likelihood function
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L(θ|Ȳ2) over the possible values of θ, i.e.,

θ̂ , arg max
θ∈Θ

L(θ|Ȳ2)

where Θ is the set of values of θ with θ0 > 0 and 0 ≤ θi ≤ 1, i = 1, 2, . . . , d, and for which Q(θ)

is positive-definite. The restricted space for the correlation parameters 0 ≤ θi ≤ 1, i = 1, 2, . . . , d,

makes the optimization easier than working with the corresponding parameters of typical parametric

correlation functions that can take on any nonnegative value (see, for instance Santner et al. [2003]).

The following proposition can be used to help determine which values of θ result in a positive-

definite precision matrix.

Proposition B.1. Let Q(θ) be the precision matrix corresponding to the graph G = (V , E). Fur-

thermore, let G ′ = (V ′, E ′) be a subgraph of G with the corresponding precision matrix Q′(θ). If

the precision matrix Q′(θ) is not positive-definite, then the precision matrix Q(θ) is not positive-

definite.

Proof. To prove the proposition, we use proof by contrapositive. Indeed, we prove that if the

precision matrix Q(θ) is positive-definite, then the precision matrix Q′(θ) is positive-definite.

Assume that the precision matrix Q(θ) is positive-definite. Since Q(θ) is positive-definite, the

corresponding graph G = (V , E) represents a GMRF. By Theorem 2.5 in Rue and Held [2005] the

subgraph G ′ = (V ′, E ′) also represents a GMRF whose positive-definite precision matrix is Q′(θ).

Thus, we have the result.

This proposition is the GMRF interpretation of the property that every principal submatrix of

a positive-definite matrix is positive-definite, and can be used to eliminate precision matrices by

checking whether a submatrix of the precision matrix is not positive-definite. For example, consider

a feasible region that is an M ×M grid. If one wanted to check whether θ yields a positive-definite

precision matrix for the M × M grid, then one could check whether θ yields a positive-definite

precision matrix for an N ×N grid, with N � M . In our experiments, we have found that the set

of θ for which the precision matrix of an M × M grid is positive-definite is nearly the same as the

set of θ for which the precision matrix of an N × N grid is positive-definite.
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C Global Convergence Proof

In this appendix we provide the proofs of several lemmas, Theorem 1, and Corollary 1 which

extends the global convergence result to the multiresolution algorithm MR-GMIA. In either case

we consider GMIA or MR-GMIA with the stopping condition suppressed.

Recall that we use y to denote the true mean of all solutions y(x) with x ∈ X . Our goal is to

find x ∈ Xmin = {x ∈ X : y(x) = ymin}, where ymin = minx∈X y(x). We allow |Xmin| ≥ 1.

In the following we use s to denote the stage/iteration of the algorithm and Q̄s and µs to denote

the estimated conditional precision matrix and mean in (8), respectively, at stage s. Both Q̄s and

µs are functions of the cumulative simulation output up to stage s. We drop the dependence of

these terms on θ̂ for notational convenience.

Also, let Qε,s denote the n2×n2 estimated intrinsic precision matrix at stage s, whose diagonal

element corresponding to design point x is rs(x)/S2
s(x), where rs(x) is the cumulative number of

replications obtained at solution x up to stage s, and S2
s (x) is the corresponding sample variance

(as defined in Appendix B if we are concerned about discrete outputs).

The vector of sample means obtained from design points in Ξ2 up to stage s is denoted by Ȳ2,s.

The design point corresponding to the smallest sample mean at stage s is denoted by x̃s. We define

CEIs(x) to be the CEI of x ∈ X at stage s with respect to x̃s.

Finally, when we need to represent the dependence of a random quantity on a particular sample

path ω of the simulation, we include ω as an argument; e.g., CEIs(x, ω).

As stated in Section 3.4, we assume:

1. y(x) > −∞ for all x ∈ X .

2. 0 < Var[Y (x)] < +∞ for all x ∈ X .

3. The initial estimated precision matrix Q is positive definite and is not updated thereafter.

Since we enforce Assumption 3 in GMIA, it is a mild condition. Notice that while Q is fixed by

fixing θ̂, the contents of the sets Ξ1 and Ξ2 change, as does Q̂ε,s and therefore Q̄s, as the algorithm

progresses. However, if Q and Q̂ε,s are positive definite, then so is Q̄s.

We first prove the following lemmas. Lemma 1 shows what would happen to the conditional

distribution if a set of solutions Ξ1 was never simulated.
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Lemma 1. Suppose that Ξ1 and Ξ2 are fixed sets of solutions and Ξ1∪Ξ2 = X . Then if rs(x) → ∞

as s → ∞ for all x in Ξ2, and rs(x) = 0 for all s and for all x in Ξ1, then

Q̄−1
s →




Q−1

11 0n1×n2

0n2×n1
0n2×n2



 and µs →




µ1 − Q−1

11 Q12(y2 − µ2)

y2





with probability 1.

Proof. The conditional covariance matrix at stage s is

Q̄−1
s =




(Q11 − Q12(Q22 + Qε,s)

−1Q>
12)

−1 −Q−1
11 Q12(Q22 + Qε,s −Q>

12Q
−1
11 Q12)

−1

−((Q−1
11 Q12(Q22 + Qε,s −Q>

12Q
−1
11 Q12)

−1)> (Q22 + Qε,s −Q>
12Q

−1
11 Q12)

−1



 .

Under Assumption 3, Q11, Q12 and Q22 are fixed once initialized, and Q11 and Q22 are positive

definite. Since the diagonal elements of Qε,s diverge to ∞ with probability 1 as s → ∞, (Q22 +

Qε,s)
−1 → 0n2×n2

and (Q22 + Qε,s − Q>
12Q

−1
11 Q12)

−1 → 0n2×n2
with probability 1 by Slutsky’s

theorem [Amemiya, 1985]. Thus,

Q̄−1
s →




Q−1

11 0n1×n2

0n2×n1
0n2×n2



 with probability 1.

The conditional sample mean at stage s is

µs = µ +




−Q−1

11 Q12(Q22 + Qε,s −Q>
12Q

−1
11 Q12)

−1Qε,s(Ȳ2,s − µ2)

(Q22 + Qε,s − Q>
12Q

−1
11 Q12)

−1Qε,s(Ȳ2,s − µ2)



 .

Note that as s → ∞, (Q22 + Qε,s −Q>
12Q

−1
11 Q12)

−1Qε,s → In2
with probability 1, where In2

is the

n2 × n2 identity matrix. Then since Ȳ2,s → y2 with probability 1,

µs →




µ1 − Q−1

11 Q12(y2 − µ2)

y2



 with probability 1.
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Lemma 2. If for all x ∈ X , rs(x) → ∞ as s → ∞, then

(i) µs → y with probability 1.

(ii) µs(x̃s) → ymin with probability 1.

(iii) Results (i) and (ii) hold if x is restricted to a subset B ⊂ X , and y and ymin are replaced by

yB and ymin,B defined just over the subset B.

Proof. From Lemma 1, it follows immediately that µs → y with probability 1 by taking Ξ1 = ∅.

For (ii), we first show that y(x̃s) → ymin with probability 1. If y(x) = ymin for all x ∈ X , then

it is trivially true that µs(x̃s) → ymin with probability 1. Otherwise, let

ε = min{y(x) : x ∈ X\Xmin} − ymin.

Notice that we can find such ε > 0, as we have a finite number of solutions in X . Since we

simulate every solution infinitely often, for almost all sample paths ω there exists s?(x, ω) such

that |Ȳs(x, ω)− y(x)| < ε/2 for all s > s?(x, ω) by the strong law of large numbers. Let s?(ω) =

maxx∈X s?(x, ω). Then, for all s > s?(ω), y(x̃s) = ymin. Thus, y(x̃s) → ymin with probability 1 as

s → ∞. Combined with µs(x̃s) → y(x̃s) with probability 1 from (i), we conclude (ii). Part (iii)

follows immediately.

To prove Theorem 1, we suppose that there is a solution, say x′ ∈ X , that is only simulated

finitely often by GMIA. For this to be the case, x′ must neither be the solution with the smallest

sample mean nor have the largest CEI beyond some finite stage. We then show that in the limit

this outcome has probability 0 when we apply the GMIA algorithm in Section 3.1.

Proof. For each non-empty subset of solutions A ∈ 2X\∅, let EA be the collection of sample paths

such that all solutions in A are simulated finitely often, while all solutions in X\A are simulated

infinitely often, as s → ∞ in GMIA. Then,

Pr{∃x ∈ X : x is simulated finitely often} ≤
∑

A∈2X\∅

Pr{EA}.
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Hence, it suffices to show that for all A ∈ 2X \∅, the Pr{EA} = 0.

To set up a contradiction, suppose there exists A ∈ 2X \∅ such that Pr{EA} > 0. Permute

precision matrix Q so that

Q =




QA,A QA,X\A

QX\A,A QX\A,X\A



 ,

where QA,A is the block matrix of Q that corresponds to solutions in A, etc. Then for each sample

path ω ∈ EA, we can find finite s?(x, ω) for each x ∈ A such that x is never simulated again

after stage s?(x, ω). Let s?(ω) = maxx∈A s?(x, ω). Therefore, given ω, each solution in A is not

simulated for all s > s?(ω).

Recall that at each stage s, the GMIA algorithm simulates (i) the solution with the smallest

sample mean, x̃s, and (ii) the solution with the largest CEI with respect to x̃s. Therefore, for each

ω ∈ EA, (i) x̃s(ω) is not in A for all s > s?(ω), and (ii) the largest CEI solution with respect to

x̃s(ω) is not in A, or equivalently, there exists x′
s ∈ X\A such that for each x ∈ A, CEIs(x, ω) ≤

CEIs(x
′
s, ω) for all s > s?(ω).

Therefore, if the GMRF had been initialized by precision matrix Q̄s?(ω) and prior mean µ̂s?(ω)

at stage s = s?(ω) along the same sample path, then no solutions in A would ever be simulated

for all s > s?(ω), i.e., rs(x) = rs?(ω)(x) for all s > s?(ω). Let Q̄?
11(ω) denote the block matrix

of Q̄s?(ω) corresponding to the solutions in A and Q11
ε,s?(ω) denote the submatrix of Qε,s?(ω) cor-

responding to solutions in A, then Q̄?
11(ω) = Q11 + Q11

ε,s?(ω). Conditional on EA, we drop ω from

s?(ω), Q̄s?(ω), Q̄
?
11(ω), and Q11

ε,s?(ω) to denote random quantities.

Now, define the following events:

E1 =





lim

s→∞
Q̄−1

s =




A−1 0|A|×|X\A|

0|X\A|×|A| 0|X\A|×|X\A|



 for some matrix A such that

∀x ∈ A, A−1(x, x) > 0, and ∀x ∈ A, lim
s→∞

(µs(x̃s) − µs(x)) > −∞
}

,

E2 =





∀x ∈ X\A, lim

s→∞
(µs(x̃s)− µs(x))






= 0, if y(x) = minx′∈X\A y(x′)

< 0, otherwise





.

Note that A in E1 is a random matrix that depends on the sample path ω ∈ E1. Let us first show

Pr{E1|EA} = 1. Conditional on EA, if we pretend the GMRF is initialized at s = s? with Q̄s? , then
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no solution in A is simulated thereafter, whereas rs(x) → ∞ for all x ∈ X\A. Hence, by Lemma 1

Pr





lim

s→∞
Q̄−1

s =




Q̄?−1

11 0|A|×|X\A|

0|X\A|×|A| 0|X\A|×|X\A|



 and ∀x ∈ A, lim
s→∞

(µs(x̃s) − µs(x)) > −∞

∣∣∣∣∣∣∣
EA





= 1.

Conditional on EA, let S2
s?(x) be a sample variance from rs?(x) replications at x. Then,

Pr
{
∀x ∈ A, rs?(x)/S2

s?(x) < ∞|EA

}
= 1. (12)

Note that rs?(x)/S2
s?(x) is the diagonal element of Q11

ε,s? corresponding to x ∈ A. Hence, Q̄?
11 =

Q11 + Q11
ε,s? is positive definite with probability 1, since we guarantee Q11 to be positive definite

and Q11
ε,s? is positive definite with probability 1 from (12). Therefore, Pr{E1|EA} = 1. Also, due to

the sampling rule of GMIA, for each ω ∈ EA, x̃s ∈ X\A for all s > s?(ω). Thus, Lemma 2 applies

to X\A. Therefore,

Pr

{
lim
s→∞

µs(x) = y(x), ∀x ∈ X\A, and lim
s→∞

µs(x̃s) = min
x′∈X\A

y(x′)|EA
}

= 1

which implies Pr{E2|EA} = 1.

Recall that CEIs(x) is

CEIs(x) = (µs(x̃s) − µs(x))Φ

(
µs(x̃s) − µs(x)

σs(x̃s, x)

)
+ σs(x̃s, x)φ

(
µs(x̃s) − µs(x)

σs(x̃s, x)

)
, (13)

where σ2
s(x̃s, x) is the posterior variance of Y(x̃s)−Y(x) at stage s as defined in Section 2.3. Recall

that for each ω ∈ EA, x̃s ∈ X\A for all s > s?(ω). Therefore, E1 ∩ EA implies lims→∞ σ2(x̃s) = 0,

which again implies that for each x ∈ A, lims→∞ σ2
s (x̃s, x) = lims→∞ σ2

s(x). From the definition

of E1, lims→∞ σ2
s(x) = A−1(x, x), thus lims→∞ σ2

s (x) > 0. Also, E1 ∩ EA implies lims→∞(µs(x̃s) −

µs(x)) > −∞. Because (13) is a non-negative increasing function in µs(x̃s)−µs(x), and CEIs(x) →

0 as µs(x̃s)−µs(x) → −∞ given lims→∞ σs(x̃s, x) > 0, E1∩EA guarantees lims→∞ CEIs(x) > 0 for

x ∈ A. For x ∈ X\A, E1∩EA implies σs(x̃s, x) → 0 and E2∩EA implies lims→∞(µs(x̃s)−µs(x)) ≤ 0,

therefore, CEIs(x) → 0.

To summarize, conditional on E1 ∩ E2 ∩ EA, the following holds with probability 1:
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lims→∞ CEIs(x) > 0 for all x ∈ A and lims→∞ CEIs(x) = 0 for all x ∈ X\A. Therefore, we

must have Pr{E1 ∩ E2 ∩ EA} = 0 for A to exist according to the sampling rule in the GMIA

algorithm. However,

Pr{EA\(E1 ∩ E2)} = Pr{(EA\E1) ∪ (EA\E2)}

≤ Pr{EA\E1} + Pr{EA\E2}

= 0.

Notice that the last equality follows from Pr{E1|EA} = Pr{E2|EA} = 1. Thus,

Pr{E1 ∩ E2 ∩ EA} + Pr{EA\(E1 ∩ E2)} = Pr{EA} = 0,

which contradicts the assumption Pr{EA} > 0. Therefore, we conclude that Pr{EA} = 0 for any

A ∈ 2X \∅.

Together with Lemma 1, Theorem 1 guarantees the global convergence of the GMIA algorithm

to the true optimal value, ymin, regardless of the problem structure.

Remark: We can relax Assumption 3 and allow µ̂ and θ̂, and therefore Q, to be updated c times

for some finite constant c. Then it is easy to show that Lemmas 1–2, and Theorem 1, still hold.

The following corollary establishes the global convergence of our multiresolution GMRF algo-

rithm.

Corollary 1. The MR-GMIA algorithm without a stopping criterion simulates each solution x ∈ X

infinitely often with probability 1 as the number of iterations goes to infinity.

The proof of Corollary 1 can be obtained by applying the same method in Theorem 1 to the region-

level GMRF. The region-level version of Lemmas 1–2, and Theorem 1, guarantee that each region

is simulated infinitely often as s → ∞, with probability 1. Within each region, the rule is the

same as in the GMIA algorithm. Therefore, provided that each region is simulated infinitely often,

all solutions in each region are simulated infinitely often with probability 1, which guarantees the

global convergence of the multiresolution algorithm.
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D Region-Level GMRF

In defining the precision matrix at the region level, we have to consider that the uncertainty about

the response z(P`) consists of the uncertainty due to having simulated only the subset of solutions

x ∈ Ξ2(P`), and also the intrinsic stochastic noise in the simulation of those solutions. As an

approximation to the former source, we treat the set of solutions Ξ2(P`) as if they were selected

randomly, uniformly and without replacement fromP`, even though they would typically be selected

systematically or due to their CEIs. Therefore, Ξ2(P`) is treated as a random subset. For the latter

source of uncertainty, we define the GMRF Z
ε
2 = Z2 + ε where

ε ∼ N (~0|Π2|×1, T
−1
ε ),

and Tε is the intrinsic precision matrix of the region-level GMRF, which is analogous to Qε in the

solution-level GMRF.

For design region P`, a realization of Z
ε
2(P`) is

Z̄(P`) = |Ξ2(P`)|−1
∑

x∈Ξ2(P`)

Ȳ (x), (14)

where Ȳ (x) is the sample mean from r(x) replications at x ∈ Ξ2(P`). Therefore, the diagonal

element of Tε that corresponds to region P` is the reciprocal of

Var(Z̄(P`)) = Var



|Ξ2(P`)|−1
∑

x∈Ξ2(P`)

y(x)



+ E



|Ξ2(P`)|−2
∑

x∈Ξ2(P`)

σ2(x)/r(x)



 . (15)

Notice that the first term on the left-hand-side of (15) represents the spatial variability of y(x)

among x ∈ P` and the second term represents the stochastic variability in Ȳ (x), assuming inde-

pendent simulations, not CRN. The variance in the first term and the expectation in the second

term are with respect to the spatial variability among x due to the random subset Ξ2(P`). Thus,

the first term decreases as we simulate more solutions within P` and the second term decreases as

we simulate more replications from design points in P`.

Remark: Notice that Z̄(P`) may not be an unbiased estimator of z(P`) as we do not actually

sample the solutions in P` randomly. However, the purpose of region-level GMRF is not to make
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precise predictions of the region-level average, but rather to provide a guide to more promising

regions. As shown in Appendix C, MR-GMIA nevertheless convergences to a globally optimal

solution asymptotically under mild conditions.

This completes the region-level GMRF framework; next we provide some specific choices to

create the multiresolution algorithm MR-GMIA.

We assume a constant mean for the region-level GMRF, just as in the solution-level GMRF;

i.e., η = (η0, η0, . . . , η0)
>. The region-level parameters η0 and τ are estimated using observations

defined in (14) from the design regions via MLE, employing the following plug-in estimator for Tε:

Since we treat the y(x) as if they were independently randomly sampled from P`, the first term

in (15) can be estimated by

(|Ξ2(P`)|(|Ξ2(P`)| − 1))−1
∑

x∈Ξ2(P`)

(Ȳ (x)− Z̄(P`))
2(1 − |Ξ2(P`)|/|P`|). (16)

The multiplier 1 − |Ξ2(P`)|/|P`| is a correction factor for the finite population of solutions in

P` [Cochran, 1977]. The second term in (15) can be estimated by

|Ξ2(P`)|−2
∑

x∈Ξ2(P`)

S2(x)/r(x). (17)

Thus, the estimator of Var(Z̄(P`)), denoted S2(P`), is the sum of (16) and (17), and the diagonal

element of T̂ε that corresponds to design region P` is 1/S2(P`). If we simulate all solutions in

P` infinitely often, so that |Ξ2(P`)| → |P`| and r(x) → ∞ for all x ∈ P`, then S2(P`) → 0 with

probability 1.

With T̂ε and Z̄2 = {Z̄(P`), ∀P` ∈ Π2}, we can compute the MLEs η̂ and τ̂ , as well as the

conditional distribution of (Z1, Z2)
>|Zε

2 = Z̄2. From this conditional distribution we can derive the

region-level CEI for all regions in P , which we use as guidance to choose a region to simulate in our

multiresolution algorithm; the solution-level CEI determines solutions to simulate within a selected

region.
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