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Abstract

We propose two new methods for attributing the risk of a portfolio or system to its compo-
nents, when it is required to produce non-negative risk components that sum to the risk of the
portfolio or system as a whole. One method attributes risk entirely to losses, taking profits for
granted. The other method does allow profits in some scenarios to offset losses in other scenarios
to some extent, but it not in a way that could yield a negative risk component. The methods are
illustrated by applying them to an example of attribution a firm’s expected shortfall to business
units within the firm and an example of attributing systemic risk to banks. We prove that,
under appropriate conditions, the methods proposed have some game-theoretic properties that
are desirable for risk attribution.

Key words: cost allocation, cost attribution, non-negative, risk allocation, risk attribution,
risk components, systemic risk

1 Introduction

Risk attribution is used for multiple purposes, and the appropriate risk attribution method depends
on the purpose. For example, one purpose is to measure the performance of a firm’s business lines
by return on economic capital. The economic capital required for the firm is based on a risk measure
for the firm, and the economic capital for each business line is found by attributing the firm’s risk
to the business lines (Tasche, 2004, 2008). In a risk audit, the purpose is to find where risk for the
firm is generated, so as to follow up with individual business lines about possible adjustments of risk
exposures. Similarly, in managing systemic risk, one purpose is to identify firms that are important
sources of systemic risk (Drehmann and Tarashev, 2013; Liu and Staum, 2011). Another purpose
is to levy systemic risk charges in proportion to each firm’s contribution to the cost of insuring the
system (Staum, 2012). We focus on risk attribution that yields risk components, which have the
property that the system’s risk equals the sum of the risk components attributed to the components
of the system. This is important in some applications: for example, the sum of the economic capital
of the firm’s business lines should equal the firm’s economic capital, determined by the firm’s risk,
and the sum of systemic risk charges should equal the cost of insuring the system.
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Some risk components may be negative. For example, a business line may decrease the firm’s risk
if the effect of its profits in reducing the firm’s loss in some scenarios outweighs the effect of its losses.
Depending on the purpose of risk attribution, it may or may not be acceptable to get negative risk
components, or for profits to mask losses in this way at all. A negative systemic risk component
can be informative and interesting, because it says that a particular firm does more to reduce
systemic risk than to increase it. Tasche (2004) argues that negative economic capital is suitable
in performance measurement; small negative mean returns could be a good performance from a
business unit whose function is hedging. On the other hand, negative systemic risk charges could
be impractical (Staum, 2012) or even dangerous because they create the possibility for extracting
profits from the systemic risk management process. When the goal is to identify the sources of
risk, the effect of losses should not be masked by the effect of profits in other scenarios. That
would hinder the effort to find the firms in the system or business units within the firm that are
responsible for large contributions to risk.

This article proposes two methods of generating non-negative risk components using tools of
cooperative game theory. The methods are developed using the Shapley and Aumann-Shapley
values, which are core concepts for portfolio risk allocation (Denault, 2001; Tasche, 2008). This
approach to portfolio risk allocation, grounded in cooperative game theory, uses a risk function
that specifies how the participation of the system’s components creates risk. This article uses this
formalism for systems that are more complicated than portfolios, but the formalism is presented
here in the introduction for portfolios to make possible a simple exposition of the methods proposed
in this article. The vector λ = [λ1, . . . , λn] contains the participation levels of the n components in
a portfolio. That is, λi is a number between 0 and 1 that is multiplied by the weight of component i
in the actual portfolio to generate the weight of component i in a new portfolio. Let Xij be the
loss of portfolio component i in scenario j. In scenario j, the loss of the new portfolio defined by
participation λ is Lj(λ) =

∑n
i=1 λiXij . The risk function r is given by r(λ) = ρ(L(λ)) where ρ is

a risk measure and the random variable L gives the new portfolio’s loss in each scenario.
The usual method of producing non-negative risk components is to replace negative risk com-

ponents by zero and then re-scale the risk components so that they once again sum to the system’s
risk ρ(L). That is, if the original risk components are φ1, . . . , φn, then the usual non-negative
method replaces φi by ρ(L) max{0, φi}/

∑n
j=1 max{0, φj}. The usual non-negative method allows

profits in some scenarios to offset losses in other scenarios to some extent. This way of produc-
ing non-negative risk components may be useful for applications like systemic risk charges, as in
Example 2.

In a similar spirit, we propose the “overall non-negative” method of producing non-negative
risk components. To motivate the development of the overall non-negative method, consider risk
components that are based on Shapley or Aumann-Shapley values, as is standard. The usual non-
negative method applies the Shapley or Aumann-Shapley value to the risk function r, gets risk
components that may lack the desired property of non-negativity, and then imposes the desired
property afterwards. The overall non-negative method instead modifies the risk function so that
the application of the Shapley or Aumann-Shapley value is guaranteed to yield non-negative risk
components. Specifically, it uses the greatest non-decreasing function that is dominated by the
positive part of r. In a sense, this is the function closest to r that is guaranteed to yield non-
negative risk components. This construction gives the overall non-negative method good game-
theoretic properties, discussed in Section 4. In particular, one of the advantages of the overall
non-negative method over the usual non-negative method is that the former has a property of
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partial separability that the latter lacks. Table 2, containing the results of various methods applied
to Example 2, shows that these two methods can differ significantly and illustrates the issue of
partial separability. In this example, the system of three banks can be partially separated into its
components: Bank 3 forms a subsystem that has no interactions with the subsystem containing
Banks 1 and 2 in terms of the two subsystems’ contributions to the probability of a systemic crisis.
If the Shapley or Aumann-Shapley values are applied in the usual way, Bank 1 is assigned a negative
risk component because it does more to reduce than to increase the probability of a systemic crisis,
due to its ability to buffer losses generated by Bank 2 in one scenario. To give Bank 1 a non-negative
risk component, one must change the risk components assigned to at least one of the other banks.
It is appropriate to change the risk component assigned to Bank 2 and not that assigned to Bank 3
because only Bank 2 interacts with Bank 1. This is what the methods proposed in this article do,
but the usual non-negative method reduces the risk component assigned to Bank 3.

Whereas both the usual and overall non-negative methods can allow profits in some scenarios
to mask losses in other scenarios, at least to some extent, the “scenario-wise non-negative” method
does not. The non-negative cost attributions in Staum (2012, §§ 4.2, 5.2) are a special case of the
scenario-wise non-negative method. Here, we develop the scenario-wise non-negative method more
fully and in more generality. Like the overall non-negative method, the scenario-wise non-negative
method works by modifying the risk function r and gets desirable game-theoretic properties as a
result of this construction. Instead of r(λ) = ρ(L(λ)), the scenario-wise non-negative method looks
at ρ(L↑(λ)) where, for a portfolio, the loss L↑(λ) =

∑n
i=1 λiX

+
ij−

∑n
i=1X

−
ij , the sum of losses scaled

by participation levels and unscaled profits. This amounts to saying that the participation of the
system’s components is responsible only for losses and not for profits. This makes the scenario-wise
non-negative method very different from the usual and overall non-negative methods. It is suitable
for different purposes. For example, it is useful for risk audits, as in Example 1.

The methods proposed here are also applicable to cost attribution (see, for example, Moulin and
Sprumont, 2007). Cost attribution is fundamental to risk attribution, so we begin by establishing
a common framework to describe cost attribution or risk attribution problems.

2 Attribution of Risk or Cost

We want to attribute the risk or cost of a system to the components of the system. In Section 2.2,
we consider the Shapley and Aumann-Shapley values, which are prominent methods for attribution
in cooperative game theory. These methods have proved to be useful even in cases when one does
not regard the system’s components as players of a cooperative game. For example, the Aumann-
Shapley value is standard for portfolio risk attribution (Tasche, 2008), even though the portfolio
arises by design of a portfolio manager, and not as the result of a cooperative game played by the
investments in the portfolio. To use the Shapley or Aumann-Shapley values, we must express the
risk or cost of a system as a function of the levels of participation of the components.

2.1 Risk or Cost

We need to model the way in which risk or cost depends on the participation of the system’s
components. Let us focus on risk, but also explain how the same formalism applies to cost. Our
model is a function r that maps a participation vector λ ∈ [0, 1]n to the risk r(λ) of the system
in which the participation of component i is λi. For the standard methods of cooperative game
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theory to apply, we must have r(0) = 0, i.e., risk is zero when none of the system’s components
participate, and that r(1) equals the risk of the actual system.

An important case is when the system can be treated as a portfolio of components that have
no interactions in the way their participation affects the systemic loss. This case includes portfolio
risk attribution and multi-commodity cost attribution problems, as well as other problems such as
systemic risk attribution when the financial system is treated as a portfolio of financial institutions.
In this case, we can show in detail how participation affects risk by writing

r(λ) = ρ(L(λ)), L(λ) = a(X(λ)) where a(X) =
n∑
i=1

Xi, and Xij(λ) = λiXij , (1)

where:

• Xij represents the loss experienced by component i in scenario j. If this is negative, then
−Xij represents a gain. In general, we model how the loss Xij(λ) of each component i in each
scenario j depends on λ, the vector that specifies participation by every component. In the
case of a portfolio, the participation λi of component i affects only the losses of component i,
by providing a linear scaling factor: Xij(λ) = λiXij . In particular, if component i does not
participate in the portfolio, i.e., λi = 0, its loss is zero, whereas if it participates fully in the
portfolio, i.e., λi = 1, its loss equals its actual loss, Xij .

• The aggregation function a maps a vectorX containing losses associated with each component
to a scalar a(X) describing the resulting loss for the system. The concept of the aggregation
function is due to Chen et al. (2013). The notationX·j denotes the column n-vector containing
the losses of each component in scenario j. By abuse of notation, a(X) denotes the random
variable such that the aggregation function is applied column-by-column, i.e., (a(X))j =
a(X·j) is the systemic loss in scenario j. This is how to interpret L(λ) = a(X(λ)). In the
case of a portfolio, a(X) =

∑n
i=1Xi, the net loss of the portfolio’s components.

• The risk measure ρ maps a random variable L describing the systemic loss to a scalar r(L)
that describes the risk of this random variable. The notation Lj denotes the systemic loss in
scenario j.

For simplicity of exposition, we assume that the random variables are defined on finite probability
spaces, but this is not essential to the underlying ideas.

Equation (1) has been described in terms of risk, but it also applies to cost. Let us consider
how it applies to a multi-commodity cost attribution problem (see, for example, Koster et al.,
1998). The index j of the components of the vector L or the columns of the matrix X is now
interpreted as referring to a commodity instead of a scenario. (Indeed, the Arrow-Debreu security
paying $1 in scenario j can be thought of as one commodity in a financial market.) Interpret Xij

as the demand for commodity j by component i; if it is negative, then −Xij represents supply of
commodity j by component i. The aggregation function a produces a systemic demand Lj = a(X·j)
for commodity j. Finally, r is a cost function that maps the systemic demand vector L to a total
cost to satisfy that systemic demand.

The single-commodity cost attribution problem is very simple and fundamental; we will return
to it in the later exposition. Because there is a single commodity, in Equation (1), the matrix of
individual demands X becomes a vector, and the vector of systemic demands L becomes a scalar.
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The systemic cost as a function of participation is r(λ) = ρ(
∑n

i=1 λiXi), the cost of satisfying net
demand.

Equation (1) is not always applicable. For example, in Liu and Staum (2011), the systemic
loss L represents the losses that the financial system imposes on its creditors. In their model, the
participation λ affects the systemic loss L(λ) not only through the losses X(λ) associated with the
firms that are the components of the financial system, but also by affecting the extent to which
the firms transmit losses to their creditors. The model cannot be written with L(λ) = a(X(λ))
and would have to be written as L(λ) = a(X(λ),λ). Also, the aggregation function need not
simply add up the individual components’ losses or demands. For example, in a multi-commodity
cost attribution problem, if one must order an integer number of units of commodity j, then
a(X) = d

∑n
i=1Xije. Chen et al. (2013) explore several other aggregation functions.

Equation (1) is inessential; as long as the function r is established, one of the methods described
in this paper can be applied. However, using Equation (1), which is applicable in many important
cases, enables development of multiple methods and provides greater clarity. We consider two risk
attribution examples that fit into Equation (1). Because they do, it is only necessary to specify
the matrix X of components’ losses in each scenario and the risk measure ρ. The risk components
generated by the several methods discussed in this article for the two examples are given in Tables 1
and 2 below.

Example 1 (Risk Audit: Expected Shortfall). Consider a firm whose profit or loss arises from the
profits and losses of multiple business units. The firm’s risk is measured as expected shortfall (see,
e.g., McNeil et al., 2005, § 2.1) at the α level,

ρ(L) =
1

1− α

 ∑
j:Lj≥qα

pjLj + qα

1− α−
∑

j:Lj≥qα

pj

 ,

where qα = inf{q :
∑

j:Lj≤q pj ≥ α} is the α-quantile of loss. The purpose of risk attribution is to
say how much of the expected shortfall is generated by each of the business units.

Consider a particular case in which there are n = 3 units and m = 4 scenarios, whose probabil-
ities are

[
90% 5% 4% 1%

]
, such that

X =

 0 −180 −90 90
−90 0 90 90
−90 −90 −90 270

 and L = `(X) =
[
−180 −270 −90 450

]
.

The 95% expected shortfall is 18 = (−90× 4% + 450× 1%)/5%.

Example 2 (Systemic Risk Charges: Probability of a Systemic Crisis). This simple model of the
probability of a systemic crisis treats the financial sector as a portfolio. When the system’s loss is
L, the conditional probability of a systemic crisis is Φ(β0 +β1L

+), where β0 and β1 are parameters
of the model and Φ is a monotone increasing, absolutely continuous function bounded above by 1.
A net loss for the financial system increases the conditional probability of a systemic crisis, but a
net gain (i.e., negative loss) does not decrease the conditional probability of a systemic crisis. The
systemic risk is the excess of the unconditional probability of a systemic crisis for this system above
the lowest possible such probability, Φ(β0): ρ(L) =

∑
j∈j pjΦ(β0 + β1L

+
j )− Φ(β0), where pj is the

probability of scenario j. It is necessary to normalize the systemic risk measure to get r(0) = 0
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by subtracting Φ(β0). The purpose of risk attribution is to assign systemic risk charges that are
proportional to the risk components, assuming that the cost of insuring the system is proportional
to the probability of a systemic crisis.

Consider a particular case in which Φ is the standard normal cumulative distribution function,
β0 = −2.5, and β1 = 0.5. There are m = 4 scenarios, whose probabilities are

[
93% 3% 3% 1%

]
.

The losses of the system components, which are n = 3 banks, and the cost, which is the conditional
crisis probability, are given by

X =

−1 −2 0 1
−1 5 0 4
−1 0 4 0

 and L = `(X) =
[
−3 3 4 5

]
.

The baseline conditional crisis probability is Φ(β0) = 0.62% in scenario 1, in which the financial
sector does not make a net loss; it is about 16% in scenario 2, 31% in scenario 3, and 50% in
scenario 4. The systemic risk is ρ(L) = 1.86%, which is the difference between the unconditional
crisis probability of 2.48% and the baseline conditional crisis probability.

2.2 Attribution

Two schemes for attributing risk are of particular interest: the Shapley value, which is common in
systemic risk attribution (Drehmann and Tarashev, 2013), and the Aumann-Shapley value, which
is standard in portfolio risk attribution (Tasche, 2008).

2.2.1 The Shapley Value

Let ei be the vector whose ith component is 1 and whose other components are 0. Let λ(S) =∑
i∈S ei. The incremental risk of the participation of system component i, when those in the set S

are already participating, is

∆ir(λ(S)) = r(λ(S ∪ {i}))− r(λ(S)). (2)

If formalism (1) applies, then the incremental risk is

∆ir(λ(S)) = ρ

(
Xi +

∑
i′∈S

Xi′

)
− ρ

(∑
i′∈S

Xi′

)
, (3)

the change in the system’s risk when component i is added to a portfolio containing the components
in the set S. The Shapley value attributes to participant i the risk

1

n!

∑
S 63i
|S|!(n− |S| − 1)!∆ir(λ(S)). (4)

It is non-negative if the function r is non-decreasing on {0, 1}n, which makes all incremental risks
non-negative.

For the single-commodity cost attribution problem, the incremental cost in Equation (3) is non-
negative if the cost function ρ is non-decreasing and Xi ≥ 0. If ρ is increasing and Xi < 0, then
the Shapley value attributes a negative cost to participant i for its negative demand, i.e., supply,
which lowers the cost of the system.
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2.2.2 The Aumann-Shapley Value

The Aumann-Shapley value attributes to component i the risk∫ 1

0

∂r

∂λi
(γ1) dγ, (5)

which is non-negative if the function r is non-decreasing.1 Suppose that Equation (1) applies, so
that r(λ) = ρ(

∑n
i=1 λiXi·). If the risk measure ρ is suitably differentiable,∫ 1

0

∂r

∂λi
(γ1) dγ =

∑
j∈Ω

Xij

∫ 1

0

∂ρ

∂Lj
(γL) dγ (6)

because the net loss of the portfolio L =
∑n

i=1Xi·, the sum of the components’ losses. That is,
the Aumann-Shapley value attributes to component i a risk component that is a weighted average
of component i’s losses in each scenario, weighted by an average sensitivity of risk to loss in that
scenario, where the average is taken as the systemic loss is scaled down from L to 0.

For the single-commodity cost attribution problem,

∂r

∂λi
(λ) =

∂

∂λi
ρ

(
n∑

i′=1

λi′Xi′

)
= Xiρ

′

(
n∑

i′=1

λi′Xi′

)
,

so the Aumann-Shapley value attributes to participant i the cost

Xi

∫ 1

0
ρ′

(
γ

n∑
i′=1

Xi′

)
dγ =

Xi∑n
i′=1Xi′

ρ

(
n∑

i′=1

Xi′

)
.

This is known as “average-cost pricing,” because ρ (
∑n

i′=1Xi′) /
∑n

i′=1Xi′ is the average cost per
unit of demand. It is non-negative if cost is non-negative and Xi ≥ 0. If Xi < 0, the Aumann-
Shapley cost attribution is negative as a reward for supply.

This example, leading to an interpretation of the Aumann-Shapley value as average-cost pricing,
illustrates how explicit formulae for the Aumann-Shapley value can give insight about what it
does. For this reason, we will emphasize explicit formulae, although they are not needed for
computational purposes. It is possible to approximate Equation (5) or (6) by numerical integration
and by replacing the partial derivatives with finite-difference approximations.

Example 1 In this example, in Equation (6) we have

∂ρ

∂Lj
(γL) = 1{Lj ≥ qα}

pj
1− α

1Strictly speaking, Equation (5) applies if r is differentiable at almost every point on the “diagonal” {γ1 : γ ∈
[0, 1]} and the function that maps γ ∈ [0, 1] to r(γ1) is absolutely continuous. The treatment of the case in which
Equation (5) is unusable due to non-differentiability goes back to Mertens (1988). Boonen et al. (2012) and Haimanko
(2001) provide a treatment of the issue for the specific applications of risk attribution and cost attribution, respectively.
The same considerations apply to the Aumann-Shapley values derived later in this paper.
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unless qα = Lj = Lj′ for some j′ 6= j, in which case differentiability fails. The partial derivatives
do not depend on γ because expected shortfall is positively homogeneous. The Aumann-Shapley
value for participant i is

1

1− α
∑

j:Lj≥qα

pjXij .

The Shapley and Aumann-Shapley values allocate negative risk components to Units 1 and 3
(Table 1). The main explanation for this is that the profits (negative losses) of these units in
scenario 3 outweigh their positive losses in scenario 4, and scenarios 3 and 4 are the tail scenarios
for the real system.

Example 2 Applying Equation (6) to Example 2, we compute

∂ρ

∂Lj
(γL) = 1{Lj > 0}pjβ1Φ′(β0 + β1γL

+
j ).

This yields an Aumann-Shapley value for component i of

∑
j:Lj>0

pjXij

∫ 1

0
β1Φ′(β0 + β1γL

+
j ) dγ =

∑
j:Lj>0

pj
Xij

L+
j

(
Φ(β0 + β1L

+
j )− Φ(β0)

)
.

In each scenario in which the portfolio has a net loss, which increases the crisis probability, each bank
is attributed a fraction of the increase in crisis probability, proportional to the bank’s contribution to
the net loss. This contribution is positive for banks that generate losses but negative for those that
generate profits, which can lead to negative risk components. The Shapley and Aumann-Shapley
values allocate a risk component to Bank 1 which is negative (Table 2). The main explanation for
this is that what Bank 1 does to reduce the conditional crisis probability in scenario 2 (which has
probability p2 = 3%) by generating the profit −X12 = 2 outweighs what it does to increase the
conditional crisis probability in scenario 4 (which has probability p4 = 1%) by generating the loss
X14 = 1.

3 Non-Negative Attribution of Risk or Cost

We present two methods for non-negative attribution of risk or cost. Recall that risk attribution can
be interpreted as cost attribution in a multi-commodity problem, where the commodities are Arrow-
Debreu securities, each representing wealth in one scenario only (Section 2.1). The two methods are
based on a single fundamental idea: to attribute cost to system components only insofar as their
participation increases cost, and to take their participation for granted when it decreases cost. In
the single-commodity cost attribution problem, this idea means attributing cost to demand (losses)
only, while taking supply (profits) for granted. The “scenario-wise non-negative” method of risk
attribution applies the fundamental idea to losses in each scenario separately, and then assesses
the implications for risk. That is, it takes all profits for granted, and attributes risk by considering
losses only. The “overall non-negative” method of risk attribution applies the fundamental idea
directly to risk: it takes the participation of a system component for granted when it decreases
risk, and attributes risk to system components insofar as their participation increases risk. Thus,
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it may ignore the losses of a system component when their contribution to risk is outweighed by
the negative contribution to risk of the system component’s profits.

Tables 1 and 2 contain the systemic risk components in Examples 1 and 2 generated by the
Shapley and Aumann-Shapley values for the usual method (Section 2.2), the usual non-negative
method (Section 1), the scenario-wise non-negative method (Section 3.1), and the overall non-
negative method (Section 3.2). These tables support two main conclusions about the advantages
that the proposed methods have over the usual non-negative method. The scenario-based non-
negative method can assign large positive risk components where the other methods assign values
that are negative or zero. This makes it advantageous when the goal is to detect contributions that
losses make to systemic risk without allowing them to be masked by profits. However, sometimes
it is desirable to compute risk components in a way that allows profits in some scenarios to offset
losses in other scenarios, at least to some extent. The usual and overall non-negative methods do
this. They may coincide, as in Example 1, or differ significantly, as in Example 2. In the latter
example, the overall non-negative method assigns to Bank 3 its stand-alone risk of 0.91%, which
is the amount by which it increases the conditional crisis probability in scenario 3. As argued in
Section 1, this is an example of how the property of partial separability is appropriate. Because
Bank 3 neither contributes to nor reduces the conditional crisis probability in the other scenarios,
and Banks 1 and 2 have zero loss in scenario 3, there is no interaction between Bank 3 and the
other banks in their contributions to systemic risk. This makes it desirable to assign 0.91% as the
risk component for Bank 3. It is a disadvantage of the usual non-negative method that it fails to
do so.

Table 1: Risk Components in Example 1: Expected Shortfall.

Risk Components
Method Value Unit 1 Unit 2 Unit 3

Usual Shapley -18 54 -18
Usual Aumann-Shapley -54 90 -18

Usual Non-Negative Shapley 0 18 0
Usual Non-Negative Aumann-Shapley 0 18 0

Overall Non-Negative Shapley 0 18 0
Overall Non-Negative Aumann-Shapley 0 18 0

Scenario-Based Non-Negative Shapley 6 6 6
Scenario-Based Non-Negative Aumann-Shapley 2 10 6

We assume henceforth that r satisfies the standard conditions that r(0) = 0 and r(1) is the
system’s cost or risk, which is non-negative. If it is negative, then it is impossible to produce
non-negative cost components.

3.1 Scenario-Wise Non-Negative Method

Suppose that r = ρ ◦ L, as in Equation (1). Further suppose that ρ is non-decreasing, as is often
assumed in risk measurement theory,2 that ρ(0) = 0, and that L(0) = 0. We transform the loss L

2An exception is the deviation measures of Rockafellar et al. (2006), which include such risk measures as standard
deviation.
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Table 2: Risk Components in Example 2: Systemic Crisis Probability.

Risk Components
Method Value Bank 1 Bank 2 Bank 3

Usual Shapley -0.41% 1.36% 0.91%
Usual Aumann-Shapley -0.21% 1.16% 0.91%

Usual Non-Negative Shapley 0 1.11% 0.74%
Usual Non-Negative Aumann-Shapley 0 1.04% 0.82%

Overall Non-Negative Shapley 0.01% 0.94% 0.91%
Overall Non-Negative Aumann-Shapley 0% 0.95% 0.91%

Scenario-Based Non-Negative Shapley 0.10% 0.85% 0.91%
Scenario-Based Non-Negative Aumann-Shapley 0.10% 0.85% 0.91%

into a non-decreasing function L↑ scenario by scenario, then replace r by r↑↑ = 0 ∨ (ρ ◦ L↑). The
function L↑ is given by

L↑j (λ) = inf
λ′

{
Lj(λ

′) : λ ≤ λ′ ≤ 1
}
. (7)

The result is that we get a non-decreasing function r↑↑ = 0 ∨ (ρ ◦ L↑) to use in the Shapley and
Aumann-Shapley values. Because L↑(1) = L and ρ(L) ≥ 0, r↑↑(1) = ρ(L). Because L↑(0) ≤
L(0) = 0, ρ(0) = 0, and ρ is non-decreasing, ρ(L↑(0)) ≤ 0 and therefore r↑↑(0) = 0.

In the particular case of a portfolio, as in Equation (1), Lj(λ) =
∑n

i=1 λiXij , so

L↑j (λ) =
n∑
i=1

λiX
+
ij −

n∑
i=1

X−ij . (8)

Then ρ(L↑(λ(S))) = ρ(
∑

i∈SX
+
i· −

∑n
i=1X

−
i· ) is the risk of a portfolio exposed to the profits of all

the components and the losses of the components in the set S.
The incremental risk used to compute the Shapley value is

∆ir
↑↑(λ(S)) =


ρ(L↑(λ(S ∪ {i})))− ρ(L↑(λ(S))) if ρ(L↑(λ(S))) ≥ 0

0 if ρ(L↑(λ(S ∪ {i}))) < 0
ρ(L↑(λ(S ∪ {i}))) otherwise

. (9)

The risk component attributed by the Aumann-Shapley value to component i is
∫ 1

0
∂r↑↑

∂λi
(γ1) dγ.

If ρ and L↑ are suitably differentiable, then this Aumann-Shapley value is given by∫ 1

0

∂r↑↑

∂λi
(γ1) dγ =

∫ 1

γ∗

(
∇ρ(L↑(γ1))

) ∂

∂λi
L↑(γ1) dγ. (10)

where γ∗ = inf
{
γ : ρ(L↑(γ1)) > 0) > 0

}
. Recall that we assumed r(0) = 0 and r(1) ≥ 0, which

implies that 0 ≤ γ∗ ≤ 1. In the case of a portfolio, using Equation (8), the risk component is(∫ 1

γ∗

(
∇ρ

(
γ

n∑
i′=1

X+
i′· −

n∑
i′=1

X−i′·

))
dγ

)
X+
i· . (11)
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Assuming that the number of scenarios in Ω is finite, this can be written more concretely as∑
j∈Ω

(∫ 1

γ∗

∂ρ

∂Lj

(
γ

n∑
i′=1

X+
i′· −

n∑
i′=1

X−i′·

)
dγ

)
X+
ij . (12)

This weighted sum of the losses of component i has the interpretation of average-cost pricing. A
numerical approximation to this is∑
j∈Ω

(
1

N

N∑
k=1

1

{
ρ

(
k − 1

N

n∑
i′=1

X+
i′· −

n∑
i′=1

X−i′·

)
> 0

}
∂ρ

∂Lj

(
k − 1

N

n∑
i′=1

X+
i′· −

n∑
i′=1

X−i′·

))
Xij . (13)

The partial derivative can be replaced by a finite-difference approximation if need be.

Example 1 The risk components for Example 1 are reported in Table 1. In this example,
L↑(λ) =

[
−180 −270 90λ2 − 180 90λ1 + 90λ2 + 270λ3

]
. The scenario-wise non-negative Shap-

ley value allocates equal amounts of risk to all three banks. This happens because r↑↑(λ(S)) =
0 ∨ ρ(L↑(λ(S))) = 0 for any proper subset S ⊂ {1, 2, 3}. When two or fewer banks are in the
subset, by adding the participation of a third bank only in scenarios in which it earns a profit, the
resulting loss vector L↑ has so much profit in some of its tail scenarios that its expected shortfall
is not positive. To compute the scenario-wise non-negative Aumann-Shapley values, we make the
following observations. The risk ρ(L↑(γ1)) is positive for γ > γ∗ = 8/9. For all λ sufficiently near
the diagonal {γ1 : γ ∈ [0, 1]}, scenarios 3 and 4 belong to the 5% tail of worst losses, and there are
no ties among scenarios, which would pose difficulties for differentiation. The gradient of ρ near the
diagonal is then

[
0 0 0.8 0.2

]
, because scenario 3 is four times as likely as scenario 4. Also using

the sensitivities of L↑(λ) =
[
−180 −270 90λ2 − 180 90λ1 + 90λ2 + 270λ3

]
, Equation (12) gives

an Aumann-Shapley value of∫ 1

8/9

(
0.8×

[
0 90 0

]
+ 0.2×

[
90 90 270

])
dγ =

[
2 10 6

]
.

The ratio of the risk component of Unit 3 to that of Unit 1 is much higher than in other schemes.
Here the ratio is three because the loss in scenario 4 of Unit 3 is three times as large as that of
Unit 1.

Example 2 The risk components for Example 2 are reported in Table 2. Table 3 contains the
systemic loss L↑j for scenarios j = 1−4, and the resulting risk measures, which are used to compute
the scenario-wise non-negative Shapley value. Compared to the overall non-negative Shapley value,
the risk component of Bank 1 is larger. This is because the scenario-wise non-negative Shapley value
recognizes the contribution of Bank 1 to increasing the conditional crisis probability in scenario 4,
but takes for granted the effect of Bank 1 in reducing the conditional crisis probability in other
scenarios. Applying Equation (12) to ρ(L) =

∑
j∈Ω pjΦ(β0 + β1L

+
j ) − Φ(β0), we get an Aumann-

Shapley value for component i of∑
j∈Ω

(∫ 1

γ∗
pjβ1Φ′

(
β0 + β1

(
γ

n∑
i′=1

X+
i′j −

n∑
i′=1

X−i′j

))
dγ

)
X+
ij

=
∑
j∈Ω

pj

(
Φ(β0 + β1L

+
j )− Φ(β0)

) X+
ij∑n

i′=1X
+
i′j

.
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In each scenario in which the portfolio has a net loss, the conditional crisis probability is ele-
vated, and each bank that generates a loss (not a profit) is attributed a fraction of the increase in
conditional crisis probability, in proportion to the bank’s loss.

Table 3: Computation of the Scenario-Wise Non-Negative Shapley Value in Example 2.

Set S of Banks ∅ {3} {2} {2, 3} {1} {1, 3} {1, 2} {1, 2, 3}
Scenario 1: Loss L↑1(λ(S)) -3 -3 -3 -3 -3 -3 -3 -3

Scenario 2: Loss L↑2(λ(S)) -2 -2 3 3 -2 -2 3 3

Scenario 3: Loss L↑3(λ(S)) 0 4 0 4 0 4 0 4

Scenario 4: Loss L↑4(λ(S)) 0 0 4 4 1 1 5 5

Excess crisis probability ρ(L↑) 0% 0.91% 0.76% 1.67% 0.02% 0.92% 0.95% 1.86%

3.2 Overall Non-Negative Method

As we saw from the theoretical analysis of the Shapley and Aumann-Shapley values (Section 2.2),
they would give us non-negative risk components if the function r, which maps participation of the
components to risk, were non-decreasing. It may fail to be non-decreasing when the participation of
a component lowers the system’s risk by generating profits. The overall non-negative method of risk
attribution avoids this problem by working with the greatest non-decreasing function dominated
by 0 ∨ r, given by

r↑(λ) = inf
λ′

{
0 ∨ r(λ′) : λ ≤ λ′ ≤ 1

}
= 0 ∨ inf

λ′

{
r(λ′) : λ ≤ λ′ ≤ 1

}
(14)

for λ ∈ [0, 1]n. The reason to work with 0 ∨ r instead of r is that this ensures the condition
r↑(0) = 0, needed to apply the Shapley and Aumann-Shapley values. As the following proposition
shows, the function r↑ is suitable to use in risk attribution, and even inherits the often-desirable
property of convexity, if r has it.

Proposition 1. The function r↑ is non-decreasing and satisfies r↑(0) = 0 and r↑(1) = r(1). If r
is convex, then r↑ is convex.

Proof. The first part is clear from the construction of r↑. Assume that r is convex. Then the
function r+ = 0 ∨ r is convex. For any α ∈ [0, 1] and λ1,λ2 ∈ [0, 1]n,

r↑(αλ1 + (1− α)λ2) = inf
λ′
{r+(λ′) : αλ1 + (1− α)λ2 ≤ λ′ ≤ 1}

= inf
λ′1,λ

′
2

{r+(αλ′1 + (1− α)λ′2) : λ1 ≤ λ′1 ≤ 1,λ2 ≤ λ′2 ≤ 1}

≤ inf
λ′1,λ

′
2

{αr+(λ′1) + (1− α)r+(λ′2) : λ1 ≤ λ′1 ≤ 1,λ2 ≤ λ′2 ≤ 1}

= α inf
λ′1

{r+(λ′1) : λ1 ≤ λ′1 ≤ 1}+ (1− α) inf
λ′2

{r+(λ′2) : λ2 ≤ λ′2 ≤ 1}

= αr↑(λ1) + (1− α)r↑(λ2),

which shows that r↑ is convex.
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If Equation (1) applies, then Equation (14) can be written as

r↑(λ) = 0 ∨ inf
λ′

{
ρ

(
n∑
i=1

λ′iXi·

)
: λ ≤ λ′ ≤ 1

}
.

The infimum has the interpretation of the minimal risk attainable starting from the system with
participation λ and “hedging” to reduce risk, but only by increasing participation of some compo-
nents.

The incremental risk used to compute the Shapley value is

∆ir
↑(λ(S)) = min

S′

{
0 ∨ r(λ(S′)) : i ∈ S′, S ⊂ S′

}
−min

S′

{
0 ∨ r(λ(S′)) : S ⊆ S′

}
.

If Equation (1) applies, then this becomes

∆ir
↑(λ(S)) = min

S′

{
0 ∨ ρ

(∑
i′∈S′

Xi′·

)
: i ∈ S′, S ⊂ S′

}
−min

S′

{
0 ∨ ρ

(∑
i′∈S′

Xi′·

)
: S ⊆ S′

}
.

It is zero if component i is included in an “optimal hedge” for the system that has participation
by the components in the set S, i.e., if adding the participation of a set of components including i
is a way to minimize risk or reduce it to zero.

The Aumann-Shapley value attributes to component i a risk component of
∫ 1

0
∂r↑

∂λi
(γ1) dγ. The

partial derivative ∂r↑

∂λi
(γ1) is zero if the constraint λ′i ≥ λi is not binding optimally in Equation (14).

In that case, for the system in which all participation levels are γ, there is an optimal hedge that
increases the participation of component i. That is, the participation of a component is taken
for granted when increasing it reduces risk. It is possible to approximate the Aumann-Shapley
value by numerical integration, finite-difference approximations of partial derivatives, and solving
Equation (14) approximately with a derivative-free nonlinear optimization algorithm. For example,
one may approximate the risk attributed to component i by

1

N

N∑
k=1

1

h

(
r̂↑
(
k − 1

N
1 + hei

)
− r̂↑

(
k − 1

N
1

))
, (15)

where N is the number of quadrature points, h is the finite difference, and r̂↑(λ) is the approximate
solution to Equation (14).

Example 1 The risk components in Example 1 by the overall non-negative method are reported
in Table 1. The Shapley value is zero for Unit 3 because it has negative expected shortfall in a
portfolio by itself, and does not increase expected shortfall when added to any portfolio containing
some of the other business units. The Shapley value is zero for Unit 1 even though it has positive
expected shortfall in a portfolio by itself. This is because any increase in expected shortfall resulting
from adding Unit 1 to a portfolio can be eliminated by also adding Unit 3. Table 4 details the
computation of the Shapley value. The entries on the last line of the table show that incremental
risk is positive only when adding Unit 2 to the set S. Thus, the Shapley value attributes all of the
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risk to Unit 2. Next, we turn to the Aumann-Shapley value. In this example, for all λ ∈ [0, 1]3

sufficiently near the diagonal {γ1 : γ ∈ [0, 1]},

r↑(λ) = 0 ∨ r
([

1 λ2 1
]>)

= 0 ∨ ρ
([
−(90 + 90λ2) −270 −180 + 90λ2 360 + 90λ2

])
= 0 ∨ ((−180 + 90λ2)× 4% + (360 + 90λ2)× 1%)/5%

= 0 ∨ (−72 + 90λ2)

= (90λ2 − 72)+.

For λ near the diagonal, the gradient is ∇r↑(λ) =
[
0 90 0

]
if λ2 > 0.8 and 0 if λ2 < 0.8. The

Aumann-Shapley value is
∫ 1

0 ∇r
↑(γ1) dγ =

∫ 1
0.8

[
0 90 0

]
dγ =

[
0 18 0

]
. It is zero for Unit 1

and Unit 3 because the contribution they make to reducing the portfolio loss in scenario 2 outweighs
the contribution they make to increasing it in scenario 4.

Table 4: Computation of the Overall Non-Negative Shapley Value in Example 1.

Set S of Business Units ∅ {3} {2} {2, 3} {1} {1, 3} {1, 2} {1, 2, 3}
Expected Shortfall r(λ(S)) 0 -90 90 72 18 0 36 18

Optimal S′ ⊇ S ∅ {3} {1, 2, 3} {1, 2, 3} {1, 3} {1, 3} {1, 2, 3} {1, 2, 3}
r↑(λ(S)) = 0 ∨ r(λ(S′)) 0 0 18 18 0 0 18 18

Example 2 The risk components in Example 2 by the overall non-negative method are reported in
Table 2. The Shapley value is positive for Bank 1, because Bank 1 by itself increases the probability
of a systemic crisis. However, it is small, because adding Bank 1 to a system including one or both
of the other banks does not increase the crisis probability. The Aumann-Shapley values reported

in Table 2 were approximated using Equation (15) with N = 103 and h = 10−4, and computing r̂↑

with the Hooke-Jeeves algorithm as implemented in the R package dfoptim.

4 Game Theory

Cooperative game theory studies the suitability for various purposes of cost allocation schemes,
such as the usual Shapley and Aumann-Shapley values. This is done by proving that, under appro-
priate conditions, the cost allocations have or do not have certain properties, e.g., of fairness, or of
producing incentives for cooperation. See, e.g., Moulin and Sprumont (2007) for an introduction.
A similar approach has been taken in risk attribution (Denault, 2001; Kalkbrener, 2005). There are
many properties that are investigated in cooperative game theory. Here we investigate three impor-
tant properties in relation to the scenario-wise and overall non-negative risk attribution methods.
In Section 4.1, we study a separability property, which says that if one system component has no
interactions with the other components of the system, then the risk attributed to it equals the risk
generated by that component in isolation. In Section 4.2, we study a diversification property, which
says that the risk attributed to any component as part of a portfolio or system cannot be more
than the risk generated by that component in isolation. This property is considered desirable in
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portfolio risk attribution. In Section 4.3, we study a monotonicity property, which says that the
risk attributed to a system component cannot decrease if the losses generated by that component
increase. If this property were to be violated, then the risk attribution method could provide bad
incentives. For example, it would be problematic if a firm could lower its systemic risk charge by
taking worse risks that increase the losses it would incur in some scenarios.

4.1 Separability

In cooperative game theory, there is a focus on cost attribution methods, such as the Shapley
and Aumann-Shapley values, that satisfy a separability axiom (Moulin and Sprumont, 2007). The
separability axiom says that if r(λ) =

∑n
i=1 ri(λi), then the risk component attributed to system

component i is ri(1) for all i = 1, . . . , n. This axiom is not useful in our investigation of methods of
generating non-negative risk components. In general, a method that satisfies the separability axiom
cannot be guaranteed to generate non-negative risk components. If we consider only non-negative
risk functions r, then the separability axiom is compatible with avoiding negative risk components.
However, it is so easy to satisfy the separability axiom for non-negative risk functions that it tells
us almost nothing about which methods of generating non-negative risk components are attractive.
Any method that coincides with the usual Shapley or Aumann-Shapley value when these are non-
negative satisfies the separability axiom for non-negative risk functions. Consequently, we consider
a separability property that is more difficult to satisfy. Let λ−i represent the vector formed from
λ by deleting the ith component, λi.

Definition 1. The risk attribution scheme satisfies the partial separability property if r(λ) =
ri(λi) + r−i(λ−i) for some functions ri and r−i and all λ ∈ [0, 1]n implies that the risk component
attributed to system component i is ri(1).

The property of partial separability says that if component i has no interaction with other com-
ponents, i.e., it is additively separable from the other components, then its risk component should
equal its stand-alone risk r(ei) = ri(1). The methods for generating non-negative risk components
that we have considered can be interpreted as redistributing the credit for risk reduction away from
negative risk components. The property of partial separability says that this credit should not be
distributed to a system component that has no interactions with the other components.

The property of partial separability has perhaps not been emphasized in the literature on
additive cost allocation methods because, given that the axiom of additivity holds, separability and
partial separability are both equivalent to the dummy axiom. See Moulin and Sprumont (2007,
§ 3). The methods of generating non-negative risk components considered in this article are not
additive.

In Table 2, we see that the usual non-negative Shapley and Aumann-Shapley values violate the
property of partial separability in Example 2. Next we prove that the overall and scenario-wise
non-negative Shapley and Aumann-Shapley values have the property of partial separability, under
some conditions that hold in Example 2.

Proposition 2. If r is non-negative, then the overall non-negative Shapley and Aumann-Shapley
values satisfy the partial separability property.

Proof. Suppose that r is non-negative and r(λ) = ri(λi) + r−i(λ−i) for some functions ri and r−i
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and all λ ∈ [0, 1]n. Then

r↑(λ) = inf
λ′i

{
ri(λi) : λi ≤ λ′i ≤ 1

}
+ inf

λ′−i

{
r−i(λ−i) : λ−i ≤ λ′−i ≤ 1

}
.

Because the Shapley and Aumann-Shapley values satisfy the property of partial separability, they
assign to component i the risk component r↑(ei) = ri(1).

Proposition 3. If Equation (1) holds and ρ is non-negative, then the scenario-wise non-negative
Shapley and Aumann-Shapley values satisfy the partial separability property.

Proof. Suppose that Equation (1) holds, ρ is non-negative, and r(λ) = ri(λi) + r−i(λ−i) for some
functions ri and r−i and all λ ∈ [0, 1]n. Then ri(λi) = ρi(λiXi) and r−i(λ−i) = ρ−i(

∑
i′ 6=i λi′Xi′) for

some non-negative risk measures ρi and ρ−i. Then r↑↑(λ) = ρi(λiX
+
i −X

−
i ) + ρ−i(

∑
i′ 6=i(λi′X

+
i′ −

Xi′)). Because the Shapley and Aumann-Shapley values satisfy the property of partial separability,
they assign to component i the risk component r↑↑(ei) = ρi(λiXi) = ri(1).

4.2 Diversification

If the function r is convex and positively homogeneous, then a system that combines the partici-
pation of multiple components has cost bounded above by the sum of the costs of the systems in
which each of the components participates alone. Thus, it seems appropriate for the risk attribution
method to obey the “diversification” (Kalkbrener, 2005) or “stand-alone” property (Moulin and
Sprumont, 2007) that the risk allocated to any component i is bounded above by its stand-alone
risk r(ei). In Equation (1), r(ei) = ρ(Xi·), the risk measure applied to the losses generated by
component i alone.

Definition 2. Let φi represent the risk component attributed to system component i when per-
forming risk attribution on the function r. The risk attribution scheme satisfies the diversification
property if, for all i = 1, . . . , n, φi ≤ r(ei).

In this section, we prove that the overall and scenario-wise non-negative Shapley and Aumann-
Shapley values have the diversification property, under some conditions.

4.2.1 Overall Non-Negative Method

Proposition 4. If r is convex and positively homogeneous, then the overall non-negative Shapley
and Aumann-Shapley values satisfy the diversification property.

Proof. First, consider the Shapley value. The incremental risk

∆ir
↑(λ(S)) ≤ min

S′
{r(λ(S′)) : i ∈ S′, S ⊂ S′} −min

S′
{r(λ(S′) : S ⊆ S′}.

Let T be a set satisfying r(λ(S ∪ T )) = minS′{r(λ(S′) : S ⊆ S′}, i.e., an optimal hedge for the set
S. Then r(λ(S′)) : i ∈ S′, S ⊂ S′} ≤ r(λ(S ∪ {i} ∪ T )) because the optimal hedge for S ∪ {i} is at
least as good as T . Because r is sublinear, r(λ(S ∪ {i} ∪ T )) ≤ r(λ(S ∪ T )) + r(λ({i})). Therefore
∆ir

↑(λ(S)) ≤ r(λ({i})).
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Next, consider the Aumann-Shapley value, which is an average of

∂r↑

∂λi
(γ1) = lim

h↓0

1

h

(
r↑(γ1 + hei)− r↑(γ1)

)
over γ ranging from 0 to 1. It suffices to prove that the partial derivative is bounded above by r(ei)
for all γ ∈ [0, 1]. It follows from Equation (14) that

∂r↑

∂λi
(γ1) ≤ lim

h↓0

1

h

(
inf
λ′
{r(λ′) : γ1 + hei ≤ λ′ ≤ 1} − inf

λ′
{r(λ′) : γ1 ≤ λ′ ≤ 1}

)
.

Choose any ε > 0 and let λ∗ be such that r(λ∗) < infλ′{r(λ′) : γ1 ≤ λ′ ≤ 1}+ε. For h ∈ (0, 1−γ),
we have

inf
λ′
{r(λ′) : γ1 + hei ≤ λ′ ≤ 1} ≤ r(λ∗ + hei).

Because r is sublinear, this is less than or equal to r(λ∗) + hr(ei). Therefore, for any ε > 0,

inf
λ′
{r(λ′) : γ1 + hei ≤ λ′ ≤ 1} − inf

λ′
{r(λ′) : γ1 ≤ λ′ ≤ 1} < ε+ hr(ei).

This provides an upper bound on ∂r↑

∂λi
(γ1) of r(ei), which was what was needed.

Corollary 1. If Equation (1) holds with the risk measure ρ being convex and positively homo-
geneous, then r is convex and positively homogeneous, and the overall non-negative Shapley and
Aumann-Shapley values satisfy the diversification property.

Proof. In Equation (1), r = ρ◦L and L is linear. Therefore r is convex and positively homogeneous
if ρ is. Now apply Prop. 4.

4.2.2 Scenario-Wise Non-Negative Method

The scenario-wise method for non-negative risk components works especially well when, in Equa-
tion (1), the risk measure ρ is a shortfall risk measure (Staum, 2013) and also convex and positively
homogeneous. Related concepts, which could also fit well with non-negative risk components, ap-
pear in Cont et al. (2013) and Koch-Medina et al. (2013). The mathematical finance literature on
risk measures is split as to sign convention. Here we have adopted the sign convention of Chen
et al. (2013), that ρ(L) is the risk of a system whose loss is L, where Lj > 0 if there is a loss in
scenario j and Lj < 0 if there is a profit in scenario j. However, other articles, including Staum
(2013), represent the risk of a system whose loss is L as ρ(−L). Translating the definition of Staum
(2013) to account for the difference in sign convention, a shortfall risk measure ρ is

• normalized, meaning that ρ(0) = 0,

• non-negative, meaning that ρ(L) ≥ 0 for all L,

• non-decreasing, meaning that ρ(L) ≥ ρ(L′) for all L and L′ such that L ≥ L′, and

• excess-invariant, meaning that ρ depends only on losses and not on profits: ρ(L) = ρ(L+) for
all L.
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In Example 1, ρ is not excess-invariant, although it has the other properties of a shortfall risk
measure. In Example 2, ρ is a shortfall risk measure.

Proposition 5. If Equation (1) holds and ρ is a convex, positively homogeneous shortfall risk
measure, then the scenario-wise non-negative Shapley and Aumann-Shapley values satisfy the di-
versification property.

Proof. By Lemma 1 below, the Shapley or Aumann-Shapley value attributes to component i a
risk component that equals

∑
j∈Ω µjX

+
ij for some vector µ such that

∑
j∈Ω µjX

+
ij ≤ ρ(X+

i· ). By

excess-invariance, ρ(X+
i· ) = ρ(Xi·).

Lemma 1. If Equation (1) holds and ρ is non-decreasing, convex, and positively homogeneous,
then there exists a set M such that ρ(L) = sup{

∑
j∈Ω µjLj : µ ∈ M} for all L, and the risk

component i generated by the scenario-wise non-negative Shapley or Aumann-Shapley value equals∑
j∈Ω µjX

+
ij for some µ ∈M.

Proof. The risk component comes from the Shapley or Aumann-Shapley value applied to r↑↑ =
0 ∨ (ρ ◦ L↑) = ρ ◦ L↑, because the shortfall risk measure is non-negative. Following Ruszczyński
and Shapiro (2006), Staum (2013, Thm. 5.1) shows that ρ(L) = sup{

∑
j∈Ω µjLj : µ ∈ M}, where

M is the set of subgradients of ρ at 0, and M is convex.
As a preliminary to analyzing the Shapley and Aumann-Shapley values, let ρ′(L;H) denote

the directional derivative of ρ at the point L in the direction H, i.e.,

ρ′(L;H) = lim
ε↓0

1

ε
(ρ(L+ εH)− ρ(L)) .

The directional derivative equals the inner product of H with a subgradient of ρ at L, i.e., it is∑
j∈ΩHjµj for some µ that is a subgradient of ρ at L (Rockafellar, 1970, Thm. 23.4). Because

ρ is convex and positively homogeneous, a subgradient at any point L is a subgradient at 0.
(This claim can be seen as follows. Let µ be a subgradient of ρ at L, meaning that for all L′,
ρ(L′) ≥ ρ(L) +

∑
j∈Ω(L′j − Lj)µj . Defining L′′ = L′ − L, the inequality can be rewritten as

ρ(L + L′′) − ρ(L) ≥
∑

j∈Ω L
′′
jµj . Together with subadditivity of ρ and ρ(0) = 0, this inequality

implies ρ(L′′)− ρ(0) ≥
∑

j∈Ω L
′′
jµj . That is, µ is a subgradient of ρ at 0.)

First, consider the Aumann-Shapley value, which is(∫ 1

0
∂ρ

(
γ

n∑
i′=1

X+
i′· −

n∑
i′=1

X−i′·

)
dγ

)
X+
i· ,

where ∂ρ(L) represents the subgradient of ρ at L such that the directional derivative ρ′(L;X+
i· ) =∑

j∈ΩX
+
ij (∂ρ(L))j . As stated, ∂ρ(L) is in M for every L. Therefore, the Aumann-Shapley value

is the product of X+
i· with an average of elements ofM. BecauseM is convex, this average is also

in M.
Finally, consider the Shapley value. The incremental risk of adding the participation of com-
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ponent i to the set S is

∆ir
↑↑(λ(S)) = ρ

(
X+
i· +

∑
i′∈S

X+
i′· −

n∑
i′=1

X−i′·

)
− ρ

(∑
i′∈S

X+
i′· −

n∑
i′=1

X−i′·

)

=

∫ 1

0
ρ′

(
γX+

i· +
∑
i′∈S

X+
i′· −

n∑
i′=1

X−i′·;X
+
i′·

)
dγ

=

(∫ 1

0
∂ρ

(
γX+

i· +
∑
i′∈S

X+
i′· −

n∑
i′=1

X−i′·

)
dγ

)
X+
i· ,

where the second equality follows from Cor. 24.2.1 of Rockafellar (1970). Therefore, the incremental
risk is the product ofX+

i· with an average of elements ofM. Because the weights on the incremental
risks in Equation (4) are non-negative and sum to one, the Shapley value is also the product of X+

i·
with an average of elements of M. Just as for the Aumann-Shapley value, the conclusion follows
from convexity of M.

4.3 Monotonicity

Friedman and Moulin (1999) describe a property called “demand monotonicity.” Recall that loss in
our context of risk attribution is analogous to demand in the context of cost allocation. To define
a corresponding monotonicity property in our context, we need to expand the notation for risk in
Equation (1) to depend explicitly on the loss matrix X: write

r(λ; X) = ρ

(
n∑
i=1

λiXi·

)
. (16)

In words, a risk attribution scheme has the monotonicity property if the risk component attributed
to a system component is non-decreasing in the loss generated by that system component.

Definition 3. Let φi and φ̃i represent the risk component attributed to system component i when
performing risk attribution on the function r(·; X) and on the function r(·; X̃), respectively. The
risk attribution scheme satisfies the monotonicity property if, for all i = 1, . . . , n, φ̃i ≥ φi whenever
X̃−X is non-negative and is zero in every row except the ith row.

Friedman and Moulin (1999) prove that the Shapley value has their demand monotonicity
property, but the Aumann-Shapley value does not have it, in general. In this section, we prove that
the scenario-wise and overall non-negative Shapley values have our monotonicity property, under
some conditions.

Proposition 6. If Equation (1) holds and ρ is non-decreasing, then the scenario-wise non-negative
Shapley value has the monotonicity property.

Proof. Define L↑j (λ; X) =
∑n

i=1 λiX
+
ij −

∑n
i=1X

−
ij . Focus on a particular component i and let X̃

be such that X̃i· ≥Xi· and X̃i′· = Xi′· for i′ 6= i. For any scenario j, the difference

L↑j (λ; X̃)− L↑j (λ; X) =


λi(X̃

+
ij −X

+
ij ) if X̃ij , Xij ≥ 0

λiX̃
+
ij +X−ij if X̃ij ≥ 0, Xij ≤ 0

X−ij − X̃
−
ij if X̃ij , Xij ≤ 0

19



is non-negative, non-decreasing in λi, and has no dependence on λi′ for i′ 6= i. Consider a set S that
does not contain i. Then ρ(L↑(λ(S); X̃)) = ρ(L↑(λ(S); X)) and ρ(L↑(λ(S∪{i}); X̃)) ≥ ρ(L↑(λ(S∪
{i}); X)). Therefore the incremental risk used to compute the Shapley value ∆ir

↑↑(λ(S); X̃) ≥
∆ir

↑↑(λ(S); X). Thus, the scenario-wise non-negative Shapley value for component i is no less
when the loss matrix is X̃ than when it is X.

Proposition 7. If Equation (1) holds and ρ is non-decreasing, then the overall non-negative Shap-
ley value has the monotonicity property.

Proof. Define r0 and T0 by

r0(λ(S); X) = min
S′

{
ρ

(∑
i′∈S′

Xi′·

)
: S ⊆ S′

}
= ρ

∑
i′∈S

Xi′· +
∑
i′∈T0

Xi′·

 . (17)

For i /∈ S, define ri and Ti by

ri(λ(S); X) = min
S′

{
ρ

(∑
i′∈S′

Xi′·

)
: i ∈ S′, S ⊂ S′

}
= ρ

Xi· +
∑
i′∈S

Xi′· +
∑
i′∈Ti

Xi′·

 , (18)

so that ∆ir
↑(λ(S); X) = ri(λ(S); X)− r0(λ(S); X). Let X̃ be such that X̃i· ≥Xi· and X̃i′· = Xi′·

for i′ 6= i. Because ρ is non-decreasing,

r0(λ(S); X̃) ≥ r0(λ(S); X) and ri(λ(S); X̃) ≥ ri(λ(S); X). (19)

Because Equation (18) has an extra constraint compared to Equation (17),

ri(λ(S); X) ≥ r0(λ(S); X) and ri(λ(S); X̃) ≥ r0(λ(S); X̃). (20)

We have

∆ir
↑(λ(S); X) =


ri(λ(S); X)− r0(λ(S); X) if r0(λ(S); X) ≥ 0 (case i)

ri(λ(S); X) if r0(λ(S); X) < 0 ≤ ri(λ(S); X) (case ii)
0 if ri(λ(S); X) < 0 (case iii)

.

By Equation (4), it suffices to prove that ∆ir
↑(λ(S); X̃) ≥ ∆ir

↑(λ(S); X) for all i and S 63 i. Before
analyzing the three cases, we establish the key inequality

ri(λ(S); X̃)− r0(λ(S); X̃) ≥ ri(λ(S); X)− r0(λ(S); X). (21)

Suppose that ri(λ(S); X) = r0(λ(S); X). Then Inequality (21) holds because of Inequality (20).
Otherwise, i.e., supposing ri(λ(S); X) > r0(λ(S); X), we must have that T0 in Equation (17)
does not contain i. Let T̃0 represent the value that T0 takes on when X̃ is substituted for X in
Equation (17). Because of the properties of X̃, T̃0 also does not contain i. That is, if it is not
optimal to hedge S using i when the loss matrix is X, then it cannot be optimal to hedge S using i
when the loss matrix is X̃, which makes component i worse. Therefore r0(λ(S); X̃) = r0(λ(S); X).
This, together with Inequality (19), implies Inequality (21). This establishes Inequality (21).
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• Case i: Inequality (19) implies that r0(λ(S); X̃) ≥ r0(λ(S); X) ≥ 0, so ∆ir
↑(λ(S); X̃) =

ri(λ(S); X̃)− r0(λ(S); X̃). By Inequality (21), ∆ir
↑(λ(S); X̃) ≥ ∆ir

↑(λ(S); X).

• Case ii: Suppose that r0(λ(S); X̃) < 0. Then ∆ir
↑(λ(S); X̃) = ri(λ(S); X̃) ≥ ri(λ(S); X) =

∆ir
↑(λ(S); X), where the inequality is due to Inequality (19). Otherwise, i.e., supposing

r0(λ(S); X̃) ≥ 0, it follows that

∆ir
↑(λ(S); X̃) = ri(λ(S); X̃)− r0(λ(S); X̃)

≥ ri(λ(S); X)− r0(λ(S); X)

≥ ri(λ(S); X) = ∆ir
↑(λ(S); X),

where the first inequality is Inequality (21).

• Case iii: ∆ir
↑(λ(S); X̃) ≥ 0 = ∆ir

↑(λ(S); X).

In all cases, ∆ir
↑(λ(S); X̃) ≥ ∆ir

↑(λ(S); X), which is what needed to be shown.

5 Conclusion

We introduced two methods for generating non-negative risk components with the Shapley value
or Aumann-Shapley value: the scenario-wise non-negative method and the overall non-negative
method. When applied to examples in firm-wide risk management and systemic risk management,
they yielded very different risk components from each other and from the usual method of gener-
ating non-negative risk components. Like the usual non-negative method, the overall non-negative
method allows profits in some scenarios to offset losses in other scenarios in computing a risk com-
ponent. The scenario-wise non-negative method does not allow profits in some scenarios to mask
losses in other scenarios, so it is useful for detecting all sources of risk. We showed that, under
appropriate conditions, the risk components generated by the two proposed methods have desirable
properties of partial separability, diversification, and monotonicity. In an example, we saw that
the usual non-negative method lacks the property of partial separability. This disadvantage of the
usual non-negative method is a reason to choose the overall non-negative method instead.

It would be valuable to have further research on other game-theoretic properties of the proposed
methods, whether in a general setting or a specialized setting for a particular application. At
this point, four methods for generating non-negative risk components are under consideration:
the overall and scenario-wise non-negative methods, applied with either the Shapley or Aumann-
Shapley values. This situation contrasts with that in portfolio risk attribution, where (if negative
risk components are allowed), a consensus emerged that applying the Aumann-Shapley value to the
risk function defined in Equation (1) is the single best method (Denault, 2001; Kalkbrener, 2005;
Tasche, 1999, 2008). Would further considerations, perhaps appropriate to a particular application,
support a unique choice of the best method for generating non-negative risk components?
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