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ABSTRACT

Efficient Simulation in Financial Risk Management

Ming Liu

Assessing the risk of a portfolio is essential both for risk managers to conduct portfolio

hedging and for regulators to construct rules, such as how much capital banks should put aside

to guard against financial risks they may face. In the past decade, more and more derivative

securities were invented corresponding to the increase of the over-the-counter market, and some

of them are quite complex. Unfortunately, if a portfolio contains such complex securities, it

could be very hard to analyze its risk. Monte-Carlo simulation is a very powerful tool for risk

measure estimation of complex derivatives. However, an accurate simulation can take so long

that the result is no longer useful when it is delivered because too much time has passed or the

portfolio has changed too much. In this dissertation research, the computational efficiency of

Monte-Carlo simulation is considered for portfolio risk assessment.

The first phase of the research focuses on efficient two-levelsimulation for point estima-

tion of expected shortfall. Applying tools from ranking andselection and tools for simulation

metamodeling, two different simulation procedures to dealwith portfolios with different con-

figurations are proposed. In the second phase of the research, a sequential experiment design
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procedure is developed to construct multiple metamodels based on a single stochastic simula-

tion model. This procedure is applied to approximate many securities’ prices as functions of a

financial scenario.
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CHAPTER 1

Introduction

In financial risk management, the risk of holding a portfoliois always measured as a func-

tion of the distribution of this portfolio’s value. When theportfolio contains derivative securities

an analytical pricing formula may not exist, and so nested simulation may be required for risk

measure estimation. In a two-level nested simulation framework, outer-level simulation gener-

ates possible future scenarios. These scenarios may arise from historical simulation or Monte

Carlo sampling from the distribution of future changes in risk factors. Inner-level simulation of

the more distant future, conditional on each scenario, yields an estimate of the portfolio’s value,

or profit and loss (P&L), in each scenario. The resulting computational burden can be quite

large, with thousands of Monte Carlo replications performed in each of thousands of scenarios,

for a total of millions of replications. Researchers have developed two approaches to making

nested simulation more computationally efficient.

Frye (1998) and Shaw (1998) proposed to reduce computational cost by performing zero

inner-level simulation replications in many of the scenarios. In this approach, inner-level sim-

ulation occurs only for a set of scenarios calleddesign points. These authors estimate the P&L

of other scenarios by interpolating among the simulation estimates of P&L at design points.

The other approach is more automated and generic. The earliest work is the thesis of Lee

(1998), who studied point estimation of a quantile of the distribution of a conditional expec-

tation. This is related to point estimation of value at risk (VaR): let the portfolio valueV in
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scenarioZ beV (Z) = E[X|Z], whereX is the discounted payoff of the securities in the port-

folio and E represents risk-neutral expectation. Lee (1998) discusses how to reduce the mean

squared error (MSE) of the point estimator by jackknifing to reduce its bias and by choosing

the number of scenarios to sample in an asymptotically optimal way. Gordy and Juneja (2006,

2008) use similar ideas in proposing a simulation procedurefor point estimation of a portfolio’s

VaR via two-level simulation. Expected shortfall (ES) is another widely used risk measure,

closely related to conditional value at risk and tail conditional expectation, which is the condi-

tional expectation of loss given that it exceeds VaR. Gordy and Juneja (2008) mention ES but

do not provide a simulation procedure for estimating it. A two-level simulation procedure for

interval estimation of ES is the topic of Lan et al. (2007a, 2008), who increase computational

efficiency by dynamic allocation of the computational budget in multi-stage simulation.

The remainder of the dissertation is organized as follows. First, we use ranking and selec-

tion methods to help optimize inner-level computational budget allocation, and this procedure

is described in Chapter 2. Second, we adopt the interpolation idea in Frye (1998) and Shaw

(1998), and use stochastic kriging (Ankenman et al., 2010) to achieve better simulation design

and interpolation taking the simulation uncertainty into account. The details of this second pro-

cedure is in Chapter 3. The topic of Chapter 4 is how to estimate many security’s prices as

functions of a financial scenario. A simulation procedure isproposed for providing an approxi-

mate picture of the way the prices of each security change as the market move. Such a picture

can be used for assessing and hedging portfolio risks.
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CHAPTER 2

Ranking and Selection Procedure for Point Estimation of Expected

Shortfall

2.1. Introduction

In this and the next chapter, we focus on point estimation of ES and on the inner level of

simulation. Our methods proposed in this chapter are related to those of Lan et al. (2008) and

of Lesnevski et al. (2008), who considered another risk measure, but we apply them differently

because our goal is efficient point estimation. To get an estimator with low MSE, we create a

heuristic simulation procedure. Although we present some justifications for our heuristics based

on the assumption that the simulated data are normally distributed, we do not prove anything

about the performance of the procedure. We merely craft and explain a simulation procedure,

then use experiments with normal and non-normal data to showthat it performs well. Our

procedure can attain a sufficiently low MSE even when the computational budget is so small

that other methods for estimating ES yield answers that are not accurate enough to be useful.

We compare our method to a standard two-level simulation of ES, without any efficiency tech-

niques, and to the confidence interval procedure of Lan et al.(2008). We report experimental

results in which our procedure delivers root mean squared error (RMSE) between 1% and 10%

of the true ES while the RMSE of a standard two-level simulation and the confidence interval

width of Lan et al. (2008) are about the same magnitude as ES, indicating that those procedures’

answers are not useful.
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2.2. Expected Shortfall

Let V be a random variable denoting the value of a portfolio at a future timeT . Its cumula-

tive distribution function is denoted byFV . A risk measure, such as VaR or ES, is a functional

T (FV ) of this distribution. The expected shortfall at level1− p is defined as

ES1−p = −
1

p

(
E[V 1{V≤vp}] + vp(p− Pr[V ≤ vp])

)
(2.1)

wherevp is thep-quantile ofFV ; −vp is VaR at the1− p level. In our analysis, we will assume

thatFV is continuous atvp, so that the second term on the right side of Equation (2.1) vanishes,

but our procedure works even if this is not so.

Let us suppose we havek scenarios describing the state of the financial markets at timeT .

Each scenario specifies the levels of a vectorZ of risk factors that determine the portfolio’s

valueV . Examples of risk factors are underlying asset prices, volatilities, or interest rates.

DefineVi = E[X|Z = Zi], the value of the portfolio in scenarioi, expressed as a conditional

risk-neutral expectation of the total discounted payoffX of the securities in the portfolio. To

simplify notation, we letXi represent a random variable whose distribution is the conditional

distribution ofX givenZ = Zi, so thatVi = E[Xi], and we refer toXi as a “payoff.” The

expectation is estimated by Monte Carlo simulation.

Let πV be a permutation of{1, 2, . . . , k} such thatVπV (1) ≤ VπV (2) ≤ . . . ≤ VπV (k), that is,

scenarioπV (i) is the one in which the portfolio value is theith lowest. Also defineγ to be the

set of the⌈kp⌉ portfolios with the smallest values, i.e.,γ = {πV (1), πV (2), . . . , πV (⌈kp⌉)}. We

use the terms “tail” and “non-tail” to refer toγ and{1, 2, . . . , k} \ γ, respectively. Then ES at
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level1− p of the empirical distribution ofV1, V2, . . . , Vk is

ES1−p =

⌈kp⌉∑

i=1

wiVπV (i)(2.2)

where

wi =
{ −1/kp, for i = 1, . . . , ⌊kp⌋ ,

−1 + ⌊kp⌋ /kp, for i = ⌊kp⌋ + 1.

The efficient procedure we propose in this chapter focuses onestimating ES as specified by

Equation (2.2) when the scenarios are given. The scenarios could be generated by historical

data or sampled from a distributionFV . If we sample them, this represents the outer level of

a two-level simulation procedure. The procedure we proposein this chapter focuses on inner-

level simulation, estimating the value of the portfolio in each scenario by simulating payoffs. It

can be used either with a fixed set of scenarios or as part of a two-level simulation. We will give

examples of historical simulation and two-level simulation in §2.5.

2.3. The Standard Procedure

In this section, we present the simplest possible simulation procedure for estimating ES as

specified by Equation (2.2). There is a fixed computational budget expressed as a total number

C of payoffs that can be simulated. The standard procedure divides the budget equally among

thek scenarios and then treats the resulting sample average payoffs as though they were the true

values of the scenarios. The procedure is:

(1) Simulate payoffsXih for i = 1, 2, . . . , k, h = 1, 2, . . . , ⌊C/k⌋. Calculate sample

averages̄X1, X̄2, . . . , X̄k.
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(2) Select the⌈kp⌉ smallest sample averages̄X(1), X̄(2), . . ., X̄(⌈kp⌉), where the subscript

(i) denotes the scenario with theith smallest sample average).

(3) Estimate ES by

⌈kp⌉∑

i=1

wiX̄(i).(2.3)

There are two main reasons that this standard procedure doesnot work well when the budget

C is small. First, from Equation (2.3), we see that only⌈kp⌉ sample averages actually appear

in the estimator, which means that only aboutpC payoffs appear. The other(1 − p)C payoffs

are used solely to eliminatek − ⌈kp⌉ scenarios. This way of selecting⌈kp⌉ scenarios to use in

the estimator is inefficient. The second reason is that for all i = 1, 2, . . . , ⌈kp⌉, X̄(i) is a biased

estimator ofVπV (i), due to selection bias. Selection bias is defined as E[X̄i|i ∈ γ̂]−E[X̄i], where

γ̂ is the set of scenarios corresponding to the⌈kp⌉ smallest sample averages. When the budget

C is small, the estimator (2.3) can be badly biased.

2.4. An Efficient Procedure

In this section we propose an efficient simulation procedureto estimate expected shortfall.

This procedure overcomes the two disadvantages of the standard procedure mentioned above

and can give an accurate point estimator of ES when the budgetis small.

To avoid spending too much of the budget on scenarios which can be easily excluded from

the tail, we follow Lan et al. (2008) and Lesnevski et al. (2008) in using screening. Screening

is a method, based on thet-test, that eliminates (“screens out”) some scenarios to concentrate

computational resources on the scenarios that are most likely to be in the tailγ. We combine

the goal of screening in Lan et al. (2008), to screen out all non-tail scenarios, with the highly
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efficient screening tactics of Lesnevski et al. (2008), thatuse multiple stages of screening that

terminate when a stopping rule judges that screening is no longer a good use of computational

resources. That is, at each stage of the simulation procedure, we simulate more payoffs con-

ditional on all surviving scenarios (the scenarios that we have not screened out yet) and screen

out more scenarios that now seem unlikely to be in the tail. Thus, we overcome the first disad-

vantage of the standard procedure by allocating fewer payoffs to the non-tail scenarios.

We overcome the second disadvantage by avoiding selection bias altogether with a technique

called “restarting” (Boesel et al., 2003): we throw out all the payoffs used in screening. After

screening, we select a setγ̂ of scenarios which we believe belong to the tail, and allocate the

remaining computational budget to scenarios inγ̂. We use only the sample averages of these

new payoffs in our ES estimator. Those sample averages were not used in the decision about

whether or not to include a scenario inγ̂, which makes E[X̄i|i ∈ γ̂] = E[X̄i], and then they have

no selection bias. This restarting technique is also used inLan et al. (2008) and Lesnevski et al.

(2008). The only source of bias in our procedure comes from the possibility that we may choose

γ̂ incorrectly, i.e., unequal to the true tailγ.

An important difference between our screening procedure and those of Lan et al. (2008)

and Lesnevski et al. (2008) is that we dynamically select theerror level of thet-tests at each

stage. Because of their goal of providing a confidence interval with a minimum guaranteed

coverage probability, Lan et al. (2008) and Lesnevski et al.(2008) were restricted to using a

pre-specified, very low error level for thet-tests. Our procedure tends to choose higher error

levels, thus screening more aggressively and concentrating more of the computational budget

on the scenarios whose sample averages are used in the ES estimator.
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2.4.1. Outline of the Procedure

We outline our procedure in this section, and elaborate on some steps in subsequent sections.

For clarity, we split the procedure into two phases, Phase I and Phase II. Phase I includes multi-

stage screening and selection ofγ̂. Phase II allocates the remaining computational budget to the

selected scenarios, simulates more payoffs, and computes the ES estimator. Because Phase I

contains multiple stages, we usej = 0, 1, 2, . . . to index the stages.

The user specifies the computational budgetC, the sample sizen0 of the first stage, and the

rateR at which the cumulative sample size grows from one stage to the next. The computational

budget can be chosen based on the time available for the simulation experiment or on experience

with the budget required to attain the desired precision. Anexperiment in§2.5.2 illustrates that

it is not difficult to choose good values ofn0 andR, and leads to the recommendation ofn0 = 30

andR = 1.2 for most simulation problems.

DefineIj to be the set of scenarios that survive to the beginning of stagej andNj to be the

cumulative number of payoffs simulated for each scenario inIj after stagej, soN0 = n0. Given

the sample size growth factorR, Nj = Nj−1R for j ≥ 1. Let X̄i(j) be the sample average of

scenarioi after stagej, i.e.,X̄i(j) = N−1
j

∑Nj

h=1Xih. Letπj(·) be a mapping of{1, 2, . . . , |Ij|}

to Ij such thatX̄πj(1)(j) ≤ X̄πj(2)(j) ≤ · · · ≤ X̄πj(|Ij |)(j). That is, for anyi = 1, 2, . . . , |Ij|,

πj(i) is the scenario with the sample average that isith lowest after stagej among the scenarios

in Ij . Let Cj be the remaining budget at the beginning of stagej, andJ be the index of the

last screening stage in Phase I, as determined by the stopping rule. Letαj be the error level of

eacht-test at stagej, which we refer to as the error level for screening at stagej. An outline of

our procedure follows; for the full details, see Appendix A.1. Figure 2.1 contains a flowchart

illustrating the procedure.
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Initialization.: SetN0 ← n0, I0 ← {1, 2, . . . , k}, C0 ← C, andj ← 0.

Phase I.:

(1) If j > 0, setnj ← Nj − Nj−1. Simulatenj payoffs for each scenario inIj using

common random numbers (CRN; see Law and Kelton, 2000) to sharpen screening

in Step 3. Calculate the remaining budgetCj+1 ← Cj − |Ij|nj.

(2) Choose the error level for screening,αj (§2.4.3).

(3) Screening: Screen to computeIj+1, the set of scenarios that survive screening

after stagej (§2.4.2).

(4) If the stopping rule is not satisfied (§2.4.5), then setj ← j + 1 and go to Step 1.

(5) Selection:SetJ ← j andγ̂ ← {πJ(1), πJ(2) . . . , πJ(⌈kp⌉)}.

Phase II.: Restart, allocate the remaining computational budget to scenarios inγ̂, and

compute the ES estimator (§2.4.4).

2.4.2. Screening

In this section we present the screening method given the target error levelαj at stagej; we

will show how to chooseαj in §2.4.3. For all ordered pairs(i, r) in Ij × Ij , we consider at-test

of the hypothesis thatVi ≤ Vr at significance levelαj . If this hypothesis is rejected, we say

scenarioi is “beaten” by scenarior, i.e.,i is beaten byr if and only if

X̄i(j) > X̄r(j) +
t1−αj ,Nj−1Sir(j)√

Nj

wheret1−αj ,Nj−1 is the1− αj quantile of thet-distribution withNj − 1 degrees of freedom,

S2
ir(j) =

1

Nj − 1

Nj∑

h=1

(
Xih −Xrh −

(
X̄i(j)− X̄r(j)

))2
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Figure 2.1. A flowchart representing our procedure.

is the sample variance ofXi − Xr, and X̄i(j) is the sample average ofXi1, Xi2, . . . , XiNi
.

Scenarios beaten at least⌈kp⌉ times are screened out, therefore

Ij+1 =



i :

∑

r∈Ij

1

{
X̄i(j) > X̄r(j) +

t1−αj ,Nj−1Sir(j)√
Nj

}
< kp, i ∈ Ij



 .

The use of thet-test is motivated by the observation that, ifNj is sufficiently large,(X̄i(j) −

X̄r(j) − (Vi − Vr))
√
Nj/Sir is approximately Studentt distributed (Henderson, 2006). For

convenience in analysis, we will treat each payoffXi as though it were normal. The adequacy

of this assumption of normality in a closely related procedure was evaluated in Lesnevski et al.
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(2008). Furthermore, our procedure neither provides a confidence interval nor guarantees a

minimum probability of correctly identifying the tail, so thet-tests here do not need to be valid.

We merely use them as a tool for decreasing the MSE of our pointestimator given a fixed

computational budget.

2.4.3. Error Level for Screening

The purpose of the stopping rule (§2.4.5) is to make sure that enough of the computational

budget is left for Phase II to accurately estimate the valuesof the scenarios selected in Phase I,

so in choosing the error levelαj for screening at stagej, we only consider how this affects the

quality of the set̂γ of scenarios that we select in Phase I. In particular, define CS := {γ̂ = γ}

to be the event of selectingγ at the end of Phase I. We would like to chooseα0, α1, . . . , αJ

to maximizePr{CS}, the probability of correct selection. Unfortunately, this maximization

problem is too hard to solve, primarily because we cannot expressPr{CS} in a useful form to

allow it to be optimized over the error levels.

However, the principle behind the existence of an optimal choice ofαj is clear. A small

αj means screening cautiously at stagej, not screening out many scenarios, but having a low

probability of mistakenly screening out a scenario that really belongs to the tailγ; a largeαj

means screening aggressively, screening out many scenarios, but with a larger probability of

mistakenly screening out tail scenarios. Ifα0, α1, . . . , αJ are too big, we are very likely to

make screening mistakes. If we do, some scenarios inγ will not be in IJ+1, i.e., will not

survive screening, which will prevent us from making a correct selection at the end of Phase I.

If α0, α1, . . . , αJ are too small, we will probably not screen out many scenariosbefore we use

up so much of the computational budget that we have to go to Phase II, when we must select
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exactly⌈kp⌉ scenarios. If the number|IJ+1| of scenarios that survive to this point is too large,

each one has a small sample sizeNJ because the computational budget was depleted after

a small numberJ + 1 of stages. Then we will be forced to choose among many scenarios

on the basis of sample averages that have high variance, because their variances are inversely

proportional toNJ . This implies a large probability of making selection mistakes at the end of

Phase I. In other words, by being too cautious during screening, we would waste much of the

computational budget on scenarios that we should have been bold enough to eliminate. Then

we would quickly find ourselves in a situation in which we would be forced to guess, on the

basis of inadequate information, the identities of the tailscenarios from among a large set of

scenarios. We will attempt to choose a moderateαj that balances the risks of screening mistakes

during Phase I and selection mistakes at the end of Phase I.

Our method choosesα0, α1, . . . , αJ dynamically, on the basis of an approximation toPr{CS}

that is updated at every stage of screening. We choose the error levelαj at the end of stagej,

just before screening. To simplify the problem, we assume while choosingαj that this error

level will be used in screening at the current stagej and all future stages. This is not how our

procedure actually works: at stagej + 1 we will chooseαj+1 on the basis of new information,

andαj+1 is generally not the same asαj. However, the assumption relieves us of the need to

considerαj+1, αj+2, . . . , αJ while choosingαj , which would be difficult to do.

To chooseαj, we would like to maximize the probabilityPr {CSj} of selecting all tail

scenarios that have survived to stagej: CSj := {γ ∩ Ij ⊆ γ̂}. Unfortunately, we can not write

Pr {CSj} as an explicit function ofαj ; we have to replace it with some sort of approximation.

Our approach is to use a forecast of the behavior of our procedure in later stages to construct
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the following approximation toPr {CSj} when the error level isα:

P̃ (j, α) =
(1− ⌈kp⌉α)J̃(j,α)−j+1



|Ĩ(j, α)|

⌈kp⌉




(2.4)

whereJ̃(j, α) is the forecasted final stage of Phase I andĨ(j, α) is the forecasted set of scenarios

that will survive screening after stagẽJ(j, α). The procedure for making these forecasts is

described in Appendix A.2.1.1. We chooseαj to maximizeP̃ (j, α) instead ofPr {CSj}, which

we can not compute. The derivation ofP̃ (j, α) is in Appendix A.2.1. Briefly, the numerator

is related to the probability that none of the tail scenariosare screened out in stagesj, j +

1, . . . , J̃(j, α), while the reciprocal of the denominator is related to the probability of correctly

choosing⌈kp⌉ scenarios out of the|Ĩ(j, α)| scenarios that are forecasted to survive screening.

Figure 2.2 illustrates how the scenarios’ sample averages and the error level for screening

αj change during a single run of the procedure. At many stages,αj is quite low, because the

procedure judges that the number of surviving scenarios is small compared to the remaining

computational budget. The same low level is chosen forαj at many stages because we chose

αj using a search algorithm (see§A.1) that confines the search to a grid, and this level is the

smallest in the grid. At other stages, such as 6, 9, and 21, theprocedure judges that there are too

many surviving scenarios compared to the remaining budget,so it increases the screening error

levelαj and screens out many scenarios. In this run of the procedure,after stage 21, there are

only 11 scenarios left, while we must selectkp = 10. However, even though the 11th scenario

is not screened out, the stopping rule takes until stage 32 todecide that screening is no longer

worthwhile. This run is atypical; in replications of this example, screening usually stops when
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only 10 scenarios remain. We chose to present an atypical runbecause its later stages show that

the error levelαj selected by the procedure can vary greatly depending on the remaining budget

and the current sample averages, even when the number of surviving scenarios does not change.
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Figure 2.2. Multi-stage screening during one run of our procedure on the his-
torical simulation example (§2.5.2). Solid lines represent sample averages of
surviving scenarios. The dashed line is the error level for screening.

2.4.4. Allocating the Remaining Budget to Compute the Estimator

In this section, we describe Phase II of the procedure. Afterrestarting, it is necessary to allocate

the remaining computational budget to scenarios inγ̂. We do this so as to minimize the variance
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of the ES estimator. First we describe Phase II simulation and the ES estimator, then derive the

optimal allocation.

Conditional on each scenarioi ∈ γ̂, we simulateMi payoffs in Phase II and calculate the

sample averagēXi. Because we do not do any comparisons between scenarios in Phase II, CRN

is not used; typically, independent sampling leads to a lower variance for the ES estimator

ÊS1−p =

⌈kp⌉∑

i=1

wiX̄πJ (i).(2.5)

Now we consider how to choose the Phase II sample sizeMi for i ∈ γ̂. Because we use

restarting, the bias of the ES estimator only comes from the possibility of a wrong selection

γ̂ 6= γ in Phase I. The bias does not depend on Phase II sample sizes, so if we want to minimize

the MSE we only need to minimize the variance. The variance ofÊS1−p is

(2.6) Var(ÊS1−p) = Var




⌈kp⌉∑

i=1

wiX̄πJ(i)


 =

⌈kp⌉∑

i=1

w2
i

σ2
πJ (i)

MπJ (i)

,

whereσ2
πJ (i)

= Var[XπJ (i)|πJ(i)] is the conditional variance of the payoff given that the scenario

is πJ(i). Notice that, conditional on Phase I, Var(ÊS1−p) is not a random variable. Since we

do not knowσ2
πJ (i)

, we use the sample varianceS2
πJ(i)

(J) of theNJ samples in Phase I instead.

Then we consider the optimization problem

min

⌈kp⌉∑

i=1

w2
i

S2
πJ(i)

(J)

MπJ (i)

s.t.
⌈kp⌉∑

i=1

MπJ(i) = CJ+1.

Using the Karush-Kuhn-Tucker (KKT) condition, the optimalMi is

MπJ (i) = CJ+1

wiSπJ(i)(J)∑⌈kp⌉
r=1 wrSπJ (r)(J)

.(2.7)
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2.4.5. Stopping Rule

At the end of each stage in Phase I, our procedure has to decidewhether to go on screening,

continuing Phase I, or to stop screening, selectγ̂, and end Phase I. Because of restarting, we do

not want to continue Phase I too long, or we will throw out a lotof simulated payoffs, leaving

too small a computational budget for Phase II, which will produce a high-variance estimator.

On the other hand, if we end Phase I too soon, when it is not yet clear which scenarios belong

to the tail, a large bias arises because we are likely to select γ̂ badly. In this section we give a

stopping rule for Phase I that balances these considerations.

We focus on the decision whether to stop Phase I after stagej, whenIj+1 has just been

computed. If|Ij+1| = ⌈kp⌉, there is no need to do any more screening, so we stop. Otherwise,

we approximate the MSE of the ES estimator if we stop now and ifwe continue, then make

the decision that leads to the smallest MSE. In approximating the MSE if we stop now, our

procedure is pessimistic about the bias of the ES estimator.In approximating the MSE if we

continue, our procedure is optimistic in believing that only scenarios belonging to the tail will

survive screening at stagej + 1, and that these are the scenarios with the smallest conditional

payoff variancesσ2 of all scenarios inIj+1. Because we are optimistic about the next stage

of screening and pessimistic about stopping, our proceduretends to continue screening when

the remaining computational budgetCj+1 is sufficiently large. As the remaining computational

budget shrinks, the variance of the ES estimator grows, and this eventually forces the procedure

to stop Phase I to save enough budget for ES estimation in Phase II. We adopt this idea of

being pessimistic about stopping and optimistic about continuing because it performed well in

Lesnevski et al. (2008).
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Because of restarting, a Phase II sample averageX̄πJ(i) is an unbiased estimator ofVπJ(i).

Thus the bias of our ES estimator defined in Equation (2.5) is

Bias(ÊS1−p) = E
[
ÊS1−p

]
− ES1−p

=

⌈kp⌉∑

i=1

wi

(
E
[
X̄πJ(i)

]
− VπV (i)

)

=

⌈kp⌉∑

i=1

wi

(
VπJ(i) − VπV (i)

)
.(2.8)

From the definition ofwi, πV (·), andπj(·), it follows that Bias(ÊS1−p) is negative.

When we consider whether to stop screening after stagej, we can split the bias into two

parts: the bias from screening mistakes up to stagej and the bias from any screening or selection

mistakes after stagej. The bias due to screening up to stagej is the same whether we stop or

continue after stagej, so we ignore it in formulating the stopping rule and only consider the

bias due to screening or selection mistakes after stagej. To simplify matters, we suppose

γ ⊆ Ij+1, that is, no screening mistakes have occurred so far. Given our optimistic view of

continuing, we suppose there will be no screening or selection mistakes after stagej if we

continue, producing zero bias. If we stop after stagej, the only bias comes from selection

mistakes due to|Ij+1| > ⌈kp⌉: if we selectγ̂ now on the basis ofNj samples from each

surviving scenario, it may not be the same asγ. Consistent with our pessimistic approach to

evaluating the decision to stop, we consider the following approximate lower bound for the bias

(which is negative) due to stopping after stagej:

B(j) =

min{⌈kp⌉,|Ij+1|−⌈kp⌉}∑

i=1

wi max
δ≥0

δΦ
(
−δ
√

Nj/τj

)
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whereΦ(·) is the standard normal distribution function andτj = max {Sir(j) : i, r ∈ Ij+1, i 6= r}.

Details of the derivation are in Appendix A.2.2.

We estimate the variance of the ES estimator if we stop after stagej by

Vs(j) =

⌈kp⌉∑

i=1

w2
i S

2
πj(i)

(j)

Mπj(i)
=

1

Cj+1




⌈kp⌉∑

i=1

wiSπj(i)(j)




2

.

The second equality follows from Equation (2.7) andJ = j. Our pessimistic approximation to

the MSE of the estimator if we stop after stagej is

MSEs(j) = B2(j) + Vs(j).

To analyze the variance if we continue, we optimistically suppose that the set of scenarios

which will survive after one additional stage of screening is exactlyγ, and that they have the

smallest variances among the scenarios inIj+1. According to this optimistic assumption, we

will stop after stagej +1, our ES estimator will have zero bias, and its variance is estimated by

Vc(j) =
1

Cj+1 − (Nj+1 −Nj)|Ij+1|




⌈kp⌉∑

i=1

wiSπS(j)(i)(j)




2

whereπS(j)(·) is a mapping of{1, 2, . . . , |Ij+1|} to Ij+1 such thatSπS(j)(1)(j) ≤ SπS(j)(2)(j) ≤

· · · ≤ SπS(j)(|Ij+1|)(j); i.e.,SπS(j)(i)(j) is theith smallest sample standard deviation among the

scenarios surviving stagej. Our optimistic approximation to the MSE of the estimator ifwe

continue after stagej + 1 is

MSEc(j) = Vc(j).
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The stopping rule is: if|Ij+1| = ⌈kp⌉ orMSEs(j) < MSEc(j), select̂γ and go to Phase II,

otherwise continue with stagej + 1 of screening in Phase I. This rule determines when Phase I

ends, but we also use it while choosing the screening error level αj (§2.4.3) to forecast when

Phase I will end. When we use the stopping rule for that purpose, we plug the forecasted

sample averages, sample variances and sets of surviving scenarios into the MSE expressions

given above.

Figure 2.3 shows how the stopping rule works on the same run ofour procedure shown in

Figure 2.2. The pessimistic approximation of MSE if we stop drops steeply at stages 13, 17, and

21, as the number of surviving scenarios gets close tokp = 10. As mentioned previously and

illustrated in Figure 2.2, this run is atypical in that 11 scenarios survive from stages 21 to 32.

On this run, optimism that the sole surviving non-tail scenario will be screened out is not borne

out. Both estimates,MSEc andMSEs, of MSE rise after stage 21 as the computational budget

is spent without achieving anything, butMSEc rises faster because it includes the effects of

continuing for one more extra, larger stage of screening. When it catches up toMSEs, Phase I

ends and the procedure selects the 10 scenarios with the lowest sample averages in Figure 2.2.

On this run, 53% of the budget was spent in Phase I.

2.5. Experimental Results

We test the performance of our procedure on three examples. The first example features

artificial configurations ofk = 1000 scenarios in which the payoffs have heavy-tailed Pareto

distributions. We vary a parameter that controls the difficulty of screening and selection and

illustrate that our procedure attains lower MSE than the standard procedure (§2.3) for all values

of the parameter that we considered. The second example is ofa portfolio of eight call options,
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Figure 2.3. Operation of the stopping rule during one run of our procedure on
the historical simulation example (§2.5.2).

with 1000 scenarios based on historical stock prices. The third example is similar to the second,

but it is a two-level simulation, with scenarios sampled in an outer-level simulation, and our

procedure governing the inner-level simulation. Using this example, we compare our procedure

with the standard procedure and with the confidence intervalprocedure of Lan et al. (2008).

We compare the precision of the estimators these proceduresproduce given a computational

budget expressed in total payoffs simulated. This comparison is not entirely fair because it

excludes the overhead of screening, choosing error levels for screening, etc. Excluding the

overhead of our procedure and that of Lan et al. (2008) is unfavorable to the standard procedure.
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This issue is addressed experimentally by Lan et al. (2008),who also report comparisons in

which there is a fixed budget of computing time.

2.5.1. Artificial Configuration Example

The artificial configuration of scenarios in this example is motivated by the “slippage config-

uration” used in the ranking and selection literature because it is difficult for screening and

selection procedures (Kim and Nelson, 2006). In this configuration all tail scenarios have pay-

offs with a common distribution, while all non-tail scenarios’ payoffs have a different common

distribution. To make screening even more difficult, the payoffs of different scenarios are in-

dependent, so that common random numbers achieve nothing. In particular, if scenariosi and

r are both in the tailγ, thenVi = Vr; and theVi = Vr also if neitheri nor r are in the tail. If

i ∈ γ while r /∈ γ, thenVr = Vi + δ. The parameterδ governs the difficulty of screening and

selection: whenδ is small, it is difficult to distinguish tail from non-tail scenarios, so it will be

hard to screen out scenarios and easy to make selection mistakes. On the other hand, the bias

induced by selection mistakes will be small. By changingδ, we can compare our procedure to

the standard procedure for a range of configurations with different characteristics.

Pareto distributions are often used to model heavy-tailed loss distributions. Using a heavy-

tailed distribution challenges our procedure, which was designed with normally distributed data

in mind. We use the Pareto distribution with cumulative distribution functionF (x) = 1 −

(λ/(λ + x))2.5 for x ≥ 0. The shape parameter is 2.5 and the scale parameterλ is 25 for

tail scenarios, while for non-tail scenarios it is either 25.5, 25.875, 26.25, 26.625, 27, 27.75,

or 28.5. The resulting values ofδ, the difference between tail and non-tail scenarios’ values,

are 0.33, 0.58, 0.83, 1.08, 1.33, 1.83, or 2.33. There arek = 1000 scenarios and we estimate
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ES0.99, so there arekp = 10 tail scenarios. This example is simple enough that we can compute

ES0.99 = 16.67, which makes it easier to determine the MSE of the simulationprocedures.

Figure 2.4 shows the root mean squared error (RMSE) of estimating ES0.99 for the standard

procedure and our procedure. RMSE was estimated by running 1000 macro-replications of

the simulation experiment, and the error bars represent theresulting 95% confidence interval

for RMSE. In these experiments, the computational budgetC is 4 million payoffs, the initial

sample sizen0 = 300, and the sample size growth factorR = 1.2. From Figure 2.4 we see that

asδ decreases, the RMSE of the standard procedure increases. The reason is that its selection

bias increases: when the tail and non-tail scenarios are similar, it is very likely that some of the

990 non-tail scenarios will have sample averages that are less than the value of the tail scenarios

and will be selected intôγ, the set of scenarios the procedure guesses are in the tail. Because our

procedures eliminates selection bias by restarting, it gives a much more accurate point estimator

whenδ is small. Whenδ is big, our procedure outperforms the standard procedure because it

allocates the computational budget more efficiently. In this experiment, our procedure always

yields an RMSE below 0.44, which is small compared to the trueES0.99 = 16.67 and to the

standard deviation of the tail scenarios’ payoff distribution, which is 37.27.

2.5.2. Historical Simulation of an Options Portfolio

Next we consider a more realistic example, in which we estimate the ES of a portfolio of call

options on Cisco (CSCO) and Sun Microsystems (JAVA), as shown in Table 3.1. The position

given in Table 3.1 is the number of shares of stock the option contract is written on, and a

negative value means a short position. Except for the position data, which we made up, all other

data in this table comes from listed option prices on June 26,2007. The risk-free rates come



31

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Difference δ between Tail and Non−tail Scenarios’ Values

R
oo

t M
ea

n 
S

qu
ar

ed
 E

rr
or

Our Procedure
Standard Procedure

Figure 2.4. Root mean squared error of estimating expected shortfall at the 99%
level, in artificial configurations of varying difficulties,with computational bud-
getC = 4 million, first-stage sample sizen0 = 300, and sample size growth
factorR = 1.2.

from the yields of US treasury bonds with the same maturitiesas the options. We estimate the

ES of this portfolio’s value on June 27, 2007 given information up to June 26, 2007: in this

example,T = 1 day. We use historical simulation, gettingk = 1000 scenarios from the daily

returns on CSCO and JAVA stock, based on their closing pricesfrom July 07, 2003 to June 26,

2007. A scenario consists of the stock prices of CSCO and JAVAon June 27, 2007, created

by multiplying their prices on June 26, 2007 (respectively $27.15 and $5.01) by one plus their

respective returns on a day in the historical data set.
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Table 2.1. Portfolio of Call Options.

Underlying Maturity Risk Free Implied
Stock

Position Strike
(years)

Price
Rate Volatility

CSCO 200 $27.5 0.315 $1.65 4.82% 26.66%

CSCO -400 $30 0.315 $0.7 4.82% 25.64%

CSCO 200 $27.5 0.564 $2.5 5.01% 28.36%

CSCO -200 $30 0.564 $1.4 5.01% 26.91%

JAVA 600 $5 0.315 $0.435 4.82% 35.19%

JAVA 1200 $6 0.315 $0.125 4.82% 35.67%

JAVA -900 $5 0.564 $0.615 5.01% 36.42%

JAVA -300 $6 0.564 $0.26 5.01% 35.94%

To determine how the portfolio valueV (·) depends on the scenario, we need to specify how

option values at timeT depend on the scenario. We assume that the implied volatilities of these

options obey the sticky-strike rule (Derman, 1999). That is, the implied volatilities of these

options at time 0 are also the implied volatilities at timeT . The simulation procedures estimate

optioni’s value at timeT by simulating the stock priceSi at maturityUi as

Si =
S
(ji)
T

Di
exp

(
−1
2
σ2
i (Ui − T ) + σi

√
Ui − TZi

)

where the indexji is 1 for the four options on CSCO and 2 for the four options on JAVA, σi is

the implied volatility of optioni, Di is a discount factor from timesT toUi, andZi is a standard

normal random variable independent ofZj for j 6= i. In Monte Carlo simulation of the payoff,

which is a weighted sum of payoffs for all options in the portfolio, we simulate the payoffs of

each option independently. Common random numbers are used for simulating the payoff of the

same option in different scenarios, but not for simulating the payoffs of different options.
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Since neither stock pays dividends, early exercise is neveroptimal for these call options

(Luenberger, 1998), so the Black-Scholes pricing formula can be used to evaluate the call option

values at timeT . Therefore, this example is also simple enough that the portfolio value in each

scenario and thus ES can be calculated analytically, which helps in evaluating the MSE attained

by simulation procedures: ES0.99 = $52.24 and ES0.95 = $26.18.

Table 2.2 shows the performance of the standard procedure and our procedure in estimating

ES0.99 and ES0.95. As in the previous example, the computational budgetC is 4 million payoffs,

the initial sample sizen0 = 300, and the sample size growth factorR = 1.2. The table also

provides the standard error (SE) of estimating each RMSE with 1000 macro-replications. The

RMSE of our procedure is significantly smaller than the RMSE of the standard procedure, both

in statistical and practical terms. If we define the relativeRMSE as the ratio of RMSE to the ES

being estimated, we find the relative RMSEs of our procedure for ES0.99 and ES0.95 are1.9% and

5.7%, respectively, whereas the standard procedure yields RMSEthat is about the same size as

ES. Given this budget, our procedure provides moderate accuracy, while the standard procedure

provides answers that are not useful and indeed misleading because they are extremely badly

biased. It is surprising to see that our procedure delivers alower RMSE when estimating ES0.99

than for ES0.95, because it is usually thought to be more difficult to estimate ES deeper in the

tail. The primary reason for the surprising result here is that, given this set of 1000 scenarios,

it is relatively easy to distinguish the 10 scenarios with the worst losses from the others, but

it is not as easy to distinguish the 50 scenarios with the worst losses—for example, the 10th

worst loss of $31.72 is widely separated from the 11th worst loss of $28.56, but the 50th and
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Table 2.2. Comparison of our procedure with the standard procedure for histor-
ical simulation of a portfolio of stock options, with computational budgetC = 4
million, first-stage sample sizen0 = 300, and sample size growth factorR =
1.2.

Method Variance Bias RMSE SE of RMSE

Standard Procedure 23.5 36.7 37.1 0.15
ES0.99

Our Procedure 0.93 -0.01 0.97 0.02

Standard Procedure 5.0 35.4 35.4 0.07
ES0.95

Our Procedure 2.21 ≈ 0 1.49 0.04

51st worst losses are separated by less than $0.05, and thereare 9 tail scenarios and 13 non-

tail scenarios closely packed between the 42nd worst loss of$16.03 and the 63rd worst loss of

$14.41.

We also tested the sensitivity of our procedure’s performance with respect to the first-stage

sample sizen0 and the sample size growth factorR, which the user must choose. For estimating

ES0.99 with computational budgetC = 4 million, first we fixedR = 1.2, and variedn0. As

long asn0 was between 30 and 1300, RMSE was below 1.11, not far from the best RMSE the

procedure attains for any value ofn0. Whenn0 was increased past 1300, RMSE increased: it

is inefficient to spend a third or more of the computational budget in the first stage, before any

scenarios can be screened out. These findings are similar to those of Lesnevski et al. (2007),

and we likewise recommend choosingn0 to be quite small, but large enough that the first-stage

sample averages are approximately normal. Usually,n0 = 30 is large enough (Lesnevski et al.,

2008). Next we fixedn0 = 300 and changed the growth factorR from 1.1 to 2.0. As in

Lesnevski et al. (2007), this had little effect on the procedure’s RMSE, which stayed between
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0.92 and 1.11. In conclusion, we recommendR = 1.2 andn0 = 30, unless the payoff distribu-

tions are heavy-tailed (such as the current example), in which casen0 should be increased until

the first-stage sample averages are approximately normal.

2.5.3. Two-Level Simulation of an Options Portfolio

This example is the same as the example in§2.5.2, but scenarios are generated differently.

Instead of using a fixed set of scenarios drawn from historical data, we generate them in an

outer-level simulation. The outer-level simulation samples scenarios from a joint distribution

of the two stocks’ prices whose parameters are estimated from the historical data. Given the

scenarios sampled, the rest of our simulation, i.e., the inner-level simulation, is the same as in

§2.5.2. The purpose of considering this two-level simulation variant of the previous example is

to compare our procedure with the two-level simulation procedure of Lan et al. (2008), which

we refer to as the CI procedure because it generates a confidence interval for ES. We make

comparisons by sampling scenarios with the CI procedure, then giving these scenarios to the

standard procedure or our procedure, which perform inner-level simulation.

This example is also used in Lan et al. (2008), from which we draw the following descrip-

tion of how to generate scenarios from, and estimate the truevalue of,ES0.99. The scenarioZ

is a bivariate normal random variable that determines the stock prices at timeT :

S
(j)
T = S

(j)
0 exp

((
µ(j) − 1

2
(σ(j))2

)
T + σ(j)

√
TZ(j)

)
.

Based on sample moments of 1000 daily stock prices, the volatilities of CSCO and JAVA are

respectivelyσ(1) = 32.85% andσ(2) = 47.75%, while the correlation between the components

of Z is 0.382. Because one day is such a short period of time that the effect of the driftµ is
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negligible, while mean returns are hard to estimate becauseof the high ratio of volatility to

mean, we take eachµ(j) = 0. The value of optioni at timeT is the conditional expectation of

the discounted payoffYi := Di(Si−Ki)
+ givenS(ji)

T . The profit from holding the portfolio from

0 to T isV (Z) = E[X|Z] whereX = θ⊤(Y −P0/D0) and the discount factorD0 ≈ 1 because

the time value of money over one day is negligible. Accordingto a high-precision simulation,

ES0.99 is $32.40. Notice that $32.40 is much less than the ES0.99 of $52.24 produced by the

historical simulation: it seems that, as usual, assuming that risk factors have a joint normal

distribution leads to substantial underestimation of risk.

In Table 2.3, we report the average half-width of the 90% confidence interval for ES0.99

generated by the CI procedure and compare it to the RMSEs of the standard procedure and our

procedure, using the results of 100 macro-replications. Each procedure usesk = 4000 scenarios

sampled from the bivariate normal distribution described above. The parametersk = 4000 and

n0 listed in the table were chosen by a pilot experiment described in Lan (2009) to make the CI

procedure perform well. When using our procedure, we set sample size growth factorR = 1.2

and used the samen0 as for the CI procedure, even though it is larger than the bestn0 for

our procedure. A largen0 is good for the CI procedure because it is a two-stage procedure,

whereas our multi-stage procedure does well with smalln0. The choice ofn0 is intended to

be favorable to the CI procedure and to show that the advantage of our procedure does not

depend on picking the best values of the procedure’s parameters. The RMSE of our procedure

is not exactly comparable to the half-width of a confidence interval, but Table 2.3 shows our

procedure’s RMSE is so much smaller than the half-width of the CI procedure that we can

conclude that our procedure is greatly preferable given a small computation budget. For these

computational budgets, the CI procedure yields a confidenceinterval whose width is much
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greater than the ES we are trying to estimate, which is not useful; likewise, the RMSE of the

standard procedure is large compared to ES. Our procedure attains a relative RMSE of only a

few percent when the budget is 8 or 16 million.

Table 2.3. Comparison of procedures for estimating expected shortfall at the
99% level in a two-level simulation of a portfolio of stock options, withk = 4000
scenarios.

CI Procedure Standard Procedure Our Procedure

Budget n0 Average CI Standard Standard Standard

half-width Error
RMSE

Error
RMSE

Error

4 million 612 164 1.0 109 0.40 6.7 1.6

8 million 1217 104 1.6 69 0.30 1.4 0.11

16 million 2557 49 2.3 41 0.23 0.9 0.07
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CHAPTER 3

Stochastic Kriging Procedure for Point Estimation of Expected Shortfall

3.1. Introduction

In this chapter, we still focus on expected shortfall (ES) asthe risk measure, but change the

notation a little bit for convenience. Suppose there areK equally probable scenarios in which

P&L is Y1, . . . ,YK , and we are interested in a tail of probabilityp, whereKp is an integer.

Then ES at the1− p level is

(3.1) ES1−p = −
1

Kp

Kp∑

i=1

Y(i),

whereY(i) is theith smallest P&L. As in Chapter 2, we refer to the scenarios whose P&L are

among theKp smallest astail scenarios: they belong to the tail of the loss distribution and

appear in Equation (3.1). We refer to the other scenarios asnon-tail scenarios.

In this chapter, we improve upon the pioneering work on interpolation-based methods for

risk management simulation in three ways.

(1) Instead of ordinary interpolation, we usestochastic kriging (Ankenman et al., 2010).

This method is more powerful because it interpolates using simulation outputs from all

the design points, not just those nearest to the scenario under consideration. Stochastic

kriging can also be more accurate because it takes into account the inner-level sampling

error.
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(2) We create a two-stage experiment design suited for estimating ES. Anexperiment de-

sign is a way of choosing the design points. After the first stage ofthe simulation, our

procedure learns which scenarios are most likely to entail the large losses that con-

tribute to ES. It adds these scenarios to the set of design points used at the second

stage. The related but different methods of Oakley (2004), who created a two-stage

experiment design for a kriging procedure that estimates a quantile (VaR), inspired

this aspect of our procedure.

(3) We allocate a fixed budget of inner-level replications tothe design points unequally, in

a way that is optimal according to the framework of stochastic kriging.

The result is a procedure that attained a root mean squared error (RMSE) dozens of times

smaller than a standard simulation procedure in experiments that we ran. In these experiments,

our procedure was also significantly more accurate in estimating ES than the advanced sim-

ulation procedure of Chapter 2. Our procedure’s advantage over that of Liu et al. (2008) is

particularly great when the number of scenarios is large or when the computational budget is

small—in such examples our procedure’s RMSE was three or four times smaller than that of

Chapter 2.

The rest of this chapter is structured as follows. First we give a motivating example of

a risk management simulation problem in Section 3.2. In Section 3.3, we review stochastic

kriging and show how to use it to estimate ES. We present our new simulation procedure in

Section 3.4. In Section 3.5, we provide the results of simulation experiments in which we

applied our procedure to this example, and we demonstrate its advantages over other simulation

procedures that estimate ES. We offer some conclusions Section 3.6.
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3.2. Motivating Example

The example is almost identical to the one we considered in Chapter 2, to which we refer

for details about the model and the data sources. We considera portfolio of call options on

the stocks of Cisco (CSCO) or of Sun Microsystems (JAVA), shown in Table 3.1. The example

differs from that of Chapter 2 only in the portfolio’s positions in the options; we explain the rea-

son for considering a different portfolio in Section 3.4.3.In the table, the position is expressed

as the number of shares of stock the option owner is entitled to buy, where a negative position

means a short position in the call option.

Table 3.1. Portfolio of Call Options.

Underlying Maturity Risk Free Implied
Stock

Position Strike
(years)

Price
Rate Volatility

CSCO 200 $27.5 0.315 $1.65 4.82% 26.66%

CSCO -400 $30 0.315 $0.7 4.82% 25.64%

CSCO 200 $27.5 0.564 $2.5 5.01% 28.36%

CSCO -200 $30 0.564 $1.4 5.01% 26.91%

JAVA 900 $5 0.315 $0.435 4.82% 35.19%

JAVA 1200 $6 0.315 $0.125 4.82% 35.67%

JAVA -900 $5 0.564 $0.615 5.01% 36.42%

JAVA -500 $6 0.564 $0.26 5.01% 35.94%

The simulation problem is to estimate the ES of this portfolio for a one-day time horizon.

The scenario is the pair of tomorrow’s stock prices. The model for P&L is that tomorrow, each

option’s value is given by the Black-Scholes pricing formula evaluated at the implied volatility

given in Table 3.1. Figure 3.1 plots portfolio loss versus scenario; the vertical axis measures

loss, the negative of P&L, so that the regions with the largest losses, which contribute to ES, are

highest and most visually prominent.
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Figure 3.1. Portfolio Loss as a Function of Scenarios for Tomorrow’s Stock
Prices of Cisco (CSCO) and Sun Microsystems (JAVA).

When P&L is a known function of scenario, as in this example, there is no need for inner-

level simulation. However, the purpose of our procedure is to handle problems in which inner-

level simulation is necessary, so in applying our procedureto this example, we use inner-level

simulation and not the Black-Scholes formula. An advantageof considering a simple example

in which P&L is a known function of scenario is that it is easy to compute ES and thus to

evaluate the accuracy of ES estimates.

We consider two versions of this example, with different kinds of outer-level simulation. In

one version, the outer-level simulation is historical simulation, with a fixed set of one thousand
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scenarios, portrayed in Figure 3.2. The other version uses Monte Carlo simulation, specifying

a bivariate lognormal distribution for the pair of stock prices. For details, see Chapter 2.

23 24 25 26 27 28 29 30 31
4

4.5

5

5.5

6

6.5

CSCO

JA
V

A

Figure 3.2. Scatter plot of 1000 scenarios from historical simulation.

3.3. Stochastic Kriging

Interpolation is one kind ofsimulation metamodeling (Barton and Meckesheimer, 2006;

Kleijnen, 2008). The strategy of metamodeling is to run computationally expensive simula-

tions only of certain scenarios, the design points, then usethe simulation outputs to build a

metamodel of the simulation model. In risk management simulation, themetamodel can be
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thought of as an approximation to the unknown loss surface depicted in Figure 3.1. The meta-

model can quickly provide an estimate of P&L in a scenario even if there has been no inner-level

simulation of that scenario.

Stochastic kriging (Ankenman et al., 2010) is an interpolation-based metamodeling tech-

nique. It takes account of the variance that arises from inner-level simulation. Therefore, the

metamodel, when evaluated at a scenario, may not equal the inner-level simulation estimate of

that scenario’s P&L: stochastic kriging knows that the inner-level simulation estimate may not

be exactly correct. The significance of this property is thatwe can afford to use small sam-

ple sizes for inner-level simulation of some scenarios, because stochastic kriging smooths out

the resulting noise. The following summary of stochastic kriging is based on Ankenman et al.

(2010).

We model the P&LY(x) in a scenariox as

Y(x) = β0 +M(x)

where the scenariox = [x1, x2, . . . , xd]
⊤ is a vector of risk factors,M is a stationary Gaussian

random field with mean zero, andβ0 represents the overall mean. TreatingM as a random

field captures our uncertainty about P&L before running simulations. Ankenman et al. (2010)

call thisextrinsic uncertainty. We adopt a model frequently used in kriging, under whichM is

second-order stationary with a Gaussian correlation function. This means

Cov[M(x),M(x′)] = τ 2 exp

(
−

d∑

j=1

θj(xj − x′j)
2

)
.
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That is, τ 2 is the variance ofM(x) for all x, and the correlation betweenM(x) andM(x′)

depends only onx− x
′, with the parameter vectorθ = [θ1, . . . , θd]

⊤ governing the importance

of each dimension.

In addition to extrinsic uncertainty, there is also theintrinsic uncertainty that is inherent

in Monte Carlo simulation: even after running an inner-level simulation for a scenariox, we

remain uncertain about the P&LY(x) in that scenario. The model for simulation replicationj

at design pointx is

Yj(x) = β0 +M(x) + εj(x),

whereε1(x), ε2(x), . . . are normal with mean zero and varianceV(x), and independent of each

other and ofM. The simulation output atxi afterni replications is

Ȳ (xi) :=
1

ni

ni∑

j=1

Yj(xi),

which is an estimator of the P&LY(xi). Let Y := [Ȳ (x1), . . . , Ȳ (xk)]
⊤ represent the vector

of simulation outputs at allk design points, whereni inner-level simulation replications are run

for scenarioxi.

We use the metamodel to estimate P&L atK scenariosX1, . . . ,XK , referred to aspredic-

tion points. Before presenting the stochastic kriging predictor that provides these estimates, we

define some notation. The vector of P&L at the design points isY
k := [Y(x1), . . . ,Y(xk)]

⊤ and

the vector of P&L at the prediction points isYK := [Y(X1), . . . ,Y(XK)]
⊤. LetΣkk denote the

covariance matrix ofYk, ΣkK denote thek × K covariance matrix ofYk with Y
K , andΣKk

be its transpose. Because simulations at different design points are independent, the covariance
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matrix of the intrinsic noiseY −Y
k is diagonal. It equalsCkk

N
−1 whereCkk andN are diag-

onal matrices whoseith elements are respectivelyV(xi) andni. DefineΣ := C
kk
N

−1 +Σ
kk,

the sum of intrinsic and extrinsic covariance matrices for the design points. Let1K and1k be

K × 1 andk × 1 vectors whose elements are all one. The stochastic kriging prediction is the

Bayesian posterior mean ofYK given observationY ,

Ŷ
K
= β01

K +Σ
Kk

Σ
−1(Y − β01

k).(3.2)

Ankenman et al. (2010) also give the covariance matrix of theBayesian posterior distribution

of YK , which we use in Section 3.4.3.

Equation (3.2) involves parameters which are unknown in practice: β0, τ 2, θ1, . . . , θd, and

V(x1), . . . ,V(xk). As detailed by Ankenman et al. (2010), after running simulations, we com-

pute maximum likelihood estimates ofβ0, τ 2, andθ, and we estimateV(x1), . . . ,V(xk) with

sample variances. The output of the metamodel atX1, . . . ,XK is given by Equation (3.2) with

these estimates plugged in. LetŶi represent the metamodel output atXi.

We use the metamodel as the basis for an estimator of ES. In theexamples we consider here,

we estimate ES at the1−p level using a numberK of scenarios such thatKp is an integer. Our

methods are applicable whenKp is not an integer; for details on this case, see Chapter 2. Our

estimator of ES based on the kriging metamodel is

ÊS1−p = −
1

Kp

Kp∑

i=1

Ŷ(i)(3.3)

whereŶ(i) is theith lowest value among the stochastic kriging predictionsŶ1, . . . , ŶK at the

prediction points; cf. Equation (3.1).
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We summarize the most important notation here for convenient reference:

• We want to learn about P&L inK scenariosX1, . . . ,XK . We use stochastic kriging

to computêY
K

as a prediction of the P&LYK := [Y(X1), . . . ,Y(XK)]
⊤. Therefore

we also callX1, . . . ,XK “prediction points.”

• We run simulations atk design pointsx1, . . . ,xk.

• At first, we runn0 simulation replications at each design point. In the end, there areni

replications at design pointxi, andȲ (xi) is the average of theseni replications. The

simulation output isY := [Ȳ (x1), . . . , Ȳ (xk)]
⊤.

• The variance of the simulation output for a single replication at design pointxi is

V(xi), andCkk is a diagonal matrix containing the variancesV(x1), . . . ,V(xk).

• The sum of the sample sizes
∑k

i=1 ni = C, the computational budget.

3.4. Procedure

In this section, we present our simulation procedure for estimating ES using stochastic krig-

ing. We provide an outline in Section 3.4.1 and supply the details in subsequent sections.

3.4.1. Outline of the Procedure

Our procedure uses stochastic kriging metamodels three times, so we split the description of

the procedure into three stages. The estimator in Equation (3.3) uses only the third metamodel.

The purpose of the first two metamodels is to guide the allocation of computational resources

during the simulation procedure: deciding where to add design points and how many simulation

replications to run at each design point.
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The user must specify some parameters that govern the behavior of the procedure. The

most important parameter is the computational budgetC, which is the total number of inner-

level simulation replications that the procedure can use. In the applications that we envision,

inner-level simulation dominates the computational cost.Then, given the computing platform

available, the computational budget roughly determines the time that the simulation procedure

takes, so the user can set the computational budget to fill thetime available before an answer

is required. The other parameters are the target numbersk1 of Stage I design points andk2

of Stage II design points, the numbern0 of replications to use at each design point during

Stages I and II, and the numberM of times to sample from the posterior distribution ofY
K

during Stage II. We provide some guidance about choosing these parameters after outlining the

procedure.

In the outline, we refer to figures that illustrate the performance of our procedure. These fig-

ures are based on one run of the procedure on the historical simulation example of Section 3.2,

using a computational budgetC of 2 million replications,K = 1000 prediction points, a target

of k1 = 50 Stage I design points andk2 = 30 Stage II design points,n0 = 5000 replications per

design point in Stages I and II, and samplingM = 300 times from the posterior distribution of

P&L at the design points. Figure 3.3 lists the procedure’s steps.

The performance of the procedure, that is, the accuracy of the ES estimator it produces,

depends on the target numbersk1 andk2 of design points and the numbern0 of replications at

each design point in Stages I and II. It is not easy to optimizethe procedure’s performance by

choosing these parameters. Lan (2009) studies the problem of choosing such parameters for a

related procedure, not based on stochastic kriging, for simulating ES. Ankenman et al. (2010,

§3.3) discuss how to structure an experiment design for stochastic kriging, but not in the context
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Stage I.:
(1) GenerateK prediction points through outer-level simulation (historical or Monte

Carlo). See Figure 3.2.
(2) Given these prediction points, generate Stage I design points. See Section 4.3.1 and

Figure 3.4.
(3) Simulaten0 replications for each of the Stage I design points. Based on the simula-

tion outputs, create a stochastic kriging metamodel (Figure 3.5).
Stage II.:

(1) Sample a vector of P&L at each prediction point from its posterior distribution given
the data generated in Stage I simulation. Based onM such samples, select the pre-
diction points that seem likeliest to be tail scenarios, andadd them to the set of design
points. See Section 3.4.3 and Figure 3.6.

(2) Simulaten0 replications for the new Stage II design points. Based on thesimulation
outputs, create a stochastic kriging metamodel (Figure 3.7).

Stage III.:
(1) Allocate the remaining computational budget to all design points. See Section 3.4.4

and Figure 3.8.
(2) Perform further simulation at the design points. Based on the simulation outputs,

create a stochastic kriging metamodel (Figure 3.9).
(3) Compute the ES estimator in Equation (3.3) using the finalmetamodel.

Figure 3.3. Outline of the procedure.

of ES. We find that, with a little experience in applying the procedure to a class of problems, it

is not too hard to choose parameters that result in good performance. Here we merely provide

some guidelines based on our experience:

• There should be enough Stage I design points that, if P&L wereknown for all these

scenarios, interpolation could provide a fairly accurate metamodel—sufficiently accu-

rate to identify the region in which the tail scenarios lie. If there are too few Stage I

design points to do this, the procedure’s performance may bepoor. The requisite num-

ber of design points is smaller in lower dimensiond and when P&L is a smoother

function of the scenario.
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• It can be beneficial to add at leastKp design points in Stage II, which makes it possible

for all Kp tail scenarios to become design points.

• To estimate the inner-level varianceV well enough, the numbern0 of replications must

be at least 10, or more if there is high kurtosis in inner-level sampling.

• We found that it worked well when(k1+k2)n0, the number of replications planned for

simulation during Stages I and II, is a substantial fractionof the computational budget

C, but less than half.

• In general, it is desirable to use a large number of design points, subject to two lim-

itations. It may be counterproductive to use so many design points thatn0 needs to

be too small. Also, if there are too many design points, the computer time required to

perform stochastic kriging may become significant, or one may encounter difficulties

with memory management because some matrices involved in stochastic kriging have

size proportional to the square of the number of design points. This effect depends on

the computing environment.

• As the numberM of samples from the posterior distribution increases, the choice of

Stage II design points converges to the set of scenarios thatare likeliest to be tail

scenarios, according to stochastic kriging. It is desirable to letM be large as long as

this does not use up too much computer time, butM can also be much smaller than

the values we use without causing major problems.

3.4.2. Choosing Stage I Design Points

As is standard in simulation metamodeling, we begin with a space-filling experiment design;

the goal is to make sure that the prediction points are all near design points. In particular, we



50

use a maximin Latin hypercube design (Santner et al., 2003).The space that we want to fill with

design points is the convex hullX of the prediction pointsX1, . . . ,XK . Kriging should not

be used for extrapolation (Kleijnen and Beers, 2004), so we include among the design points

all prediction points that fall on the boundary of the convexhull. Let kc be the number of

such points, and letG be the smallestd-dimensional box containing all the prediction points.

In the absence of an algorithm for generating a space-fillingdesign inside the convex setX ,

we use a standard algorithm for generating a maximin Latin hypercube design in the boxG

(Santner et al., 2003). We only use the points in this design that fall insideX , because the other

points are too far away from the design points.

We want to havek1 − kc such points. The fraction of the points in the maximin Latin

hypercube design falling inX will be approximately the ratio of the volume ofX to the volume

of G. The volume of a convex hull can be calculated efficiently (Barber et al., 1996), so we

can calculate this ratiof . Therefore we choose the number of points in the maximin Latin

hypercube design to be⌈(k1 − kc)/f⌉. However, the fraction of these points that actually falls

in X may not be exactlyf . Consequently, the number of Stage I design points may not be

exactlyk1.

Figure 3.4 shows the Stage I design points chosen on one run ofthe procedure. The number

of design points is 48, which is close to the planned numberk1 = 50. Compare Figure 3.4 to

Figure 3.2, which shows the prediction points.

Figure 3.5 shows the absolute value of the errorŶ − Y of the stochastic kriging metamodel

built in Stage I on this run of the procedure. At this stage, the error is substantial in many

regions; compare the magnitude of the error in Figure 3.5 with the magnitude of P&L in Fig-

ure 3.1. We will see how the error shrinks after subsequent stages of the procedure.
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Figure 3.4. Design points chosen in Stage I on one run of the procedure.

3.4.3. Choosing Stage II Design Points

By comparing Equations (3.1) and (3.3), we see that our goal in experiment design for meta-

modeling should be to identify the tail scenarios and make the metamodel accurate in estimating

their P&L. In Stage II, we attempt to identify the predictionpoints that are tail scenarios. We

then add these points to the set of design points, and performinner-level simulation of these

scenarios, to learn more about their P&L.

After performing stochastic kriging in Stage I, we have the posterior distribution ofYK , the

vector of P&L for all prediction points, which is multivariate normal (Ankenman et al., 2010).
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Figure 3.5. Absolute value of the error of the Stage I metamodel on one run of
the procedure.

Because we are uncertain aboutY
K , we are uncertain about which prediction points are tail

scenarios. Using a vector̃Y sampled from the posterior distribution ofYK , we could try to

guess which scenarios belong to the tail. We would guess thatscenarioi belongs to the tail if̃Yi

is among theKp lowest components of̃Y. However, for two reasons, this strategy of guessing

would be likely to miss tail scenarios. One reason is that, ifwe select onlyKp scenarios, we

are unlikely to guess all the tail scenarios correctly. The other reason is that a single sample

from the posterior distribution ofYK may be unrepresentative of that distribution. Therefore,

we proceed as follows in selecting up tok2 additional design points; we envision thatk2 > Kp,
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which improves the chances of selecting tail scenarios. We sampleM vectorsỸ(1), . . . , Ỹ(M)

independently from the posterior distribution ofY
K . Let T (j)

i be an indicator function that

equals one if̃Y(j)
i is among theKp lowest components of̃Y(j), that is, scenarioi is in the tail for

thejth sample from the posterior distribution; otherwise,T
(j)
i = 0. Our estimated probability

that scenarioi is a tail scenario iŝqi :=
∑M

j=1 T
(j)
i /M . We will use these estimated probabilities

again in Stage III. In Stage II, we select the scenarios with thek2 highest estimated probabilities,

judging them likeliest to be among the tail scenarios, and make them design points. However,

if fewer thank2 scenarios have positive estimated probabilities, we only select these.

Figure 3.6 shows the design points chosen on one run of the procedure. Althoughk2 = 30,

only 17 design points were added in Stage II: the other scenarios’ values were never among the

Kp = 10 lowest inM = 300 samples from the posterior distribution ofY
K . On this run of

the procedure, all 10 tail scenarios were selected as designpoints, which is a success for the

procedure.

Most of the additional design points are near each other and near the tail scenarios, but

two are in a different region with a higher stock price for Cisco. Given the data available after

Stage I, the procedure judges it possible that this other region might contain one of the tail

scenarios, so it allocates computational resources to exploring this region. Indeed, in some risk

management simulation problems, the tail scenarios may occupy multiple distant regions, and

one tail scenario can be isolated from the others. The portfolio that we used as an example

in Chapter 2 has this type of structure, which is more challenging for an interpolation-based

procedure. Although our procedure works on that portfolio,we use a different portfolio here so

as to show the procedure’s performance on the type of problemfor which it works best, which

is a common type.
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Figure 3.6. Design points chosen in Stages I and II on one run of the procedure.

Figure 3.7 shows the absolute value of the errorŶ − Y of the stochastic kriging metamodel

built in Stage II on this run of the procedure.

3.4.4. Allocating the Remaining Computational Budget

In Stage III we allocate the remaining computational budgetto inner-level simulation of the

k design points chosen in Stages I and II. (The target number ofdesign points isk1 + k2, but

because of the way we choose design points,k may not exactly equalk1+k2.) We choose an al-

location with the aim of minimizing the posterior variance of the ES estimator in Equation (3.3).
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Figure 3.7. Absolute value of the error of the Stage II metamodel on one run of
the procedure.

In Appendix B.1, we show how to solve a simplified version of that minimization problem by

solving the optimization problem (3.4), in which the decision variable is the vectorn specifying

the number of replications at each design point. Because these numbers are large, we relax the

integer constraint and allow them to be real numbers, without worrying about rounding. Recall

from Section 3.3 thatCkk is a diagonal matrix withith elementV(xi), the intrinsic variance at

the design pointxi, N is a diagonal matrix withith elementni, andΣkk andΣkK are extrinsic

covariance matrices. ES can be written asw
⊤
Y

K wherewi is −1/Kp if scenarioi is a tail

scenario, and 0 otherwise. DefineU := (Σkk +C
kk/n0)

−1
Σ

kK
w. The optimization problem
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is to

minimize U
⊤
C

kk
N

−1
U subject to n

⊤
1
k = C, n ≥ n0.(3.4)

In practice, we use maximum likelihood estimates ofΣ
kk andΣkK and we use sample variances

in estimatingCkk, as discussed in Section 3.3. Likewise, we substitute−q̂i/Kp for wi, where

q̂i is the estimated probability that scenarioi is a tail scenario, explained in Section 3.4.3. The

optimization problem (3.4) can be solved by a variable pegging procedure (Bitran and Hax,

1981; Bretthauer et al., 1999):

Step 1.: Initialize the iteration counterm = 1, the index setI(1) = {1, . . . , k}, and the

unallocated budgetC(1) = C.

Step 2.: For all i ∈ I(m), computeni(m) = C(m)Ui

√
V(xi)/

∑
j∈I(m) Uj

√
V(xj).

Step 3.: If ni(m) ≥ n0 for all i ∈ I(m), the solution isn(m) and we are done. Other-

wise,

• the set of indices of design points that may yet receive more thann0 replications

is I(m+ 1) = {i : ni(m) > n0},

• all other design points will receiven0 replications: ni(m + 1) = n0 for i /∈

I(m+ 1),

• and the unallocated budget is reduced toC(m+ 1) = C − (k − |I(m+ 1)|)n0.

Let m = m+ 1 and go to Step 2.

To get sample sizes from this procedure, we round the resultsto the nearest integers.

Figure 3.8 shows the allocation on one run of the procedure. The computational budget is

spent primarily on design points that are tail scenarios or are near tail scenarios. Simulation
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replications run at design points near the tail scenarios are not wasted: stochastic kriging uses

them to improve the inference about the P&L in tail scenarios.
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Figure 3.8. Number of simulation replications allocated toeach design point on
one run of the procedure.

Figure 3.9 shows the absolute value of the errorŶ − Y of the stochastic kriging metamodel

built in Stage III on this run of the procedure. Comparing Figure 3.9 with Figure 3.7, we see that

the error in estimating P&L of the tail scenarios has shrunk dramatically because of Stage III,

and is now reasonably small. The error is still large in some regions, but this does not affect the

quality of the ES estimation.
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Figure 3.9. Absolute value of the error of the Stage III metamodel on one run of
the procedure.

3.5. Numerical Study

To illustrate the performance of our procedure, we use the example described in Section 3.2.

We present the results of simulation experiments to compareour procedure, which we call the

“SK procedure,” to two other procedures. One is the procedure, based on methods of statistical

ranking and selection, that we proposed in Chapter 2, which we call the “RS procedure.” The

other is a standard procedure, involving an equal allocation of inner-level simulation replica-

tions to each scenario. It is described in detail in Chapter 2. We do not include the methods

of Frye (1998), Shaw (1998), Oakley (2004), or Gordy and Juneja (2008) in the comparison.
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Frye (1998) and Shaw (1998) provide strategies for simulation, not a detailed specification of a

concrete procedure. Oakley (2004) and Gordy and Juneja (2008) specify simulation procedures

that are tailored to estimation of VaR; although their approaches are relevant to estimating ES,

construction of such procedures remains for the future.

3.5.1. Historical Simulation Example

In this section we consider the version of the example that uses historical simulation in the outer

level. We first estimate ES at the1 − p = 99% level. For the SK procedure we targetk1 = 50

design points in Stage I andk2 = 30 design points in Stage II, useM = 300 samples from the

posterior distribution of P&L, and take sample sizes ofn0 = 5000 in Stages I and II. For the

RS procedure, we use sample sizes that start atn0 = 30 in the first stage and grow byR =

1.1 per stage; see Chapter 2. We run 1000 macro-replications of the simulation experiments.

Figure 3.10 shows the resulting estimate of the relative root mean squared error (RRMSE) of

the three procedures’ ES estimators, with error bars representing 95% confidence intervals for

RRMSE.

From Figure 3.10, we see that both the SK and RS procedures arefar more accurate than

the standard procedure for this example. For small computational budgets, the SK procedure is

much more accurate than the RS procedure. It is possible to fita straight line passing through

the four error bars that describe the performance of the SK procedure, with slope roughly -

0.5. The RMSE of ordinary Monte Carlo simulation proceduresconverges asO(C−0.5) as

the computational budget grows, but the convergence rate can be less favorable for two-level

simulation procedures (Lee, 1998; Lan et al., 2008). We haveobserved this behavior only over
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Figure 3.10. Accuracy in estimating expected shortfall at the 99% level for the
historical simulation example.

a moderate range of budgets and do not know under what conditions, if any, the SK procedure

has this behavior asymptotically.

Next we estimate the ES at the1 − p = 95% level. The parameters of RS procedure are

the same as before. BecauseKp = 50 is now much larger than in the previous experiment, in

which it was 10, we adjust the parameters of the SK procedure.We still targetk1 = 50 design

points in Stage I, but we allow fork2 = 60 > Kp additional design points in Stage II. We

also increase the numberM of samples from the posterior distribution of P&L to 600 because

it is more difficult to identify the tail scenarios in this simulation problem. We still use sample
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sizes ofn0 = 5000 in Stages I and II when the budgetC is at least 1 million. However,

(k1 + k2)5000 > 0.5 million, so whenC = 0.5 million, we choosen0 = 2000 instead. We run

1000 macro-replications of the simulation experiments, and show the resulting estimates of the

procedures’ RRMSE in Figure 3.11.
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Figure 3.11. Accuracy in estimating expected shortfall at the 95% level for the
historical simulation example.

Comparing Figure 3.10 and Figure 3.11, we see that the advantage of the SK procedure

over the RS procedure is greater when estimating ES0.95 than ES0.99 in this example. This

happens because there are more prediction points whose P&L is around the 5th percentile of
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P&L than around the 1st percentile. The RS procedure tries to“screen out” as many non-

tail scenarios as possible, so as to devote the remaining computational budget primarily to tail

scenarios (Chapter 2). When there are many prediction points whose portfolio losses are around

thepth percentile of P&L, it is hard to screen them out, so the RS procedure tends to use a lot

of simulation replications in attempting to do so. Because it does not use that data in estimating

ES, fewer simulation replications can be allocated to estimating ES, leading to larger error

(Chapter 2). The SK procedure does not suffer from this shortcoming: all of the simulation

replications contribute to the ES estimator. The curse of two-level risk management simulation

is a bias that arises because, when we use simulation output to guess which scenarios entail large

losses, we are likely to choose a scenario whose estimated loss is larger than its true loss (Lee,

1998; Lan et al., 2007b; Gordy and Juneja, 2008). Stochastickriging mitigates this problem by

smoothing the estimated P&L across neighboring scenarios.

3.5.2. Example with Outer-Level Monte Carlo Simulation

In this section we consider the version of the example that uses Monte Carlo simulation in the

outer level. We investigate the effect of changing the number K of scenarios sampled at the

outer level. In a two-level simulation with Monte Carlo at the outer level,K must grow for

the simulation estimator to converge to the true value; however, if K is too large relative to the

computational budgetC, the estimator is poor due to excessive inner-level noise (Lee, 1998;

Gordy and Juneja, 2008; Lan et al., 2008).

Figure 3.12 shows the results of 1000 macro-replications ofa simulation experiment to

estimate ES at the1− p = 99% level. The computational budgetC is 2 million in each of these

experiments. The parameters of the RS procedure are the sameas before. For the SK procedure,
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once again we targetk1 = 50 design points in Stage I and take sample sizes ofn0 = 5000 in

Stages I and II. We allow fork2 = 40 design points in Stage II because 40 exceedsKp even

for the largest numberK of scenarios we consider here,K = 3000. Compared to the version

of this simulation with historical simulation in the outer level, it is more difficult to identify the

tail scenarios, so we increase the numberM of samples from the posterior distribution of P&L

to 400.
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Figure 3.12. Accuracy in estimating expected shortfall at the 99% level for the
two-level simulation example.

In Figure 3.12, we see that, given the budgetC = 2 million, the best choice ofK for

the standard procedure and the RS procedure is aroundK = 2000, and they become much
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less accurate when the number of scenarios increases toK = 3000. WhenK is small, the

empirical distribution of theK scenarios is far from the true outer-level distribution; whenK

is large, there is a lot of inner-level noise in estimating each scenario’s P&L, resulting in large

bias in estimating ES (Lan et al., 2008; Lan, 2009). It is challenging to chooseK well, and

the procedure’s performance depends greatly on this choice(Lan, 2009). By contrast, in the

SK procedure, we can increase the number ofK outer-level scenarios, i.e. prediction points,

without increasing the numberk of design points. Therefore the inner-level sample size for

each design point can stay the same as we increaseK. As Figure 3.12 illustrates, the RRMSE

of the SK procedure’s ES estimator decreases inK. Arguments in Oakley and O’Hagan (2002)

suggest that the RRMSE converges to a positive value asK goes to infinity with computational

budgetC fixed.

We do not explore this effect in Figure 3.12 because, whenK is very large, ourMATLAB

implementation of stochastic kriging encounters memory constraints on a PC with 3.4 GB of

RAM. WhenK is very large, the RS and SK procedures have significant spaceand time re-

quirements for operations other than inner-level simulation. These have to do, respectively,

with comparing many scenarios to each other, and with operations involving large matrices.

Because these effects depend greatly on the computing environment, we do not explore them

here, instead treating inner-level simulation replications as the primary computational cost.

This experiment suggests two advantages of the SK procedureover the standard and RS

procedures when using outer-level Monte Carlo simulation.The user need not worry about

finding an optimal, moderate numberK of outer-level scenarios, where the optimalK varies

greatly from one simulation problem to another (Lan, 2009).Instead, one can always use the

largestK such that stochastic kriging does not impose an excessive computational burden. Also,
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we believe that, as in Figure 3.12, for many simulation problems, the SK procedure with large

K performs better than the standard and RS procedures with optimalK.

3.6. Conclusions and Future Research

Stochastic kriging enables better estimation of expected shortfall. Our simulation procedure

is well suited to dealing with small computational budgets.It works especially well compared

to other procedures when the spatial structure of the simulation problem is such that most tail

scenarios lie near other scenarios and P&L is a smooth function of the scenario, but it also works

even when the problem does not have these properties. Another advantage of our procedure

over its competitors is that it makes it far easier for the user to choose the number of outer-level

Monte Carlo simulation replications. There are several opportunities for further investigation

and improvement of risk management simulation procedures based on stochastic kriging.

We used two-dimensional examples to illustrate our method.It remains to be seen how well

it performs for higher-dimensional examples. Higher-dimensional problems are more challeng-

ing for kriging methods: it is more difficult to find a good experiment design, and the error

of the metamodel tends to increase. Dimension-reduction methods, such as those proposed by

Frye (1998) and Shaw (1998), should help. However, kriging methods are capable of handling

significantly higher-dimensional examples.

When the number of prediction points is very large, stochastic kriging may take up a great

deal of memory and CPU time. This happens when stochastic kriging considers the influence of

simulation at all design points on predictions at each prediction point, or the posterior covariance

between P&L at every pair of prediction points. Using spatial correlation functions that imply
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zero correlation between sufficiently distant points (Santner et al., 2003) reduces the number of

pairs that must be considered and should help to make it feasible to use more prediction points.

In our study, we used the simplest version of stochastic kriging, which builds a metamodel

purely by interpolation. However, stochastic kriging can incorporate regression methods in

simulation metamodeling (Barton and Meckesheimer, 2006; Kleijnen, 2008). Many portfolios

have structure that regression can capture (e.g., an increasing trend in P&L with the level of a

global equity index), in which case regression will lead to lower error in metamodeling.

Our procedure uses a simple first-stage experiment design, which could be improved. In

some simulation problems, there would be too many prediction points on the convex hull. A

modification of the experiment design would find a larger convex polytope, with fewer vertices,

still containing all the prediction points.

The second-stage experiment design worked well in the problems we studied, in which there

were relatively few tail scenarios. This allowed us to aim toinclude all the tail scenarios among

the design points and to ignore the spatial relationships among the scenarios that seemed likely

to be tail scenarios. When there are many tail scenarios, it might be better to create a second-

stage experiment design with a different goal: to aim to havesome design point near every

scenario that is likely to be a tail scenario.
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CHAPTER 4

Simulation on Demand for Pricing Many Securities

4.1. Introduction

“Simulation on demand” is a computing paradigm that delivers real-time answers as accu-

rate as those that would be generated by a time-consuming runof a simulation model. This

is achieved by investing computational effort in advance, before decision-makers ask about a

specific scenario. Simulation metamodeling is one method that supports simulation on demand.

A metamodel is an approximation to the functiony of interest, whose valuey(x) at scenariox

is estimated by running the simulation model for scenariox. Building a metamodel requires a

simulation experiment in which the simulation model is run for several scenarios, but after this

computational investment has been made, it can be very fast to evaluate the metamodel in any

scenario. This chapter is devoted to experiment design for building multiple metamodels based

on the same simulation model.

We consider a financial example: a firm deals in many securities whose prices are functions

of the financial scenario. A single simulation model is used to determine the securities’ prices.

Simulation on demand provides an approximate picture of theway the prices change as the

markets move. Our procedure is related to one due to Frye (1998), involving a grid-based

interpolation technique, which requires a grid design for the simulation experiment. Because of

the impracticality of a high-dimensional grid design, Fryeused principal component analysis

to reduce the dimension of the simulation model. One of our contributions is to extend Frye’s
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work by showing that the latest metamodeling techniques make it computationally feasible

to construct highly accurate metamodels of each security’sprice, not merely one moderately

accurate metamodel of the portfolio’s value. In particular, by using an experiment design that is

practical in higher dimension, we avoid the loss of accuracyentailed by dimension reduction.

This requires a metamodeling technique other than grid-based interpolation. We use stochastic

kriging (Ankenman et al., 2010), but our procedure works with many metamodeling techniques.

Our main contribution is a sequential experiment design procedure that adds design points

and simulation effort at the design points to reduce all metamodels’ prediction errors to an ac-

ceptable level relative to the true values. It is appropriate to focus on relative (not absolute) error

in applications involving multiple metamodels which have very different magnitudes, including

our financial example, in which some options have much largerprices than others. The key

ingredient in our procedure is cross-validation, which is widely used for validating prediction

schemes (Geisser, 1993). Kleijnen (2008) discusses cross-validation in stochastic simulation

metamodeling. The novel aspect of our procedure for stochastic simulation is that it continues

until the prediction errors are likely to be small, instead of continuing until the simulation output

is consistent with the metamodeling technique’s assumptions.

In some applications, the metamodels are functions of a scenario that can be regarded as

random: in our financial example, the scenario that will occur tomorrow is random. In such

applications, it is meaningful to consider the expected performance of the metamodels at a

randomly selected scenario. Another contribution of this chapter is an initial experiment design

that aims to make the scenario fall inside the convex hull of design points with high probability.

This improves the metamodels’ performance because many metamodeling techniques are much

better at interpolation than at extrapolation.
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4.2. Motivating Example

We consider a portfolio of 75 European-style options. The underlying vector stochastic

process models six equity indices: S&P500, Nikkei225, Stoxx50, FTSE100, Hang Seng, and

KOSPI Composite. To keep the example simple, we use a very basic model and approach to

model calibration. The equity indices, denoted byj = 1, 2, . . . , 6, follow geometric Brownian

motion where the non-annualized daily volatilitiesσj and correlation matrixΣX are estimated

from 1000 historical daily returns. A scenarioX is a vector whose components are called risk

factors, and it determines the values of the equity indices.The risk factors are six standard

normal random variables with correlation matrixΣX . If tomorrow’s scenario isX, then for

eachj = 1, 2, . . . , 6, tomorrow’s value of thejth index isSj(1) = Sj(0) exp (σjXj), where

Sj(0) is today’s value of thejth index. Here we have set the drift to zero, because it is negligible

over one day. The portfolio contains five classes of options:put options on the average return

of all six indices, call options on the average return of the S&P500, Nikkei225, and Stoxx50,

call options on the average return of the FTSE100, Hang Seng,and KOSPI Composite, call

options on the minimum return of the S&P500, Nikkei225, and Stoxx50, and call options on

the minimum return of the FTSE100, Hang Seng, and KOSPI Composite. Within each class,

there are 15 options with one of five maturities and one of three strike prices. The maturities

are 3, 4, 5, 6, and 7 years. The three strike prices are chosen to make the option in the money,

(roughly) at the money, or out of the money. Given that tomorrow’s scenario isX, the value of

thejth index aftert days is

(4.1) Sj(t) = Sj(1) exp

((
µj −

σ2
j

2

)
(t− 1) + σj

√
t− 1Bj

)
,
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whereB is a vector of six standard normal random variables with correlation matrixΣX , and

each risk-neutral driftµj equals the non-annualized daily yield of a government bond denomi-

nated in the relevant currency minus the dividend yield of the index. A sample path, simulated

conditional onX, includes the values of all six equity indices after 3, 4, 5, 6, and 7 years. The

simulation model for option pricing computes discounted payoffs for all 75 options on a single

sample path.

4.3. Simulation Procedure

Our procedure chooses scenarios, called design points, at which to run simulations. It

also determines the number of sample paths to simulate at each design point. A sample path

is a simulation of the underlying stochastic process conditional on the scenario given by the

design point, as in Equation (4.1). The sample averageȲh(x) of the discounted payoffs of

securityh on every sample path simulated at design pointx serves as an estimate of the price

of securityh in the scenariox. The procedure produces one metamodelŶh(X) for the price of

each securityh = 1, 2, . . . , r. The goal of the procedure’s first phase, initial simulation, is to

get accurate estimates of all security prices at all design points. This is not enough to ensure

that the metamodels will give accurate estimates of all security prices at scenarios that are not

design points. The goal of the second phase, metamodel validation, is to improve the accuracy

of the metamodels away from the design points. This phase adds design points and sample

paths until the metamodels pass a cross-validation test of their ability to estimate security prices

at scenarios that are not used at design points. An outline ofthe procedure is:

Phase I.: Initial Simulation

(1) Generatek design pointsx1,x2, . . . ,xk.
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(2) Fori = 1, 2, . . . , k, simulateni sample paths at design pointxi, whereni is chosen

to target the relative accuracy in estimating the value of each security atxi.

Phase II.: Metamodel Validation

(1) Create metamodels by stochastic kriging.

(2) Perform cross-validation on the metamodels. If they allpass the cross-validation

test, the procedure terminates.

(3) If they do not all pass, simulate more sample paths at existing design points or

generate additional design points and simulate sample paths at them. Then return

to Step 1 of Phase II.

4.3.1. Initial Simulation Phase

The initial simulation phase consists of two parts: a methodfor choosingk design points

and a two-stage simulation procedure. Information from thefirst stage, which simulatesn0

sample paths at each design point, is used to choose the totalsample sizeni at each design point

xi, i = 1, 2, . . . , k. The second stage of simulation generates the sample paths required to reach

those total sample sizes.

4.3.1.1. Design Points.In choosing design points, we have two goals. One goal is for tomor-

row’s scenario to fall inside the convex hull of the design points with high probability. The

reason for this is that many metamodeling techniques, including stochastic kriging, are much

better at interpolation than at extrapolation. The other goal is, as usual in simulation metamod-

eling, to fill the space of scenarios evenly with design points.
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To address the probability that tomorrow’s scenarioX falls inside the convex hull of the

design points, we need a joint distributionFX for the risk factorsX1, X2, . . . , Xd. Our proce-

dure requires that we be able to evaluate a functionf such that, ifU is uniformly distributed

on (0, 1)d, thenf(U) has distributionFX . We choose design pointsx1,x2, . . . ,xk in X by

choosing design pointsu1,u2, . . . ,uk in U and transforming them to getxi = f(ui) for

i = 1, 2, . . . , k. One way to getf : U → X is from a simulation algorithm: even iff is

not known explicitly, a typical simulation algorithm takesindependent uniform random vari-

ables as inputs and generates a random vector with distribution FX . However, sometimes the

analyst may have only marginal distributionsFX1 , FX2 , . . . , FXd
for the risk factors and their

correlation matrixΣX . A further assumption about dependence among the risk factors is re-

quired to get a joint distributionFX . An assumption often made in financial engineering models

(although it may give an unrealistic picture of extreme events), is thatX has a Gaussian cop-

ula (McNeil et al., 2005,§ 5.1). The same assumption is used in simulation input modeling

in the normal-to-anything (NORTA) transformation (Cario and Nelson, 1997). Then the trans-

formationX = f(U) is accomplished as follows, whereΦ is the standard normal cumulative

distribution function:

(1) For eachi = 1, 2, . . . , k, setWi = Φ−1(Ui) to get a standard normal vectorW .

(2) WhereΣ−1/2
Z

satisfiesΣ−1/2
Z

(
Σ

−1/2
Z

)⊤
= ΣZ , setZ = Σ

−1/2
Z

W to get a vectorZ

with standard normal marginal distributions and correlation matrixΣZ .

(3) For eachi = 1, 2, . . . , k, setŨi = Φ(Zi) to get a vectorŨ whose components are

dependent and have marginal distributions that are uniformon (0, 1).

(4) For eachi = 1, 2, . . . , k, setXi = F−1
Xi

(Ũi) to get a vectorX.
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Cario and Nelson (Cario and Nelson, 1997, 1998) show how to chooseΣZ so that the correla-

tion matrix ofX isΣX .

Our experiment design contains two kinds of points: corner points and points sampled via

quasi-Monte Carlo. Letp be a target probability for tomorrow’s scenario to fall intothe convex

hull of the design points. Each of the2d corner points is the image underf of a vertex of the

hypercubeUp = {u : 0.5(1−p1/d) ≤ uj ≤ 0.5(1+p1/d) ∀j = 1, 2, . . . d}, which has volumep.

Including2d corner points is feasible when the dimensiond is moderate. The target probability

p must be less than one if it is impossible to map the vertices ofthe unit hypercube[0, 1]d to

usable scenarios inX : e.g., in the example of Section 4.2, ifU1 = 1, then the first risk factorX1

and the valueS1 of the S&P500 index are infinite. The probability that tomorrow’s scenario falls

inside the convex hull of the design points is not guaranteedto bep, but in many cases, choosing

a large target probabilityp makes tomorrow’s scenario fall inside the convex hull of thedesign

points with high probability. The remainingk − 2d design points are generated from a Sobol’

sequence scaled to fit insideUp: if u′ is a point in a Sobol’ sequence in[0, 1)d, the corresponding

design point isf(0.5(1− p1/d) + p1/du′). Figure 4.1, whose panels are in sequence left to right

and then top to bottom, shows the process of creatingk = 50 design points for a version of the

example of Section 4.2 in which there are only two risk factors, corresponding to the S&P500

and Nikkei225 indices. The panels forZ andX are the same because the risk factors in this

example are normally distributed, so the step of generatingŨ is redundant.

4.3.1.2. Sample Sizes in a Two-Stage Simulation Procedure.In the first stage of Phase I,

we simulaten0 sample paths at each design point and compute the sample average Ȳh(xi)

and sample variances2h(xi) of the discounted payoffs for each design pointi = 1, 2, . . . , k

and each securityh = 1, 2, . . . , r. Then we choose a total sample sizeni to attain at each
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Figure 4.1. Construction of Phase I design points in a two-dimensional example:
▽ indicates corner points, and◦ indicates points generated by quasi-Monte
Carlo.

design point after a second stage of sampling, and simulateni − n0 additional sample paths at

design pointxi for i = 1, 2, . . . , k. We choose the sample sizeni to target a relative precision
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for the simulation output. Based on an assumption that the discounted payoffs are normally

distributed with unknown variance, a fixed sample size ofn yields a half-width of the(1 − α)

confidence interval foryh(xi) of lh(xi, n;α) = tn−1,1−α/2sh(xi)/
√
n, wheretn−1,1−α/2 is the

1 − α/2 quantile of thet distribution withn − 1 degrees of freedom. Letyh(xi) be the true

price of securityh in scenarioxi. The relative precision of the average ofni sample paths is

lh(xi, ni;α)/ |yh(xi)|. We target a relative precision ofγ between 0 and 1. After the first stage,

we choose the sample size

(4.2) ni = max

{
n0,

⌈
max

h=1,2,...,r

(
(1 + γ)tn0−1,1−α/2sh(xi)

γȲh(xi)

)2
⌉}

because it makes

(4.3)
lh(xi, ni;α)∣∣Ȳh(xi)

∣∣ ≤
γ

1 + γ

for every securityh = 1, 2, . . . , r. The relative precisionlh(xi, ni;α)/ |yh(xi)| ≤ γ with ap-

proximately1− α level confidence if Equation (4.3) holds (Law, 2007, p. 502).This is merely

an approximation because the discounted payoffs are not normally distributed, and the sample

sizeni is random, not fixed. In particular, it depends on the first-stage sample averagēYh(xi),

which spoils the usual arguments for the validity of two-stage fixed-width confidence interval

procedures such as Stein’s (Stein, 1945). However, if the sample size is large and the true price

is not too close to zero, we expect to attain the desired relative precision with high confidence

if α is small.
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4.3.2. Metamodel Validation Phase

After the initial simulation, we construct and validate metamodels. If they fail a test based on

leave-one-out cross-validation, we add more design pointsor generate more sample paths at

existing design points until the updated metamodels pass the test. The essential idea of leave-

one-out cross-validation, when applied to a metamodel of a deterministic simulation model, is

to look at the difference between the true valueyh(xi), observed by running the simulation at the

design pointxi, and the leave-one-out prediction̂Y(−i)
h (xi) of a metamodel constructed using

all the design points exceptxi. When the simulation is stochastic, the true valueyh(xi) can

not be observed. Our validation method considers the leave-one-out prediction̂Y(−i)
h (xi), the

simulation output̄Yh(xi) which serves as an estimate of the true valueyh(xi), and the confidence

interval half-widthlh(xi, ni;α) as a measure of uncertainty in̄Yh(xi).

We use cross-validation for a subsetI ⊆ {1, 2, . . . , k} of design points and a subsetH ⊆

{1, 2, . . . , r} of securities. The design points inI are those that are not on the convex hull of

the set of design points. This ensures that for alli ∈ I, Ŷ(−i)
h (xi) is an interpolation, not an

extrapolation. The subsetH could contain allr securities, but ifr is too large, cross-validation

will take a very long time. One may choose a smaller subsetH by including only one repre-

sentative of each class of securities. For example, a class may consist of securities which differ

from each other only in maturity and strike price. We suggestchoosing the representative of

a class to be the security which is most computationally expensive to price with good relative

accuracy: for example, after Phase I, one may choose representatives with the highest value of

maxi=1,2,...,k sh(xi)/Ȳh(xi).
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Proposition 1 provides some justification for our method, which aims to control the relative

leave-one-out prediction error|Ŷ(−i)
h (xi) − yh(xi)|/|yh(xi)| at each design point. As in Sec-

tion 4.3.1.2, non-normality of the simulation output and randomness of the sample sizes mean

that the method is merely approximate: thus, in interpreting the proposition, we should remem-

ber thatPr
{∣∣Ȳh(xi)− yh(xi)

∣∣ ≤ lh(xi, ni;α)
}

may not be exactly1−α, the confidence sought

in the construction of Equation (4.2). For reasons suppliedby Proposition 1, our test of validity

is based on

(4.4) Ehi =
lh(xi, ni;α)∣∣Ȳh(xi)
∣∣− lh(xi, ni;α)

+

∣∣∣Ŷ(−i)
h (xi)− Ȳh(xi)

∣∣∣
∣∣Ȳh(xi)

∣∣− lh(xi, ni;α)
,

where the first term measures the relative precision of simulation output and the second term

measures the relative discrepancy between metamodel prediction and simulation output. These

measurements are relative to
∣∣Ȳh(xi)

∣∣− lh(xi, ni;α), a lower confidence limit foryh(xi).

Proposition 1. For any h = 1, 2, . . . , r and i = 1, 2, . . . , k,
∣∣Ȳh(xi)− yh(xi)

∣∣ ≤ lh(xi, ni;α)

implies
∣∣∣Ŷ(−i)

h (xi)− yh(xi)
∣∣∣ / |yh(xi)| ≤ Ehi.

Proof If Ȳh(xi)− lh(xi, ni;α) ≤ yh(xi) ≤ Ȳh(xi) + lh(xi, ni;α), then

|yh(xi)| ≥ min
{∣∣Ȳh(xi)− lh(xi, ni;α)

∣∣ ,
∣∣Ȳh(xi) + lh(xi, ni;α)

∣∣} =
∣∣Ȳh(xi)

∣∣− lh(xi, ni;α),

which is positive because Equation (4.2) implies thatlh(xi, ni;α) < |Ȳh(xi)|. Therefore

∣∣∣Ŷ(−i)
h (xi)− yh(xi)

∣∣∣
|yh(xi)|

≤

∣∣Ȳh(xi)− yh(xi)
∣∣ +
∣∣∣Ŷ(−i)

h (xi)− Ȳh(xi)
∣∣∣

|yh(xi)|

≤
lh(xi, ni;α) +

∣∣∣Ŷ(−i)
h (xi)− Ȳh(xi)

∣∣∣
∣∣Ȳh(xi)

∣∣− lh(xi, ni;α)
= Ehi. 2
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The proposition suggests an iterative procedure that adds simulation effort untilEhi ≤ β

for all h ∈ H and i ∈ I, whereβ is a target error. A key question is whether to add more

design points or more sample paths at existing design points. This is a difficult question and

here we provide a very simple response to it; future researchshould lead to better answers. The

difference|Ŷ(−i)
h (xi) − Ȳh(xi)| can be large because the simulation output is far from the true

value (atxi or at other design points) or because of a large difference between the true value

yh(xi) and the leave-one-out prediction atxi that would arise if the true values were known at

the other design points. In the former case, we want to add more sample paths; in the latter,

we want to add more design points. The problem is that we do notknow the true values, so

we do not know the cause. However, if the sample size atxi is already large enough to make

the half-width of the confidence interval foryh(xi) very small, then it is unlikely that the cause

is that Ȳh(xi) is far from yh(xi), so it seems attractive to add a new design point. We add a

new design point if the first termlh(xi, ni;α)/
(∣∣Ȳh(xi)

∣∣− lh(xi, ni;α)
)

of Ehi is less thanλβ,

whereλ ∈ (0, 1) is a parameter of the simulation procedure whose purpose is to control the

effect of Monte Carlo variability during cross-validation. In our experiments, we found that

λ = 1/4 worked well. An outline of Phase II of our procedure is:

(1) Fori = 1, 2, . . . , k, initialize the sample sizeNi ← ni.

(2) For i = 1, 2, . . . , k andh ∈ H, compute the sample averageȲh(xi) and sample stan-

dard deviationsh(xi) of theNi discounted payoffs of securityh on each sample path

atxi.

(3) For alli ∈ I andh ∈ H, computeEhi as in Equation (4.4) but with sample sizeNi.

(4) Set(h∗, i∗)← argmaxh∈H,i∈IEhi. If Eh∗i∗ ≤ β, terminate.

(5) If lh∗(xi∗ , Ni∗ ;α)/
(
Ȳh∗(xi∗)− |lh∗(xi∗ , Ni∗ ;α)|

)
≥ λβ, then:
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(a) SimulateNi∗ additional sample paths atxi∗ and setNi∗ ← 2Ni∗.

(b) UpdateȲh(xi∗) andsh(xi∗) for all h ∈ H.

(c) Return to Step 3.

(6) Otherwise,

(a) Add design pointxk+1 midway betweenxi∗ and the nearest design point, and set

I← I ∪ {k + 1}.

(b) Perform two-stage simulation atxk+1 as described in Section 4.3.1, initialize

Nk+1 ← nk+1, and computēYh(xk+1) andsh(xk+1) for all h ∈ H.

(c) Setk ← k + 1 and return to Step 3.

4.4. Numerical Experiment Results

We tested our procedure on the example of Section 4.2. There are 26 = 64 corner points

coming from a hypercubeUp of volumep = 0.99 andk = 74 total design points in Phase I. The

first-stage sample sizen0 = 5000. The confidence level1− α = 0.9 and the target levelsβ and

γ for relative error are both 0.05.

Our figure of merit is root average relative mean squared error (RARMSE): for securityh,

RARMSE(h) =
√∫

X
E[(Ŷh(x)/yh(x)− 1)2] dFX(x). To analyze the performance of our pro-

cedure, we sampleX1,X2, . . .XK independently from the distribution of tomorrow’s scenario,

and use this sample to approximate the integral. In theseK = 1000 scenarios, we compare the

metamodels’ predictions to very accurate estimates of the true security prices obtained from
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another simulation experiment. We approximate the expectation by runningm = 30 macro-

replications of our procedure and estimate RARMSE(h) by

1

mK

K∑

i=1

m∑

j=1

(
Ŷ
(j)
h (Xi)

yh(Xi)
− 1

)2

,

whereŶ(j)
h is the metamodel of the price of securityh in thejth macro-replication.

Figure 4.2 contains histograms of the RARMSE of the 75 metamodels produced by our

procedure. One histogram is obtained when the setH of securities used in cross-validation

contains all 75 securities, and the other whenH contains only five securities. In the latter case,

the representative inH of each of the five classes of options described in Section 4.2is the

option that has the longest maturity and is deepest out of themoney, which therefore has the

highest ratio of payoff variance to price. The figure shows that using only five securities in

cross-validation increases RARMSE only slightly; the metamodels are still quite accurate, with

the biggest RARMSE around 0.72%.

The advantage of using a small setH for cross-validation is reduced computational cost.

To study this, we simulated sample paths with a time step of two days. This is not necessary

when the equity indices follow geometric Brownian motion, but some other models do require

simulation with small time steps. Implemented in MATLAB 7.6and run on a computer with a

2.4GHz CPU and 3.4GB memory under 32-bit Windows XP, the procedure took 4.2 hours when

including all 75 securities in cross-validation, and 2.2 hours when including only five securities.

In practice, portfolios may consist of hundreds of securities, in which case more computing

power is required to run our procedure in one night. Our procedure is easy to parallelize:

simulation of different sample paths and building metamodels for different securities can be

allocated to separate processors.
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Figure 4.2. Histogram of estimated root average relative mean squared error of metamodels.
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APPENDIX A

Appendix for Chapter 2

A.1. Ranking and Selection Procedure

User input: The user specifies the computational budgetC, the confidence level1 − p

of the ES to be estimated, andk scenarios (which may be generated by an outer-level

simulation).

Algorithm parameters: Choose the first-stage sample sizen0 > 1 and the sample size

growth factorR > 1.

Initialization: SetN ← 0, n← n0, I ← {1, 2, . . . , k}, andj ← 0.

Phase I:

(1) Simulate payoffsXih for i ∈ I andh = N + 1, N + 2, . . . , N + n using CRN for

all i ∈ I. SetC ← C − n|I|, N ← N + n, and thenn← N(R − 1). Calculate

X̄i =
1

N

N∑

h=1

Xih,

S2
i =

1

N − 1

N∑

h=1

(Xih − X̄i)
2, and

S2
ir =

1

N − 1

N∑

h=1

(
Xih −Xrh −

(
X̄i − X̄r

))2

for all i, r ∈ I such thatr > i. Sort{X̄i : i ∈ I} to get the mappingπj(·) and sort

{Si : i ∈ I} to get the mappingπS(j)(·).
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(2) Use the golden section method (Bazaraa et al., 2006), or another derivative-free

line search method, to find theαj between 0 and1/ ⌈kp⌉ that minimizes the func-

tion P̃ (j, ·), which is computed by the following steps:

(a) For alli, r ∈ I such thati < r, calculate

Qir =
X̄i − X̄r

Sir/
√
N

and Qri = −Qir.

(b) Setj′ ← j, N ′ ← N , n′ ← N(R − 1), C ′ ← C, andĨ ← I.

(c) Set

Ĩ ←



i :

∑

r∈Ĩ

1

{
Qir >

t1−αj ,N ′−1√
N ′/N

}
< kp



 .

If |Ĩ| = ⌈kp⌉, go to Step 2e.

(d) Calculateτ = max{Sir : i, r ∈ Ĩ , i 6= r},

B̃ =

min{⌈kp⌉,|Ĩ|−⌈kp⌉}∑

i=1

wi max
δ≥0

(
δΦ

( −δ
τ/
√
N ′

))
, and

Ṽs =
1

C ′




⌈kp⌉∑

i=1

wiSπj(i)




2

.

SetC ′ ← C ′ − n′|Ĩ|, N ′ ← N ′ + n′, and thenn′ ← N ′(R − 1). Use the

mappingπS(j)(·) to construct the mappingπS(·) from {1, 2, . . . , |Ĩ|} to Ĩ

such thatπS(i) is the scenario iñI with the ith smallest value ofSi, and

compute

Ṽc =
1

C ′




⌈kp⌉∑

i=1

wiSπS(i)




2

.
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If B̃2 + Ṽs > Ṽc, setj′ ← j′ + 1 and go to Step 2c.

(e) SetJ̃ = j′ and return

P̃ (j, αj) =
(1− ⌈kp⌉αj)

J̃−j+1



|Ĩ|

⌈kp⌉




.

(3) Screening: setI ←
{
i :
∑

r∈I 1
{
Qir > t1−αj ,N−1

}
< kp, i ∈ I

}
. If |I| = ⌈kp⌉,

go to Step 5.

(4) Calculateτ = max{Sir(j) : i, r ∈ I, i 6= r},

B =

min{⌈kp⌉,|I|−⌈kp⌉}∑

i=1

wimax
δ≥0

(
δΦ

( −δ
τ/
√
N

))
,

Vs =
1

C




⌈kp⌉∑

i=1

wiSπj(i)




2

, and

Vc =
1

C − n|I|




⌈kp⌉∑

i=1

wiSπS(j)(i)




2

.

If B2 + Vs ≥ Vc, setj ← j + 1 and go to Step 1.

(5) Selection: LetJ = j andγ̂ = {πJ(1), πJ(2), . . . , πJ(⌈kp⌉)}.

Phase II: For eachi = 1, 2, . . . , ⌈kp⌉, compute the sample size

MπJ(i) = C
wiSπJ(i)∑⌈kp⌉

r=1 wrSπJ(r)

.

Restart, discarding all previously simulated payoffs. Foreachi ∈ γ̂, simulateMi

independent payoffs and calculate their sample averageX̄i. Compute the expected
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shortfall estimator

ÊS1−p =

⌈kp⌉∑

i=1

wiX̄πJ (i).

A.2. Derivations

A.2.1. The Probability of Correct Selection

In §2.4.3, we definedPr{CSj} = Pr{γ ∩ Ij ⊆ γ̂} as the probability of selecting, at the end

of Phase I, all tail scenarios that had survived to stagej. Here we derive an approximation

P̃ (j, α) for this probability, given the information available at stagej, and making explicit the

dependence on the error levelα, which we need to choose. Although̃P (j, α) is notPr{CSj}, it

has similar properties. The choiceαj that maximizesP̃ (j, ·) may not maximizePr{CSj}, but

we can reasonably expect that it makesPr{CSj} large.

To deriveP̃ (j, α) as a function ofα, recall that we are imagining that error levelα will be

used at all stages fromj onward (§2.4.3). We also make the following forecast about the sample

averages and variances in future stages:

(A.1) ∀j′ ≥ j, i, r ∈ Ij′, X̄i(j
′) = X̄i(j), S

2
i (j

′) = S2
i (j), andS2

ir(j
′) = S2

ir(j),

that is, all sample averages and variances will remain the same. Of course, the sample averages

and variances will actually change from stage to stage, but given the information available

at stagej, this is the obvious way to forecast them. Then, we can further forecast the number

J̃(j, α) of stages in Phase I (Appendix A.2.1.1), get an approximation P̃j′(j, α) to the probability

of no screening mistakes at each stagej′ = j, j + 1, . . . , J̃(j, α) (Appendix A.2.1.2), and get a

lower boundP̃s(j, α) on the probability of no selection mistakes at the end of Phase I.
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We construct the approximatioñP (j, α) by treating screening mistakes at every stage and

selection mistakes at the end of Phase I as if they were independent. Because the event CSj is

the event that there are no screening and selection mistakesfrom stagej to the end of Phase I,

we defineP̃ (j, α) to have the structure

(A.2) P̃ (j, α) =




J̃(j,α)∏

j′=j

P̃j′(j, α)


 P̃s(j, α),

whereP̃j′(j, α) relates to the probability of a screening mistake at stagej′ andP̃s(j, α) relates

to the probability of a selection mistake.

The lower bound

P̃s(j, α) =



|Ĩ(j, α)|

⌈kp⌉




−1

,

whereĨ(j, α) is the set of scenarios that are forecast to survive until theend of Phase I. This is

the probability of guessing blindly and correctly selecting ⌈kp⌉ scenarios out of the|Ĩ(j, α)| that

survive until the end of Phase I. Putting this result together with those derived in the remainder

of this section, we get

P̃ (j, α) =
(1− ⌈kp⌉α)J̃(j,α)−j+1



|Ĩ(j, α)|

⌈kp⌉




.

Then we chooseαj in the range(0, 1/ ⌈kp⌉) to maximizeP̃ (j).
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A.2.1.1. Forecasting the Results of Screening.Here we explain how to forecast, as of stagej,

the final stagẽJ(j, α) of Phase I and the sets of surviving scenariosĨj′(j, α) for j′ = j + 1, j +

2, . . . , J̃(j) + 1. A detailed procedure appears in Step 2 of Appendix A.1.

(1) SetĨj(j, α)← Ij andj′ ← j.

(2) Based on Equation (A.1) and our method of screening (Step2c of Appendix A.1),

forecast that the following scenarios will survive screening at stagej′:

Ĩj′+1(j, α) =



i :

∑

r∈Ĩj′(j,α)

1

{
X̄i(j)− X̄r(j)

Sir(j)/
√
Nj′

> t1−α,Nj′−1

}
< kp



 .(A.3)

(3) Evaluate the stopping rule (§2.4.5) by plugging inX̄i(j) for X̄i(j
′), πj(i) for πj′(i),

S2
i (j) for S2

i (j
′), πS(j)(i) for πS(j′)(i), andĨj′+1(j, α) for Ij′+1. If the stopping rule is

satisfied,J̃(j, α) = j′. Otherwise, setj′ ← j′ + 1 and return to the previous step.

Because the forecast remaining computational budgetC ′ in Step 2 in Appendix A.1 decreases

at each stage, the stopping rule must be satisfied at a finite stageJ̃(j, α).

SinceNj′ = NjR
j′−j whereR > 1, Equation (A.3) can be rewritten as

Ĩj′+1(j, α) =




i :

k∑

r=1

1





X̄i(j)− X̄r(j)

Sir(j)/
√
Nj

>
t1−α,Nj′−1√

Rj′−j︸ ︷︷ ︸
Wj′ (j,α)





< kp





,

in which the thresholdWj′(j, α) is the only thing that depends onj′ orα. Thus, although we are

forecasting the results of screening at several future stages for multiple values ofα, this does

not take nearly as long as actually performing screening repeatedly.

A.2.1.2. The Probability of Screening Mistakes.To simplify the following analysis, we as-

sume that the values of distinct scenariosi 6= r are distinct:Vi 6= Vr. The experimental results
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in §2.5.1 show that even when this assumption does not hold, our procedure can still perform

well. Also continuing to treatα as the error level at all stagesj′ ≥ j, we analyze the probability

that no screening mistakes occur at stagej′ as follows:

Pr





∑

r∈Ĩj′ (j,α)

1

{
X̄i(j) > X̄r(j) +

t1−α,Nj′−1Sir(j)√
Nj′

}
< kp, ∀i ∈ γ ∩ Ĩj′(j, α)





≥ 1−
∑

i∈γ∩Ĩj′ (j,α)

Pr





∑

r∈Ĩj′(j,α)

1

{
X̄i(j) > X̄r(j) +

t1−α,Nj−1Sir(j)√
Nj

}
≥ kp



(A.4)

≥ 1−
∑

i∈γ

Pr





∑

r∈Ĩj′(j,α)

1

{
X̄i(j) > X̄r(j) +

t1−α,Nj−1Sir(j)√
Nj

}
≥ kp



(A.5)

where (A.4) is based on the Bonferroni inequality and Equation (A.1). In (A.5) we are being

conservative by considering the possibility of making a mistake by screening out any scenario

i ∈ γ, regardless of whether it has survived to stagej′: throughout this section, we imagine the

random variablesXi1, Xi2, . . . , XiNj
as existing, even if they were not all simulated.

To analyze the probabilities in (A.5), we consider the probability of a non-tail scenario

r ∈ I0 \ γ beating a tail scenarioi ∈ γ, which is

Pr

{
X̄i(j) > X̄r(j) +

t1−α,Nj′−1Sir(j)√
Nj′

}
= Pr

{
X̄i(j)− X̄r(j)

Sir(j)/
√
Nj′

> t1−α,Nj′−1

}

≈ 1− Φ

(
z1−α +

Vr − Vi

σir/
√
Nj′

)
(A.6)

whereΦ(·) is the standard normal distribution function andz1−αj
is its1−αj quantile. Next we

consider the relative likelihood for various non-tail scenarios to beat a particular tail scenarioi.

Let ri be the non-tail scenario that minimizes(Vr − Vi)/σir. WhenNj′ is large, the probability
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thatri beatsi will dominate the probability that any other non-tail scenario beatsi. This follows

from Equation (A.6) and the exponential decay of the probability 1 − Φ(x) asx → ∞: for

positivex, (x−1−x−3)(2π)−1/2 exp(−x2/2) ≤ 1−Φ(x) ≤ x−1(2π)−1/2 exp(−x2/2) (Durrett,

2005). We use the negligible probability that any non-tail scenario other thanri beatsi to get

the approximation (A.7) in the following derivation:

Pr





∑

r∈Ĩj′ (j,α)

1

{
X̄i(j) > X̄r(j) +

t1−α,Nj′−1Sir(j)√
Nj′

}
≥ kp





≤ Pr

{
∃r ∈ Ĩj′(j, α) \ γ ∋ X̄i(j) > X̄r(j) +

t1−α,Nj′−1Sir(j)√
Nj′

}

≤ Pr

{
∃r /∈ γ ∋ X̄i(j) > X̄r(j) +

t1−α,Nj′−1Sir(j)√
Nj′

}

≈ Pr

{
X̄i(j) > X̄ri(j) +

t1−α,Nj′−1Siri(j)(j)√
Nj′

}
(A.7)

≤ Pr

{
X̄ri(j)− X̄i(j)− (Vri − Vi)

Siri(j)/
√

Nj′
< tα,Nj′−1

}
(A.8)

≈ αj(A.9)

where Equation (A.8) holds becauseVi ≤ Vri and tα,Nj′−1 = −t1−αj ,Nj′−1. From Equa-

tions (A.5) and (A.9) we obtain an approximation to the probability that there are no screening

mistakes at stagej′, which is P̃j′(j, α) = 1 − ⌈kp⌉α. Roughly speaking, this corresponds to

thinking of any of⌈kp⌉ tail scenarios as being vulnerable to being screened out if it is beaten

by all other tail scenarios and one specific non-tail scenario, and assigning probabilityα to the

event of being beaten by that non-tail scenario.
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A.2.2. Bias Estimation for the Choice of Stopping Screening

As explained in§2.4.5, we only need to consider the bias that arises from selecting γ̂ from

Ij+1 if we stop after stagej. We only consider the bias induced by incorrect selection, that

is, γ̂ = {πj(i) : i = 1, 2, . . . , ⌈kp⌉} 6= γ = {πV (i) : i = 1, 2, . . . , ⌈kp⌉}. We ignore the

bias induced by ordering tail scenarios inγ̂ incorrectly; this is unimportant because at most one

weight amongw1, w2, . . . , w⌈kp⌉ is different from the others.

For eachi ≤ ⌈kp⌉, the bias induced by the possibility of excluding scenarioπV (i) is

bi = wi

∑

r∈Ij+1\γ

(
Vr − VπV (i)

)
Pr {r ∈ γ̂, πV (i) /∈ γ̂}

≤ wi

∑

r /∈γ

(
Vr − VπV (i)

)
Pr
{
X̄r(j) < X̄πV (i)(j)

}
.

Using the approach in Appendix A.2.1.2, any of these probabilities is dominated by

qi(j) = Pr
{
X̄rπV (i)

(j) < X̄πV (i)(j)
}
.

To condense notation, defineδi := Vri − Vi andτi := σrii for all i ∈ γ. WhenNj is large,

qi(j) ≈ Φ
(
−δπV (i)

√
Nj/τπV (i)

)
. Then we approximatebi by wiδπV (i)Φ

(
−δπV (i)

√
Nj/τπV (i)

)
.

However,τπV (i) andδπV (i) are unknown. ForτπV (i) we substituteτj = max{Sir(j) : i, r ∈

Ij+1, i 6= r}, which makes selection mistakes seem more likely, and thus increases the ab-

solute value of our approximation of the bias. We also increase it by replacingδπV (i) with

argmaxδ≥0 δΦ(−δ
√

Nj/τj). Then we approximate

bi ≈ wi max
δ≥0

δΦ
(
−δ
√

Nj/τj

)
.
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To approximate the total bias due to the possibility of excluding tail scenarios, we consider

two cases: when|Ij+1| ≥ 2 ⌈kp⌉ and when|Ij+1| < 2 ⌈kp⌉. When|Ij+1| ≥ 2 ⌈kp⌉, it is possible

that all tail scenarios are excluded. When|Ij+1| < 2 ⌈kp⌉, at most|Ij+1| − ⌈kp⌉ tail scenarios

can be excluded, because that is how many non-tail scenarioshave survived screening. Thus we

approximate the bias by

B(j) =

min{⌈kp⌉,|Ij+1|−⌈kp⌉}∑

i=1

wimax
δ≥0

(
δΦ
(
−δ
√

Nj/τj

))
.
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APPENDIX B

Appendix for Chapter 3

B.1. Optimal Budget Allocation in Stage III

In Stage III of our procedure, we want to minimize the posterior variance of the ES estimator

in Equation (3.3) by allocatingC inner-level simulation replications among thek design points,

subject to the constraint that we have already allocatedn0 replications to each of the design

points. ES is−
∑Kp

i=1 Y(i)/p, whereY(i) is theith lowest component of the vectorYK of P&L at

each prediction point. In a Bayesian interpretation of the stochastic kriging framework, ES is a

random variable becauseYK is a random variable. Its posterior variance, given the simulation

data observed in Stages I and II, is difficult to analyze, because uncertainty aboutYK means

there is uncertainty about the order of its components. We simplify the problem by supposing,

for the moment, that the order is known. That is, we consider the random variablew⊤
Y

K where

the weightwi is−1/Kp if i is a tail scenario and 0 otherwise, treating the vectorw as though

it were known.

We refer to Section 3.3 for definitions of the notation in the following derivation of posterior

variance. The prior distribution of the P&L and the simulation output
[
Y

K ;Y
]

is multivariate

normal with mean vector and covariance matrix




β01
K

β01
k


 and




Σ
KK

Σ
Kk

Σ
kK

Σ
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(Ankenman et al., 2010). Therefore
[
w

⊤
Y

K ;Y
]

also has a multivariate normal prior distribu-

tion with mean vector and covariance matrix



−β0

β01
k


 and




w
⊤
Σ

KK
w w

⊤
Σ

Kk

Σ
kK

w Σ


 .

Then the posterior variance ofw⊤
Y

K givenY is

Var
[
w

⊤
Y

K |Y
]
= w

⊤
(
Σ

KK −Σ
Kk

Σ
−1
Σ

kK
)
w.(B.1)

The dependence of the posterior variance on the decision variablen, which specifies the number

of simulation replications for each design point, is buriedin the matrixΣ.

The dependence on the decision variable through the inverseof a matrix makes the opti-

mization problem difficult to analyze. To make it more tractable, we resort to a further approx-

imation that is justified ifn0 is large. The sum of intrinsic and extrinsic covariance matrices for

the design points,Σ, can be written as

Σ = Σ
kk +C

kk
N

−1 = Σ
kk +C

kk/n0 − (Ckk/n0 −C
kk
N

−1) = Σ
kk +C

kk/n0 −BB

whereB is a diagonal matrix whoseith element is
√
V(xi)(1/n0 − 1/ni). By the Sherman-

Morrison-Woodbury formula (Golub and Van Loan, 1996), whereI is the identity,

Σ
−1 =

(
Σ

kk +C
kk/n0 +B(−I)B

)−1

=
(
Σ

kk +C
kk/n0

)−1

−
(
Σ

kk +C
kk/n0

)−1
B

(
B
(
Σ

kk +C
kk/n0

)−1
B − I

)−1

B
(
Σ

kk +C
kk/n0

)−1
.
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Whenn0 is large enough,Ckk/n0 and henceB will be small. Because the extrinsic covariance

matrixΣkk does not depend onn0, B
(
Σ

kk +C
kk/n0

)−1
B is negligible compared toI. This

leads to the approximation

Σ
−1 ≈

(
Σ

kk +C
kk/n0

)−1 −
(
Σ

kk +C
kk/n0

)−1
B(−I)B

(
Σ

kk +C
kk/n0

)−1

=
(
Σ

kk +C
kk/n0

)−1
+
(
Σ

kk +C
kk/n0

)−1 (
C

kk/n0 −C
kk
N

−1
) (

Σ
kk +C

kk/n0

)−1
.(B.2)

Substituting Equation (B.2) into Equation (B.1), we get thefollowing approximation for the

posterior variance:

Var
[
w

⊤
Y

K |Y
]
≈ w

⊤
Σ

KK
w −w

⊤
Σ

Kk
(
Σ

kk +C
kk/n0

)−1
Σ

kK
w

−w⊤
Σ

Kk
(
Σ

kk +C
kk/n0

)−1 (
C

kk/n0

) (
Σ

kk +C
kk/n0

)−1
Σ

kK
w

+w
⊤
Σ

Kk
(
Σ

kk +C
kk/n0

)−1
C

kk
N

−1
(
Σ

kk +C
kk/n0

)−1
Σ

kK
w.(B.3)

Only the third line of Equation (B.3) depends on the decisionvariablen, through the matrix

N
−1. Therefore, our goal is to minimize this term, which is the objectiveU⊤

C
kk
N

−1
U in the

optimization problem (3.4).
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