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ABSTRACT

Efficient Simulation in Financial Risk Management

Ming Liu

Assessing the risk of a portfolio is essential both for risan@agers to conduct portfolio
hedging and for regulators to construct rules, such as hoghrmapital banks should put aside
to guard against financial risks they may face. In the pashdkscmore and more derivative
securities were invented corresponding to the increadeeaiter-the-counter market, and some
of them are quite complex. Unfortunately, if a portfolio tains such complex securities, it
could be very hard to analyze its risk. Monte-Carlo simolais a very powerful tool for risk
measure estimation of complex derivatives. However, anrate simulation can take so long
that the result is no longer useful when it is delivered beegdono much time has passed or the
portfolio has changed too much. In this dissertation reteahe computational efficiency of
Monte-Carlo simulation is considered for portfolio risksassment.

The first phase of the research focuses on efficient two-walilation for point estima-
tion of expected shortfall. Applying tools from ranking aselection and tools for simulation
metamodeling, two different simulation procedures to dath portfolios with different con-

figurations are proposed. In the second phase of the reseasgguential experiment design



procedure is developed to construct multiple metamodedsdan a single stochastic simula-
tion model. This procedure is applied to approximate macysies’ prices as functions of a

financial scenario.
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CHAPTER 1

Introduction

In financial risk management, the risk of holding a portfadi@lways measured as a func-
tion of the distribution of this portfolio’s value. When tpertfolio contains derivative securities
an analytical pricing formula may not exist, and so nestetuation may be required for risk
measure estimation. In a two-level nested simulation fvaonk, outer-level simulation gener-
ates possible future scenarios. These scenarios may anméhfstorical simulation or Monte
Carlo sampling from the distribution of future changes gktiactors. Inner-level simulation of
the more distant future, conditional on each scenarioggiah estimate of the portfolio’s value,
or profit and loss (P&L), in each scenario. The resulting cotaonal burden can be quite
large, with thousands of Monte Carlo replications perfainmeeach of thousands of scenarios,
for a total of millions of replications. Researchers haveetigped two approaches to making
nested simulation more computationally efficient.

Frye (1998) and Shaw (1998) proposed to reduce computattostby performing zero
inner-level simulation replications in many of the sceasuriln this approach, inner-level sim-
ulation occurs only for a set of scenarios caltisdign points. These authors estimate the P&L
of other scenarios by interpolating among the simulatidgimeges of P&L at design points.

The other approach is more automated and generic. Thestanek is the thesis of Lee
(1998), who studied point estimation of a quantile of therthation of a conditional expec-

tation. This is related to point estimation of value at risaR): let the portfolio valué’ in
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scenarioZ beV (Z) = E[X|Z], whereX is the discounted payoff of the securities in the port-
folio and E represents risk-neutral expectation.| Lee (] @8 usses how to reduce the mean
squared error (MSE) of the point estimator by jackknifingeduce its bias and by choosing
the number of scenarios to sample in an asymptotically agtmay. Gordy and Juneja (2006,
2008) use similar ideas in proposing a simulation procetiurgoint estimation of a portfolio’s
VaR via two-level simulation. Expected shortfall (ES) iso#ver widely used risk measure,
closely related to conditional value at risk and tail coihill expectation, which is the condi-
tional expectation of loss given that it exceeds VaR. Goray duneja (2008) mention ES but
do not provide a simulation procedure for estimating it. Atl@vel simulation procedure for
interval estimation of ES is the topic of Lan et al. (20072080 who increase computational
efficiency by dynamic allocation of the computational budgenulti-stage simulation.

The remainder of the dissertation is organized as followrst,Five use ranking and selec-
tion methods to help optimize inner-level computationaddpet allocation, and this procedure
is described in Chapter 2. Second, we adopt the interpaoladi®a in Frye|(1998) and Shaw
(1998), and use stochastic kriging (Ankenman et al., 20d @chieve better simulation design
and interpolation taking the simulation uncertainty intoc@unt. The details of this second pro-
cedure is in Chapter 3. The topic of Chapter 4 is how to eseémany security’s prices as
functions of a financial scenario. A simulation procedungrigosed for providing an approxi-
mate picture of the way the prices of each security changeeasarket move. Such a picture

can be used for assessing and hedging portfolio risks.
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CHAPTER 2

Ranking and Selection Procedure for Point Estimation of Exjgcted

Shortfall

2.1. Introduction

In this and the next chapter, we focus on point estimation®fBd on the inner level of
simulation. Our methods proposed in this chapter are ctkat¢hose of Lan et al. (2008) and
of|Lesnevski et al. (2008), who considered another risk mreadut we apply them differently
because our goal is efficient point estimation. To get amegtor with low MSE, we create a
heuristic simulation procedure. Although we present samgfjcations for our heuristics based
on the assumption that the simulated data are normallyilais&d, we do not prove anything
about the performance of the procedure. We merely craft apkhi@ a simulation procedure,
then use experiments with normal and non-normal data to gshawit performs well. Our
procedure can attain a sufficiently low MSE even when the adatpnal budget is so small
that other methods for estimating ES yield answers that ar@ccurate enough to be useful.
We compare our method to a standard two-level simulationSyiviithout any efficiency tech-
niques, and to the confidence interval procedure of Lan ¢2@08). We report experimental
results in which our procedure delivers root mean squaned RMSE) between 1% and 10%
of the true ES while the RMSE of a standard two-level simalaind the confidence interval
width oflLan et al.|(2008) are about the same magnitude ag@Bating that those procedures’

answers are not useful.
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2.2. Expected Shortfall

Let V be a random variable denoting the value of a portfolio at areutime7". Its cumula-
tive distribution function is denoted h¥,. A risk measure, such as VaR or ES, is a functional

T(Fy) of this distribution. The expected shortfall at levetl p is defined as
1
(2.1) ES = — (ElV1v<y,yl +up(p = Pr[V <))

wherev, is thep-quantile offy; —uv, is VaR at thel — p level. In our analysis, we will assume
that Fy, is continuous at,, so that the second term on the right side of Equation (2 Aishes,
but our procedure works even if this is not so.

Let us suppose we havescenarios describing the state of the financial marketsnat’fi.
Each scenario specifies the levels of a vectoof risk factors that determine the portfolio’s
value V. Examples of risk factors are underlying asset prices,tMtikes, or interest rates.
DefineV; = E[X|Z = Z,], the value of the portfolio in scenarip expressed as a conditional
risk-neutral expectation of the total discounted pay®ofbf the securities in the portfolio. To
simplify notation, we letX; represent a random variable whose distribution is the ¢mdil
distribution of X givenZ = Z;, so thatV; = E[X;], and we refer taX; as a “payoff.” The
expectation is estimated by Monte Carlo simulation.

Let 7y, be a permutation of1,2, ..., k} such thal; 1) < Vi, o < ... < Vo), thatis,
scenariory () is the one in which the portfolio value is thi#h lowest. Also define to be the
set of the| kp| portfolios with the smallest values, i.e.= {7y (1), 7y (2),...,7v([kp])}. We

use the terms “tail” and “non-tail” to refer tpand{1,2,...,k} \ v, respectively. Then ES at
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level 1 — p of the empirical distribution of/;, V5, ..., V} is
[kp]
(2.2) ES_, =Y wiVa )
=1
where
—1/kp, fori=1,..., kp|,

—1+ |kp] /kp, fori= |kp]+ 1.

The efficient procedure we propose in this chapter focusestmating ES as specified by
Equation [(2.2) when the scenarios are given. The scenavidd be generated by historical
data or sampled from a distributidny,. If we sample them, this represents the outer level of
a two-level simulation procedure. The procedure we proposigis chapter focuses on inner-
level simulation, estimating the value of the portfolio acé scenario by simulating payoffs. It
can be used either with a fixed set of scenarios or as part af-detvel simulation. We will give

examples of historical simulation and two-level simulatio §2.5.

2.3. The Standard Procedure

In this section, we present the simplest possible simulgirocedure for estimating ES as
specified by Equation_(2.2). There is a fixed computationdbletiexpressed as a total number
C of payoffs that can be simulated. The standard procedurdedithe budget equally among
thek scenarios and then treats the resulting sample averagéipagohough they were the true

values of the scenarios. The procedure is:

(1) Simulate payoffsX;, fori = 1,2,...,k, h = 1,2,...,|C/k|. Calculate sample

averages\i, Xo, ..., X;.
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(2) Select the kp] smallest sample averagésl), X(g), .. X([kp))» Where the subscript
(1) denotes the scenario with thi& smallest sample average).

(3) Estimate ES by

[kp]

(23) Z wi)_((l-).
i=1

There are two main reasons that this standard proceduredoesrk well when the budget
C'is small. First, from Equation_(2.3), we see that opty)| sample averages actually appear
in the estimator, which means that only abpGt payoffs appear. The othét — p)C payoffs
are used solely to eliminate— [kp| scenarios. This way of selectingp| scenarios to use in
the estimator is inefficient. The second reason is that farall,2, ..., [kp], X(i) is a biased
estimator ofi;,,;), due to selection bias. Selection bias is defined&s|E< 4] —E[X;], where
4 is the set of scenarios corresponding to the| smallest sample averages. When the budget

C'is small, the estimatol (2.3) can be badly biased.

2.4. An Efficient Procedure

In this section we propose an efficient simulation procedorestimate expected shortfall.
This procedure overcomes the two disadvantages of theasthpdocedure mentioned above
and can give an accurate point estimator of ES when the biglgetall.

To avoid spending too much of the budget on scenarios whigtbeaasily excluded from
the tail, we follow Lan et al. (2008) and Lesnevski et al. (D using screening. Screening
is a method, based on theest, that eliminates (“screens out”) some scenarios hae&atrate
computational resources on the scenarios that are most tikée in the taily. We combine

the goal of screening in Lan et/al. (2008), to screen out aittad scenarios, with the highly



15

efficient screening tactics of Lesnevski et al. (2008), tisst multiple stages of screening that
terminate when a stopping rule judges that screening ismgeloa good use of computational
resources. That is, at each stage of the simulation proegde simulate more payoffs con-
ditional on all surviving scenarios (the scenarios that @weenot screened out yet) and screen
out more scenarios that now seem unlikely to be in the tailsTkve overcome the first disad-
vantage of the standard procedure by allocating fewer f@ymthe non-tail scenarios.

We overcome the second disadvantage by avoiding selecis@abogether with a technique
called “restarting”|(Boesel et al., 2003): we throw out ak tpayoffs used in screening. After
screening, we select a sgf scenarios which we believe belong to the tail, and allothé
remaining computational budget to scenarios .inWe use only the sample averages of these
new payoffs in our ES estimator. Those sample averages ve¢nesed in the decision about
whether or not to include a scenariojinwhich makes EX;|i € 4] = E[X;], and then they have
no selection bias. This restarting technique is also usediret al. (2008) and Lesnevski et al.
(2008). The only source of bias in our procedure comes frapdssibility that we may choose
4 incorrectly, i.e., unequal to the true tail

An important difference between our screening proceduckthase of Lan et al. (2008)
and Lesnevski et al. (2008) is that we dynamically selectetiner level of thet-tests at each
stage. Because of their goal of providing a confidence iatemith a minimum guaranteed
coverage probability, Lan etial. (2008) and Lesnevski e{20)08) were restricted to using a
pre-specified, very low error level for thetests. Our procedure tends to choose higher error
levels, thus screening more aggressively and concergratore of the computational budget

on the scenarios whose sample averages are used in the EBStesti
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2.4.1. Outline of the Procedure

We outline our procedure in this section, and elaborate amessteps in subsequent sections.
For clarity, we split the procedure into two phases, Phase Rhase II. Phase | includes multi-
stage screening and selectiomofPhase Il allocates the remaining computational budgéio t
selected scenarios, simulates more payoffs, and comphedsS estimator. Because Phase |
contains multiple stages, we uge- 0, 1, 2, . . . to index the stages.

The user specifies the computational budgethe sample sizg, of the first stage, and the
rate R at which the cumulative sample size grows from one stagestaéit. The computational
budget can be chosen based on the time available for theagioruexperiment or on experience
with the budget required to attain the desired precisioneAperiment irf§2.5.2 illustrates that
itis not difficult to choose good valuesof and R, and leads to the recommendatiomgf= 30
and R = 1.2 for most simulation problems.

Definel; to be the set of scenarios that survive to the beginning gestand N; to be the
cumulative number of payoffs simulated for each scenario @fter stageg, soNy = ny. Given
the sample size growth factét, N; = N; ;R for j > 1. Let X;(j) be the sample average of
scenaria after stagg, i.e., X;(j) = Nj‘1 ZhNil Xip. Letm;(-) be amapping of1,2,..., ||}
to I; such that¥, 1y (j) < Xr,@ () < -+ < Xoqr,(j)- Thatis, for anyi = 1,2,..., |1,
7;(i) is the scenario with the sample average thahisowest after stagg¢among the scenarios
in I;. LetC; be the remaining budget at the beginning of stagand.J be the index of the
last screening stage in Phase I, as determined by the stpppé Leta; be the error level of
eacht-test at stageg, which we refer to as the error level for screening at stag&n outline of
our procedure follows; for the full details, see Appendid@lAFigure[ 2.1 contains a flowchart

illustrating the procedure.
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Initialization.: SetNy < ng, Iy + {1,2,...,k}, Co < C,andj «+ 0.
Phase I.:

(1) If 5 > 0, setn; < N; — N;_;. Simulaten; payoffs for each scenario ifj using
common random numbers (CRN; see Law and Kelton, [2000) tpshacreening
in Step 8. Calculate the remaining budgét, < C; — |[;|n;.

(2) Choose the error level for screening,(§2.4.3).

(3) Screening: Screen to computé; ., the set of scenarios that survive screening
after stageg (§2.4.2).

(4) If the stopping rule is not satisfiegd.4.5), then sef «+ j + 1 and go to Stepl1.

(5) Selection:SetJ < j andy < {m;(1),7;(2)...,7;([kp])}.

Phase Il.: Restart, allocate the remaining computational budget émagos iny, and

compute the ES estimatdiZ4.4).

2.4.2. Screening

In this section we present the screening method given tigettarror leveky; at stagej; we
will show how to choose; in §2.4.3. For all ordered paifg, r) in I; x I;, we consider &-test
of the hypothesis that; < V, at significance leved;. If this hypothesis is rejected, we say
scenaria is “beaten” by scenario, i.e.,i is beaten by if and only if

e . —l— tl—aj,Nj—ISiT(j)

\/ﬁj

wheret,_, n;-1 is thel — a; quantile of thet-distribution with N; — 1 degrees of freedom,

Sa(j) =




Begin Simulate each Screen.
stage » surviving system to Stage j
j=0. sample size N,.
Phase
Stop I
Gotostagej+1. |« Screening?
no
yes
Select 7.
Restart, For each scenario Compute
. ;oA . Phase
compute final i ey simulate to N point "
sample sizes M. sample size M,. estimate.

Figure 2.1. A flowchart representing our procedure.

is the sample variance of; — X,, and X;(j) is the sample average df;;, Xi, ..., Xin,.

(3

Scenarios beaten at ledéfp| times are screened out, therefore

. o o tica; N1 (J) .
[j+1: ’LZl{XZ(j)>XT-(j)+ S <kp,l€[j
TGIj \% Nj

The use of the-test is motivated by the observation thatNif is sufficiently large,(X;(j) —
X, (j) — (V; = Vi))\/N;/S; is approximately Studentdistributed (Henderson, 2006). For
convenience in analysis, we will treat each pay®ffas though it were normal. The adequacy

of this assumption of normality in a closely related progeduas evaluated in Lesnevski et al.
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(2008). Furthermore, our procedure neither provides a denée interval nor guarantees a
minimum probability of correctly identifying the tail, shét-tests here do not need to be valid.
We merely use them as a tool for decreasing the MSE of our gsititnator given a fixed

computational budget.

2.4.3. Error Level for Screening

The purpose of the stopping rulg2(4.5) is to make sure that enough of the computational
budget is left for Phase Il to accurately estimate the vadfidéise scenarios selected in Phase |,
so in choosing the error level; for screening at stagg we only consider how this affects the
quality of the sety of scenarios that we select in Phase I. In particular, deflde-C{y = ~}
to be the event of selecting at the end of Phase |I. We would like to choagsga;, ..., ay
to maximizePr{CS}, the probability of correct selection. Unfortunately,sttiaximization
problem is too hard to solve, primarily because we cannotesgPr{CS} in a useful form to
allow it to be optimized over the error levels.

However, the principle behind the existence of an optimaiah of «; is clear. A small
a; means screening cautiously at stgg@ot screening out many scenarios, but having a low
probability of mistakenly screening out a scenario thallydzelongs to the taily; a largea;
means screening aggressively, screening out many scenbubwith a larger probability of
mistakenly screening out tail scenarios. olf, a4, ..., «; are too big, we are very likely to
make screening mistakes. If we do, some scenariog will not be in 7,4, i.e., will not
survive screening, which will prevent us from making a cotrselection at the end of Phase 1.
If ag, a1, ..., ; are too small, we will probably not screen out many scendrésre we use

up so much of the computational budget that we have to go tsePthawhen we must select
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exactly[kp]| scenarios. If the numbeéf; | of scenarios that survive to this point is too large,
each one has a small sample si¥g because the computational budget was depleted after
a small numbet/ + 1 of stages. Then we will be forced to choose among many s@nari
on the basis of sample averages that have high variance deetaeir variances are inversely
proportional to/V;. This implies a large probability of making selection mista at the end of
Phase I. In other words, by being too cautious during scneggenve would waste much of the
computational budget on scenarios that we should have badrebhough to eliminate. Then
we would quickly find ourselves in a situation in which we wblle forced to guess, on the
basis of inadequate information, the identities of the saénarios from among a large set of
scenarios. We will attempt to choose a modesgtthat balances the risks of screening mistakes
during Phase | and selection mistakes at the end of Phase I.

Our method chooses), a4, . . ., a; dynamically, on the basis of an approximatioifid CS}
that is updated at every stage of screening. We choose thelerel o; at the end of stagg,
just before screening. To simplify the problem, we assumgewdioosinge; that this error
level will be used in screening at the current stagand all future stages. This is not how our
procedure actually works: at stage- 1 we will choosex;; on the basis of new information,
anda;; is generally not the same as. However, the assumption relieves us of the need to
considery; 1, o9, . . ., oy While choosingy;, which would be difficult to do.

To choosex;, we would like to maximize the probabiliti’r {CS;} of selecting all tail
scenarios that have survived to stgg€S; := {y N I; C 4}. Unfortunately, we can not write
Pr{CS;} as an explicit function of:;; we have to replace it with some sort of approximation.

Our approach is to use a forecast of the behavior of our prtoedd later stages to construct
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the following approximation t&r {CS;} when the error level ia:

J(j,e)—j+1
(2.4) P(j.a) = 1= Mpﬂ o)
[1(j, )]

[kp]

whereJ(j, a) is the forecasted final stage of Phase | &fido) is the forecasted set of scenarios
that will survive screening after stagkj, o). The procedure for making these forecasts is
described in AppendixA.Z.1.1. We choasgto maximizeP (7, a) instead ofPr {CS;}, which
we can not compute. The derivation Bfj, «) is in AppendiX/A.Z.1. Briefly, the numerator
is related to the probability that none of the tail scenaaos screened out in stagges +
1,..., j(j, a), while the reciprocal of the denominator is related to thebpbility of correctly
choosing[kp] scenarios out of the (4, «)| scenarios that are forecasted to survive screening.
Figure[2.2 illustrates how the scenarios’ sample averagéste error level for screening
a; change during a single run of the procedure. At many staggeis, quite low, because the
procedure judges that the number of surviving scenariomalssompared to the remaining
computational budget. The same low level is chosernvfoat many stages because we chose
a; using a search algorithm (sgé.1)) that confines the search to a grid, and this level is the
smallest in the grid. At other stages, such as 6, 9, and 2prtdeedure judges that there are too
many surviving scenarios compared to the remaining budget,ncreases the screening error
level o; and screens out many scenarios. In this run of the proceditee,stage 21, there are
only 11 scenarios left, while we must selégt= 10. However, even though the 11th scenario

is not screened out, the stopping rule takes until stage 82dwmle that screening is no longer

worthwhile. This run is atypical; in replications of thisample, screening usually stops when
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only 10 scenarios remain. We chose to present an atypichlecause its later stages show that
the error leveb; selected by the procedure can vary greatly depending oethaining budget

and the current sample averages, even when the number ofisgrscenarios does not change.

1501 -0.05
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Figure 2.2. Multi-stage screening during one run of our pdaze on the his-
torical simulation examplegP.5.2). Solid lines represent sample averages of
surviving scenarios. The dashed line is the error leveldogening.

2.4.4. Allocating the Remaining Budget to Compute the Estirator

In this section, we describe Phase Il of the procedure. Adigtarting, it is necessary to allocate

the remaining computational budget to scenarios itWe do this so as to minimize the variance
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of the ES estimator. First we describe Phase Il simulati@hthe ES estimator, then derive the
optimal allocation.

Conditional on each scenarioc 4, we simulateM; payoffs in Phase Il and calculate the
sample averag®;. Because we do not do any comparisons between scenarioase RNCRN

is not used; typically, independent sampling leads to a taxdance for the ES estimator

[kp]

(2.5) ES)_, = sz s (i)-

Now we consider how to choose the Phase Il sample &izéor i € 4. Because we use
restarting, the bias of the ES estimator only comes from tissipility of a wrong selection
4 # ~in Phase |. The bias does not depend on Phase Il sample sizdbaeswant to minimize

the MSE we only need to minimize the variance. The variano%lf,p S

[kp] [kp]

(2.6) VarES;_,) = Var sz i Zw?

2
0-7TJZ

)
M)

J

whereaiJ(Z.) = Var[ X, |m,(i)] is the conditional variance of the payoff given that the scien
is (7). Notice that, conditional on Phase I, Y/E/El_p) is not a random variable. Since we
do not knows? . we use the sample variansg , (J) of the N; samples in Phase | instead.

Then we consider the optimization problem

[kp] [kp]

manw Z w6 = Crp.

Using the Karush-Kuhn-Tucker (KKT) condition, the optindd] is

(2.7) M,y = Cia
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2.4.5. Stopping Rule

At the end of each stage in Phase I, our procedure has to debieldner to go on screening,
continuing Phase I, or to stop screening, sefe@nd end Phase |. Because of restarting, we do
not want to continue Phase | too long, or we will throw out adbsimulated payoffs, leaving
too small a computational budget for Phase Il, which willgaroe a high-variance estimator.
On the other hand, if we end Phase | too soon, when it is notlgat ehich scenarios belong
to the tail, a large bias arises because we are likely tots¢lbadly. In this section we give a
stopping rule for Phase | that balances these considesation

We focus on the decision whether to stop Phase | after stagen/;, has just been
computed. 71| = [kp], there is no need to do any more screening, so we stop. Ogerwi
we approximate the MSE of the ES estimator if we stop now ameeifcontinue, then make
the decision that leads to the smallest MSE. In approxirgatie MSE if we stop now, our
procedure is pessimistic about the bias of the ES estimatapproximating the MSE if we
continue, our procedure is optimistic in believing thatyostenarios belonging to the tail will
survive screening at staget 1, and that these are the scenarios with the smallest conditio
payoff variances* of all scenarios in/;,;. Because we are optimistic about the next stage
of screening and pessimistic about stopping, our procetumes to continue screening when
the remaining computational budge€}, ; is sufficiently large. As the remaining computational
budget shrinks, the variance of the ES estimator grows,laa@ventually forces the procedure
to stop Phase | to save enough budget for ES estimation ireRhad/e adopt this idea of
being pessimistic about stopping and optimistic aboutinaimg because it performed well in

Lesnevski et al. (2008).
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Because of restarting, a Phase Il sample avefégg, is an unbiased estimator ®f, ;).

Thus the bias of our ES estimator defined in Equafiod (2.5) is

BiaS(ETS(l_p) = E [Ejs(l_p] — ESl_p

[kp]
- sz (E [XWJ(l)} o VWV(i))
[kp]
(2.8) = 2w (Ve = Vavio).

From the definition ofv;, 7y (-), andr;(-), it follows that Bia$]§\81,p) is negative.

When we consider whether to stop screening after sfjagee can split the bias into two
parts: the bias from screening mistakes up to sjagel the bias from any screening or selection
mistakes after stage The bias due to screening up to staggs the same whether we stop or
continue after stagg, so we ignore it in formulating the stopping rule and only sider the
bias due to screening or selection mistakes after sfag€o simplify matters, we suppose

C 1,44, that is, no screening mistakes have occurred so far. Giuemutimistic view of
continuing, we suppose there will be no screening or seleatistakes after staggeif we
continue, producing zero bias. If we stop after stagéhe only bias comes from selection
mistakes due td,,| > [kp]: if we selecty now on the basis ofV; samples from each
surviving scenario, it may not be the sameyasConsistent with our pessimistic approach to
evaluating the decision to stop, we consider the followipgraximate lower bound for the bias

(which is negative) due to stopping after stgge

min{[kp],|Lj4+1]-Tkp]}

B(j) = Z wlmaxéi)( 5\/7/7'])

=1
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whered(-) is the standard normal distribution function and= max {S;,(j) : i,7 € I;+1,1 # r}.
Details of the derivation are in AppendixA.2.2.
We estimate the variance of the ES estimator if we stop atibgyes by

2

[kp] )2 52 ( ) [kp]
V;(]) = wz T (z
i=1 Mﬂj (@) J+1 ; !

The second equality follows from Equatidn (2.7) ahe- j. Our pessimistic approximation to

the MSE of the estimator if we stop after stgge

MSE(j) = B*(j) + Vi (j).

To analyze the variance if we continue, we optimisticallpsose that the set of scenarios
which will survive after one additional stage of screeniagxactlyy, and that they have the
smallest variances among the scenario$;in. According to this optimistic assumption, we
will stop after stage + 1, our ES estimator will have zero bias, and its variance isneged by

2

1 [kp]
‘/c ) = wz T
b Cjs1— (Njp1 — | L] Z st
whererg(;)(-) is a mapping of 1,2, ..., [/;;1]} to I, such thatS; (1) (J) < Srg,,2(J) <

< Srg (141D (F); 184 Sag iy (4) I theith smallest sample standard deviation among the
scenarios surviving stage Our optimistic approximation to the MSE of the estimatow

continue after stagg+ 1 is

MSEL(j) = V(j).
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The stopping ruleis: ifl;+1| = [kp] or MSE;(j) < MSE.(j), selecty and go to Phase II,
otherwise continue with staget+ 1 of screening in Phase I. This rule determines when Phase |
ends, but we also use it while choosing the screening ervet g (§2.4.3) to forecast when
Phase | will end. When we use the stopping rule for that pwepase plug the forecasted
sample averages, sample variances and sets of survivingrga® into the MSE expressions
given above.

Figure[2.8 shows how the stopping rule works on the same rwioprocedure shown in
Figurd2.2. The pessimistic approximation of MSE if we stoppd steeply at stages 13, 17, and
21, as the number of surviving scenarios gets clogevte- 10. As mentioned previously and
illustrated in Figuré_2]2, this run is atypical in that 11 saeos survive from stages 21 to 32.
On this run, optimism that the sole surviving non-tail secenwill be screened out is not borne
out. Both estimates\/ SE,. andM S E,, of MSE rise after stage 21 as the computational budget
is spent without achieving anything, bl SE. rises faster because it includes the effects of
continuing for one more extra, larger stage of screeningeMihcatches up ta/SE,, Phase |
ends and the procedure selects the 10 scenarios with thetlsasple averages in Figurel2.2.

On this run, 53% of the budget was spent in Phase I.

2.5. Experimental Results

We test the performance of our procedure on three examples.fifst example features
artificial configurations ok = 1000 scenarios in which the payoffs have heavy-tailed Pareto
distributions. We vary a parameter that controls the diffycaf screening and selection and
illustrate that our procedure attains lower MSE than thedsed procedureff.3) for all values

of the parameter that we considered. The second examplaipatfolio of eight call options,
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Figure 2.3. Operation of the stopping rule during one runwfmrocedure on
the historical simulation exampl§Z.5.2).

with 1000 scenarios based on historical stock prices. Tingéxample is similar to the second,
but it is a two-level simulation, with scenarios sampled maater-level simulation, and our
procedure governing the inner-level simulation. Using #tdample, we compare our procedure
with the standard procedure and with the confidence int@naadedure of Lan et al. (2008).

We compare the precision of the estimators these procefdurdace given a computational
budget expressed in total payoffs simulated. This comparis not entirely fair because it
excludes the overhead of screening, choosing error lewelsdreening, etc. Excluding the

overhead of our procedure and that of Lan et al. (2008) isvanédle to the standard procedure.
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This issue is addressed experimentally by Lan et al. (200Bp also report comparisons in

which there is a fixed budget of computing time.

2.5.1. Atrtificial Configuration Example

The artificial configuration of scenarios in this example istivated by the “slippage config-
uration” used in the ranking and selection literature beeaitiis difficult for screening and
selection procedures (Kim and Nelson, 2006). In this conditjon all tail scenarios have pay-
offs with a common distribution, while all non-tail scerasipayoffs have a different common
distribution. To make screening even more difficult, theqdtsyof different scenarios are in-
dependent, so that common random numbers achieve notmnggrticular, if scenariosand

r are both in the taity, thenV; = V,; and theV; = V,. also if neither; norr are in the tail. If

i € yvwhiler ¢ ~, thenV, = V; 4+ §. The parametef governs the difficulty of screening and
selection: wher is small, it is difficult to distinguish tail from non-tail saarios, so it will be
hard to screen out scenarios and easy to make selectiorkesst@n the other hand, the bias
induced by selection mistakes will be small. By changingie can compare our procedure to
the standard procedure for a range of configurations witeraifit characteristics.

Pareto distributions are often used to model heavy-taded tlistributions. Using a heavy-
tailed distribution challenges our procedure, which wasgtesd with normally distributed data
in mind. We use the Pareto distribution with cumulative riisttion function F'(z) = 1 —
(A/(X + x))*5 for x > 0. The shape parameter is 2.5 and the scale paramete5 for
tail scenarios, while for non-tail scenarios it is eithet235.875, 26.25, 26.625, 27, 27.75,
or 28.5. The resulting values of the difference between tail and non-tail scenarios’ \&lue

are 0.33, 0.58, 0.83, 1.08, 1.33, 1.83, or 2.33. Thergare1000 scenarios and we estimate
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ES) g9, SO there arép = 10 tail scenarios. This example is simple enough that we carpaten
ES 99 = 16.67, which makes it easier to determine the MSE of the simulagtrmcedures.
Figure[2.4 shows the root mean squared error (RMSE) of eBtinBS) o9 for the standard
procedure and our procedure. RMSE was estimated by runi tnacro-replications of
the simulation experiment, and the error bars represemntethdting 95% confidence interval
for RMSE. In these experiments, the computational budget 4 million payoffs, the initial
sample sizer, = 300, and the sample size growth factBr= 1.2. From Figuré 24 we see that
asé decreases, the RMSE of the standard procedure increasesedson is that its selection
bias increases: when the tail and non-tail scenarios aréasijihis very likely that some of the
990 non-tail scenarios will have sample averages that asdlt@n the value of the tail scenarios
and will be selected int, the set of scenarios the procedure guesses are in thee¢aduBe our
procedures eliminates selection bias by restarting, égaZzmuch more accurate point estimator
wheny is small. When is big, our procedure outperforms the standard procedweause it
allocates the computational budget more efficiently. I8 #dperiment, our procedure always
yields an RMSE below 0.44, which is small compared to the ESGgyy = 16.67 and to the

standard deviation of the tail scenarios’ payoff distribaf which is 37.27.

2.5.2. Historical Simulation of an Options Portfolio

Next we consider a more realistic example, in which we egenize ES of a portfolio of call
options on Cisco (CSCO) and Sun Microsystems (JAVA), as showable 3.1. The position
given in Table[ 3.1l is the number of shares of stock the optantract is written on, and a
negative value means a short position. Except for the positata, which we made up, all other

data in this table comes from listed option prices on June2@67. The risk-free rates come
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Figure 2.4. Root mean squared error of estimating expebiadfall at the 99%

level, in artificial configurations of varying difficultiesith computational bud-

getC' = 4 million, first-stage sample size, = 300, and sample size growth

factorkR = 1.2.
from the yields of US treasury bonds with the same maturégethe options. We estimate the
ES of this portfolio’s value on June 27, 2007 given inforroatup to June 26, 2007: in this
example,I’ = 1 day. We use historical simulation, gettikg= 1000 scenarios from the daily
returns on CSCO and JAVA stock, based on their closing pfroes July 07, 2003 to June 26,
2007. A scenario consists of the stock prices of CSCO and J&VAune 27, 2007, created
by multiplying their prices on June 26, 2007 (respectively 45 and $5.01) by one plus their

respective returns on a day in the historical data set.
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Table 2.1. Portfolio of Call Options.

Stock (years) Rate | \Volatility

CSCO 200 | $27.5| 0.315 | $1.65| 4.82% | 26.66%
CSCO -400 | $30 | 0.315 | $0.7 | 4.82% | 25.64%
CSCO 200 | $27.5| 0.564 | $2.5 | 5.01% | 28.36%
CSCO -200 | $30 | 0564 | $1.4 | 5.01% | 26.91%

JAVA 600 $5 0.315 | $0.435 4.82% | 35.19%
JAVA 1200 $6 0.315 | $0.125| 4.82% | 35.67%
JAVA -900 $5 0.564 |$0.615 5.01% | 36.42%
JAVA -300 $6 0.564 | $0.26 | 5.01% | 35.94%

To determine how the portfolio valué(-) depends on the scenario, we need to specify how
option values at timé& depend on the scenario. We assume that the implied va&gibf these
options obey the sticky-strike rule (Derman, 1999). Thathe implied volatilities of these
options at time 0 are also the implied volatilities at tiieThe simulation procedures estimate

options’s value at timel" by simulating the stock pricé; at maturityU; as

S(ji)

1
Si = g exp (_égf(Ul - T) + g\ Uz - TZz)

where the indey; is 1 for the four options on CSCO and 2 for the four options oWAJAs; is

the implied volatility of option, D; is a discount factor from timéek to U;, andZ; is a standard
normal random variable independentffor j # i. In Monte Carlo simulation of the payoff,
which is a weighted sum of payoffs for all options in the politi, we simulate the payoffs of
each option independently. Common random numbers are asethfulating the payoff of the

same option in different scenarios, but not for simulatimg payoffs of different options.
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Since neither stock pays dividends, early exercise is nepgmal for these call options
(Luenberger, 1998), so the Black-Scholes pricing formatatee used to evaluate the call option
values at timé’". Therefore, this example is also simple enough that thégarvalue in each
scenario and thus ES can be calculated analytically, wragstin evaluating the MSE attained
by simulation procedures: B$ = $52.24 and EQ 95 = $26.18.

Table[2.2 shows the performance of the standard proceddrewarprocedure in estimating
ES g and ES 5. As in the previous example, the computational budget 4 million payoffs,
the initial sample size,, = 300, and the sample size growth factBr= 1.2. The table also
provides the standard error (SE) of estimating each RMSE W00 macro-replications. The
RMSE of our procedure is significantly smaller than the RM$#he standard procedure, both
in statistical and practical terms. If we define the relaRMSE as the ratio of RMSE to the ES
being estimated, we find the relative RMSEs of our procedurE §, o9 and ES o5 are1.9% and
5.7%, respectively, whereas the standard procedure yields Rii&ks about the same size as
ES. Given this budget, our procedure provides moderateacgwhile the standard procedure
provides answers that are not useful and indeed misleadiocguse they are extremely badly
biased. Itis surprising to see that our procedure deliveoear RMSE when estimating B&,
than for EQ 5, because it is usually thought to be more difficult to estertab deeper in the
tail. The primary reason for the surprising result here &,thiven this set of 1000 scenarios,
it is relatively easy to distinguish the 10 scenarios witl torst losses from the others, but
it is not as easy to distinguish the 50 scenarios with the wosses—for example, the 10th

worst loss of $31.72 is widely separated from the 11th warss lof $28.56, but the 50th and
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Table 2.2. Comparison of our procedure with the standardgahare for histor-
ical simulation of a portfolio of stock options, with comptibnal budgeC = 4
million, first-stage sample size, = 300, and sample size growth facté =

1.2.
Method Variance| Bias | RMSE | SE of RMSE
Standard Procedure 23.5 | 36.7| 37.1 0.15
=89 T S Procedure | 093 | -001] 097 | 002
Standard Procedure 5.0 354 | 354 0.07
S T ur Procedure | 221 | ~0 | 149 | 0.04

51st worst losses are separated by less than $0.05, andatlee®etail scenarios and 13 non-
tail scenarios closely packed between the 42nd worst l0$4@&03 and the 63rd worst loss of
$14.41.

We also tested the sensitivity of our procedure’s perforreamith respect to the first-stage
sample size,, and the sample size growth fact®@r which the user must choose. For estimating
ES g9 With computational budget’ = 4 million, first we fixed R = 1.2, and variedny. As
long asng was between 30 and 1300, RMSE was below 1.11, not far fromebeRMSE the
procedure attains for any value @f. Whenn, was increased past 1300, RMSE increased: it
is inefficient to spend a third or more of the computationaldet in the first stage, before any
scenarios can be screened out. These findings are similaose bi Lesnevski et al. (2007),
and we likewise recommend choosingto be quite small, but large enough that the first-stage
sample averages are approximately normal. Usuallys 30 is large enough (Lesnevski et al.,
2008). Next we fixedhy, = 300 and changed the growth factét from 1.1 to 2.0. As in

Lesnevski et al. (2007), this had little effect on the pragets RMSE, which stayed between
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0.92 and 1.11. In conclusion, we recomménd- 1.2 andn, = 30, unless the payoff distribu-
tions are heavy-tailed (such as the current example), ichwtase:, should be increased until

the first-stage sample averages are approximately normal.

2.5.3. Two-Level Simulation of an Options Portfolio

This example is the same as the examplédrb.2, but scenarios are generated differently.
Instead of using a fixed set of scenarios drawn from histbdasa, we generate them in an
outer-level simulation. The outer-level simulation saegpscenarios from a joint distribution
of the two stocks’ prices whose parameters are estimated thhe historical data. Given the
scenarios sampled, the rest of our simulation, i.e., therdavel simulation, is the same as in
§2.5.2. The purpose of considering this two-level simulatiariant of the previous example is
to compare our procedure with the two-level simulation pohae of Lan et al! (2008), which
we refer to as the Cl procedure because it generates a cardideterval for ES. We make
comparisons by sampling scenarios with the CI procedus ¢fiving these scenarios to the
standard procedure or our procedure, which perform inmeztisimulation.

This example is also usedlin Lan et al. (2008), from which vwaawdthe following descrip-
tion of how to generate scenarios from, and estimate thevalue of, £.S; ¢9. The scenarid”

is a bivariate normal random variable that determines thekgtrices at timd:
59 = 59 exp <(u(” _ l(JU))z) T4 eOT Z(j)) .
2

Based on sample moments of 1000 daily stock prices, theiktidstof CSCO and JAVA are
respectivelyr(!) = 32.85% ando® = 47.75%, while the correlation between the components

of Z is 0.382. Because one day is such a short period of time thatffact of the drifty is
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negligible, while mean returns are hard to estimate becafiige high ratio of volatility to
mean, we take eagii’) = 0. The value of option at timeT is the conditional expectation of
the discounted payoff; := D;(S;—K;)" givenSéJ"). The profit from holding the portfolio from
0toTisV(Z) = E[X|Z] whereX =0T (Y — Py/D,) and the discount factdp, ~ 1 because
the time value of money over one day is negligible. Accordmg high-precision simulation,
ES).99 is $32.40. Notice that $32.40 is much less than thggE8f $52.24 produced by the
historical simulation: it seems that, as usual, assumiag) risk factors have a joint normal
distribution leads to substantial underestimation of.risk

In Table[2.8, we report the average half-width of the 90% dmmfce interval for E§)g
generated by the CI procedure and compare it to the RMSE®at#mdard procedure and our
procedure, using the results of 100 macro-replicationshipaocedure usds= 4000 scenarios
sampled from the bivariate normal distribution describleove@. The parametefs= 4000 and
ng listed in the table were chosen by a pilot experiment deedriblLan {(2009) to make the CI
procedure perform well. When using our procedure, we sepkasize growth factoR = 1.2
and used the sama, as for the Cl procedure, even though it is larger than the tg$or
our procedure. A large, is good for the Cl procedure because it is a two-stage praeedu
whereas our multi-stage procedure does well with small The choice ofn, is intended to
be favorable to the Cl procedure and to show that the advargbgur procedure does not
depend on picking the best values of the procedure’s paesimethe RMSE of our procedure
is not exactly comparable to the half-width of a confidenderival, but Tablé 213 shows our
procedure’s RMSE is so much smaller than the half-width ef @ procedure that we can
conclude that our procedure is greatly preferable givenalstamputation budget. For these

computational budgets, the CI procedure yields a confidameeval whose width is much
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greater than the ES we are trying to estimate, which is nduljdkewise, the RMSE of the
standard procedure is large compared to ES. Our procedaiasah relative RMSE of only a

few percent when the budget is 8 or 16 million.

Table 2.3. Comparison of procedures for estimating explestortfall at the
99% level in a two-level simulation of a portfolio of stocktams, withk = 4000

scenarios.
Cl Procedure Standard Procedure Our Procedure
Budget | ny | Average CI| Standard RMSE Standard RMSE Standard
half-width Error Error Error
4 million | 612 164 1.0 109 0.40 6.7 1.6
8 million | 1217 104 1.6 69 0.30 1.4 0.11
16 million | 2557 49 2.3 41 0.23 0.9 0.07
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CHAPTER 3

Stochastic Kriging Procedure for Point Estimation of Expeded Shortfall

3.1. Introduction

In this chapter, we still focus on expected shortfall (EShasrisk measure, but change the
notation a little bit for convenience. Suppose therelgrequally probable scenarios in which
P&L is Yq,..., Yk, and we are interested in a tail of probabilgywhere Kp is an integer.

Then ES at thé — p level is

1 &
(3.1) ES_, = — E Y,
p Kp — ()

whereY ;) is theith smallest P&L. As in Chapter 2, we refer to the scenariossete&L are
among theK'p smallest adail scenarios. they belong to the tail of the loss distribution and
appear in Equation (3.1). We refer to the other scenariosmsail scenarios.

In this chapter, we improve upon the pioneering work on pa&ation-based methods for

risk management simulation in three ways.

(1) Instead of ordinary interpolation, we ustechastic kriging (Ankenman et al., 2010).
This method is more powerful because it interpolates usmglation outputs from all
the design points, not just those nearest to the scenarer godsideration. Stochastic
kriging can also be more accurate because it takes into atttmiinner-level sampling

error.
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(2) We create a two-stage experiment design suited for aStigpnES. Anexperiment de-
signis a way of choosing the design points. After the first stagi@simulation, our
procedure learns which scenarios are most likely to ertaillarge losses that con-
tribute to ES. It adds these scenarios to the set of desigripaosed at the second
stage. The related but different methods of Oakley (2004) wreated a two-stage
experiment design for a kriging procedure that estimatesamije (VaR), inspired
this aspect of our procedure.

(3) We allocate a fixed budget of inner-level replicationg#design points unequally, in

a way that is optimal according to the framework of stocledstiging.

The result is a procedure that attained a root mean squared (B&MSE) dozens of times
smaller than a standard simulation procedure in experisrteat we ran. In these experiments,
our procedure was also significantly more accurate in estigp&S than the advanced sim-
ulation procedure of Chapter 2. Our procedure’s advantage that of Liu et al. [(2008) is
particularly great when the number of scenarios is large lmerwthe computational budget is
small—in such examples our procedure’s RMSE was three artimes smaller than that of
Chapter 2.

The rest of this chapter is structured as follows. First wee @ motivating example of
a risk management simulation problem in Secfiod 3.2. IniGe@&.3, we review stochastic
kriging and show how to use it to estimate ES. We present owrgiulation procedure in
Section[3.4. In Section 3.5, we provide the results of sitmiaexperiments in which we
applied our procedure to this example, and we demonstsaeltantages over other simulation

procedures that estimate ES. We offer some conclusion®8ELS.
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3.2. Motivating Example

The example is almost identical to the one we considered apth 2, to which we refer
for details about the model and the data sources. We conaigertfolio of call options on
the stocks of Cisco (CSCO) or of Sun Microsystems (JAVA) vaina Table[3.]l. The example
differs from that of Chapter 2 only in the portfolio’s positis in the options; we explain the rea-
son for considering a different portfolio in Section 3]4ii3the table, the position is expressed
as the number of shares of stock the option owner is entitldaly, where a negative position
means a short position in the call option.

Table 3.1. Portfolio of Call Options.

Underlying| position| Strike| Maturity | price | Risk Free| Implied
Stock (years) Rate | \Volatility

CSCO 200 | $27.5| 0.315 | $1.65| 4.82% | 26.66%
CSCO -400 | $30 | 0.315 | $0.7 | 4.82% | 25.64%
CSCO 200 | $27.5| 0.564 | $2.5 | 5.01% | 28.36%
CSCO -200 | $30 | 0564 | $1.4 | 5.01% | 26.91%

JAVA 900 $5 0.315 | $0.435] 4.82% | 35.19%
JAVA 1200 $6 0.315 | $0.125| 4.82% | 35.67%
JAVA -900 $5 0.564 | $0.615| 5.01% | 36.42%
JAVA -500 $6 0.564 | $0.26 | 5.01% | 35.94%

The simulation problem is to estimate the ES of this portfédir a one-day time horizon.
The scenario is the pair of tomorrow’s stock prices. The mtmdP&L is that tomorrow, each
option’s value is given by the Black-Scholes pricing formalaluated at the implied volatility
given in Tabld_3.1. Figure 3.1 plots portfolio loss versusrsrio; the vertical axis measures
loss, the negative of P&L, so that the regions with the larlyesses, which contribute to ES, are

highest and most visually prominent.
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Figure 3.1. Portfolio Loss as a Function of Scenarios for doow’s Stock
Prices of Cisco (CSCO) and Sun Microsystems (JAVA).

When P&L is a known function of scenario, as in this examgiere is no need for inner-
level simulation. However, the purpose of our procedure isandle problems in which inner-
level simulation is necessary, so in applying our procedoithis example, we use inner-level
simulation and not the Black-Scholes formula. An advant#gmnsidering a simple example
in which P&L is a known function of scenario is that it is easydompute ES and thus to
evaluate the accuracy of ES estimates.

We consider two versions of this example, with differentdsrmf outer-level simulation. In

one version, the outer-level simulation is historical distion, with a fixed set of one thousand
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scenarios, portrayed in Figure B.2. The other version usasté/Carlo simulation, specifying

a bivariate lognormal distribution for the pair of stockqas. For details, see Chapter 2.

5.5

JAVA

45

23 24 25 26 27 28 29 30 31
CSCO

Figure 3.2. Scatter plot of 1000 scenarios from historigalation.

3.3. Stochastic Kriging

Interpolation is one kind o&imulation metamodeling (Barton and Meckesheimer, 2006;
Kleijnen, 2008). The strategy of metamodeling is to run cataponally expensive simula-
tions only of certain scenarios, the design points, thentisesimulation outputs to build a

metamodel of the simulation model. In risk management simulation, ietamodel can be
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thought of as an approximation to the unknown loss surfapéctél in Figuré 3J1. The meta-
model can quickly provide an estimate of P&L in a scenariafthere has been no inner-level
simulation of that scenario.

Stochastic krigingl (Ankenman etlal., 2010) is an interpotabased metamodeling tech-
nigue. It takes account of the variance that arises fromrifevel simulation. Therefore, the
metamodel, when evaluated at a scenario, may not equalribelevel simulation estimate of
that scenario’s P&L: stochastic kriging knows that the miegel simulation estimate may not
be exactly correct. The significance of this property is thatcan afford to use small sam-
ple sizes for inner-level simulation of some scenariosahee stochastic kriging smooths out
the resulting noise. The following summary of stochastigikg is based on Ankenman et al.
(2010).

We model the P&LY (x) in a scenariok as
Y(x) = By + M(x)

where the scenarie = [x;,x,,...,%,4]' iS @ vector of risk factorsM is a stationary Gaussian
random field with mean zero, ant) represents the overall mean. Treatidgas a random
field captures our uncertainty about P&L before running $ations. Ankenman et al. (2010)
call thisextrinsic uncertainty. We adopt a model frequently used in kriging, under whits
second-order stationary with a Gaussian correlation fancthis means

d

CoviM(x), M(x')] = 7% exp (— 0;(x; — X;)2> :

7j=1
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That is, 72 is the variance oM(x) for all x, and the correlation betweevi(x) and M(x’)
depends only o — x’, with the parameter vect® = [, ..., 6,]" governing the importance
of each dimension.

In addition to extrinsic uncertainty, there is also th&insic uncertainty that is inherent
in Monte Carlo simulation: even after running an inner-lesiemulation for a scenaria, we
remain uncertain about the P&((x) in that scenario. The model for simulation replicatipn

at design poink is
Yi(x) = Bo + M(x) +¢;(x),

wheree; (x), e2(x), . . . are normal with mean zero and variandex), and independent of each
other and oM. The simulation output at; aftern, replications is
Y(x) = ni X:Yj(xz),
i
which is an estimator of the P&Y(x;). LetY := [Y(x;),...,Y (x;)] represent the vector
of simulation outputs at alt design points, where; inner-level simulation replications are run
for scenariax;.

We use the metamodel to estimate P&LFascenariosX,, . .., X, referred to apredic-
tion points. Before presenting the stochastic kriging predictor tmavigles these estimates, we
define some notation. The vector of P&L at the design point&is= [Y(x;),...,Y(x;)] " and
the vector of P&L at the prediction points¥s* := [Y(X}),...,Y(Xx)]'. Let=** denote the
covariance matrix o¥*, 3*% denote the: x K covariance matrix o¥* with Y, and %%

be its transpose. Because simulations at different desigmgpare independent, the covariance
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matrix of the intrinsic nois& — Y* is diagonal. It equal€** N~ whereC** and N are diag-
onal matrices whosih elements are respectivel{ix;) andn,. DefineX := C** N1 + 3kk,

the sum of intrinsic and extrinsic covariance matrices far design points. Let® and1” be
K x 1 andk x 1 vectors whose elements are all one. The stochastic krigedjgiion is the

Bayesian posterior mean ¥f* given observatioy”,
(3.2) Y = o1 £ BERS LY — 1),

Ankenman et &l.[ (2010) also give the covariance matrix ofBhgesian posterior distribution
of Y*, which we use in Sectidn 3.4.3.

Equation [(3:R) involves parameters which are unknown ietwe: 3,, 72, 61, ..., 60, and
V(x1), ..., V(xx). As detailed by Ankenman etlal. (2010), after running sirtiafes, we com-
pute maximum likelihood estimates 6§, 72, and@, and we estimat¥(x;), ..., V(x;) with
sample variances. The output of the metamod& at. . ., X is given by Equatior(3]2) with
these estimates plugged in. Détrepresent the metamodel output¥t.

We use the metamodel as the basis for an estimator of ES. éx#meples we consider here,
we estimate ES at thie— p level using a numbek™ of scenarios such th&p is an integer. Our
methods are applicable whétp is not an integer; for details on this case, see Chapter 2. Our

estimator of ES based on the kriging metamodel is
_ 1 .
(3.3) ES_,=——> Yo

whereV; is theith lowest value among the stochastic kriging predicti¥ns . ., Y at the

prediction points; cf. Equatiof (3.1).
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We summarize the most important notation here for convénedarence:

e We want to learn about P&L ik scenariosX;, ..., Xx. We use stochastic kriging
to computeY " as a prediction of the P&YX := [Y(X,),...,Y(Xx)]". Therefore
we also callX, ..., X “prediction points.”

e We run simulations at design pointxy, . . ., x;.

e At first, we runny simulation replications at each design point. In the energlaren;
replications at design point;, andY (x;) is the average of thesg replications. The
simulation output i := [V (x;),..., Y (xz)]".

e The variance of the simulation output for a single replmatat design poink; is
V(x;), andC** is a diagonal matrix containing the variands; ), . . ., V(xz).

e The sum of the sample siz@f:1 n; = C, the computational budget.

3.4. Procedure

In this section, we present our simulation procedure fameging ES using stochastic krig-

ing. We provide an outline in Sectién 3.4.1 and supply thaitein subsequent sections.

3.4.1. Outline of the Procedure

Our procedure uses stochastic kriging metamodels thressfiso we split the description of
the procedure into three stages. The estimator in Equadi@ (ses only the third metamodel.
The purpose of the first two metamodels is to guide the allocatf computational resources
during the simulation procedure: deciding where to addgihgsoints and how many simulation

replications to run at each design point.
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The user must specify some parameters that govern the loehafvihe procedure. The
most important parameter is the computational budgetvhich is the total number of inner-
level simulation replications that the procedure can usethé applications that we envision,
inner-level simulation dominates the computational cd$ten, given the computing platform
available, the computational budget roughly determinedithe that the simulation procedure
takes, so the user can set the computational budget to fitirtteeavailable before an answer
is required. The other parameters are the target nunihen$ Stage | design points ar
of Stage Il design points, the numbeg of replications to use at each design point during
Stages | and I, and the numbgf of times to sample from the posterior distributionsf
during Stage Il. We provide some guidance about choosirsggtharameters after outlining the
procedure.

In the outline, we refer to figures that illustrate the perfance of our procedure. These fig-
ures are based on one run of the procedure on the histonicalation example of Sectidn 3.2,
using a computational budgétof 2 million replications X' = 1000 prediction points, a target
of k; = 50 Stage | design points arid = 30 Stage Il design points,, = 5000 replications per
design point in Stages | and Il, and samplig= 300 times from the posterior distribution of
P&L at the design points. Figure 3.3 lists the procedurepst

The performance of the procedure, that is, the accuracyeoEth estimator it produces,
depends on the target numbérsandk, of design points and the numbes of replications at
each design point in Stages | and Il. It is not easy to optirtiezeprocedure’s performance by
choosing these parameters. Lan (2009) studies the proldlehoosing such parameters for a
related procedure, not based on stochastic kriging, foulsiimg ES| Ankenman et al. (2010,

§3.3) discuss how to structure an experiment design for agiahkriging, but not in the context
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Stage I.:

(1) GenerateK prediction points through outer-level simulation (higtat or Monte
Carlo). See Figurie 3.2.

(2) Given these prediction points, generate Stage | desigrip See Sectidn 4.3.1 a
Figure[3.4.

(3) Simulaten, replications for each of the Stage | design points. Basedhemsimula;
tion outputs, create a stochastic kriging metamodel (FEiGub).

Stage Il.:

(1) Sample a vector of P&L at each prediction point from itsteoior distribution give
the data generated in Stage | simulation. Based/such samples, select the p|
diction points that seem likeliest to be tail scenarios, ahdithem to the set of desi
points. See Sectidn 3.4.3 and Figure 3.6.

(2) Simulaten, replications for the new Stage Il design points. Based orsitielation
outputs, create a stochastic kriging metamodel (Figuie 3.7

Stage lll.:

(1) Allocate the remaining computational budget to all dagioints. See Sectidn 3.4
and Figure 3.8.

(2) Perform further simulation at the design points. Basedh® simulation output
create a stochastic kriging metamodel (Fidure 3.9).

(3) Compute the ES estimator in Equation [3.3) using the fimetamodel.

nd

)

on

1.4

U)J

Figure 3.3. Outline of the procedure.

of ES. We find that, with a little experience in applying thegedure to a class of problems, it
is not too hard to choose parameters that result in good npeaface. Here we merely provide

some guidelines based on our experience:

e There should be enough Stage | design points that, if P&L Wweosvn for all these
scenarios, interpolation could provide a fairly accuratgamodel—sufficiently accu-
rate to identify the region in which the tail scenarios liethiere are too few Stage |
design points to do this, the procedure’s performance mapbe The requisite num-
ber of design points is smaller in lower dimensi@rand when P&L is a smoother

function of the scenario.
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¢ It can be beneficial to add at ledsp design points in Stage Il, which makes it possible
for all K'p tail scenarios to become design points.

e To estimate the inner-level variangavell enough, the number, of replications must
be at least 10, or more if there is high kurtosis in innerdsaenpling.

e We found that it worked well whe(k; + k2)no, the number of replications planned for
simulation during Stages | and Il, is a substantial fractbthe computational budget
C, but less than half.

e In general, it is desirable to use a large number of designtposubject to two lim-
itations. It may be counterproductive to use so many desayntp thatn, needs to
be too small. Also, if there are too many design points, thepater time required to
perform stochastic kriging may become significant, or ong srecounter difficulties
with memory management because some matrices involvedchasitic kriging have
size proportional to the square of the number of design poifttis effect depends on
the computing environment.

e As the numberV/ of samples from the posterior distribution increases, ti@ae of
Stage Il design points converges to the set of scenariosatiealikeliest to be tail
scenarios, according to stochastic kriging. It is desedbllet M/ be large as long as
this does not use up too much computer time, kutan also be much smaller than

the values we use without causing major problems.

3.4.2. Choosing Stage | Design Points

As is standard in simulation metamodeling, we begin with @csgfilling experiment design;

the goal is to make sure that the prediction points are all design points. In particular, we
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use a maximin Latin hypercube design (Santner et al., 2008 space that we want to fill with
design points is the convex hull of the prediction pointsX;, ..., X . Kriging should not
be used for extrapolation (Kleijnen and Beers, 2004), songkide among the design points
all prediction points that fall on the boundary of the convesl. Let k. be the number of
such points, and laf be the smallesi-dimensional box containing all the prediction points.
In the absence of an algorithm for generating a space-filegjgn inside the convex séat,
we use a standard algorithm for generating a maximin Latpehgube design in the bax
(Santner et al., 2003). We only use the points in this de$ighfall insideX’, because the other
points are too far away from the design points.

We want to have:; — k. such points. The fraction of the points in the maximin Latin
hypercube design falling iA” will be approximately the ratio of the volume 4f to the volume
of G. The volume of a convex hull can be calculated efficientlyrfa et al., 1996), so we
can calculate this ratig. Therefore we choose the number of points in the maximinnLati
hypercube design to bek, — k.)/f|. However, the fraction of these points that actually falls
in X may not be exactly’. Consequently, the number of Stage | design points may not be
exactlyk;.

Figurel3.4 shows the Stage | design points chosen on one the pfocedure. The number
of design points is 48, which is close to the planned nunibet 50. Compare Figure 3.4 to
Figurel3.2, which shows the prediction points.

Figure[3.5 shows the absolute value of the e¥for Y of the stochastic kriging metamodel
built in Stage | on this run of the procedure. At this stage, ¢nror is substantial in many
regions; compare the magnitude of the error in Figurée 3.8 thié magnitude of P&L in Fig-

ure[3.1. We will see how the error shrinks after subsequegestof the procedure.
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Figure 3.4. Design points chosen in Stage | on one run of thegoiure.

3.4.3. Choosing Stage Il Design Points

By comparing Equation$ (3.1) and (B.3), we see that our goekperiment design for meta-
modeling should be to identify the tail scenarios and makerietamodel accurate in estimating
their P&L. In Stage Il, we attempt to identify the predictipaints that are tail scenarios. We
then add these points to the set of design points, and peiforer-level simulation of these
scenarios, to learn more about their P&L.

After performing stochastic kriging in Stage |, we have tostgrior distribution oY *, the

vector of P&L for all prediction points, which is multivatenormal ((Ankenman et al., 2010).
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Figure 3.5. Absolute value of the error of the Stage | metaghod one run of
the procedure.

Because we are uncertain ab&(ft, we are uncertain about which prediction points are tail
scenarios. Using a vectof sampled from the posterior distribution ¥f*, we could try to
guess which scenarios belong to the tail. We would guessteaaria belongs to the tail 2

is among theip lowest components of . However, for two reasons, this strategy of guessing
would be likely to miss tail scenarios. One reason is thaugfselect onlyK'p scenarios, we
are unlikely to guess all the tail scenarios correctly. Ttieepreason is that a single sample
from the posterior distribution of* may be unrepresentative of that distribution. Therefore,

we proceed as follows in selecting upitpadditional design points; we envision that> Kp,
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which improves the chances of selecting tail scenarios. alepte M vectors\7(1>, . ,V(M)
independently from the posterior distribution ¥f*. Let Ti(j) be an indicator function that
equals one iT?z@ is among the<p lowest components ofU), that is, scenariois in the tail for
the jth sample from the posterior distribution; otherwi@éﬂ) = 0. Our estimated probability
that scenaria is a tail scenario ig; := Zj‘il Tf”/M. We will use these estimated probabilities
again in Stage lll. In Stage II, we select the scenarios Wit highest estimated probabilities,
judging them likeliest to be among the tail scenarios, anllentaem design points. However,
if fewer thank, scenarios have positive estimated probabilities, we cgllgcs these.

Figure[3.6 shows the design points chosen on one run of tleeguoe. Althought, = 30,
only 17 design points were added in Stage II: the other seesiamalues were never among the
Kp = 10 lowest inM = 300 samples from the posterior distribution ¥f*. On this run of
the procedure, all 10 tail scenarios were selected as desigits, which is a success for the
procedure.

Most of the additional design points are near each other &ad the tail scenarios, but
two are in a different region with a higher stock price foris Given the data available after
Stage |, the procedure judges it possible that this otheomegpight contain one of the tail
scenarios, so it allocates computational resources t@erglthis region. Indeed, in some risk
management simulation problems, the tail scenarios maypycawltiple distant regions, and
one tail scenario can be isolated from the others. The pmrtfoat we used as an example
in Chapter 2 has this type of structure, which is more chgllem for an interpolation-based
procedure. Although our procedure works on that portfalie,use a different portfolio here so
as to show the procedure’s performance on the type of profwemhich it works best, which

is a common type.
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Figure 3.6. Design points chosen in Stages | and Il on onefrthreprocedure.

Figure[3.7 shows the absolute value of the e¥for Y of the stochastic kriging metamodel

built in Stage Il on this run of the procedure.

3.4.4. Allocating the Remaining Computational Budget

In Stage Il we allocate the remaining computational budgdhner-level simulation of the
k design points chosen in Stages | and Il. (The target numbeesifjn points i%; + k», but
because of the way we choose design pofnteay not exactly equal, + %,.) We choose an al-

location with the aim of minimizing the posterior varianddle ES estimator in Equation (3.3).
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Figure 3.7. Absolute value of the error of the Stage 1l metd@hon one run of

the procedure.
In Appendix(B.1, we show how to solve a simplified version attminimization problem by
solving the optimization problerh(3.4), in which the deaisvariable is the vectat specifying
the number of replications at each design point. Because thembers are large, we relax the
integer constraint and allow them to be real numbers, withaurying about rounding. Recall
from Sectior 3.3 thaC** is a diagonal matrix withith elemen¥/(x;), the intrinsic variance at
the design poink;, IV is a diagonal matrix withith element;, andX** andX*¥ are extrinsic
covariance matrices. ES can be writtema8Y” wherew; is —1/Kp if scenarioi is a tail

scenario, and 0 otherwise. Defibe:= (X** + C** /ny) =1 X+ w. The optimization problem



56
isto
(3.4) minimize U'C*"N~'U subjectto n'1* =C, n > n,.

In practice, we use maximum likelihood estimateXbf andX*% and we use sample variances
in estimatingC**, as discussed in Sectibn B.3. Likewise, we substitutg K p for w;, where

g; is the estimated probability that scenariis a tail scenario, explained in Section 314.3. The
optimization problem[(3]4) can be solved by a variable peggirocedure (Bitran and Hax,

1981, Bretthauer et al., 1999):

Step 1.: Initialize the iteration countern = 1, the index sef (1) = {1,...,k}, and the
unallocated budget'(1) = C.
Step 2.: For alli € I(m), computen;(m) = C(m)Uin/V(x:)/> i1 Uiv/V (%))
Step 3.:If n;(m) > ng for all i € I(m), the solution isn(m) and we are done. Other-
wise,
¢ the set of indices of design points that may yet receive ntaaan, replications
isI(m+1)={i:ni(m)>ng},
e all other design points will receive, replications: n;(m + 1) = ng for i ¢
I(m+1),
e and the unallocated budget is reduced{on + 1) = C — (k — |I(m + 1)|)no.

Letm = m + 1 and go to Step 2.

To get sample sizes from this procedure, we round the resulte nearest integers.
Figure[3.8 shows the allocation on one run of the procedune. cbmputational budget is

spent primarily on design points that are tail scenariosrermaar tail scenarios. Simulation
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replications run at design points near the tail scenariesat wasted: stochastic kriging uses

them to improve the inference about the P&L in tail scenarios

v —@ Design Points that are Tail Scenarios
x 10 N o —o Other Design Points

10< .

Inner—level Simulation Replications

4 23

Figure 3.8. Number of simulation replications allocateéash design point on
one run of the procedure.

Figure[3.9 shows the absolute value of the eXfor Y of the stochastic kriging metamodel
builtin Stage Il on this run of the procedure. Comparingufaj3.9 with Figuré 317, we see that
the error in estimating P&L of the tail scenarios has shruratdhtically because of Stage IlI,
and is now reasonably small. The error is still large in soeggans, but this does not affect the

quality of the ES estimation.
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Figure 3.9. Absolute value of the error of the Stage Il meddad on one run of
the procedure.

3.5. Numerical Study

To illustrate the performance of our procedure, we use thengke described in Sectién B.2.
We present the results of simulation experiments to compargrocedure, which we call the
“SK procedure,” to two other procedures. One is the proaechased on methods of statistical
ranking and selection, that we proposed in Chapter 2, whieleall the “RS procedure.” The
other is a standard procedure, involving an equal allonatioinner-level simulation replica-
tions to each scenario. It is described in detail in ChapteWw2 do not include the methods

of Frye (1998), Shaw (1998), Oakley (2004), or Gordy and jzi(#008) in the comparison.
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Frye (1993) and Shaw (1998) provide strategies for sinaatot a detailed specification of a
concrete procedure. Oakley (2004) and Gordy and Junej&)2pecify simulation procedures
that are tailored to estimation of VaR; although their apptes are relevant to estimating ES,

construction of such procedures remains for the future.

3.5.1. Historical Simulation Example

In this section we consider the version of the example thed tisstorical simulation in the outer
level. We first estimate ES at the— p = 99% level. For the SK procedure we targgt= 50
design points in Stage | arid = 30 design points in Stage I, usg = 300 samples from the
posterior distribution of P&L, and take sample sizesipf= 5000 in Stages | and II. For the
RS procedure, we use sample sizes that stast at 30 in the first stage and grow bi =
1.1 per stage; see Chapter 2. We run 1000 macro-replicatiorfeeddimulation experiments.
Figure[3.10 shows the resulting estimate of the relativé moean squared error (RRMSE) of
the three procedures’ ES estimators, with error bars repteg 95% confidence intervals for
RRMSE.

From Figurd 3.10, we see that both the SK and RS procedurdaramore accurate than
the standard procedure for this example. For small comipuagtbudgets, the SK procedure is
much more accurate than the RS procedure. It is possibledastitaight line passing through
the four error bars that describe the performance of the Siqulure, with slope roughly -
0.5. The RMSE of ordinary Monte Carlo simulation proceduresverges a€)(C~°?) as
the computational budget grows, but the convergence ratdedess favorable for two-level

simulation procedures (Lee, 1998; Lan etlal., 2008). We bagerved this behavior only over
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Figure 3.10. Accuracy in estimating expected shortfalhat29% level for the
historical simulation example.
a moderate range of budgets and do not know under what consgliif any, the SK procedure
has this behavior asymptotically.

Next we estimate the ES at the— p = 95% level. The parameters of RS procedure are
the same as before. Because = 50 is now much larger than in the previous experiment, in
which it was 10, we adjust the parameters of the SK procedleestill targetk; = 50 design
points in Stage I, but we allow fak, = 60 > Kp additional design points in Stage II. We
also increase the numbgf of samples from the posterior distribution of P&L to 600 bhesa

it is more difficult to identify the tail scenarios in this sitation problem. We still use sample
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sizes ofny = 5000 in Stages | and Il when the budgétis at least 1 million. However,
(k1 + k2)5000 > 0.5 million, so whenC' = 0.5 million, we choose:, = 2000 instead. We run
1000 macro-replications of the simulation experiments, strow the resulting estimates of the

procedures’ RRMSE in Figufe 3]11.
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Figure 3.11. Accuracy in estimating expected shortfalhat25% level for the
historical simulation example.

Comparing Figuré 3.10 and Figure 3.11, we see that the aalyardf the SK procedure
over the RS procedure is greater when estimatingoE8an EQ g in this example. This

happens because there are more prediction points whose $&iound the 5th percentile of
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P&L than around the 1st percentile. The RS procedure tri¢'sdeeen out” as many non-
tail scenarios as possible, so as to devote the remaininguational budget primarily to tail
scenarios (Chapter 2). When there are many predictiongpwaindse portfolio losses are around
the pth percentile of P&L, it is hard to screen them out, so the R&®gdure tends to use a lot
of simulation replications in attempting to do so. Becaus®eés not use that data in estimating
ES, fewer simulation replications can be allocated to edimg ES, leading to larger error
(Chapter 2). The SK procedure does not suffer from this sbaoring: all of the simulation
replications contribute to the ES estimator. The curse oflevel risk management simulation
is a bias that arises because, when we use simulation oatguéss which scenarios entail large
losses, we are likely to choose a scenario whose estimagesddtarger than its true loss (Lee,
1998; Lan et all, 2007b; Gordy and Juneja, 2008). Stochlasgimg mitigates this problem by

smoothing the estimated P&L across neighboring scenarios.

3.5.2. Example with Outer-Level Monte Carlo Simulation

In this section we consider the version of the example thes donte Carlo simulation in the
outer level. We investigate the effect of changing the nunibeof scenarios sampled at the
outer level. In a two-level simulation with Monte Carlo aetbuter level, X' must grow for
the simulation estimator to converge to the true value; vewef K is too large relative to the
computational budget’, the estimator is poor due to excessive inner-level noise,([1998;
Gordy and Juneja, 2008; Lan et al., 2008).

Figure[3.12 shows the results of 1000 macro-replicationa simulation experiment to
estimate ES at the— p = 99% level. The computational budg€tis 2 million in each of these

experiments. The parameters of the RS procedure are thessdoeéore. For the SK procedure,
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once again we targdt; = 50 design points in Stage | and take sample sizesy,of 5000 in
Stages | and Il. We allow fok, = 40 design points in Stage Il because 40 exceEgseven
for the largest numbeK of scenarios we consider her&, = 3000. Compared to the version
of this simulation with historical simulation in the outewkl, it is more difficult to identify the
tail scenarios, so we increase the numbeof samples from the posterior distribution of P&L

to 400.
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Figure 3.12. Accuracy in estimating expected shortfalhat29% level for the
two-level simulation example.

In Figure[3.12, we see that, given the budget= 2 million, the best choice of< for

the standard procedure and the RS procedure is aréunrd 2000, and they become much
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less accurate when the number of scenarios increasg&s 40 3000. When K is small, the
empirical distribution of the\ scenarios is far from the true outer-level distribution;enti

is large, there is a lot of inner-level noise in estimatinghescenario’s P&L, resulting in large
bias in estimating ES (Lan etlal., 2008; |.an, 2009). It is kdmaing to choosex well, and
the procedure’s performance depends greatly on this cl{bane 2009). By contrast, in the
SK procedure, we can increase the numbeKobuter-level scenarios, i.e. prediction points,
without increasing the numbér of design points. Therefore the inner-level sample size for
each design point can stay the same as we inctBasks Figure 3.1R illustrates, the RRMSE
of the SK procedure’s ES estimator decreases ilAirguments in Oakley and O’Hagan (2002)
suggest that the RRMSE converges to a positive valu€ gees to infinity with computational
budgetC' fixed.

We do not explore this effect in Figure 3112 because, whkeis very large, oulVATLAB
implementation of stochastic kriging encounters memonyst@ints on a PC with 3.4 GB of
RAM. When K is very large, the RS and SK procedures have significant spraddime re-
quirements for operations other than inner-level simaiati These have to do, respectively,
with comparing many scenarios to each other, and with ojp@sinvolving large matrices.
Because these effects depend greatly on the computingpenvént, we do not explore them
here, instead treating inner-level simulation replicasias the primary computational cost.

This experiment suggests two advantages of the SK procenkrethe standard and RS
procedures when using outer-level Monte Carlo simulati®he user need not worry about
finding an optimal, moderate numb#ar of outer-level scenarios, where the optintalvaries
greatly from one simulation problem to another (Lan, 2008%tead, one can always use the

largestK such that stochastic kriging does not impose an excessmpuiational burden. Also,
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we believe that, as in Figute 3]12, for many simulation peoid, the SK procedure with large

K performs better than the standard and RS procedures withalpk .

3.6. Conclusions and Future Research

Stochastic kriging enables better estimation of expediedf&ll. Our simulation procedure
is well suited to dealing with small computational budgétsvorks especially well compared
to other procedures when the spatial structure of the sioual@roblem is such that most tail
scenarios lie near other scenarios and P&L is a smooth fumofithe scenario, but it also works
even when the problem does not have these properties. Anadivantage of our procedure
over its competitors is that it makes it far easier for the tsehoose the number of outer-level
Monte Carlo simulation replications. There are severaloopmities for further investigation
and improvement of risk management simulation procedusesdon stochastic kriging.

We used two-dimensional examples to illustrate our metttadmains to be seen how well
it performs for higher-dimensional examples. Higher-dasienal problems are more challeng-
ing for kriging methods: it is more difficult to find a good expeent design, and the error
of the metamodel tends to increase. Dimension-reductidhads, such as those proposed by
Frye (1998) and Shaw (1998), should help. However, krigirghods are capable of handling
significantly higher-dimensional examples.

When the number of prediction points is very large, stodb&siging may take up a great
deal of memory and CPU time. This happens when stochasgjmgrconsiders the influence of
simulation at all design points on predictions at each texh point, or the posterior covariance

between P&L at every pair of prediction points. Using spatmarelation functions that imply
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zero correlation between sufficiently distant points (8anet al., 2003) reduces the number of
pairs that must be considered and should help to make itieasi use more prediction points.

In our study, we used the simplest version of stochastiarigigvhich builds a metamodel
purely by interpolation. However, stochastic kriging caedrporate regression methods in
simulation metamodeling (Barton and Meckesheimer, 2006ijhen, 2008). Many portfolios
have structure that regression can capture (e.g., an singetaend in P&L with the level of a
global equity index), in which case regression will leadawér error in metamodeling.

Our procedure uses a simple first-stage experiment desigichwould be improved. In
some simulation problems, there would be too many predigtmints on the convex hull. A
modification of the experiment design would find a larger exrpolytope, with fewer vertices,
still containing all the prediction points.

The second-stage experiment design worked well in the pnobive studied, in which there
were relatively few tail scenarios. This allowed us to ainntude all the tail scenarios among
the design points and to ignore the spatial relationshipsgnthe scenarios that seemed likely
to be tail scenarios. When there are many tail scenariosgittbe better to create a second-
stage experiment design with a different goal: to aim to hemme design point near every

scenario that is likely to be a tail scenario.
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CHAPTER 4

Simulation on Demand for Pricing Many Securities

4.1. Introduction

“Simulation on demand” is a computing paradigm that devexal-time answers as accu-
rate as those that would be generated by a time-consumingfrarsimulation model. This
is achieved by investing computational effort in advanadplke decision-makers ask about a
specific scenario. Simulation metamodeling is one methatstipports simulation on demand.
A metamodel is an approximation to the functigof interest, whose valug(x) at scenariac
is estimated by running the simulation model for scenariduilding a metamodel requires a
simulation experiment in which the simulation model is rangeveral scenarios, but after this
computational investment has been made, it can be veryd&staiuate the metamodel in any
scenario. This chapter is devoted to experiment designuiitdlibg multiple metamodels based
on the same simulation model.

We consider a financial example: a firm deals in many secsimtteose prices are functions
of the financial scenario. A single simulation model is useddtermine the securities’ prices.
Simulation on demand provides an approximate picture ofwtag the prices change as the
markets move. Our procedure is related to one due ta Frye8f19®olving a grid-based
interpolation technique, which requires a grid design iersimulation experiment. Because of
the impracticality of a high-dimensional grid design, Frused principal component analysis

to reduce the dimension of the simulation model. One of outrdautions is to extend Frye’s
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work by showing that the latest metamodeling techniquesemiilkomputationally feasible
to construct highly accurate metamodels of each secugptyte, not merely one moderately
accurate metamodel of the portfolio’s value. In particutgrusing an experiment design that is
practical in higher dimension, we avoid the loss of accue@gailed by dimension reduction.
This requires a metamodeling technique other than grigdagerpolation. We use stochastic
kriging (Ankenman et al., 20110), but our procedure work$wiiany metamodeling techniques.

Our main contribution is a sequential experiment desigregalare that adds design points
and simulation effort at the design points to reduce all met@els’ prediction errors to an ac-
ceptable level relative to the true values. It is appropriatfocus on relative (not absolute) error
in applications involving multiple metamodels which haesywdifferent magnitudes, including
our financial example, in which some options have much lapgees than others. The key
ingredient in our procedure is cross-validation, which idely used for validating prediction
schemes (Geisser, 1993). Kleijnen (2008) discusses gsdsktion in stochastic simulation
metamodeling. The novel aspect of our procedure for stéichgimulation is that it continues
until the prediction errors are likely to be small, insteddantinuing until the simulation output
is consistent with the metamodeling technique’s assumgtio

In some applications, the metamodels are functions of aasethat can be regarded as
random: in our financial example, the scenario that will edomorrow is random. In such
applications, it is meaningful to consider the expectedgoerance of the metamodels at a
randomly selected scenario. Another contribution of thiater is an initial experiment design
that aims to make the scenario fall inside the convex hulbesigh points with high probability.
This improves the metamodels’ performance because maranmoeleling techniques are much

better at interpolation than at extrapolation.
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4.2. Motivating Example

We consider a portfolio of 75 European-style options. Thdeulying vector stochastic
process models six equity indices: S&P500, Nikkei225, $60x FTSE100, Hang Seng, and
KOSPI Composite. To keep the example simple, we use a veryg baxlel and approach to
model calibration. The equity indices, denotedjby 1,2, ..., 6, follow geometric Brownian
motion where the non-annualized daily volatilittesand correlation matri¥X x are estimated
from 1000 historical daily returns. A scenai is a vector whose components are called risk
factors, and it determines the values of the equity indicEse risk factors are six standard
normal random variables with correlation matbd . If tomorrow’s scenario isX, then for
eachj = 1,2,...,6, tomorrow’s value of thgth index isS;(1) = 5;(0) exp (¢;X;), where
S;(0) is today'’s value of thgth index. Here we have set the drift to zero, because it iSgib#
over one day. The portfolio contains five classes of optigus:.options on the average return
of all six indices, call options on the average return of tB&>S00, Nikkei225, and Stoxx50,
call options on the average return of the FTSE100, Hang Samd) KOSPI Composite, call
options on the minimum return of the S&P500, Nikkei225, amnaix$50, and call options on
the minimum return of the FTSE100, Hang Seng, and KOSPI CsitgpoWithin each class,
there are 15 options with one of five maturities and one ofetisteke prices. The maturities
are 3, 4,5, 6, and 7 years. The three strike prices are choseake the option in the money,
(roughly) at the money, or out of the money. Given that tormwis scenario isX, the value of

the jth index aftert days is

|,

(4.1) S;(t) = S;(1) exp ((Mj B U') (t—1)+ crjﬂ&‘) ;
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whereB is a vector of six standard normal random variables withetation matrixX x, and
each risk-neutral drift;; equals the non-annualized daily yield of a government bawebohi-
nated in the relevant currency minus the dividend yield efitidex. A sample path, simulated
conditional onX, includes the values of all six equity indices after 3, 4, ,5rtd 7 years. The
simulation model for option pricing computes discounteyqfis for all 75 options on a single

sample path.

4.3. Simulation Procedure

Our procedure chooses scenarios, called design pointshiahwo run simulations. It
also determines the number of sample paths to simulate htd=sign point. A sample path
is a simulation of the underlying stochastic process comtad on the scenario given by the
design point, as in Equatiof (4.1). The sample avergge) of the discounted payoffs of
securityh on every sample path simulated at design pgiserves as an estimate of the price
of securityh in the scenarix. The procedure produces one metamddng) for the price of
each securityy = 1,2,...,r. The goal of the procedure’s first phase, initial simulatisrto
get accurate estimates of all security prices at all desgntg. This is not enough to ensure
that the metamodels will give accurate estimates of all sgqorices at scenarios that are not
design points. The goal of the second phase, metamodeétialig is to improve the accuracy
of the metamodels away from the design points. This phase désign points and sample
paths until the metamodels pass a cross-validation tekeofdbility to estimate security prices

at scenarios that are not used at design points. An outlitteegérocedure is:

Phase I.: Initial Simulation

(1) Generaté: design points;, Xs, . . ., Xg.



71

(2) Fori =1,2,...,k, simulaten; sample paths at design poiyt wheren; is chosen

to target the relative accuracy in estimating the value ohescurity ak;.
Phase Il.: Metamodel Validation

(1) Create metamodels by stochastic kriging.

(2) Perform cross-validation on the metamodels. If theya#is the cross-validation
test, the procedure terminates.

(3) If they do not all pass, simulate more sample paths atiegisiesign points or
generate additional design points and simulate sample pathem. Then return

to Stefd 1 of Phase II.

4.3.1. Initial Simulation Phase

The initial simulation phase consists of two parts: a metfaydchoosingk design points
and a two-stage simulation procedure. Information fromfitrst stage, which simulates,
sample paths at each design point, is used to choose thedatale size:; at each design point
x;, 1 = 1,2,..., k. The second stage of simulation generates the sample jgafiised to reach
those total sample sizes.
4.3.1.1. Design Pointsln choosing design points, we have two goals. One goal isofoot-
row’'s scenario to fall inside the convex hull of the designnp®with high probability. The
reason for this is that many metamodeling techniques, detustochastic kriging, are much
better at interpolation than at extrapolation. The othex ¢gg) as usual in simulation metamod-

eling, to fill the space of scenarios evenly with design mint
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To address the probability that tomorrow’s scenaXiofalls inside the convex hull of the
design points, we need a joint distributiény for the risk factorsX;, Xs, ..., X,. Our proce-
dure requires that we be able to evaluate a funcfi@uch that, ifU is uniformly distributed
on (0,1)¢, then f(U) has distributionfx. We choose design points, x», ..., x; in X by
choosing design pointa, us, ..., u; in Y and transforming them to get; = f(u;) for
1 =1,2,....k. One way to getf : U4 — X is from a simulation algorithm: even if is
not known explicitly, a typical simulation algorithm takeslependent uniform random vari-
ables as inputs and generates a random vector with distmibAl. However, sometimes the
analyst may have only marginal distributiofs, , Fx,, ..., Fx, for the risk factors and their
correlation matrixX x. A further assumption about dependence among the riskréatae-
quired to get a joint distributiof’x . An assumption often made in financial engineering models
(although it may give an unrealistic picture of extreme asgns thatX has a Gaussian cop-
ula (McNeil et al., 2005§ 5.1). The same assumption is used in simulation input maogleli
in the normal-to-anything (NORTA) transformation (CarmmdaNelson, 1997). Then the trans-
formationX = f(U) is accomplished as follows, whedeis the standard normal cumulative

distribution function:

(1) Foreach = 1,2,...,k, setlV; = ®1(U;) to get a standard normal vecti .

(2) Wherex,'/* satisfiess.,/” (Z;/Q>T — %, setZ = ¥,'°W to get a vectorz
with standard normal marginal distributions and correlamatrixX .

(3) Foreachi = 1,2,....k, setl; = ®(Z;) to get a vectolU' whose components are
dependent and have marginal distributions that are unitori, 1).

(4) Foreach = 1,2,...,k, setX; = Fi!(U;) to get a vectorX .
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Cario and Nelson (Cario and Nelson, 1997, 1998) show howaos#d.; so that the correla-
tion matrix of X is X x.

Our experiment design contains two kinds of points: corments and points sampled via
guasi-Monte Carlo. Let be a target probability for tomorrow’s scenario to fall inb@ convex
hull of the design points. Each of ti2¢ corner points is the image undgrof a vertex of the
hypercubé/, = {u : 0.5(1—p*/4) < u; < 0.5(1+p"?) Vj = 1,2,...d}, which has volume.
Including2? corner points is feasible when the dimensibis moderate. The target probability
p must be less than one if it is impossible to map the verticag®iunit hypercubén, 1]¢ to
usable scenarios ift: e.g., in the example of Sectibn 4.2[if = 1, then the first risk factoX;
and the valu&, of the S&P500 index are infinite. The probability that tonmovis scenario falls
inside the convex hull of the design points is not guaranteéep, but in many cases, choosing
a large target probability makes tomorrow’s scenario fall inside the convex hull ofdlesign
points with high probability. The remainirg— 2¢ design points are generated from a Sobol’
sequence scaled to fitinsiti: if «’ is a pointin a Sobol’ sequencelin 1)<, the corresponding
design pointisf (0.5(1 — p*/4) + p'/4u’). Figure[4.1, whose panels are in sequence left to right
and then top to bottom, shows the process of credtirg50 design points for a version of the
example of Section 4.2 in which there are only two risk fastaonrresponding to the S&P500
and Nikkei225 indices. The panels f@r and X are the same because the risk factors in this
example are normally distributed, so the step of generdtirig redundant.
4.3.1.2. Sample Sizes in a Two-Stage Simulation Procedurt the first stage of Phase I,
we simulaten, sample paths at each design point and compute the samplegavérx;)
and sample variance (x;) of the discounted payoffs for each design point 1,2,...,k

and each security = 1,2,...,r. Then we choose a total sample sizeto attain at each
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Figure 4.1. Construction of Phase | design points in a twoettisional example:
v indicates corner points, and indicates points generated by quasi-Monte

Carlo.

design point after a second stage of sampling, and simu)aten, additional sample paths at

design point; for i = 1,2,..., k. We choose the sample sizeto target a relative precision
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for the simulation output. Based on an assumption that teeodinted payoffs are normally
distributed with unknown variance, a fixed sample size gfelds a half-width of the1 — «)
confidence interval fop, (x;) of I, (x;, n; ) = t,_11-a/251(X:)/v/n, Wheret,,_; 1_,/» is the

1 — a/2 quantile of thet distribution withn — 1 degrees of freedom. Let,(x;) be the true
price of securityh in scenariox;. The relative precision of the averagergfsample paths is
In(x:,ni; )/ |yn(x;)|. We target a relative precision gfbetween 0 and 1. After the first stage,

we choose the sample size

1 tho—1.1—o y 2
(4.2) n; = max < Ng, max ( + ’}/) 01,1 /QSh(X )
h=1.2,...,r /yYh(Xz)

because it makes

In (X3, 45 @) g
(4.3) |V (%) =1 +7

for every securityh = 1,2,...,r. The relative precisiofy, (x;, n;; )/ |yn(x;)| < ~ with ap-
proximatelyl — « level confidence if Equation_(4.3) holds (Law, 2007, p. 502)is is merely
an approximation because the discounted payoffs are notallyrdistributed, and the sample
sizen; is random, not fixed. In particular, it depends on the firagstsample averagé, (x;),
which spoils the usual arguments for the validity of twogstdixed-width confidence interval
procedures such as Stein’s (Stein, 1945). However, if thgpkasize is large and the true price
IS not too close to zero, we expect to attain the desiredivelptecision with high confidence

if ais small.
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4.3.2. Metamodel Validation Phase

After the initial simulation, we construct and validate ar@bdels. If they fail a test based on
leave-one-out cross-validation, we add more design paintgenerate more sample paths at
existing design points until the updated metamodels pastest. The essential idea of leave-
one-out cross-validation, when applied to a metamodel atardhinistic simulation model, is
to look at the difference between the true vajiex;), observed by running the simulation at the
design pointk;, and the leave-one-out predicti&rﬁ_i) (x;) of a metamodel constructed using
all the design points except;. When the simulation is stochastic, the true vajuéx;) can
not be observed. Our validation method considers the leageout predictioﬁ?ﬁ;” (x;), the
simulation output;, (x;) which serves as an estimate of the true vaji(e; ), and the confidence
interval half-widthl, (x;, n;; o) as a measure of uncertainty¥f(x;).

We use cross-validation for a subget {1,2,...,k} of design points and a subdét C
{1,2,...,r} of securities. The design points Irare those that are not on the convex hull of
the set of design points. This ensures that fori adl T, \?,(;i) (x;) is an interpolation, not an
extrapolation. The subs#&t could contain all- securities, but if- is too large, cross-validation
will take a very long time. One may choose a smaller sulisby including only one repre-
sentative of each class of securities. For example, a clagsonsist of securities which differ
from each other only in maturity and strike price. We sug@bstosing the representative of
a class to be the security which is most computationally espe to price with good relative

accuracy: for example, after Phase |, one may choose repatises with the highest value of

maxi:m,m,k Sh(Xi)/Yh(Xi).



77

Propositior Il provides some justification for our methodiclvlaims to control the relative
leave-one-out prediction errdpf’,(;i) (x;) — yn(x:)|/|yn(x;)| at each design point. As in Sec-
tion[4.3.1.2, non-normality of the simulation output anddamness of the sample sizes mean
that the method is merely approximate: thus, in interpggetite proposition, we should remem-
ber thatPr { |V, (x;) — yn(x)| < ln(xi, ns; @) } may not be exactly — o, the confidence sought
in the construction of Equatioh (4.2). For reasons supiieBroposition L, our test of validity

is based on

’Y (x:) — Va(x:)

(4.4) Ep = lh(sz ni; 04)

}Yh(xz)} - lh(Xi7nZ; ’Yh XZ ’ lh(XZ,n“a)’

where the first term measures the relative precision of sitranl output and the second term
measures the relative discrepancy between metamodetpoedand simulation output. These

measurements are relative}@(xi)] — I (x;,n; ), @ lower confidence limit foy, (x; ).

Proposition 1. Forany h = 1,2,...,randi = 1,2,...,k, |Yi(x;) — ya(x;)| < la(x, 15 )

implies [~ (xi) — yn(x:)| / lyn (x0)| < B

Proof If Y,(x;) — ln(xs, ni; @) < yn(x5) < Ya(x;) + 1n(x4, ns; @), then

lyn(x;)] > min{’i_/h(xi) — I (x4, ni; @) }Yh (x;) + lp(x;,n4; }} }Yh(xi)} — I (xi, 045 @),

which is positive because Equatidn (4.2) implies thét;, n; o) < |Y,(x;)|. Therefore

Vi) — ()
|yn(xi)]|

[Fix5) = i) + V5 x:) = Tix)
|yn(x:)]
bloxi,miza) + [V () = Ya(x)

’Yh(xl)’ - lh(Xi,ni;a) = FEy;. O
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The proposition suggests an iterative procedure that adddagion effort until E,; <
forall h € H and: € I, whereg is a target error. A key question is whether to add more
design points or more sample paths at existing design poiriis is a difficult question and
here we provide a very simple response to it; future resesirobld lead to better answers. The
difference|\?§j") (x;) — Y,(x;)| can be large because the simulation output is far from the tru
value (atx; or at other design points) or because of a large differentedsn the true value
yn(x;) and the leave-one-out predictionxgtthat would arise if the true values were known at
the other design points. In the former case, we want to ade re@mple paths; in the latter,
we want to add more design points. The problem is that we di&kmoiv the true values, so
we do not know the cause. However, if the sample size & already large enough to make
the half-width of the confidence interval fgr(x;) very small, then it is unlikely that the cause
is thatY;,(x;) is far from y,(x;), so it seems attractive to add a new design point. We add a
new design point if the first tery (x;, n;; @)/ (|Ya(x)| — In(xs, 145 @) ) of Ey; is less tham3,
where) € (0,1) is a parameter of the simulation procedure whose purposedsritrol the
effect of Monte Carlo variability during cross-validatiotn our experiments, we found that

A = 1/4 worked well. An outline of Phase Il of our procedure is:

(1) Fori =1,2,...,k, initialize the sample siz&; + n,.

(2) Fori = 1,2,...,k andh € H, compute the sample averaljg(x;) and sample stan-
dard deviatiors;(x;) of the V; discounted payoffs of securify on each sample path
atx;.

(3) Forall: € Tandh € H, computeE,,; as in Equation(4]14) but with sample sixg.

(4) Set(h*,i*) <— argmaxpepicr Epi. If Ep-» < 3, terminate.
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(a) SimulateN;- additional sample paths &t- and setV;- < 2N;-.

(b) UpdateY;, (x;-) ands; (x;+) for all h € H.

(c) Return to Stepl3.

(6) Otherwise,

(&) Add design poink,_; midway betweer;- and the nearest design point, and set
I+ Tu{k+1}.

(b) Perform two-stage simulation af,,; as described in Sectidn_4.8.1, initialize
Niy1  nyq1, @and computd’, (x,..1) ands;, (xx41) for all b € H.

(c) Setk < k + 1 and return to Stelpl 3.

4.4. Numerical Experiment Results

We tested our procedure on the example of Se¢fioh 4.2. Ther#¥ a= 64 corner points
coming from a hyperculi, of volumep = 0.99 andk = 74 total design points in Phase I. The
first-stage sample size, = 5000. The confidence levdl — o = 0.9 and the target levels and
~ for relative error are both 0.05.

Our figure of merit is root average relative mean squared éRARMSE): for securityh,

RARMSE(h) = \/fX E[(Y, () /yn(z) — 1)?] dFx (x). To analyze the performance of our pro-
cedure, we samplX;, X, ... X independently from the distribution of tomorrow’s scepatri
and use this sample to approximate the integral. In tihése 1000 scenarios, we compare the

metamodels’ predictions to very accurate estimates ofrte gecurity prices obtained from
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another simulation experiment. We approximate the exgieatédy runningm = 30 macro-
replications of our procedure and estimate RARNIBEby

BIRSSS (vmxn i 1)2
mK j=1 yn(Xs) ’
Where\?gj) is the metamodel of the price of securityn the jth macro-replication.

Figure[4.2 contains histograms of the RARMSE of the 75 metiisoproduced by our
procedure. One histogram is obtained when thelsef securities used in cross-validation
contains all 75 securities, and the other wiienontains only five securities. In the latter case,
the representative ifil of each of the five classes of options described in Se¢tidnsitRe
option that has the longest maturity and is deepest out ofthieey, which therefore has the
highest ratio of payoff variance to price. The figure showat thsing only five securities in
cross-validation increases RARMSE only slightly; the metdels are still quite accurate, with
the biggest RARMSE around 0.72%.

The advantage of using a small $&tfor cross-validation is reduced computational cost.
To study this, we simulated sample paths with a time step ofdays. This is not necessary
when the equity indices follow geometric Brownian motiont some other models do require
simulation with small time steps. Implemented in MATLAB @afd run on a computer with a
2.4GHz CPU and 3.4GB memory under 32-bit Windows XP, thegutace took 4.2 hours when
including all 75 securities in cross-validation, and 2.2ifsovhen including only five securities.
In practice, portfolios may consist of hundreds of secesitin which case more computing
power is required to run our procedure in one night. Our piace is easy to parallelize:
simulation of different sample paths and building metanfodler different securities can be

allocated to separate processors.
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Figure 4.2. Histogram of estimated root average relativamsguared error of metamodels.
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APPENDIX A

Appendix for Chapter 2

A.1l. Ranking and Selection Procedure

User input: The user specifies the computational budgethe confidence level — p
of the ES to be estimated, akdscenarios (which may be generated by an outer-level
simulation).

Algorithm parameters: Choose the first-stage sample size> 1 and the sample size
growth factork > 1.

Initialization: SetN < 0,n < ng, I < {1,2,...,k},andj + 0.

Phase I:
(1) Simulate payoffsy;, fori € Tandh =N+ 1, N+2,..., N +n using CRN for

alli € I. SetC <- C —nl|I|, N < N +n, and them « N(R — 1). Calculate

_ 1 &
Xi= 5 X

1 _
S = =D _(Xu—X)? and
Py
S? Ly X, — X))
o= v (- X - (K- X))

foralli,r € I suchthat > 4. Sort{X;, : i € I} to get the mapping;(-) and sort

{S; - i € I'} to get the mappings;)(-).
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(2) Use the golden section method (Bazaraa et al.,| 2006 hathar derivative-free
line search method, to find the between 0 and/ [£p]| that minimizes the func-
tion P(j, -), which is computed by the following steps:

(@) Foralli,r € I suchthat < r, calculate
X, — X,

Qir - SZT/\/N

and Qri = _Qir'

(b) Setj’ < j, N' < N,n’ < N(R—1),C" «+ C,andI « I.

(c) Set

~ l1—a; N'—1
feli:S1 Q¢r>j7’}<kp .
I
If |I| = [kp], go to Stefh Ze.

(d) Calculater = max{S;, : 4,7 € I,i #r},

) min{[kp],|T|—[kp]} -5
B =3 wif?sf(“’(ﬁrw))’ and

i=1

kp]

2
[
~ 1
i=1

Set(” + C' —n/|I|, N' + N’ +n/, and them’’ « N'(R — 1). Use the
mappingrs(;)(-) to construct the mappings(-) from {1,2,...,|I|} to ]
such thatrg(i) is the scenario il with the ith smallest value of;, and

compute

2
kp]

(

1

Vo= | Do wiSre
=1
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If B2+ V, >V, setj’ + j/ +1and go to Step 2c.
(e) Set/ = j’ and return
(1 — [kp] o) =341
1]

[kp]

p(]? aj) =

(3) Screening: sef < {i: > ;1{Qir > t1-o,n-1} < kp,i€ I} If|I| = [kp],
go to Stefy b.
(4) Calculater = max{S;,.(j) : i,r € I,i # r},

min{[kp],|1|—[kp]} —)
B — w; max <5® < ))
; 5>0 7/vVN

2

2

If B2 +V,>1V,,setj < j+ 1and go to Stepl1.
(5) Selection: Let/ = j andy = {m;(1),7,(2),...,7;([kp])}.

Phase Il: Foreachi = 1,2,..., [kp], compute the sample size

szﬂ J (%)

My, =C .
k
S WSy

wy(i) —

Restart, discarding all previously simulated payoffs. Bachi € 4, simulate)M;

independent payoffs and calculate their sample avefggeCompute the expected
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shortfall estimator
[kp]

ESl,p = ’wZXﬂ-J(Z)
i=1

A.2. Derivations

A.2.1. The Probability of Correct Selection

In §2.4.3, we defined®r{CS;} = Pr{y N I; C 4} as the probability of selecting, at the end
of Phase I, all tail scenarios that had survived to stagélere we derive an approximation
P(j, ) for this probability, given the information available aagej, and making explicit the
dependence on the error levglwhich we need to choose. Althoudt(j, o) is notPr{CS;}, it
has similar properties. The choiae that maximizesP(7, -) may not maximizePr{CS;}, but
we can reasonably expect that it make$CS; } large.

To deriveﬁ(j, «) as a function ofy, recall that we are imagining that error levelill be
used at all stages fropnonward §2.4.3). We also make the following forecast about the sample

averages and variances in future stages:
(A.1) V' > g, i € Iy, Xo(§') = Xi(5), S7() = Si(5), andS;.(5') = S3.(5),

that is, all sample averages and variances will remain times®f course, the sample averages
and variances will actually change from stage to stage, wmangthe information available
at stagej, this is the obvious way to forecast them. Then, we can fufitrecast the number
J(j, «) of stages in Phase | (AppendixA.211.1), get an approximatjd(j, o) to the probability

of no screening mistakes at each stgge j,7 +1,...,.J(j, a) (AppendiXAZ.12D), and get a

lower boundﬁs(j, «) on the probability of no selection mistakes at the end of Phas
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We construct the approximatioﬁ(j, «) by treating screening mistakes at every stage and
selection mistakes at the end of Phase | as if they were imdigmé. Because the event OS
the event that there are no screening and selection midtakestagej to the end of Phase |,

we defineP(j, a) to have the structure

J(g,)

(A2) P(j,a) = | 1] Prl,a) | Pl a),

o —

J'=J

where]%/(j, «) relates to the probability of a screening mistake at sjagad P,(j, o) relates
to the probability of a selection mistake.

The lower bound

-1

- 1(j,
Bo(ja) = 1(j, )] |

[kp]
where(j, o) is the set of scenarios that are forecast to survive untiétiteof Phase I. This is
the probability of guessing blindly and correctly selegtikp| scenarios out of thﬁ(j, a)| that
survive until the end of Phase I. Putting this result togettith those derived in the remainder

of this section, we get

3 _ o)) =it
By < L k1) |

11(j, )]
[kp]

Then we choose; in the rangg0, 1/ [kp]) to maximizeP(j).
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A.2.1.1. Forecasting the Results of Screening-ere we explain how to forecast, as of stage
the final stage/(j, ) of Phase | and the sets of surviving scenaiipg, a) for j' = j + 1,5 +

2,...,J(j) + 1. A detailed procedure appears in Stép 2 of Appehdix A.1.

(1) Setl;(j, a) + I; andj’ <+ j.
(2) Based on Equatio (A.1) and our method of screening (Btepf Appendix’Al),

forecast that the following scenarios will survive scregnat stage’:

(A3)  ILp(j,a)=4q1i: Z 1 {—Sir(j) N, > tl—a,Nj/—l} < kp

refj’(jva)

(3) Evaluate the stopping rul§Z.4.5) by plugging inX;(j) for X;(j'), m;(i) for m; (i),
S?(7) for S2(5), mss (2) for me(r (1), andl; (4, a) for I;,,,. If the stopping rule is

satisfied,/(j, o) = j'. Otherwise, sef’ « j' + 1 and return to the previous step.

Because the forecast remaining computational bud@gét Step 2 in AppendiX AJl decreases
at each stage, the stopping rule must be satisfied at a fiageé([j, a).

SinceN; = N; R/~ whereR > 1, Equation[(A.B) can be rewritten as

k . .
~ _ , X;(7) — X, (4) _ ti—an,—1
Liq1(j, ) =<1 E 1 _ ci
rla) — Sir(7)//N; VRi'—i

Wj/ (j,Ol)

<kp;,,

in which the threshold;. (j, ) is the only thing that depends ghor a.. Thus, although we are
forecasting the results of screening at several futureestém multiple values of, this does
not take nearly as long as actually performing screeningatsally.

A.2.1.2. The Probability of Screening Mistakes.To simplify the following analysis, we as-

sume that the values of distinct scenarigs r are distinct:V; # V... The experimental results
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in §2.5.1 show that even when this assumption does not hold,rogegure can still perform
well. Also continuing to treatv as the error level at all stagg's> j, we analyze the probability

that no screening mistakes occur at stgges follows:

tlfa,N]-/flsir (4)

/Ny

Pre > 1 {Xi(j) > X, (j) +
)

refj/(j,a

} < kp,Vi € yN I (4, a)

- - l1-a '7lsir .
Ad4) > 1—- > Prq Y 1{Xi(j)>XT(j)+t ]i/ﬁj <‘7>}2kp

ie’mej’(jya) Tefj/(j,a)

(A5 > 1- ZPr Z 1{Xi(j) > X, () + tla,lesir(j)} > kp

ey Tefj/(jya)

where [A.4) is based on the Bonferroni inequality and EquafA.1). In (A.5) we are being
conservative by considering the possibility of making atake by screening out any scenario
1 € v, regardless of whether it has survived to stggeéhroughout this section, we imagine the
random variables(;;, Xy, ..., Xy, as existing, even if they were not all simulated.

To analyze the probabilities i (A.5), we consider the philitg of a non-tail scenario

r € Iy \ v beating a tail scenarioc v, which is

Pr {Xi<j> > X, (j) + tliOl’Nj/ilSir(j) } = Pr {w }

>t N,
VN Suli) /Ny

1-®| = + Vo = Vi
— I—a -
O'Z',«/\/Nj/

where®(-) is the standard normal distribution function and,,, is its1 — a; quantile. Next we

Q

(A.6)

consider the relative likelihood for various non-tail sagas to beat a particular tail scenaiio

Letr; be the non-tail scenario that minimiz@s. — V;)/o;.. WhenN, is large, the probability
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thatr; beats will dominate the probability that any other non-tail sceadeats. This follows
from Equation[(A.6) and the exponential decay of the prdiigbi — ®(z) asz — oo: for
positivex, (z7' —273)(27) Y2 exp(—22/2) < 1—®(z) < 271(27) /2 exp(—2?/2) (Durrett,
2005). We use the negligible probability that any non-tedrsario other tham; beatsi to get

the approximatior (Al7) in the following derivation:

_ _ 1—a,N, 19 (J
Pf{ > 1{Xi<j>>Xr<j>+t W (‘7)}>kp}

Tejj/(jva)

< Pr {El'r € Li(j, )\ v 3 Xi(j) > X.(j) +

IN

S S t—oc i — Sir .
Pra3r ¢ s Xi(j) > X,(j) + —— ]\; (j)}

J

_ _ tlfa N-/flsirj(j) (j)
z(])>XT’7(])+ — / ’
{ NJ/

(A.8) < Pr{ ., ‘ ' ‘<ta,Nj,1}

(A.7)

Q
-
=

(A.9)

2
£

where Equation[{Al8) holds because < V,, and tan,—1 = —ti—a; N, —1- From Equa-
tions (A.5) and[(A.P) we obtain an approximation to the phuligy that there are no screening
mistakes at stagg, which is Pj/(j, a) = 1 — [kp] a. Roughly speaking, this corresponds to
thinking of any of[kp] tail scenarios as being vulnerable to being screened ouisifoieaten
by all other tail scenarios and one specific non-tail scenand assigning probability to the

event of being beaten by that non-tail scenario.
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A.2.2. Bias Estimation for the Choice of Stopping Screening

As explained in§2.4.5, we only need to consider the bias that arises fronttaegey from
I+, if we stop after stagg. We only consider the bias induced by incorrect selectibat t
is, ¥ = {m;(@) : i = 1,2,...,[kp|} # v = {mv(@) : i = 1,2,...,[kp]}. We ignore the
bias induced by ordering tail scenariosjimcorrectly; this is unimportant because at most one
weight amongu,, ws, . . ., wry is different from the others.

For eachi < [kp], the bias induced by the possibility of excluding scenagigi) is

by = w Z (W—Vﬂv(i)Pr{TG%WV()¢7}

re€lji\y

< wi ), (Vo= Vi) Pr{X:(j) < Xevy (1)} -

réy

Using the approach in Appendix’A.2.1.2, any of these prdhisiis dominated by
a(i) = Pr{X_ () < Xn(i)}-

To condense notation, defigg := V,, — V; andr; := o,,; for all i € v. WhenJN; is large,
4(j) = ® (=6xy i)/ N;j/Try))- Then we approximatl by w;d, ;)P (—0x, i)/ N/ Ty 1)) -
However, 7., ;) andé,, ;) are unknown. For,, ;) we substituter; = max{S;.(j) : i,r €
I;+1,1 # r}, which makes selection mistakes seem more likely, and thereases the ab-
solute value of our approximation of the bias. We also ineeeid by replacing,,, ;) with

arg maxs>o 0®(—0+/N,/7;). Then we approximate

b; NwlmaX(M)( 5\/7/7'])
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To approximate the total bias due to the possibility of ediig tail scenarios, we consider
two cases: whefY;;| > 2 [kp] andwhen/; 1| < 2 [kp]. When|I,| > 2 [kp], itis possible
that all tail scenarios are excluded. Wheén,,| < 2 [kp], at most|/;,,| — [kp] tail scenarios
can be excluded, because that is how many non-tail scerra@ssurvived screening. Thus we

approximate the bias by

min{[kp],|Tj+1|—[kp]}

B(j) = Z w; Tax ((5@ (—(5@/@)) :

=1
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APPENDIX B

Appendix for Chapter 3

B.1. Optimal Budget Allocation in Stage IlI

In Stage Il of our procedure, we want to minimize the posterariance of the ES estimator
in Equation[(3.8) by allocating’ inner-level simulation replications among theéesign points,
subject to the constraint that we have already allocateteplications to each of the design
points. ESis- >"1*" Y /p, whereY; is theith lowest component of the vect¥’ of P&L at
each prediction point. In a Bayesian interpretation of tieelsastic kriging framework, ES is a
random variable becau®” is a random variable. Its posterior variance, given the itian
data observed in Stages | and Il, is difficult to analyze, beeaincertainty abo” means
there is uncertainty about the order of its components. Vipldly the problem by supposing,
for the moment, that the order is known. That is, we constuerandom variables " Y* where
the weightw; is —1/Kp if 7 is a tail scenario and 0 otherwise, treating the veaias though
it were known.

We refer to Section 313 for definitions of the notation in tbkdwing derivation of posterior
variance. The prior distribution of the P&L and the simuiatbutput[YK; Y} is multivariate

normal with mean vector and covariance matrix

BO]-K EKK EKk
and
60119 EkK D)
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(Ankenman et all, 2010). Therefofer"Y*; Y] also has a multivariate normal prior distribu-

tion with mean vector and covariance matrix

_60 g wTEKKw wTEKk
an
ﬁolk EkK'w by

Then the posterior variance af ' Y givenY is
(B.1) Var [w'YXY] =w' (ZF — SHE718M) .

The dependence of the posterior variance on the decisitailarn, which specifies the number
of simulation replications for each design point, is buiirethe matrixX.

The dependence on the decision variable through the ineéraematrix makes the opti-
mization problem difficult to analyze. To make it more trdotéa we resort to a further approx-
imation that is justified if, is large. The sum of intrinsic and extrinsic covariance roas for

the design pointsy, can be written as

S="* 4 CHN- =M L O /ng — (C** /ng — C* N = =¥ 1 C* /n, — BB

where B is a diagonal matrix whosgh element is\/V(x;)(1/no — 1/n;). By the Sherman-

Morrison-Woodbury formula (Golub and Van Loan, 1996), whEis the identity,

-1

> = (¥ +C*/no+ B(-1)B)
— (Ekk + Ckk/no)—l

— (S O ng) B (B (S ) B T) B (M4 CMng)
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Whenn, is large enoughC** /n, and henceB will be small. Because the extrinsic covariance
matrix =** does not depend om, B (X% + C”‘?’“/no)*1 B is negligible compared t&. This

leads to the approximation

1~ (Ekk + Ckk/no)*l . (Ekk + Ckk/no)*l B(—I)B (Ekk + Ckk/no)fl
(B.2) (Ekk + Ck:k/no)*l + (Ekk + Ck:k/no)*l (Ck:k/no _ Ck:kN—l) (Ekk + Ck:k/no)*l .

Substituting Equatiori (Bl2) into Equation (B.1), we get fhkbowing approximation for the

posterior variance:

Var[w'YY] ~ w S Fw —w S (4 C’kk/no)_1 S
_wTEKk (Ekk + Ckk/no)*l (Ckk/no) (Ekk + Ckk/no)*l EkK'w
(B.3) +w | DKk (Ekk + Ckk/no)*l CFe v -1 (Ekk + Ckk/no)*l SEK
Only the third line of Equatior_(Bl3) depends on the decisianiablen, through the matrix

N~L. Therefore, our goal is to minimize this term, which is thgegtiveU ' C** N ~'U in the

optimization problem(3]4).
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