
Moving Least Squares Regression for High-Dimensional Stochastic

Simulation Metamodeling

Peter Salemi
Barry L. Nelson
Jeremy Staum

Department of Industrial Engineering and Management Sciences
Northwestern University
2145 Sheridan Road

Evanston, IL, 60208-3119, U.S.A.

November 1, 2014

Abstract

Simulation metamodeling is building a statistical model based on simulation output as an ap-
proximation to the system performance measure being estimated by the simulation model. In
high-dimensional metamodeling problems, larger numbers of design points are needed to build an
accurate and precise metamodel. Metamodeling techniques that are functions of all of these de-
sign points experience difficulties because of numerical instabilities and high computation times.
We introduce a procedure to implement a local smoothing method called Moving Least Squares
(MLS) regression in high-dimensional stochastic simulation metamodeling problems. Although
MLS regression is known to work well when there are a very large number of design points, current
procedures are focused on two and three-dimensional cases. Furthermore, our procedure accounts
for the fact that we can make replications and control the placement of design points in stochastic
simulation. We provide a bound on the expected approximation error, show that the MLS predictor
is consistent under certain conditions, and test the procedure with two examples that demonstrate
better results than other existing simulation metamodeling techniques.

1 Introduction

Stochastic simulation is often used to model complex systems to support decision making. For
example, Yang et al. [2011] use a simulation model of a semi-conductor wafer fabrication system to
estimate the expected throughput for any given scenario. Simulation runs may be time-consuming
to execute, especially when many scenarios need to be investigated; for example, Tongarlak et al.
[2010] describe a simulation model of a fuel injector production line that takes 8 hours to run a
single replication. This burden can make simulation models impossible for use in decision making,
especially when decisions need to be made quickly. However, when there is enough time between
model building and decision making, the simulation can be exercised on a set of chosen scenarios,
the design points, and the results can be used to construct a statistical model. This statistical
model is called the simulation metamodel. Simulation metamodeling allows the experimenter to

1

obtain more benefits from a simulation because the simulation can be run when time is plentiful,
and quick predictions can be made when decision-making time is scarce or expensive. Applications
in which we need such metamodeling capability include manufacturing planning [Yang et al., 2011]
and financial security pricing [Liu and Staum, 2010]. For instance, in manufacturing capacity or
production planning, decision makers may want to consider trade-offs among system design and
control parameters as they affect, say, throughput or cycle time. Decision-maker time may be
scarce and expensive, and individual simulation experiments on complex manufacturing systems
may take too much time to evaluate trade-offs interactively. In this situation a metamodel can
provide simulation-level fidelity ”on demand.” In the security pricing context decisions may need
to be made in real time in the face of changing underlying risk factors, making it impossible to
execute numerically intensive simulations. Characteristic of these two (and many other) similar
situations is that there is a large space of possible scenarios that could arise, with no way to know
in advance which ones will be relevant, and insufficient time to execute the simulations necessary to
explore them directly when needed. Even if high-performance computing could theoretically allow
the simulations to be executed in near-real time, expensive computing resources are typically heavily
utilized and therefore their use must be scheduled. In other words, in order for a decision-maker
to run the simulation and obtain a quick answer when needed, the high-performance computing
environment would have to be idle; however, these computing resources are usually scheduled for
high utilization.

The higher the dimension of the metamodeling problem, where dimension is the number of
variable factors in a scenario, the more decision points are typically needed to obtain an accurate
and precise metamodel. In this paper, we are interested in high-dimensional metamodeling problems
with a very large number of design points, such as a 75-dimensional problem with 250,000 design
points.

Metamodeling techniques that are functions of all of the design points, such as weighted least
squares regression and Gaussian process models, experience difficulties when there is a large number
of design points because of numerical instabilities and high computation times. For example, fitting
a Gaussian process model requires solving an n×n linear system, which requires O(n3) operations,
where n is the number of design points. Several methods have been developed to deal with these
limitations such as using pseudo-inputs which maximize the likelihood that the actual data was
drawn [Snelson and Ghahramani, 2006], covariance tapering [Kaufman et al., 2008], fixed-rank
kriging [Cressie and Johannesson, 2008], and treed Gaussian processes [Gramacy and Lee, 2008].

Some metamodeling techniques are based on the premise that the response surface may have
a sparse representation [Shan and Wang, 2010, Lafferty and Wasserman, 2008, Vijayakumar and
Schaal, 2000]. These methods often require a search to determine the important terms in the
representation, and can be slow and time-consuming since the number of possible terms to consider
increases exponentially as the problem dimension increases. When the variance in the replications
is large, determining which factors are important becomes difficult. Many of these methods also
assume a relatively small number of important factors, and can be ill-suited for problems not
satisfying this assumption.

Instead of using the entire set of design points for prediction, many methods localize the predic-
tion by only using design points near the prediction point [Vijayakumar and Schaal, 2000, Lafferty
and Wasserman, 2008, Breiman et al., 1984, Altman, 1992, Watson, 1964]. The main obstacle for
localization methods is choosing the window for prediction. The window determines which design
points influence each prediction. As the variance in the replications increases, it becomes difficult
for these methods to identify good windows around the prediction point. Some of these methods
(such as Vijayakumar and Schaal [2000] and Lafferty and Wasserman [2008]) also assume a small
number of relevant variables.

2

Moving Least Squares (MLS) regression [Lancaster and Salkauskas, 1981, Levin, 1998] is a lo-
calization method which has been studied in the fields of partial differential equations and image
processing. These applications feature low-dimensional problems with a large number of design
points. Much of the research has focused on different formulations and applications of MLS re-
gression, with relatively little focus on the construction of efficient procedures to implement MLS
regression. The main obstacle for any MLS regression procedure is the choice of the bandwidths of
the weight function, which determine the window. Lipman et al. [2006] calculates an error bound
for the MLS predictor and then searches for the bandwidth that minimizes this error bound. The
weight function is assumed to be isotropic, i.e., there is only one bandwidth parameter, so a line
search is used to find the optimal bandwidth. The line search can be time consuming since the error
bound must be calculated during each step of the search. Furthermore, noise in the observations
satisfies a known bound. Adamson and Alexa [2006] proposed a method that uses the empirical
covariance matrix of the k-nearest neighbors of the prediction point to assign a weight to each of
the k-nearest neighbors. Since the empirical covariance matrix is positive-definite, the eigenvectors
form the axes of an ellipsoid, the lengths of which depend on the eigenvalues. The weight given to
each of the k-nearest neighbors is determined by where the point lies in the ellipsoid. As pointed
out in Adamson and Alexa [2006], there is no way to ensure the ellipsoid covers all of the k-nearest
neighbors, and no method is proposed to choose a good value for k.

Locally Weighted Least Squares regression (LWLSR) [Ruppert and Wand, 1994] is a particular
type of MLS regression, where we assume the noise in the simulation output is of a specified form
(given in Section 3.2). As with MLS regression, the main obstacle for any LWLSR technique is the
selection of bandwidths for the weight function. The most common approach is to minimize the
approximate mean squared error (AMSE) of the LWLSR predictor with respect to the bandwidths
[Ruppert et al., 1995a, Hengartner et al., 2002, Fan and Gijbels, 1995, Doksum et al., 2000]. The
main difference between each of these methods is how they estimate the AMSE and the choice
of plug-in estimators for the parameters on which the AMSE relies. The majority of LWLSR
methods focus on the one-dimensional case or use an isotropic weight function, which does not
work well when there are multiple dimensions [Wand and Jones, 1993]. Also, the proposed plug-in
estimators do not exploit the characteristics of stochastic simulation, namely, access to replications
and the placement of design points. Furthermore, the plug-in estimators for the variance are usually
designed under the assumption of homoscedasticity [Ruppert et al., 1995a]. These methods also
have no way of controlling the number of design points used for prediction, which can slow down
computations and detract from the benefit obtained by localization. Other examples of LWLSR
methods include using eigenvalues [Prewitt and Lohr, 2006] and estimating the bias empirically
[Ruppert, 1997]. See also Cleveland et al. [1988] and Loader [1999] for a discussion of the related
method called local regression.

In this paper, we introduce MLS regression into the field of stochastic simulation metamodeling
and present a procedure to implement MLS regression in high dimensions. Our procedure can
also be used for high-dimensional LWLSR problems, since current procedures focus on the one and
two-dimensional cases. Instead of using an isotropic weight function, we use an anisotropic weight
function whose bandwidths differ in each dimension. To choose the optimal bandwidths for the MLS
predictor, we solve an optimization problem whose objective function is the AMSE of the LWLSR
predictor. Unlike existing methods, the optimization problem used to choose the bandwidths is
constrained. By putting constraints on the bandwidths, we can control the number of design
points used for prediction, which allows our method to produce predictions relatively quickly even
when there is a large number of design points. Furthermore, the constrained optimization problem
can be solved very efficiently using a variable-pegging procedure. We also introduce new plug-in
estimators for the parameters of the method, including the density of design points, the variance

3

of a replication, and the second derivatives at the prediction point. The plug-in estimators for
the density of design points and the variance of a replication at the prediction point exploit the
fact that, in the setting of stochastic simulation, we control the placement of design points and
can make replications. The plug-in estimators for the second derivatives at the prediction point
can be calculated in high-dimensions, unlike existing plug-in estimators (for example, the plug-in
estimators in Ruppert et al. [1995b]). Finally, we provide a bound on the expected approximation
error and show that the predictor is consistent under certain conditions.

Critically, we do not assume the number of relevant variables is small or that the response surface
has a low-dimensional representation. Furthermore, we do not assume the simulation output has
homogeneous variance throughout the design space. We want to have good predictions by having
a very large number of design points and a space-filling experiment design.

In the next section, we formulate the simulation metamodeling problem and discuss the experi-
ment designs we use in our procedure. Section 3 reviews MLS regression and LWLSR, on which we
base our MLS procedure, followed by the presentation of our MLS procedure in Section 4. We then
provide a bound on the expected approximation error and establish the consistency of our MLS
predictor in Section 5, and discuss estimation of the parameters in Section 6. Lastly, we present
results of numerical experiments using two queueing examples in Section 7.

2 Experiment Design

We are interested in predicting a response surface, for example the expected waiting time for a
customer in a queue. Denote the response surface at a design point x by y(x). For the queue
example, x could include arrival rates, service rates, etc. Denote the design space, the set of all
possible values of the design variables, by X, which we assume is the unit hypercube (which may
be attained by rescaling the natural design variables). Furthermore, let {{Xn,Rn} ;n ≥ 0} denote
a sequence of experiment designs, where Xn = (xn1 ,x

n
2 , . . . ,x

n
n) is the vector containing the first

n generated design points, and Rn = (Rn1 , R
n
2 , . . . , R

n
n) is the vector containing the number of

replications we allocate to each design point in Xn. In other words, for the nth sequential design
we allocate Rni replications to xni . The Xn, n ≥ 1, are not necessarily nested. We introduce this
sequential setting as an asymptotic regime for analyzing our procedure later in the paper. We
assume that

lim
n→∞

1

n

n∑
i=1

I {xni ∈ A} =

∫
A
g(z)dz,

for all rectangles A ⊆ X, where g(z) is the limiting density of design points at z ∈ X. We also
assume that

lim
n→∞

1

Cn

n∑
i=1

I {xni ∈ A}Rni =

∫
A
g̃(z)dz,

for all rectangles A ⊆ X, where Cn =
∑n

i=1R
n
i is the total number of replications allocated in the

nth design, and g̃(z) is the limiting density of effort spent at z ∈ X. In our procedure, we assume
that g and g̃ are uniform densities on the unit hypercube [0, 1]d, i.e., g(·) = g̃(·) = 1 and X = [0, 1]d.

For the nth sequential design, we run the simulation at Xn = (xn1 ,x
n
2 , . . . ,x

n
n). At design point

xni we run Rni i .i .d . replications of the simulation, and we denote the simulation output of the jth
replication by Yn

j (xni), which we assume is an unbiased estimator of y(xni). The estimate that we

4

obtain at design point xni is the sample average

Ȳ
n
(xni ;Rni) =

1

Rni

Rni∑
j=1

Yn
j (xni).

We will also need an estimate of the variance σ2(xni) of a replication at xni , which we estimate by
the sample variance

S2(xni ;Rni) =
1

Rni − 1

Rni∑
j=1

(Yn
j (xni)− Ȳ

n
(xni ;Rni))2.

If we do not have access to replications, such as in the case of steady-state simulations, we only
need an estimate for the variance of the one replication for our procedure.

For ease of notation, we drop the superscripts for the nth sequential design and let x1,x2, . . . ,xn
denote the design points in the nth sequential design, and R1, R2, . . . , Rn denote the replications
allocated to each design point in Xn.

3 Local Smoothing Approaches

In this section, we discuss the smoothing methodologies of MLS regression and LWLSR [Rup-
pert and Wand, 1994]. Both approaches require a positive weight function of the form KH(u) =
|H|−1/2K(H−1/2u), where K is a compactly supported d-variate kernel such that

∫
K(u)du = 1,

and H is a d × d symmetric positive definite matrix depending on n. The matrix H is called the
bandwidth matrix and its entries are called the bandwidth parameters. The bandwidth matrix
determines the shape of the contours of the weight function KH. The number of non-zero entries
in the bandwidth matrix is the number of bandwidth parameters that must be chosen before one
can apply either of the two smoothing methodologies. In high-dimensional problems, allowing the
bandwidth matrix to have non-zero values off the diagonal would result in too many parameters.
Therefore we will only consider diagonal bandwidth matrices in our procedure. A diagonal band-
width matrix will cause the contours of the kernel to be parallel to the main coordinate axes,
whereas a full bandwidth matrix would allow the contours of the kernel to be arbitrarily rotated.
We do not dwell on this restriction because it has been shown that the improvement gained by
allowing off-diagonal entries to be non-zero is not nearly as great as the benefit from allowing the
diagonal entries to vary from one another [Wand and Jones, 1993]. Furthermore, the choice of ker-
nel is not as important as the choice of bandwidth matrix, H [Wand and Jones, 1993]. We employ
a kernel which is a function of the maximum norm, given by ||u||∞ = max{|u1|, |u2|, . . . , |ud|} for
u ∈ Rd. This kernel is

K(u) = max{1− ||u||∞, 0},
and its support is the d-dimensional unit hypercube, which is shown in Figure 1(a) for the case
d = 2.

The weight function that is induced from this kernel has a compact rectangular support with the
bandwidth parameters lying on the diagonal of the bandwidth matrix determining the half-length
of each edge of the rectangle. The diagonal bandwidth matrix H = diag{h2

1, h
2
2, . . . , h

2
d} will yield

the weight function

KH(u) = |H|− 1
2 max{1− ||H− 1

2u||∞, 0},
whose support is shown in Figure 1(b) for the two-dimensional case where h1 = 1 and h2 = 0.25,
in relation to the support of the kernel in Figure 1(a).

5

−1 1

−1

1

x1

x2

(a)

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x1

x2

(b)

Figure 1: (a) The compact support of the kernel K(·) in two dimensions, which is the unit hyper-
cube. (b) An example of the compact support of the weight function KH(·) in two dimensions,
with h1 = 1, and h2 = 0.25.

3.1 Moving Least Squares Regression

MLS regression reinterprets the metamodeling problem as predicting y(x) for any specific x ∈ X
instead of building a metamodel to approximate the entire response surface y. Each design point is
assigned a weight, which is similar to weighted least squares regression except that the weight given
to a design point depends on the particular prediction point, with the weight being determined by
the weight function, KH(·). Therefore, every time we predict the response surface at a different
prediction point we solve a different weighted least squares problem. In the following, let Πd

k denote
the space of d-variate polynomials of degree k, and let p1, p2, . . . , pm denote the basis functions of
Πd
k. In this paper, we take the basis functions of Πd

k to be the standard basis which is the set of(
d+k
k

)
monomials. The polynomial, ŷMLS

x0,H
, used for approximating the response surface y(x0) at the

prediction point x0 is

ŷMLS
x0,H = arg min

p∈Πdk

{
n∑
i=1

(Ȳ(xi;Ri)− p(xi))2KH(xi − x0)

}
. (1)

This is the standard approach to MLS regression [Bos and Salkauskas, 1989]. The optimal solution
to this problem is obtained from the weighted least squares solution

ŷMLS
x0,H(x) = P(x)>(P>W(x0)P)−1P>W(x0)Y,

where P is the n×m matrix whose ith row is (p1(xi − x0), p2(xi − x0), · · · , pm(xi − x0)), and

Y = (Ȳ(x1;R1), Ȳ(x2;R2), . . . , Ȳ(xn;Rn))>

W(x0) = diag {KH(x1 − x0),KH(x2 − x0), . . . ,KH(xn − x0)}
P(x) = (p1(x− x0), p2(x− x0), . . . , pm(x− x0))>.

For each prediction point, x0 ∈ X, we get a different approximating polynomial, ŷMLS
x0,H

.

The minimization in Problem (1) is done over the polynomial space Πd
k. Since d is the dimension

of the design space, the only factor that we are able to choose is k. The dimension of Πd
k is

(
d+k
k

)
,

so for large d we must be careful to not pick k too large. Otherwise, we must invert a
(
d+k
k

)
×
(
d+k
k

)
matrix to obtain the prediction, which is infeasible when d and k are large. We will use the space
of linear polynomials, Πd

1.

6

3.2 Locally Weighted Least Squares Regression

The weight function KH depends on bandwidth parameters that determine the shape and size of
its contours. The main problem in MLS regression is optimizing these bandwidth parameters with
respect to some criterion. LWLSR is a particular type of MLS regression, where we assume the
outputs obtained from the simulation are of the form Ȳ(xi;Ri) = y(xi) + (σ(xi)/

√
Ri)εi, where

σ(xi) is the standard deviation of a replication at xi and the εi are mutually independent and
identically distributed random variables with zero mean and unit variance. Using this assumption,
we can obtain an expression for the AMSE of the LWLSR predictor and use this expression to
choose the bandwidth parameters for the MLS predictor.

LWLSR with linear polynomials uses a first-order Taylor expansion to approximate the function
value at the prediction point. The LWLSR prediction at x0 is ŷLOC(x0;H) , β̂0, where β̂0 is from
the solution to the problem

min
β0,β1

n∑
i=1

(Ȳ(xi;Ri)− β0 − β>1 (xi − x0))2KH(xi − x0),

which is just a reformulated version of the MLS problem in Section 3.1 when we use the space Πd
1

in MLS regression. Note that ŷLOC(x0;H) = ŷMLS
x0,H

(x0).
To analyze the MSE of the predictor so we can obtain an expression for the AMSE at the

prediction point x0 ∈ X, assume that we have a sequence of bandwidth matrices {Hn : n ≥ 1}. We
need the following assumptions, taken from Ruppert and Wand [1994].

Assumption 1. The prediction point x0 is in the interior of X. At x0, σ2(·) is continuous, the
limiting densities of design points and simulation effort, i.e. g and g̃, are continuously differentiable,
and all second-order derivatives of y are continuous. Also, g(x0) > 0, g̃(x0) > 0, and 0 < σ2(x0) <
∞.

Assumption 2. The sequence of bandwidth matrices {Hn : n ≥ 1} is such that n−1|Hn| and each
entry of Hn tends to zero as n → ∞ with Hn remaining symmetric and positive definite. Also,
there is a fixed constant L such that the condition number of Hn is at most L, for all n.

Let x0 be a point that satisfies Assumption 1 and let {Hn : n ≥ 1} be a sequence of bandwidth
matrices that satisfies Assumption 2. From Ruppert and Wand [1994], we have

E{ŷLOC(x0;Hn)− y(x0)|x1,x2, . . . ,xn} =
1

2
µ2(K)tr{Hn∇2

y(x0)}+ oP {tr(Hn)} (2)

Var{ŷLOC(x0;Hn)|x1,x2, . . . ,xn} =
R(K)σ2(x0)

Cn|Hn|1/2g̃(x0)
{1 + oP (1)}, (3)

where oP denotes order in probability, µ2(K) =
∫
R xiK(x) dx, R(K) =

∫
R K(x)2 dx, and ∇2

y(x0) is
the Hessian of y evaluated at x0. For the diagonal bandwidth matrix H = diag{h2

1, h
2
2, . . . , h

2
d}, the

AMSE of the estimator ŷLOC(x0;H) is given by the sum of the leading order terms in (2) and (3),

AMSE =
1

4
µ2(K)2tr{H∇2

y(x0)}2 +
R(K)σ2(x0)

Cn|H|1/2g̃(x0)

=
1

4
µ2(K)2(h2

1D1(x0) + · · ·+ h2
dDd(x0))2 +

R(K)σ2(x0)

Cng̃(x0)
∏d
i=1 hi

, (4)

where Di(x0) denotes the second partial derivative ∂2y(x0)/∂x2
i . Equation (4) shows the bias-

variance trade-off with respect to the bandwidth parameters. The first term in the sum represents

7

the bias of the estimator, while the second term represents variance. When the bandwidth pa-
rameters are small, the bias of the estimator β̂0 is small, but fewer design points are used in
the prediction, making the variance of the estimator high. For large bandwidth parameters, the
opposite happens.

We can use the bias-variance trade-off to choose the bandwidth parameters by minimizing the
AMSE equation. In the bias term, given by the first part of Equation (4), directions corresponding
to larger changes in the response surface (i.e., larger second partial derivatives) result in smaller
bandwidth parameters corresponding to those directions. This regulates the bias because weight
decays more rapidly in directions where there are larger changes in the response surface. In the
variance term, given by the second part of Equation (4), a higher variance at the prediction point,
σ2(x0), with all other parameters fixed, will increase the bandwidth parameters, incorporating more
design points in the approximation and therefore filtering out the larger noise. The limiting density
of effort spent at the prediction point, g̃(x0), with all other parameters fixed, will give smaller
bandwidth parameters to prediction points in regions of higher density. Intuitively, this is because
in regions where we have spent the most simulation effort, we would like the prediction to be based
on design points closer to the prediction point, making the bandwidth parameters smaller, and
hence decreasing the bias.

4 Moving Least Squares Procedure

We provide a brief outline of the procedure, with details following in Section 4.1, Section 4.2, and
Section 6.

1. Run the simulation model at design points satisfying the conditions in Section 2. Compute
the sample averages across replications and estimate the variance of a replication at each of
the design points.

2. For each prediction point x0

(a) Estimate the second derivatives and the variance of a replication at x0 using the methods
in Section 6.

(b) Calculate the bandwidth parameters of the weight function by solving MP(1) in Section
4.1 using the Bandwidth Procedure in the appendix. Optional : Put an upper bound
on the number of design points used for prediction, as discussed in Section 4.2.

(c) Predict the mean response at the prediction point. The MLS prediction is given by the
optimal solution of Equation (1), using the bandwidth parameters calculated in Step
2(b). Optional : Include interaction terms in Equation (1), as discussed in Section 4.2.

4.1 Moving Least Squares Procedure

Let Hl,r = diag{(hl1 ∨ hr1)2, (hl2 ∨ hr2)2, . . . , (hld ∨ hrd)2} where x∨ y = max{x, y}. For our procedure
we will use the weight function KHl,r

(·), given by

KHl,r
(u) = |Hl,r|−

1
2 max{1− ||H−

1
2

l,r u||∞, 0},

with the associated prediction window defined by the region Ω , {x ∈ X : |xi− x0,i| ≤ hli ∨ hri ,∀i}.
Each bandwidth parameter hi in Equation (4) has been replaced with two separate parameters
to deal with effects for prediction points lying near the boundary. The variable hli denotes the

8

distance from the left edge of the prediction window to the prediction point in the ith coordinate,
and the variable hri denotes the distance from the right edge to the prediction point. The bandwidth
parameters hl1 ∨ hr1, hl2 ∨ hr2, . . . , hld ∨ hrd determine the bandwidth in the corresponding coordinate
direction. For example, hl1 ∨ hr1 determines how fast the weight decays in the direction along the
first basis vector of Rd. The region Ω is the intersection of the compact support of the kernel KH

and the design space X, so the design points that fall in the region will be the design points used
for prediction, hence the name “prediction window”.

Assuming we have estimates s2(x0) and D̂i(x0), of σ2(x0) and Di(x0), for i = 1, 2, . . . , d, the
bandwidth parameters are found by solving MP(1), whose objective function is a modification of
the AMSE equation, and then transforming the optimal solution.

MP(1) : min
{h1,...,hd}

1

4
µ2(K)2

(
h2

1

∣∣∣D̂1(x0)
∣∣∣+ · · ·+ h2

1

∣∣∣D̂d(x0)
∣∣∣)2

+
R(K)s2(x0)

Cng̃(x0)
∏d
i=1 hi

s.t. dim(Πd
1) + δ ≤ ng(x0)

d∏
i=1

(hli + hri)

2hi = hli + hri for i = 1, 2, . . . , d

0 ≤ hli ≤ x0,i, for i = 1, 2, . . . , d

0 ≤ hri ≤ 1− x0,i, for i = 1, 2, . . . , d

hli + hri ≤ fn, for i = 1, 2, . . . , d,

where fn, defined in Section 5.2, depends on d, and the density and number of design points. The
constraint hli +hri ≤ fn will be discussed in Section 5.2, as will estimation of σ2(x0) and the second
partial derivatives.

The bandwidths in Equation (4) represent the half-widths of the prediction window, when
the prediction window is symmetric about the prediction point. In an effort to keep the same
interpretation for the bandwidths in the objective function of MP(1), where the prediction window
may not be symmetric about the prediction point, we have the constraint 2hi = hli + hri .

The motivation for the second constraint is the following. To ensure that the number of design
points used for prediction is at least the dimension of Πd

1 and to protect against having linearly
dependent columns in the matrix P of the solution to Problem 1, we set a lower bound, dim(Πd

1)+δ,
on the number of design points that lie within the prediction window. We use δ = 5d. An approxi-
mation to the number of design points that lie within the prediction window is ng(x0)

∏d
i=1(hl1+hr1).

This can be interpreted as the density of design points at the prediction point ng(x0) times the
volume of the prediction window which gives us the total number of design points included in the
prediction window. The limiting density of design points that makes ng(x0)

∏d
i=1(hl1 +hr1) the best

approximation is the uniform density, which is the density we use in this procedure. The constraints
0 ≤ hli ≤ x0,i and 0 ≤ hri ≤ 1− x0,i ensure that the bandwidth parameters are confined to the unit

hypercube, so that
∏d
i=1(hl1 + hr1) is the volume of the prediction window.

The second derivatives in the AMSE equations have been replaced by the absolute values of
the second derivatives to ensure that the bandwidth parameters behave well when some second
derivatives are positive and some are negative. To see the motivation for this change, consider
the case where the response surface has both positive and negative second partial derivatives. By
setting the bandwidth parameters in the proper proportion to each other, the AMSE equation
would appear to kill the approximate bias. We could then reduce the variance by increasing the
size of the prediction window. However this increase in window size reduces the validity of the bias
approximation, so for a fixed value of n, Equation (4) may cease to be a good approximation to

9

the MSE when a large window is used. Thus, we take a conservative approach to the window size
and use an upper bound on the AMSE.

The Bandwidth Procedure in the appendix solves MP(1) and then transforms the optimal
solution to get the bandwidth parameters. Denote the output of the Bandwidth Procedure by
h∗ = {hl1

∗
, hr1
∗, hl2

∗
, hr2
∗, . . . , hld

∗
, hrd
∗} and let H∗l,r = diag{(hl1

∗∨hr1∗)2, (hl2
∗∨hr2∗)2, . . . , (hld

∗∨hrd∗)2}.
The weight function used for prediction is given by

KH∗l,r
(u) = |H∗l,r|−

1
2 max{1− ||H∗l,r−

1
2u||∞, 0},

4.2 Modifications to the MLS Procedure

The first constraint in MP(1) controls how many design points (approximately) fall within the
prediction window by regulating the size of the prediction window. For high-dimensional problems
when there is a very large number of design points, we may want to limit the amount of design
points that we use for prediction for the computing time to be acceptable. We can limit the
number of design points that fall within the prediction window by placing an upper bound on the
first constraint in MP(1). We denote the upper bound by MassUB, and we use MassUB = 2000 in
this paper (of course, this could be much higher depending on computing power). In this case, the
bandwidth parameters are found by solving MP(1) with the added constraint ng(x0)

∏d
i=1(hli+h

r
i) ≤

MassUB, which can also be solved using the Bandwidth Procedure in the appendix. We denote
the new optimization problem (MP(1) with the added constraint ng(x0)

∏d
i=1(hli + hri) ≤ MassUB)

by MP(2).
The AMSE expression is the result of using LWLSR for prediction, which results in second

partial derivatives in the bias term. The second partial derivatives arise because we use a linear
approximation, and therefore cannot account for higher-order derivatives. The bias term in Equa-
tion (4) is only an approximation to the bias at the prediction point, and will underestimate the
amount of bias since the approximation does not consider the higher-order partial derivatives, and
assumes that the prediction window is symmetric about the prediction point. Although the bias
of the LWLSR predictor for a prediction point near the center of the design space is of the same
order as for a prediction point lying near the boundary, namely, oP {tr(H)}, we would still like to
try to reduce the bias. In an effort to further reduce the bias, we use a stepwise regression method
to determine if there are necessary second-order terms that should be included in the model. Note
that for higher-order terms to be added, δ may have to be increased to ensure non-singularity of
the matrix P. Denote the prediction window of K∗H by Ω∗, and let x∗1,x

∗
2, . . . ,x

∗
|Ω∗| denote the |Ω∗|

design points that fall into the prediction window. The stepwise procedure is as follows:
0. Initialize the |Ω∗| × (d+ 1) regression matrix X, with ith row [1, x∗1,1, x

∗
1,2, . . . , x

∗
1,d], and let

Y denote the vector of observations at the design points in the prediction window. Also, let R
denote the regression matrix consisting of all possible second-order terms.

1. Normalize and center the columns of R.
2. Calculate the vector of correlations c = R>

(
Y −X(X>X

)−1
X>Y). Choose the ith term

corresponding to, say, xjxk, such that ci = max{c}.
3. Add a column to X corresponding to xjxk, and remove the corresponding column from R.

If ci ≤ ρ orthe maximum number of iterations is reached, stop. Otherwise, go to 2.
This stepwise procedure starts with a linear approximation, and adds second-order terms to the

approximating polynomial in a greedy manner by choosing the next term that is most correlated
with the residuals of the current approximating polynomial. The procedure stops when either the
correlations become too weak (are less than ρ), or the maximum number of iterations is reached.

10

5 Error Analysis

In this section, we give a bound on the expected approximation error, as well as show that the
estimator is consistent as the amount of simulation effort increases to infinity.

5.1 Approximation Error

We can bound the expected approximation error using the second-order partial derivatives, and
the variance of the simulation output and number of replications at each of the design points. Let
C2(X) be the space of twice-continuously differentiable functions on X. Furthermore, for the vectors
x = (x1, x2, . . . , xd)

> and v = (v1, v2, . . . , vd)
>, let ∂|v|/∂xv = ∂v1+v2+···+vd/∂xv11 ∂x

v2
2 · · · ∂xvdd and

xv = xv11 x
v2
2 · · ·xvdd .

Theorem 5.1. Let y ∈ C2(X). If Ȳ(xi;Ri) = y(xi) + (σ(xi)/
√
Ri)εi, for i = 1, 2, . . . , n, where the

εi are mutually independent and identically distributed random variables with zero mean and unit
variance, then

E
[
(ŷMLS

x0,H(x0)− y(x0))2
]
≤

1

2

∑
|v|=2

n∑
i=1

Cv
i |xi − x0|v|Ξi|

2

+
n∑
i=1

σ2
i (xi)

Ri
Ξ2
i ,

where

Cv
i = sup

0≤η≤1

∣∣∣∣∣∂|v|y(η(xi − x0) + x0)

∂xv

∣∣∣∣∣ ,
Ξi = det(P>W(x0)Pi)

det(P>W(x0)P)
, and Pi is the matrix P with the first column replaced with the ith standard

basis vector.

5.2 Consistency Results

We now discuss the consistency of the estimator ŷLOC(x0;H∗l,r), with the bandwidths obtained by
minimizing MP(1) in Section 4.1. For the purpose of analysis, consider a sequential design indexed
by n. We analyze two cases of the experiment design: Cn/n→∞ and Cn = O(n), where Cn is the
total number of simulation replications allocated in the nth design. In the first case, the number of
replications allocated to each design point becomes infinite, whereas in the second case, the number
of replications per design point is bounded by a constant. We deal with consistency in each of these
two cases separately.

As mentioned in Section 4.1, fn depends on the dimension d, and the density and number
of design points. Furthermore, fn converges to zero as n → ∞ to ensure that as the simula-
tion effort increases, the bandwidths of the prediction window will shrink to zero. Consider the
two-dimensional case where the x1 coordinate has a second partial derivative of zero and the x2

coordinate has a second partial derivative that is greater than zero. This will cause the prediction
window to take the shape of a telephone pole, with the long edge in the x1 coordinate. As the
simulation effort increases, the volume of the prediction window will shrink to zero even though
h1 remains equal to one (reaching the boundary of the unit hypercube). However, higher-order
derivatives in the x1 coordinate may be greater than zero, leading to bias in the prediction that
is not detected by the AMSE Equation (4). Therefore, we do actually want to shrink h1, which
is the purpose of fn and the constraint hl1 + hr1 ≤ fn. Without these constraints, the bandwidth
parameters may not shrink to zero and the estimator may not be consistent. Each case of the
experiment design will require a different definition of fn, given in the respective definition.

11

All three proofs follow the same format. We first show that Assumption 2 holds, making all
of the conditions of Theorem 2.1 of Ruppert and Wand [1994] satisfied. Since the conditions of
Theorem 2.1 of Ruppert and Wand [1994] are met, Equations (2) and (3) are the conditional bias
and conditional variance of ŷLOC(x0;H∗l,r), respectively. Then we show that Equations (2) and
(3) converge to zero in probability, which proves the claim of consistency. In the following, the
bandwidths, variance, and second partial derivative estimates are functions of n to explicitly show

the dependence on n. For brevity, let Di(n) denote D̂i(x0) for the nth experiment design, and let
s2(n) denote s2(x0) for the nth sequential design.

For the following three theorems, we will make use of this condition:

Condition 1. The prediction point x0 ∈ X satisfies Assumption 1, P (lim supn→∞Di(n) <∞) = 1
for i = 1, 2, . . . , d, and P (lim supn→∞ s

2(n) <∞) = 1.

In the case Cn/n→∞, the only restrictions we need on the second partial derivative or variance
estimates is boundedness, since the constraint dim(Πd

1) + δ ≤ ng(x0)
∏d
i=1 hi(n) ensures that the

volume of the prediction window converges to zero slowly enough. However, we need the sequence
fn to converge to zero quickly enough to meet the regularity conditions given in Assumption 2.

Theorem 5.2. Assume that Cn/n → ∞ and Condition 1 is satisfied. If the bandwidths are
chosen according to MP(1), with fn = (M/g(x0))1/d(1/n)1/d, where M > dim(Πd

1) + δ, then

ŷLOC(x0;H∗l,r)
p→ y(x0) as n→∞.

In the case Cn = O(n), the second derivative estimates can get arbitrarily large, as long as they
do not stay large. Similarly, the variance estimates can get arbitrarily small, as long as they do
not stay small. These conditions ensure that the volume of the prediction window converges to
zero at the correct rate, resulting in consistency of the estimator. We need fn to converge to zero
slower than in the case of Theorem 5.2 to ensure that the volume of the prediction window does
not converge to zero too quickly.

Theorem 5.3. Assume that P (lim infn→∞ s
2(n) > 0) = 1, Cn = O(n), and Condition 1 is satisfied.

If the bandwidths are chosen according to MP(1), with fn = (M/g(x0))1/d(1/n)1/(d+1), where M >

dim(Πd
1) + δ, then ŷLOC(x0;H∗l,r)

p→ y(x0) as n→∞.

In the case of MP(2), placing an upper bound pushes the volume of the prediction window to
zero faster, and limits the number of design points that are included in the prediction window. For
the estimator to be consistent in this case, we need to allocate more and more replications to each
design point, so that the simulation effort included in the prediction window goes to infinity. This
increase in replications per design point is given by the condition Cn/n→∞ as n→∞.

Theorem 5.4. Assume that Condition 1 is satisfied. If the bandwidths are chosen according to
MP(2) with fn = (M/g(x0))1/d(1/n)1/d, where M > dim(Πd

1) + δ, then ŷLOC(x0;H∗l,r)
p→ y(x0) as

n→∞ if and only if Cn/n→∞ as n→∞.

6 Parameter Estimation

As mentioned in Section 4, estimation of σ2(x0) and Di(x0) is required to solve MP(1). As is

often done in LWLSR, we use plug-in estimates s2(x0) and D̂i(x0) (see, for example, Ruppert
et al. [1995b]) for σ2(x0) and Di(x0), respectively. In existing LWLSR techniques, estimation of
the density g(x0) of design points around the prediction point is also required. However, in our

12

procedure, we control the placement of design points and can use the densities discussed in Section
2 as plug-in estimates.

The computationally expensive part of parameter estimation is finding nearest neighbors. A
possible solution is to use ε-approximate nearest neighbors that involves preprocessing the data
using a balanced-box decomposition tree, but we will not discuss this here and refer the reader to
Arya et al. [1998].

6.1 Variance Estimation

Having access to replications from the simulation makes it easy for us to get an estimate of the
variance of a replication at each design point. However, we need an estimate of the variance of a
replication at the prediction point as it pertains to determining the size of the prediction window.
We use the variance estimates at neighbors of x0 to estimate σ2(x0) and we denote the estimate by

s2(x0) ,
1

k

∑
xi∈Ik(x0)

S2(xi;Ri),

where Ik(x0) is the set of the k nearest design points to x0. From our experiments, we have found
that the choice of k is not critical, as long as we use enough neighbors to reduce the noise of the
variance estimates at the design points. We have found that k = min{5d, n} is a sufficient number
of neighbors to reduce the noise.

6.2 Second Derivative Estimation

To estimate the second partial derivatives, we fit a third-order polynomial in a neighborhood of
the prediction point and use the coefficients of the second-order terms as estimates of the second
partial derivatives. Ruppert and Wand [1994] suggest using an r-order polynomial to estimate
partial derivatives of order m, where r −m is an odd integer. In this paper, we use r = m + 1.
A third-order polynomial with all interaction terms has

(
d
3

)
+ 1 terms, which makes the regression

problem too expensive in high dimensions. Thus, we do not include any interaction terms in the
third-order polynomial and solve

min
β0,β1,β2,β3

∑
xi∈Ik∗ (x0)

Ȳ(xi;Ri)− β0 −
3∑
j=1

β>j (xi − x0)j

2

, (5)

where (xi − x0)m , [(xi,1 − x0,1)m, (xi,2 − x0,2)m, . . . , (xi,d − x0,d)
m]>. We use 2β̂2, where β̂2 is

from the solution of Problem (5), as our estimate of the second partial derivatives. To find k∗,
the optimal number of neighbors to be used in the estimation of the second partial derivatives,
we use the Nearest-Neighbor Procedure in the appendix. This procedure is a variation of the
procedure used in Ruppert et al. [1995b], and searches for the optimal number of neighbors to
fit the cubic polynomial by maximizing the goodness-of-fit criterion R2(k), which denotes the R2

statistic using the k nearest neighbors, over k.

7 Numerical Experiments

Our goal is to investigate how the differentiability of the response surface, number of design points,
variance of the simulation output, and dimension affect the procedure. We use two queueing

13

simulations, a multi-product M/G/1 queue and a multi-product Jackson network, whose simulation
response surfaces are the expected number of products in the queue and expected cycle time of a
product, respectively. The response surface for the multi-product M/G/1 queue is differentiable
everywhere, while the response surface for the multi-product Jackson network is non-differentiable
in some places.

The n design points we use in each experiment are the first n points from the Sobol Sequence
[Sobol, 1967]. We fix the number of replications at each design point to 64. For each replication,
the simulation run-length is chosen to obtain constant relative standard deviation over the design
space using a heavy-traffic approximation to the asymptotic variance presented in Whitt [1989].
The relative standard deviation we use here is

(
σ(xi)/

√
Ni

)
/|y(xi)|, so, for example, a relative

standard deviation of 0.25 means σ(xi)/|y(xi)| = 2 = 0.25
√

64. Using designs generated by the
Sobol sequence and fixing the number of replications at each design point satisfies our assumption
of a uniform limiting density of design points and simulation effort. In our experiments, we use an
upper bound of 2000 in the MLS procedure, i.e., MassUB = 2000.

The prediction points p1,p2, . . . ,p150 are 150 points uniformly sampled from the unit hyper-
cube, [0, 1]d, rescaled to fit inside the hypercube [0.1, 0.9]d. We use 150 prediction points in our
experiments only for the sake of estimating the quality of the predictions from the metamodel; we
do not envision using the metamodel 150 times in reality. We repeat the experiment 50 times to get
50 predictions at each prediction point. We evaluate the predictions using Root Empirical Relative
Mean Squared Error

RERMSE =

√√√√ 1

7500

50∑
j=1

150∑
i=1

(
ŷj(pi)

y(pi)
− 1

)2

,

where ŷj(pi) is the estimated value of y(pi) on the jth experiment at the ith prediction point.
Alternative methods that we compare against our method are the MLS regression method of

Lipman et al. [2006] using the data-independent error bound and assuming we know the magnitude
of the error in the simulation output (which we refer to as the “vanilla MLS” method), Classification
and Regression Trees (CART) [Breiman et al., 1984] implemented using the rpart package in R,
RODEO [Lafferty and Wasserman, 2008], stochastic kriging [Ankenman et al., 2010] using the
Gaussian correlation function (implemented using the mlegp package in R), and weighted least
squares regression (WLS). Although global metamodeling methods, such as stochastic kriging and
WLS, are known not to perform well when the number of design points is large, we include them
to show when these methods start breaking down and how our MLS method overcomes these
difficulties.

7.1 Multi-Product M/G/1 Queue

In the multi-product M/G/1 queue, d − 1 types of products arrive to a queue according to a
Poisson Process. Let the service rate of product i be µi. The vector of design variables is x =
(x1, x2, . . . , xd−1, ρ), where ρ is the traffic intensity and the xi determine the arrival rates for the
d−1 types of products. For x = (x1, x2, . . . , xd−1, ρ) the arrival rate for product i is λi = cxi where
c = ρ/

∑d−1
i=1 (xi/µi) and µi ∈ [1, 5]. The response surface that we estimate with the simulation is

the steady-state expected waiting time in the queue. The closed-form solution for the steady-state
expected waiting time used for evaluating the predictions is

y(x) =
ρ
∑d−1

i=1
cxi
µ2i

(1− ρ)
∑d−1

i=1
cxi
µi

.

14

Table 1: Relative difference for the multi-product M/G/1 queue example.

d n RSD
relative difference

MLS vanilla MLS CART RODEO SK WLS

5 500
0.05 -58% -14% -42% >0% -49% >0%
0.1 -62% -20% -45% >0% -53% -12%
0.25 -67% -26% -53% >0% -63% -62%

25 5000
0.05 -48% >0% >0% >0% ∅ >0%
0.1 -52% >0% >0% >0% ∅ -10%
0.25 -59% >0% >0% >0% ∅ -62%

75 150000
0.05 -40% >0% >0% >0% ∅ ∅
0.1 -42% >0% >0% >0% ∅ ∅
0.25 -53% >0% >0% >0% ∅ ∅

The design space is [5, 10]d−1× [0.8, 0.95], which after rescaling is the d-dimensional unit hypercube.

7.2 Multi-Product Jackson Network

In the multi-product Jackson Network, d − 1 products arrive to the first station of a system of 3
single-server stations according to a Poisson Process. The service rate at station j is µj , which is
independent of the product type. The vector of design variables is x = (x1, x2, . . . , xd−1, ρ), where
ρ is the traffic intensity and the xi determine the arrival rates for the d − 1 types of products
to the first station. For x = (x1, x2, . . . , xd−1, ρ) the arrival rate for product i is λi = cxi where
c = maxj ρ/

∑d−1
i=1 (xiδij/µj) and µi ∈ [1, 5]. We denote the number of visits to station j by product

i by δij . The response surface that we estimate with the simulation is the expected cycle time of
product 1, which has the closed-form solution

y(x) =
3∑
j=1

δ1j

µj −
∑d−1

k=1 cxkδkj
.

The design space is [5, 10]d−1× [0.8, 0.95], which after rescaling is the d-dimensional unit hypercube.

7.3 Experiment Results

Tables 1–2 display the relative difference of RERMSE and relative standard deviation using our
MLS method, the vanilla MLS method, CART, RODEO, stochastic kriging using the Gaussian
correlation function, and WLS. A table entry of ∅ means that the corresponding R package used
to fit the model ran out of memory. Table 1 gives the results for the multi-product M/G/1 queue
example, and Table 2 gives the results for the multi-prodcut Jackson network example. These
values are calculated by subtracting the relative standard deviation used to choose the run length
in the experiment from the RERMSE and standardizing by dividing the difference with the relative
standard deviation. For example, if we used a relative standard deviation of 0.25, and obtained an
RERMSE of 0.1 for that experiment, the value in the table would be 100% × (0.1 − 0.25)/0.25 =
−60%. Thus, as can be seen directly from the definition, a relative difference of −100% is the best
possible.

From Tables 1–2, it is clear that our procedure is successful in filtering out the noise obtained
from using noisy observations at the design points. Our MLS procedure produced better predictions,
in terms of relative difference, in each case except for the 25-dimensional M/G/1 queue example

15

Table 2: Relative difference for the multi-product Jackson network example.

d n RSD
relative difference

MLS vanilla MLS CART RODEO SK WLS

5 500
0.05 -52% -10% -37% >0% -43% >0%
0.1 -58% -17% -41% >0% -51% -6%
0.25 -63% -23% -51% >0% -60% -52%

25 5000
0.05 -45% >0% >0% >0% ∅ >0%
0.1 -50% >0% >0% >0% ∅ -7%
0.25 -57% >0% >0% >0% ∅ -55%

75 150000
0.05 -36% >0% >0% >0% ∅ ∅
0.1 -38% >0% >0% >0% ∅ ∅
0.25 -44% >0% >0% >0% ∅ ∅

when the relative standard deviation was set at 0.25. However, as will be seen in Table 6, when we
increased the number of design points, our MLS procedure produced better predictions than WLS.
Our MLS procedure works even when the number of design points is large, whereas techniques such
as stochastic kriging and WLS fail to produce results when the number of design points is larger
than 5,000 and 50,000, respectively (represented by ∅ in the tables).

The local metamodeling methods include our MLS method, the vanilla MLS method, and
RODEO. From Tables 5–7, we can see that our MLS method scales well in high dimensions when
both RERMSE and runtime are considered. The vanilla MLS method suffered from bad predictions
since the method uses an isotropic weight function and the data-independent error bounds are not
close (tight) to the actual errors, which leads to incorrectly chosen bandwidths. The method
also suffered from long runtimes (which can be seen in Tables 3–4) because of the computations
required at each step of the line search. RODEO suffered from bad predictions in all cases, possibly
because the assumption of sparsity is not met, and RODEO is designed for problems when the
number of relevant variables is sparse. Furthermore, RODEO assumes a homogeneous variance
throughout the design space, and this assumption is not met for the M/G/1 queue since the
variance is heterogeneous throughout the design space.

The global metamodeling methods include CART, stochastic kriging, and WLS. In 25 and 75
dimensions, the rpart package reaches the maximum tree depth, which results in poor prediction
of the response surface. Stochastic kriging cannot be used when the number of design points is
large, since the variance-covariance matrix is n × n, and the inversion of the variance-covariance
matrix is O(n3); this inversion causes mlegp to run out of memory. From Tables 1–2, as well as
Tables 5–7, we can see that a significant improvement over WLS can be obtained when we localize
the prediction using MLS. Although a large number of design points is needed for the bandwidths
to remain local in higher dimensions, our method still produces results that are superior to WLS
because MLS assigns different weight to each design point depending on the particular prediction
point. Therefore, even though design points that fall in the prediction window may be ’far’ away,
they can still be assigned a very small weight.

7.3.1 Comparison of Runtimes

For a comparison of runtimes, Tables 3–4 give an overview of the average runtimes of the MLS
procedure and the alternative methods that we use for comparison. Table 3 gives the average
runtime during setup; for CART, this includes building the regression tree; for stochastic kriging,
this includes estimation of the parameters and inverting the covariance matrix; for WLS, this

16

Table 3: Average runtime (across all experiments with same dimension and number of design
points) during setup, for the multi-product M/G/1 queue example.

d n
runtime

MLS vanilla MLS CART RODEO SK WLS

5
500 ∅ ∅ 46.3 sec ∅ 14.3 min 0.26 min

10000 ∅ ∅ 1.5 min ∅ ∅ 1.2 min
50000 ∅ ∅ 2.1 min ∅ ∅ 1.7 min

25
5000 ∅ ∅ 1.7 min ∅ ∅ 0.9 min
50000 ∅ ∅ 3.4 min ∅ ∅ 2.3 min
100000 ∅ ∅ 4.1 min ∅ ∅ 5.5 min

75
150000 ∅ ∅ 4.9 min ∅ ∅ ∅
200000 ∅ ∅ 5.23 min ∅ ∅ ∅
250000 ∅ ∅ 5.98 min ∅ ∅ ∅

Table 4: Average runtime (across all experiments with same dimension and number of design
points) for one prediction, for the multi-product M/G/1 queue example.

d n
runtime

MLS vanilla MLS CART RODEO SK WLS

5
500 1.03 sec >2 min 0.11 sec >2 min 0.2 sec 0.03 sec

10000 1.47 sec >2 min 0.21 sec >2 min ∅ 0.03 sec
50000 2.63 sec >2 min 0.48 sec >2 min ∅ 0.03 sec

25
5000 3.93 sec >2 min 0.69 sec >2 min ∅ 0.09 sec
50000 4.5 sec >2 min 0.78 sec >2 min ∅ 0.09 sec
100000 8.9 sec >2 min 1.32 sec >2 min ∅ 0.09 sec

75
150000 10.3 sec >2 min 2.03 sec >2 min ∅ ∅
200000 12.4 sec >2 min 2.32 sec >2 min ∅ ∅
250000 15.9 sec >2 min 2.68 sec >2 min ∅ ∅

includes estimating the regression coefficients. There is no setup for our MLS procedure, the
vanilla MLS procedure, and RODEO, so the corresponding table entries have an entry of ∅. Table
4 gives the average runtime for one prediction, given that the metamodels for CART, stochastic
kriging, and WLS have already been built. The majority of time in the MLS procedure was spent
on estimation of the second partial derivatives and sorting the data matrix in high dimensions.

7.3.2 Procedure using Actual Second Derivative Values

Although the procedure can handle many more design points than the number used to calculate
the values in Tables 1–2, there was not much observed decrease in the RERMSE when more
design points were used. One possible explanation is that the estimated second partial derivatives
tended to be larger than the true second partial derivatives. These larger estimates make our
procedure choose smaller prediction windows than is actually optimal, hence limiting the smoothing
capability of the procedure and resulting in limited improvement in RERMSE as the number of
design points increases. Tables 5–7 show the results of experiments when both the estimated and
actual second derivative values were used in our MLS procedure, along with the other methods we
use for comparison. We use the name “MLS-deriv” to refer to our MLS procedure when the actual
second derivative values are used. From Tables 5–7, we can see that there is significant improvement

17

Table 5: Relative difference for the 5 dimensional M/G/1 queue example.

RSD n
relative difference

MLS MLS-deriv vanilla MLS CART RODEO SK WLS

0.05
500 -58% -53% -14% -42% >0% -49% >0%

10000 -64% -84% -28% -63% >0% ∅ >0%
50000 -72% -91% -37% -75% >0% ∅ >0%

0.1
500 -62% -59% -20% -45% >0% -53% -12%

10000 -70% -86% -33% -80% >0% ∅ -12%
50000 -74% -92% -46% -85% >0% ∅ -14%

0.25
500 -67% -64% -26% -53% >0% -63% -62%

10000 -71% -89% -39% -84% >0% ∅ -63%
50000 -78% -94% -52% -86% >0% ∅ -65%

Table 6: Relative difference for the 25 dimensional M/G/1 queue example.

RSD n
relative difference

MLS MLS-deriv vanilla MLS CART RODEO SK WLS

0.05
5000 -48% -60% >0% >0% >0% ∅ >0%
50000 -51% -82% >0% >0% >0% ∅ >0%
100000 -56% -89% >0% >0% >0% ∅ >0%

0.1
5000 -52% -66% >0% >0% >0% ∅ -10%
50000 -57% -85% >0% >0% >0% ∅ -11%
100000 -61% -91% >0% >0% >0% ∅ -14%

0.25
5000 -59% -73% >0% >0% >0% ∅ -62%
50000 -67% -86% >0% >0% >0% ∅ -64%
100000 -72% -92% >0% >0% >0% ∅ -63%

in the prediction ability of our MLS procedure when the actual second derivative values are used
in the procedure. As mentioned before, a table entry of ∅ means that the corresponding R package
used to fit the model ran out of memory. We can see that the vanilla MLS, CART, RODEO,
stochastic kriging, and WLS all encounter problems when they are implemented with a large number
of design points. Although the prediction ability is significantly improved when we use the actual
second derivative values, our MLS procedure (with estimated second derivatives) resulted in better
predictions over every other method to which we compared, except for CART in the 5-dimensional
M/G/1 queue example, and WLS in the 25-dimensional M/G/1 queue example when the relative
standard deviation is set at 0.25.

8 Conclusion and Future Research

In this paper, we introduced a procedure to implement a local smoothing method called MLS regres-
sion in high-dimensional stochastic simulation metamodeling problems. Our procedure accounts
for the fact that we can make replications and control the placement of design points in stochastic
simulation. Furthermore, we provided a bound on the expected approximation error and showed
that the MLS predictor is consistent under certain conditions. Lastly, we tested the procedure
on two examples that demonstrated better results than other existing simulation metamodeling
techniques. Since the performance of our procedure was improved significantly when we used the

18

Table 7: Relative difference for the 75 dimensional M/G/1 queue example.

RSD n
relative difference

MLS MLS-deriv vanilla MLS CART RODEO SK WLS

0.05
150000 -40% -53% >0% >0% >0% ∅ ∅
200000 -44% -62% >0% >0% >0% ∅ ∅
250000 -53% -71% >0% >0% >0% ∅ ∅

0.1
150000 -42% -58% >0% >0% >0% ∅ ∅
200000 -47% -72% >0% >0% >0% ∅ ∅
250000 -52% -76% >0% >0% >0% ∅ ∅

0.25
150000 -53% -63% >0% >0% >0% ∅ ∅
200000 -59% -76% >0% >0% >0% ∅ ∅
250000 -65% -80% >0% >0% >0% ∅ ∅

true values of the second partial derivatives, obtaining better second partial derivative estimates is
a subject of future research.

Acknowledgements

This paper is based upon work supported by the National Science Foundation under Grant No.
CMMI-0900354. Portions of this paper were published in Salemi et al. [2012].

A Appendix

Lemma A.1. Consider optimization problems MP(1) and MP(2). Denote the optimal solution to
MP(1) by hi,1, for i = 1, 2, . . . , d, and the optimal solution to MP(2) by hi,2, for i = 1, 2, . . . , d.
Then, hi,1 ≤ hi,2, for i = 1, 2, . . . , d.

Proof. Let Di = D̂i(x0), for i = 1, 2, . . . , d, and s2 = s2(x0). The objective function of MP(1) is
strictly convex and the constraints are affine, so any feasible solution that satisfies the Karush-
Kuhn-Tucker (KKT) conditions is a unique global optimum. Without loss of generality, assume
that D1 ≤ D2 ≤ · · · ≤ Dd. The optimal solution to MP(1) is of the form, h1,1 = fn/2, h2,1 =
fn/2, . . . , hd′,1 = fn/2, hd′+1,1 < fn/2, . . . , hd,1 < fn/2, for some 0 ≤ d′ ≤ d. This is because if
there exists i, j with i − j > 1 such that hi,1 = fn/2 and hj,1 < fn/2, then the objective function
can be decreased by swapping the values of the bandwidths, which is a feasible solution. The
corresponding KKT conditions for MP(1) are

(hi,1)2Diµ2(K)2

(
d∑
i=1

(hi,1)2Di
)
− R(K)s2

Cng̃(x0)
∏d
i=1 hi,1

≤ 0,

for i = 1, 2, . . . , d′, and

(hi,1)2Diµ2(K)2

(
d∑
i=1

(hi,1)2Di
)
− R(K)s2

Cng̃(x0)
∏d
i=1 hi,1

= 0

for i = d′ + 1, d′ + 2, . . . , d. Using the last d − d′ equations from the KKT conditions, we can see
that the free variables are of the form hi,1 = k1(1/

√Di) for some constant k1. Thus, the optimal
solution to MP(1) can be written in the form hi,1 = min{fn/2, k1(1/

√D1)} for i = 1, 2, . . . , d.

19

Similarly, the objective function of MP(2) is strictly convex and the constraints are either
affine or quasi-convex, so any feasible solution that satisfies the KKT conditions is a unique global
optimum. Using the same arguments as in the case of MP(2), it can be shown that the optimal
solution to MP(2) is of the form hi,2 = min{fn/2, k2(1/

√D1)}, for i = 1, 2, . . . , d, for some constant
k2. However, the KKT condition for a variable that does not hit its upper bound, fn/2, is

(hi,2)2Diµ2(K)2

(
d∑
i=1

(hi,2)2Di
)
− R(K)s2 + λng(x0)Cng̃(x0)2d(

∏d
i=1 hi,2)2

Cng̃(x0)
∏d
i=1 hi,2

= 0,

where λ > 0. Since λng(x0)Cng̃(x0)2d(
∏d
i=1 hi,2)2 > 0, we have that k1 ≤ k2.

Bandwidth Procedure
Input: δ,B = MassUB or ∞. Output: hl1

∗
, hr1
∗, hl2

∗
, hr2
∗, . . . , hld

∗
, hrd
∗

Perform a line search over the interval [dim(Πd
1) + δ,B], using the Golden Search Method [Bazaraa

et al., 2006]. For each i ∈ [dim(Πd
1) + δ,B], the value q(i) used in the line search is the optimal

value of the optimization problem

min
{h1,...,hd}

1

4
µ2(K)2

(
d∑
i=1

h2
i

∣∣∣D̂i(x0)
∣∣∣)2

+
R(K)s2(x0)

Cng̃(x0)
∏d
i=1 hi

s.t. ng(x0)
d∏
i=1

(hli + hri) = Q

2hi = hli + hri for i = 1, 2, . . . , d

0 ≤ hli ≤ x0,i, for i = 1, 2, . . . , d

0 ≤ hri ≤ 1− x0,i, for i = 1, 2, . . . , d

hli + hri ≤ fn, for i = 1, 2, . . . , d.

This optimization problem can be solved using the Inner Procedure below, with Φ = Q. This
procedure is based on a variation of the variable pegging procedure presented in Bitran and Hax
[1981]. Denote the optimal solution to the line search by i∗ and let the corresponding optimal
solution to the associated optimization problem be denoted by hl1

∗
, hr1
∗, hl2

∗
, hr2
∗, . . . , hld

∗
, hrd
∗. This

solution is optimal for MP(1) or MP(2).

Inner Procedure
Input: Φ. Output: hl1

∗
, hr1
∗, hl2

∗
, hr2
∗, . . . , hld

∗
, hrd
∗

0. Initialize J1 = {1, . . . , d}, P1 = ln
(

Φ
ng(x0)2d

)
, and Iteration β = 1.

1. For all j ∈ Jβ , set hβj = 1
|Jβ |P

β − 1
2 ln

(∣∣∣D̂j(x0)
∣∣∣) + 1

2|Jβ |
∑

k∈Jβ ln
(∣∣∣D̂k(x0)

∣∣∣). If hβj ≤
ln (min {1/2, fn/2}) for all j ∈ Jβ, set h∗j = hβj for all j ∈ Jβ, and go to 3. Otherwise go to 2.

2. Let Jβ+ = {j ∈ Jβ : hβj ≥ ln (min {1/2, fn/2})}. Define h∗j , ln (min {1/2, fn/2}) , ∀j ∈ Jβ+
and let Jβ+1 = Jβ \Jβ+, Pβ+1 = Pβ−|Jβ+| ln(min{1/2, fn/2}). If Jβ+1 = ∅ go to 3. Else, β ← β+1
and go to 1.

3. For all i = 1, . . . , d: Set h∗i ← eh
∗
i . If h∗i ≤ min {x0,i, 1− x0,i, fn/2}, set hli

∗
= hri

∗ = h∗i .
Else, if x0,i ≤ 1 − x0,i set hli

∗
= min {x0,i, fn/2} and hri

∗ = 2h∗i − min {x0,i, fn/2}. Else, set
hri
∗ = min {1− x0,i, fn/2} and hli

∗
= 2h∗i −min {1− x0,i, fn/2}.

20

Nearest-Neighbor Procedure
Search over the grid ∆ = [7d, 8d, . . . ,min {20d, bn/dc}]. For each k ∈ ∆, the value that is used in

the line search is R2(k) , 1− Y>k (Ik×k−Xk(X>k Xk)−1X>k)Yk

Y>k (Ik×k− 1
k
Jk×k)Yk

, where Yk and Xk is the vector of obser-

vations and the regression matrix of the k nearest neighbors to the prediction point, respectively,
and Ik×k is the k × k identity matrix, and Jk×k is the k × k matrix of ones. Choose the k that
maximizes R2(k).

Proof of Theorem 5.1

Proof. Recall from Section 3.1 that

ŷMLS
x0,H(x0) = P(x0)>(P>W(x0)P)−1P>W(x0)Y,

where the ith entry of Y is y(xi) + ei, and ei is the error associated with the simulation output at
the ith design point. Thus, we can write Y as y + e, where y = (y(x1), y(x2), . . . , y(xn))>, and
e = (e1, e2, . . . , en)>. Furthermore, since P(x0) = (1, 0, . . . , 0)> we have ŷMLS

x0,H
(x0) = c1, where c

satisfies the normal equations

P>W(x0)Pc = P>W(x0)(y + e).

Since y ∈ C2(X), we can use the second-order Taylor expansion for y to express y as

y = y(x0)[P]1 +
d∑
i=1

∂y(x0)

∂xi
[P]i+1 +

1

2

∑
|v|=2

QvEv,

where [P]k is the kth column of P, Qv = diag
{
∂|v|y(η1(x1−x0)+x0)

∂xv , . . . , ∂
|v|y(ηn(xn−x0)+x0)

∂xv

}
, ηi is

a scalar with 0 ≤ ηi ≤ 1 for i = 1, 2, . . . , n, and Ev is an n × 1 vector with ith entry (xi − x0)v.
Substituting this representation into the normal equations and solving for c, we get

c = (P>W(x0)P)−1P>W(x0)

y(x0)[P]1 +
d∑
i=1

∂y(x0)

∂xi
[P]i+1 +

1

2

∑
|v|=2

QvEv + e

 .

Therefore,

c1 = y(x0) +
1

2

∑
|v|=2

(
(P>W(x0)P)−1P>W(x0)QvEv

)
1

+
(

(P>W(x0)P)−1P>W(x0)e
)

1

= y(x0) +
1

2

∑
|v|=2

n∑
i=1

∂|v|y(ηi(xi − x0) + x0)

∂xv
(xi − x0)v

(
(P>W(x0)P)−1[P>W(x0)]i

)
1

+

n∑
i=1

ei

(
(P>W(x0)P)−1[P>W(x0)]i

)
1
.

Using Cramer’s rule, we have
(
(P>W(x0)P)−1[P>W(x0)]i

)
1

= det(P>W(x0)Pi))
det(P>W(x0)P)

, Ξi (see, for

example, Lipman et al. [2006]), where Pi is the matrix P with the first column replaced with the
ith standard basis vector. Therefore, we have

ŷMLS
x0,H(x0)− y(x0) =

1

2

∑
|v|=2

n∑
i=1

∂|v|y(ηi(xi − x0) + x0)

∂xv
(xi − x0)vΞi +

n∑
i=1

eiΞi.

21

Using the Cauchy-Schwarz inequality, we have the bound

(ŷMLS
x0,H(x0)− y(x0))2 ≤

1

2

∑
|v|=2

n∑
i=1

∂|v|y(ηi(xi − x0) + x0)

∂xv
(xi − x0)vΞi

2

+

n∑
i=1

e2
iΞ

2
i

≤

1

2

∑
|v|=2

n∑
i=1

Cv
i |xi − x0|v|Ξi|

2

+
n∑
i=1

e2
iΞ

2
i ,

where Cv
i = sup0≤η≤1

∣∣∣∂|v|y(η(xi−x0)+x0)
∂xv

∣∣∣. The result follows since E[e2
i] = σ2

i /Ri.

Proof of Theorem 5.2

Proof. Condition 1 ensures that MP(1) will have an optimal solution for large enough n, almost
surely. Let h∗1(n), h∗2(n), . . . , h∗d(n) denote the optimal solution to MP(1). Since fn → 0 as n→∞,
h∗i (n)→ 0 as n→∞ for i = 1, 2, . . . , d, we have n−1|H∗l,r| and each entry of the bandwidth matrix
tends to zero as n→∞. Let Lmax(n) and Lmin(n) denote the maximum and minimum eigenvalue
of the bandwidth matrix for the nth design. Since the bandwidth matrix is diagonal, the eigenvalues
are just the bandwidth parameters. The optimal solution satisfies dim(Πd

1)+δ ≤ ng(x0)
∏d
i=1 h

∗
i (n),

so
dim(Πd1)+δ

ng(x0)fd−1
n
≤ Lmin(n). Thus,

Lmax(n)

Lmin(n)
≤ nfdng(x0)

2(dim(Πd
1) + δ)

=
M

2(dim(Πd
1) + δ)

.

Therefore, all of the conditions in Assumption 2 are satisfied, so by Theorem 2.1 of Ruppert
and Wand [1994], Equations (2) and (3) are the conditional bias and variance of ŷLOC(x0;H∗l,r),

respectively. From the constraint dim(Πd
1) + δ ≤ ng(x0)

∏d
i=1 hi(n), the solution h∗i (n), for i =

1, 2, . . . , d, satisfies dim(Πd
1) + δ ≤ ng(x0)

∏d
i=1 h

∗
i (n). Thus,

Cng̃(x0)
dim(Πd

1) + δ

ng(x0)
≤ Cng̃(x0)

d∏
i=1

h∗i (n).

Since Cn/n → ∞ as n → ∞, Cng̃(x0)
∏d
i=1 h

∗
i (n) → ∞ as n → ∞. From the conditions

Cng̃(x0)
∏d
i=1 h

∗
1(n)→∞ and h∗i (n)→ 0, ∀i, as n→∞,

MSE{ŷLOC(x0;H∗l,r)|x1,x2, . . . ,xn} p→ 0 as n→∞.

Therefore, the estimator ŷLOC(x0;H∗l,r) is consistent.

Proof of Theorem 5.3

Proof. Condition 1 ensures that MP(1) will have an optimal solution for large enough n, almost
surely. Let h∗1(n), h∗2(n), . . . , h∗d(n) denote the optimal solution to MP(1). Since fn → 0 as n→∞,
h∗i (n) → 0 as n → ∞ for i = 1, 2, . . . , d, we have n−1|H∗l,r| and each entry of the bandwidth
matrix tends to zero as n → ∞. Let Lmax(n) and Lmin(n) denote the maximum and minimum
eigenvalue of the bandwidth matrix for the nth design. Since the bandwidth matrix is diagonal, the
eigenvalues are just the bandwidth parameters. We must show that there exists a constant L such
that Lmax(n)

Lmin(n) ≤ L for n ≥ 1. Since P (lim supn→∞Di(n) < ∞) = 1 for i = 1, 2, . . . , d, for almost

22

every sample path there exists an n1,i < ∞ and ∆i < ∞ such that Di(n) < ∆i for n > n1,i and
i = 1, 2, . . . , d. Similarly, since P (lim infn→∞ s

2(n) > 0) = 1, for almost every sample path there
exists an n2 <∞ and m > 0 such that s2(n) > m ∀n > n2. Let ∆ = max{∆1, . . . ,∆d}. Denote the
optimal solution to MP(1) with the constraint dim(Πd

1) + δ ≤ ng(x0)
∏d
i=1(hli(n) + hri (n)) removed

by ĥ∗1(n), ĥ∗2(n), . . . , ĥ∗d(n). Assume without loss of generality that d′ = d′(n) variables hit their

upper bound, and let H+ = {1 ≤ i ≤ d|ĥ∗i (n) = fn/2} and H− = {1 ≤ i ≤ d|ĥ∗i (n) < fn/2}. The
Karush-Kuhn-Tucker (KKT) conditions for the variables ĥ∗i (n), for i ∈ H−, are

(ĥ∗i (n))2Di(n)µ2(K)2

∑
i∈H+

(
fn
2

)2

Di(n) +
∑
i∈H−

ĥ∗i (n)2Di(n)

− R(K)s2(n)

Cng̃(x0)
(
fn
2

)d′
Π

i∈H−
ĥ∗i (n)

= 0.

Rearranging these equations, we get the implicit solution

ĥ∗i (n) =

ĥ∗i (n)d

′−dDi(n)
d′−d−2

2 R(K)s2(n)
√

Π
i∈H−
Di(n)

Cng̃(x0)
(
fn
2

)d′
µ2(K)2

[
(d− d′)Di(n)ĥ∗i (n)2 +

(
fn
2

)2 ∑
i∈H−
Dk(n)

]

1
2

, (6)

for i ∈ H−. From the condition Cn = O(n), there exists an n3 <∞ and Θ <∞ such that Cn ≤ Θn
∀n > n3. Let n0 = max{n1,1, n2,1 . . . , n1,d, n2, n3}. Using (6) and the fact that ĥ∗i (n) ≤ fn/2 for

i = 1, 2, . . . , d, we can get a lower bound on ĥ∗i (n),

ĥ∗i (n) ≥ h̃∗i (n) ,

 R(K)m
√

Π
i∈H−
Di(n)

Θng̃(x0)
(
fn
2

)d′+2
dM

d+4
2 µ2(K)2

1

d−d′+2

,

for i ∈ H− and n > n0. From the KKT conditions, we can get a lower bound on the second partial
derivatives associated with the bandwidths that do not hit their upper bounds. Indeed, for n > n0,

Di(n) ≥ R(K)m

Θng̃(x0)µ2(K)2dM
(
fn
2

)d+2
.

Substituting this lower bound for Di(n) into h̃∗i (n), we can get a lower bound on h̃∗i (n), which we
denote by h̄∗i (n). For n > n0,

ĥ∗i (n) ≥ h̃∗i (n) ≥ h̄∗i (n) ∝ n−
d−d′+2

2(d−d′+2) f
− 2(d′+2)+(d+2)(d−d′)

2(d−d′+2)
n .

From Lemma A.1, h∗i (n) ≥ h̄∗i (n), for i = 1, 2, . . . , d, and n > n0. Therefore, for n > n0,

Lmax(n)

Lmin(n)
≤ fn

2h̄∗i (n)
∝ fnn

d−d′+2
2(d−d′+2) f

2(d′+2)+(d+2)(d−d′)
2(d−d′+2)

n ∝ n
−(d−d′)−6

2(d+1)(d−d′+2) .

Since n
−(d−d′)−6

2(d+1)(d−d′+2) → 0 as n → ∞, there exists an L such that Lmax(n)
Lmin(n) ≤ L. Thus, all of

the conditions in Assumption 2 are satisfied, so by Theorem 2.1 of Ruppert and Wand [1994],

23

Equations (2) and (3) are the conditional bias and variance of ŷLOC(x0;H∗l,r), respectively. We now

show that Cng̃(x0)
∏d
i=1 h

∗
i (n)→∞ as n→∞. For n > n0,

Cng̃(x0)

d∏
i=1

ĥ∗i (n) ≥ Cng̃(x0)

d∏
i=1

h̄∗i (n)

≥ ng̃(x0)
d∏
i=1

h̄∗i (n)

∝ n
4−(d−d′)2
2(d−d′+2) f

8d′−4d−(d+2)(d−d′)2
2(d−d′+2)

n

= n
(d−d′)2+8(d−d′)+4

2(d+1)(d−d′+2) →∞ as n→∞.

From the inequality
∏d
i=1 h

∗
i (n) ≥ ∏d

i=1 ĥ
∗
i (n), the limit Cng̃(x0)

∏d
i=1 ĥ

∗
i (n) → ∞ implies that

Cng̃(x0)
∏d
i=1 h

∗
i (n) → ∞, as n → ∞. Because Cng̃(x0)

∏d
i=1 h

∗
i (n) → ∞ and h∗i (n) → 0 for

i = 1, 2, . . . , d, as n→∞,

MSE{ŷLOC(x0;H∗l,r)|x1,x2, . . . ,xn} p→ 0 as n→∞.

Therefore, the estimator ŷLOC(x0;H∗l,r) is consistent.

Proof of Theorem 5.4

Proof. Condition 1 ensures that MP(1) will have an optimal solution for large enough n, almost
surely. Let h∗1(n), h∗2(n), . . . , h∗d(n) denote the optimal solution to MP(2). Since the optimal solution

is a feasible solution, it must satisfy the constraint dim(Πd
1) + δ ≤ ng(x0)

∏d
i=1 hi(n) ≤ MassUB.

Thus,

Cng̃(x0)
dim(Πd

1) + δ

ng(x0)
≤ Cng̃(x0)

d∏
i=1

h∗i (n) ≤ Cng̃(x0)
MassUB

ng(x0)
.

From the last inequality, we can see that Cn/n → ∞ as n → ∞ is necessary and sufficient for
Cng̃(x0)

∏d
i=1 h

∗
i (n) → ∞ as n → ∞. The rest of the proof is the same as the proof of Theorem

5.2.

References

A. Adamson and M. Alexa. Anisotropic point set surfaces. In Proceedings of AFRIGRAPH 2006 4th
International Conference on Virtual Reality, Computer Graphics, Visualization and Interaction
in Africa, volume 4, pages 7–13, 2006.

N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric regression. The
American Statistician, 46(3):175–185, 1992.

B. Ankenman, B. L. Nelson, and J. Staum. Stochastic kriging for simulation metamodeling. Oper-
ations Research, 58(2):371–382, 2010.

S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for approximate
nearest neighbor searching in fixed dimensions. Journal of the ACM, 45(6):891–923, 1998.

24

M. Bazaraa, H. Sherali, and C. M. Shetty. Nonlinear Programming: Theory and Algorithms. Wiley
Interscience, 2006.

G. R. Bitran and A. C. Hax. Disaggregation and resource allocation using convex knapsack problems
with bounded variables. Management Science, 27(4):431–441, 1981.

L. Bos and K. Salkauskas. Moving least-squares are Backus-Gilbert optimal. Journal of Approxi-
mation Theory, 59:267–275, 1989.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Wadsworth, 1984.

W. S. Cleveland, S. J. Devlin, and E. Grosse. Regression by local fitting: Methods, properties, and
computational algorithms. Journal of Econometrics, 37(1):87–114, 1988.

N. Cressie and G. Johannesson. Fixed rank kriging for very large spatial data sets. Journal of the
Royal Statistical Society, 70(1):209–226, 2008.

K. Doksum, D. Peterson, and A. Samarov. On variable bandwidth selection in local polynomial
regression. Journal of the Royal Statistical Society. Series B, 62(3):431–448, 2000.

J. Fan and I. Gijbels. Data-driven bandwidth selection in local polynomial fitting: Variable band-
width and spatial adaptation. Journal of the Royal Statistical Society. Series B, 57(2):371–394,
1995.

R. B. Gramacy and H. K. H. Lee. Bayesian treed gaussian process models with an application
to computer modeling. Journal of the American Statistical Association, 103(483):1119–1130,
September 2008.

N. W. Hengartner, M. H. Wegkamp, and E Matzner-Lober. Bandwidth selection for local linear
regression smoothers. Journal of the Royal Statistical Society. Series B, 64(4):791–804, 2002.

C. G. Kaufman, M. J. Schervish, and D. W. Nychka. Covariance tapering for likelihood-based
estimation in large spatial data sets. Journal of the American Statistical Association, 103(484):
1545–1555, 2008.

J. Lafferty and L. Wasserman. Rodeo: Sparse, greedy nonparametric regression. The Annals of
Statistics, 36(1):28–63, 2008.

P. Lancaster and K. Salkauskas. Surfaces generated by moving least squares methods. Mathematics
of Computation, 37(155):141–158, 1981.

D. Levin. The approximation power of moving least squares. Mathematics of Computation, 67
(224):1517–1531, 1998.

Y. Lipman, D. Cohen-Or, and D. Levin. Error bounds and optimal neighborhoods for mls approxi-
mation. In K. Polthier and A. Sheffer, editors, Proceedings of the Fourth Eurographics Symposium
on Geometry Processing, pages 71–80, 2006.

M. Liu and J. Staum. Stochastic kriging for efficient nested simulation of expected shortfall. Journal
of Risk, 12(3):3–27, 2010.

C. Loader. Local Regression and Likelihood, volume 47 of Statistics and Computing. Springer, New
York, 1999.

25

K. Prewitt and S. Lohr. Bandwidth selection in local polynomial regression using eigenvalues.
Journal of the Royal Statistical Society. Series B, 68(1):135–154, 2006.

D. Ruppert. Empirical-bias bandwidths for local polynomial nonparametric regression and density
estimation. Journal of the American Statistical Association, 92(439):1049–1062, September 1997.

D. Ruppert and M. P. Wand. Multivariate locally weighted least squares regression. The Annals
of Statistics, 22(3):1346–1370, 1994.

D. Ruppert, S. J. Sheather, and M. P. Wand. An effective bandwidth selector for local least squares
regression. Journal of the American Statistical Association, 90(432):1257–1270, December 1995a.

D. Ruppert, S. J. Sheather, and M. P. Wand. An effective bandwidth selector for local least squares
regression. Journal of the American Statistical Association, 90(432):1257–1270, 1995b.

P. L. Salemi, B. L. Nelson, and J. Staum. Moving least squares regression for high dimensional
simulation metamodeling. In C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M.
Uhrmacher, editors, Proceedings of the 2012 Winter Simulation Conference. IEEE, Piscataway,
NJ, 2012.

S. Shan and G. Wang. Metamodeling for high dimensional simulation-based design problems.
Journal of Mechanical Design, 132(5):1–11, 2010.

E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-inputs. In Advances in
Neural Information Processing Systems 18. MIT Press, 2006.

I. M. Sobol. The distribution of points in a cube and the accurate evaluation of integrals. USSR
Computational Mathematics and Mathematical Physics, 7:784–802, 1967.

M. H. Tongarlak, B. Ankenman, B. L. Nelson, L. Borne, and K. Wolfe. Using simulation early in
the design of a fuel injector production line. Interfaces, 40(2):105–117, 2010.

S. Vijayakumar and S. Schaal. Locally weighted projection regression: An o(n) algorithm for
incremental real-time learning in high dimensional space. In Proceedings of the Seventeenth
International Conference on Machine Learning, pages 288–293, 2000.

M. P. Wand and M. C. Jones. Comparison of smoothing parameterizations in bivariate kernel
density estimation. Journal of the American Statistical Association, 88:520–528, 1993.

G. S. Watson. Smooth regression analysis. The Indian Journal of Statistics, Series A, 26(4):
359–372, 1964.

W. Whitt. Planning queueing simulations. Management Science, 35(11):1341–1366, 1989.

F. Yang, J. Liu, B. L. Nelson, B. E. Ankenman, and M. Tongarlak. Metamodeling for cycle
time-thoughput-product mix surfaces using progressive model fitting. Production Planning and
Control, 22(1):50–68, 2011.

26

