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Simulating coherent risk measures is potentially very computationally
expensive. We present a procedure for generating a fixed-width confidence
interval for a coherent risk measure based on a finite number of generalized
scenarios. Computational experiments show that this procedure is much
more efficient than standard methods, making simulation of coherent risk
measures based on even a large number of generalized scenarios afford-
able. The procedure improves upon previous specialized methods by being
reliably efficient when applied to simulation of generalized scenarios and
portfolios with heterogeneous characteristics. We also show how robust the
procedure’s performance is to violations of the normality assumption under
which its statistical validity is proved, and study the magnitude of estimation
error.

1 INTRODUCTION

Coherent risk measures can improve the practice of risk management (Artzner
et al (1999)) and pricing derivative securities (Jaschke and Küchler (2001); Staum
(2004)). In some cases, coherent risk measures may need to be estimated by
simulation. In such cases, especially for large firm-wide risk measurement prob-
lems, carrying out the simulation by standard methods could be much slower than
simulations currently used in risk management and derivatives pricing, and too slow
for routine use in practice.

This material is based upon work supported by the National Science Foundation under grants
No. DMI-0217690, DMS-0202958 and DMI-0555485. Part of this material has been published
in the Proceedings of the 2006 Winter Simulation Conference. We thank the Editor-in-Chief and
an anonymous referee for their helpful comments that have led to an improved and expanded
presentation.
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2 V. Lesnevski et al

To see why, consider that any coherent risk measure ρ has a representation of
the form:

ρ(Y )= sup
P∈P

EP[−Y/r] (1)

where Y is the value of a portfolio at a future time horizon, r is a stochastic
discount factor that represents the time value of money and P is a set of probability
measures (Artzner et al (1999, Proposition 4.1)). Equations of a similar form hold
for the related problems in derivative security pricing. We simplify the problem
somewhat by limiting our analysis to the case where the set P has only a finite
number k of elements P1, P2, . . . , Pk . The obvious way of estimating ρ(Y ) by
simulation is to estimate EPi

[−Y/r] for each i = 1, 2, . . . , k, which is typically
about k times as expensive as estimating a single expectation by simulation. This
may be impractically expensive when Y is the value of a portfolio that contains
thousands of derivative securities and Pi represents a model governing hundreds of
underlying risk factors.

The assumption that P = {P1, P2, . . . , Pk} holds, for instance, when the
decision-maker designs the coherent risk measure (or the underlying acceptance
set, in the case of derivative security pricing) by specifying these k generalized
scenarios. The SPAN margin computation system of the Chicago Mercantile
Exchange is closely related to such a risk measure. To simplify the example, we
consider applying SPAN to a portfolio involving a futures contract for delivery
in a single month and options on that contract. In this case, our risk measure has
k = 16 generalized scenarios, which involve the changes over one day in the futures
price and in the implied volatility of the options. They are based on a hypothetical
moderate move δ or an extreme move � in the futures price and a hypothetical
change σ in the implied volatility, as illustrated in Table 1. The first 14 probability
measures are degenerate: each of them is a point mass on one scenario. The 15th and
16th probability measures place 35% probability on an extreme move in the futures
price and 65% probability on no change; the expected loss under these probability
measures is close to 35% of the loss in the case of an extreme move, which SPAN
uses. The maximum expected loss over all generalized scenarios is used to compute
margin requirements for the portfolio of futures and options.

The assumption that P is finite does not generally hold for worst conditional
expectation (Artzner et al (1999, Section 5)) or related risk measures such as tail
conditional expectation, conditional value-at-risk and expected shortfall (see Acerbi
and Tasche (2002)). However, our procedure may provide a foundation for further
work on efficiently simulating worst conditional expectation. For coherent risk
measures such that P is infinite, it may also be possible to use our procedure by
approximating P by the convex hull of k probability measures.

In Lesnevski et al (2007), we used tools from the ranking and selection literature
to create efficient procedures that generate a fixed-width confidence interval for
a coherent risk measure. Those procedures were usually no more than twice
as expensive as estimating a single expectation by simulation, not k times as
expensive; in some cases, they were as little as 5% more expensive. However,
those procedure have a weakness: for some problems, that is, for some sets P and
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An adaptive procedure for estimating coherent risk measures 3

TABLE 1 Generalized scenarios for SPAN.

Generalized Probability Futures Implied
scenario (%) price volatility

1 100 +0 +σ

2 100 +0 −σ

3 100 +δ/3 +σ

4 100 +δ/3 −σ

5 100 −δ/3 +σ

6 100 −δ/3 −σ

7 100 +2δ/3 +σ

8 100 +2δ/3 −σ

9 100 −2δ/3 +σ

10 100 −2δ/3 −σ

11 100 +δ +σ

12 100 +δ −σ

13 100 −δ +σ

14 100 −δ −σ

15 35 +� +0
65 +0 +0

16 35 −� +0
65 +0 +0

portfolio values Y , they could be substantially less efficient than standard methods.
In this paper, we improve upon earlier procedures by creating an adaptive procedure
whose efficiency is robust to variation in problem specification because it uses
simulated data to determine when to employ efficiency improvement techniques.
We also demonstrate that the adaptive procedure generates a confidence interval
whose coverage is robust to violation of the normality assumption used to prove
its statistical validity, and investigate the magnitude of estimation error in the rare
event that the confidence interval does not include the true value of the risk measure.

To explain how our procedures enhance efficiency, we introduce some new
notation and terminology. Let X := −Y/r and µi := EPi

[X]. The risk measurement
involves a single random variable X, which is a negative discounted portfolio
value or a discounted loss, viewed under multiple probability measures. For clarity
in discussing simulations, let Xi be a random variable whose distribution under
the probability measure Pr is the same as that of X under Pi , that is, such that
Pr[Xi ≤ x] = Pi[X ≤ x]. Because of the parallel with ranking and selection, we
refer to Xi as an observation of system i. In ranking and selection, we are interested
in the best system, which is the one with the largest mean. In the risk measurement
of Equation (1), the best system is the worst generalized scenario, the one with the
largest expected loss.

Our procedures use screening to eliminate some systems that seem likely to be
inferior after generating a small number of observations, instead of expensively
getting precise estimates of the means of all k systems. To sharpen screening
we employ common random numbers to induce positive correlation between the
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4 V. Lesnevski et al

systems and thereby reduce the variance of their differences: see Glasserman (2004,
pp. 361, 380) or Law and Kelton (2000). To reduce the number of replications
required for estimation, we employ control-variate estimators to exploit strong
correlation between the response of interest, X, and a vector C of random
variables with known expectations, called control variates: see Glasserman (2004,
Section 4.1) or Law and Kelton (2000).

A disadvantage of the procedures presented in Lesnevski et al (2007) is that in
some cases the user might need to choose the procedure or its parameters based
on previous knowledge about the problem to gain efficiency. For example, having a
large screening budget is usually good, as it allows the procedure to screen out most
of the inferior systems. However, it might significantly decrease efficiency if more
than one system has the maximum mean, or if some systems are nearly tied with
the best. In such situations, screening might not be able to eliminate all systems
but one, and the work done during screening might be more than is necessary to
estimate the coherent risk measure accurately.

One of the procedures in Lesnevski et al (2007) uses the technique of “restart-
ing”, in which data that is used for screening are subsequently discarded so as
to make it possible to reduce the required sample sizes for the systems that
survive screening. The advantage of restarting is that the new data is statistically
independent of the screening exercise, so one may ignore the measures that were
screened out, and design for the smaller problem. Even though the procedure with
restarting is usually preferable over other alternatives, if screening is ineffective,
restarting is wasteful of data. Without restarting, information generated during
screening is reused during estimation of the confidence interval, so the only danger
of a large screening budget is that it might exceed the sample size required for
accurate estimation. With restarting, information generated during screening is
thrown away, so it is important to make sure that no excess work is done during
screening. Before running the simulation, the user would have to decide whether or
not to use restarting and how much data to allocate to the screening stage. Making a
good decision without substantial experience with simulation problems of the same
form is difficult. In this paper we develop an adaptive multi-stage procedure that is
reliably efficient. It gains the benefits of restarting and of having a large budget
to use for screening by restarting when simulated data suggests that restarting
is worthwhile, rather than at a prespecified time that might be disadvantageous.
With the adaptive procedure, the user does not have to guess whether or not to use
restarting or what the screening budget should be.

In Section 2, we present motivating examples in which coherent risk measures
are estimated. The computational experiments that illustrate the procedure’s per-
formance are carried out with these examples. Section 3 describes our adaptive
procedure and gives a heuristic justification of its design, while the proof of its
statistical validity is in Appendix A. Computational experiments demonstrating
the procedure’s efficiency are described in Section 4, while Sections 5 and 6
feature experiments that test the robustness of the confidence interval’s coverage
to non-normal data and explore the severity of error in the unlikely event that the
confidence interval does not contain the true value. Section 7 concludes the paper.

The Journal of Computational Finance Volume 11/Number 4, Summer 2008



An adaptive procedure for estimating coherent risk measures 5

2 MOTIVATING EXAMPLES

We will test the performance of our procedures on two examples, which were also
used in Lesnevski et al (2007). We selected these examples because it is easy to
find the true best mean, which we must do to study the coverage of the confidence
interval that the procedure produces, but we believe that these examples have a
structure similar to that of problems in which estimating the true best mean (worst
expected loss) would be a significant challenge.

2.1 Basket put

The first problem is to price a basket put option, whose payout at a terminal time T

is max{0, K −w′S(T )}, where K is the strike price, w is a vector of weights and
S(T ) is the vector of terminal prices of the securities in the basket. The underlying
security price vector S obeys the Black–Scholes model, so the price of the basket
put price is its risk-neutral expected discounted payout.

Under the Black–Scholes model, the price vector S follows multivariate geomet-
ric Brownian motion with risk-neutral drift r , the risk-free interest rate, and with
covariance matrix �. That is, ln Sj (T )= ln Sj (0)+ (r − ‖Aj‖2/2)T +AjZ

√
T ,

where A is a matrix satisfying AA′ =�, ‖Aj‖ is the Euclidean norm of its j th row,
ie, the volatility of the j th asset, and Z is a multivariate standard normal random
vector. The short-term interest rate r is observable, and there are standard methods
for calibrating the underlying securities’ individual volatilities ‖Aj‖, whether from
historical data or by fitting to observable prices of market-traded options on the
underlying securities: see Cont and Tankov (2004, Chs 7, 13) and Shiryaev (1999,
Ch. IV). However, estimation of the non-diagonal elements of � poses a greater
problem. For pricing the basket put, the crucial quantity is ‖w′A‖, the volatility
of the basket, and this depends strongly on the correlations between assets. There
may be a range of plausible correlations and thus a range of plausible prices for the
basket put.

In this example, the basket is a weighted average of three security prices with
weights w1 = 0.5, w2 = 0.3 and w3 = 0.2. The initial security prices are all 100,
and the strike price is K = 85. The interest rate r = 5% and the volatilities are
‖A1‖ = 40%, ‖A2‖ = 30% and ‖A3‖ = 20%. To account for uncertainty about
correlations, we use the k = 43 = 64 probability measures produced by allowing
each of the three pairwise correlations to be 0.2, 0.35, 0.55 or 0.75. Although
the payout in this example is far from normally distributed, the sample averages
are approximately normally distributed and the minimum coverage guarantees the
confidence limits held in all our experiments.

The three control variates used in this example are the discounted payouts of
put options with strike K on each individual asset in the basket. Their means are
given by the Black–Scholes pricing formula, based on the known volatilities. The
idea behind using them as control variates is that much of the (unknown) error in
estimating the basket put’s expected discounted payout can be explained as a linear
function of the differences between the discounted payouts of the puts on individual

Research Paper www.thejournalofcomputationalfinance.com
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assets and their means, which are known; this makes possible a reduced-variance
estimate of the basket put’s price.

2.2 Options portfolio

In this example we assess the risk of a portfolio of European-style call and put
options on three assets with initial prices of 100 and terminal prices S1(T ), S2(T )

and S3(T ). All options in the portfolio expire at a terminal time T . We also consider
a market index whose terminal level is S0(T ). For each of j = 0, 1, 2, 3, Sj (T )

follows geometric Brownian motion with drift dj and volatility σj , so ln Sj(T )=
ln Sj(0)+ (dj − σ 2

j /2)T + σjWj

√
T , where the Wj is standard normal. There is

a one-factor model of dependence among the assets: under a probability measure P,
Z0, Z1, Z2 and Z3 are independent standard normal random variables, W0 = Z0,

and Wj = λjZ0 +
√

1− λ2
jZj for j = 1, 2, 3. In this model, Z0 corresponds to the

market factor common to all assets, while Z1, Z2 and Z3 are idiosyncratic factors
corresponding to each individual asset.

The risk measure we consider in this setting is the maximum expected loss
incurred while holding the portfolio, where the maximum is taken over 44 = 256
conditional expectations given a generalized scenario. Of the probability measures
Pi in Equation (1), 255 are defined by Pi[E] = P[E|Ai] for some event Ai of
probability P[Ai] = 1/20= 5%, while the 256th probability measure is P itself.
This risk measure is similar in spirit to worst conditional expectation (Artzner
et al (1999, § 5)). We construct generalized scenarios by restricting some of the
factors Z0, Z1, Z2 and Z3. Each of the factors can be “up” (corresponding to
a large increase of the asset price), “down” (a large decrease), “middle” (not
extreme) or “unrestricted”. The probabilities of the restrictions on the restricted
factors are always equal. For example, letting � be the standard normal distribution
function, in the scenario “up-down-unrestricted-unrestricted”, Z0 is sampled con-
ditional on exceeding �−1(1− 1/

√
20), Z1 is sampled conditional on being below

�−1(1/
√

20), while Z2 and Z3 are not restricted. By independence among Z0, Z1,
Z2 and Z3, the probability of this event is 1/20. The time horizon T is one week,
and the parameters were calibrated using three years of historical weekly data on
the S&P500 index and shares of Intel (INTC), ExxonMobil (XOM) and Microsoft
(MSFT). The result was the annualized volatilities σ1 = 39.8%, σ2 = 19.3% and
σ3 = 27.0% and the factor loadings λ1 = 0.617, λ2 = 0.368, and λ3 = 0.785 to
match the observed correlations. Because one week is such a short period of time
that the expected return is negligible, while mean returns are hard to estimate due
to a high ratio of volatility to mean, we take each dj = 0. Since we do not need to
simulate S0, the parameters d0 and σ0 are not relevant.

We investigated the performance of our procedures on several portfolios. The
extent of the efficiency improvement depends on the portfolio, so here we present a
portfolio yielding results that we consider typical. Table 2 lists the number of each
type of option in this example portfolio. Each option is the right to buy or sell 100
shares. We do not use control variates in this example.

The Journal of Computational Finance Volume 11/Number 4, Summer 2008



An adaptive procedure for estimating coherent risk measures 7

TABLE 2 Amounts of options in the portfolio.

Strike price
Option

Asset type 85 90 95 100 105 110 115

1 Put −2,000 −2,000 −2,500 1,000 0 0 0
2 Put 2,500 −1,000 1,000 500 0 0 0
3 Put 1,500 1,000 2,500 −1,500 0 0 0

1 Call 0 0 0 −1,000 1,500 −500 −1,000
2 Call 0 0 0 1,500 −2,500 2,000 −2,000
3 Call 0 0 0 −2,000 −1,000 1,000 2,500

3 ADAPTIVE MULTI-STAGE PROCEDURE

Our procedure produces a lower confidence limit that covers the coherent risk
measure with probability at least 1− αa , and an upper confidence limit that covers
with probability at least 1− αb, (see Appendix A for a proof). The procedure
spends some of the allowable error αa or αb on screening (αI ), some on control
variates (αC) and the remainder on estimating the means of the systems that survive
screening. We use the control variate Ci for the output Xi of system i to reduce the
variance of estimating the mean µi of each system i ∈ I , where I is the set of
systems that survive screening.

Our procedure updates the set I by screening in multiple stages. Each stage
involves simulating a prespecified number of observations from each system that
was in I at the beginning of the stage and then screening using all available
observations. A system is screened out and removed from I if the sample average
of all observations generated from that system is sufficiently far below some
other system’s sample average, relative to the estimated variance of the difference
between the systems. We use common random numbers to reduce the variance
of the differences between systems, but our procedure could be used without
common random numbers. We do not use control variates in screening: we found
little added benefit because common random numbers alone were so effective
for the financial examples we considered, and using control variates in screening
introduces technical complications (Nelson and Staum (2006)).

Once screening is completed, the procedure must estimate the means of all
systems that have not been screened out. At some point, the procedure needs to
determine for each system how many observations would be required to get a
sufficiently precise estimate of the mean: this depends on the system’s estimated
variance and on the number of systems, which contributes to the natural bias of the
problem of estimating the best. The purpose of restarting is to reduce this natural
bias and thus the required sample sizes for surviving systems by throwing away
data that was simulated when all of the systems were still in I .

Our adaptive procedure determines the required sample sizes when it restarts,
which marks a transition between two phases. Phase I (“prescreening”) consists of
multi-stage screening whose purpose is, while controlling relative cost, to screen

Research Paper www.thejournalofcomputationalfinance.com



8 V. Lesnevski et al

FIGURE 1 A flowchart representing the adaptive multi-stage procedure.
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out as many inferior systems as possible, so that they do not contribute to the
critical values that determine the overall sample size for mean estimation. The
procedure then restarts: no observations obtained during prescreening are used
during Phase II. Phase II begins by determining required sample sizes for the
remaining systems, continues to use multi-stage screening as it simulates the
required number of observations and ends by constructing the confidence interval
around the largest estimated mean of any system that has survived screening.
Figure 1 shows a flowchart illustrating the procedure’s phases, each of which
contains multiple stages. In the figure, stage 	 is a representative stage of Phase I
and stage 	′ is a representative stage of Phase II.

3.1 Phase I: prescreening

The sole purpose of the first phase is to reduce the number of systems and thus the
natural bias of the estimation problem, making a fixed-width confidence interval
attainable with fewer replications.

The maximal number of Phase I stages, m, is specified in advance. The first stage
of Phase I is stage 0 and the first stage of Phase II is stage M , where the random
variable M ≤m. The decision to proceed to Phase II is based on the simulated data,
when the cost of continuing and doing one more stage of Phase I is greater than the
estimated approximate savings due to further prescreening. The growth rate R and

The Journal of Computational Finance Volume 11/Number 4, Summer 2008
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the initial sample size n0 are also specified in advance, so that the total sample size
during stage 	 is N(	)= �n0R

	�.
The initial sample size n0 should be chosen so that sample averages are

approximately normal. In most cases, n0 = 30 is adequate. The procedure is most
efficient if the growth factor R is between 1.2 and 2.0, while m is such that the total
budget available for prescreening is large. For example, if R = 1.5 and m= 30,
the total budget available for Phase I is �n0R

m−1� = 3,835,021, which is large
enough for most applications. We found that R = 1.5 and m= 30 worked well on
all problems we consider. It was not possible to improve much on the performance
by altering the parameters, as it was for the procedures presented in Lesnevski et al
(2007).

Let I be the set of systems that have not been screened out. Initially, set I ←
{1, . . . , k}. Each stage 	= 0, . . . , m− 1 of Phase I consists of the following steps.

1) Simulation: simulate (Xij, Cij) for j = N(	− 1)+ 1, . . . , N(	) and all
i ∈ I .

2) Screening: for each h, i ∈ I such that h 	= i, set:

¯̄Dhi← 1

N(	)

N(	)∑
j=1

(Xhj − Xij)

S2
hi←

1

N(	)− 1

N(	)∑
j=1

(Xhj −Xij − ¯̄Dhi)
2

Whi← tN(	)−1,1−αI /(2m(k−1))Shi/
√

N(	)

where tν,p is the p quantile of the t distribution with ν degrees of freedom.

Then set I ← {i ∈ I |∀h ∈ I, ¯̄Dhi ≥−Whi}.
3) Checking whether to proceed to Phase II: for each i ∈ I , compute the residual

variance σ̂ 2
i of regressing Xi,1, . . . , Xi,N(	) on Ci,1, . . . , Ci,N(	) and define:

cp := 1

L
(�−1(1− αa/p + αC)+�−1(1− αb + αI + αC)) (2)

where � is the standard normal cumulative distribution function. If 	=m−
1 or:

|I |N(	)(R − 1) > (c2|I | − c2
1) max

i∈I σ̂ 2
i (3)

the procedure jumps to Phase II by setting M← 	+ 1, which means that
the next stage is the first stage of Phase II, and by setting K← |I |, which
is the number of systems left after prescreening and which will be used for
determining final sample sizes. Otherwise, set 	← 	+ 1 and return to Step 1.

Under the transition rule given by inequality (3), prescreening stops when the
cost of doing one more stage of prescreening exceeds an estimate of the maximum
savings that could occur if prescreening continues. The estimate is computed under
the assumption that after additional prescreening there will be only one system

Research Paper www.thejournalofcomputationalfinance.com



10 V. Lesnevski et al

FIGURE 2 Operation of the transition rule during one run of the adaptive proce-
dure on the “2 best” configuration of the basket put example.
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left and it will have the largest variance. For an explanation of the transition rule,
see Section 3.3. Figure 2 illustrates how the transition rule works in one particular
example. The example is the problem of pricing the basket put option to 5%
precision, but with a duplicate of the best system – see Section 4 for details. For
the same example, Figure 3 shows how the systems’ sample averages change from
stage to stage, and when screening eliminates the systems. The presence of the
duplicate best system allows these figures to illustrate an important feature of the
transition rule: although all systems but the two identical best systems (the top,
superimposed lines in Figure 3) are eliminated after stage 10, Phase I does not
end until after stage 13, when the cost of stage 14 finally exceeds the savings
the procedure hopes to realize by eliminating one of the two remaining systems
(Figure 2).

3.2 Phase II: screening and estimation

Phase II begins by restarting, that is, throwing out all the data obtained in Phase I.
The only effect of Phase I on Phase II is that Phase I determines the subset I

of systems that Phase II handles. The purpose of Phase II is to create a fixed-
width confidence interval based on fresh data, uncontaminated by the selection bias
caused by Phase I screening. If Phase II begins with more than one system, then
the process of selecting one of them during Phase II will also create selection bias.
However, if Phase II begins with fewer than k systems, the selection bias will be less
than in Phase I. This reduction in selection bias is the purpose of restarting, and it
allows a confidence interval of a fixed width to be created with fewer observations

The Journal of Computational Finance Volume 11/Number 4, Summer 2008



An adaptive procedure for estimating coherent risk measures 11

FIGURE 3 Multi-stage screening during one run of the adaptive procedure on the
“2 best” configuration of the basket put example.
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than otherwise. Phase II contains three parts: first it determines the sample sizes
required for all surviving systems, then it simulates observations up to this sample
size while using screening and finally it produces a confidence interval based on the
largest sample average of any surviving system.

In the initial stage M of Phase II, the procedure determines the required total
sample sizes Ni for each of the systems in I and the maximal necessary number
P of subsequent screening stages. Second, in stages M, . . . , M + P − 1, the
procedure does more screening. It maintains two sets of systems: the set I contains
systems that have survived screening and from which the procedure has simulated
as many samples as are required to construct the fixed-width confidence interval,
while the set Î contains systems that have survived screening so far, but which still
require more sampling. Finally, once the required sample size has been reached for
all surviving systems, the procedure constructs a confidence interval.

Because M is the first stage after restarting, the procedure discards �n0R
M−1�

Phase I samples. To compensate for the discarded samples and keep the growth rate
constant, during Phase II the procedure sets N(	)←�n0R

	−1(R + 1)�, 	≥M .
This makes the total Phase II sample size grow at the rate R. It also makes the initial
sample size of Phase II be N(M)−N(M − 1)� n0R

M , which is large enough to
ensure high-quality variance estimates.

Initialize Î ← I and then I ←∅. Also initialize Ni←N(M) for all i ∈ Î . Each
stage 	=M, . . . , M + P consists of the following steps, except that only stage M

contains Step 2, and Step 4 will not occur during stage M + P because Î will be
empty.

Research Paper www.thejournalofcomputationalfinance.com



12 V. Lesnevski et al

1) Simulation: simulate (Xij, Cij) for j = N(	− 1)+ 1, . . . , min{Ni, N(	)}
and all i ∈ Î .
Set n←N(	)−N(M − 1).

2) Setting final sample sizes: if 	 > M , skip this step.
Set α′′a ← αa/K − αC and α′′b ← αb − αI − αC , and set the scaling constant:

c← 1

L
(tn−q−1,1−α′′a + tn−q−1,1−α′′b ) (4)

where q :=maxi∈I qi and each qi is the number of control variates in Ci .
For each i ∈ Î , compute the residual variance σ̂ 2

i of regressing
Xi,N(M−1)+1, . . . , Xi,N(M) on Ci,N(M−1)+1, . . . , Ci,N(M), and from it the
total sample size:

Ni←�c2σ̂ 2
i + χ2

qi ,1−αC
� + N(M − 1) (5)

where χ2
ν,p is the p quantile of the chi-squared distribution with ν degrees of

freedom.
Set P ←�logR maxi∈I (Ni/N(M))�.

3) Updating I and Î : add systems that have reached their required sample sizes
to I and remove them from Î : set I ← I ∪ {i ∈ Î |Ni ≤N(	)} and Î ← Î\I .

4) Screening: for each h, i ∈ Î such that h 	= i, set:

¯̄Dhi← 1

n

N(	)∑
j=N(M−1)+1

(Xhj −Xij)

S2
hi←

1

n− 1

N(	)∑
j=N(M−1)+1

(Xhj −Xij − ¯̄Dhi)
2

Whi← tn−1,1−αI /(2P (K−1))Shi/
√

n

Then set Î ←{i ∈ Î |∀h ∈ I, ¯̄Dhi ≥−Whi}.
5) Continue or compute confidence interval: if Î 	= ∅, set 	← 	+ 1 and return

to Step 1.
Otherwise, for each i ∈ I , compute the estimate µ̂i from the regression of
Xi,N(M−1)+1, . . . , Xi,Ni

on Ci,N(M−1)+1, . . . , Ci,Ni
. Set:

a← 1

c
tN(M)−N(M−1)−q−1,1−α′′a and

b← 1

c
tN(M)−N(M−1)−q−1,1−α′′b

The confidence interval is:(
max
i∈I µ̂i − a, max

i∈I µ̂i + b
)
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An adaptive procedure for estimating coherent risk measures 13

3.3 Efficiency of the rule for restarting

The adaptive procedure offers two significant improvements over our previous
procedures.

First, we do not need to specify a screening budget in advance. Choosing
the screening budget too small or too big could have a very significant effect
on the performance of our previous procedures, in some configurations making
a simulation dozens of times slower; see Table 6 in Section 4.1. The adaptive
procedure solves this problem by trying to screen out a system in Phase II only
until its required sample size is reached. In effect, this allows the screening budget
to be arbitrarily large, to vary by system and to be determined adaptively by the
required sample size.

Second, the adaptive procedure allows us to restart whatever the configuration
of the means µ1, . . . , µk may be. The effect of the decision whether or not to
restart on performance is much less severe; as we will show below, usually we do
not expect to save more than 40–80%. Restarting is usually beneficial because in a
typical case there is only one best system. Having an adaptive prescreening phase
identifying a good time to restart allows us to achieve very good performance in a
typical case and reasonably good performance in all other cases.

How big are the benefits of prescreening in a typical case? To answer this
question let us first estimate the maximal possible savings due to restarting.

In the following analysis we make several simplifying assumptions. First,
we assume that the estimate of the residual variance σ̂ 2

i of system i is always
approximately equal to the true residual variance σ 2

i . Second, we ignore the effect
of the number of degrees of freedom on the sample sizes for estimation. Third,
we assume that the effort required for screening out an inferior system is always
the same, whether in Phase I, Phase II or in an alternative procedure without
prescreening and restarting (such as the multi-stage procedure with early stopping
in Lesnevski et al (2007)).

The total cost E of a simulation without prescreening is the sum of the cost Es

of screening out inferior systems and the cost Ee of estimation of the surviving
systems: E = Es + Ee.

The total cost Ẽ of a simulation with prescreening is the sum of the prescreening
cost Ẽp, the cost Ẽs of screening out inferior systems in Phase II and the estimation
cost Ẽe of the surviving systems: Ẽ = Ẽp + Ẽs + Ẽe.

Under our assumptions, the sample size Ni in Equation (5) is approximately
equal to c2σ 2

i . Without prescreening, the constant c in Equation (4) is approxi-
mately equal to ck defined in Equation (2), where k is the initial number of systems.
With prescreening, c is approximately cK , where K is the number of systems
remaining after prescreening. The smaller K , the larger the benefit of prescreening,
because smaller cK leads to smaller sample sizes for estimation.

We will assume that, whether we simulate with prescreening or not, the set I

of the surviving systems is the same. This is generally so when prescreening is
stopped before the sample sizes for some systems exceed the sample sizes required
for estimation, which is exactly the case when prescreening could be beneficial.
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14 V. Lesnevski et al

FIGURE 4 Maximal efficiency improvement due to restarting with αa = 0.8α and
αb = 0.2α.
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A simulation without prescreening costs E = Es + c2
k

∑
i∈I σ 2

i , and a simula-
tion with prescreening costs Ẽ = Ẽp + Ẽs + c2

K

∑
i∈I σ 2

i . The latter is minimized
when c2

K is as small as possible, which occurs when K = 1, ie, there is only one
system left after prescreening. Also, under the assumptions we use in this section,
the screening cost Es is less than the total of the prescreening and screening
costs Ẽp + Ẽs , so the maximal efficiency improvement E/Ẽ is achieved when the
prescreening and screening costs are negligible compared to estimation costs. This
is a typical case in practice: prescreening and screening are very fast compared to
estimation and they eliminate all but one system. Under our assumptions, and if
prescreening and screening costs are negligible, the efficiency improvement due to
restarting (ie, due to having a prescreening phase) is:

E

Ẽ
≈ c2

k

∑
i∈I σ 2

i

c2
K

∑
i∈I σ 2

i

= c2
k

c2
K

≤ c2
k

c2
1

Figure 4 shows the maximal efficiency improvement c2
k/c

2
1 as a function of the

initial number of systems k. When the number of systems k is between 20 and
1,000, the savings in a typical case are 40–80% at 1− α = 99% confidence and
60–140% at 1− α = 95% confidence.

Recall that the transition rule given by inequality (3) chooses to restart when
the cost of doing one more stage of prescreening is greater than the approximate
maximal savings due to continuation, computed under the assumption that after
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additional prescreening there will be only one system left and it will have the largest
variance. A typical case indeed has one clear best system, so the effort required for
screening out inferior systems is relatively small, the approximate maximal savings
are relatively large and prescreening makes I a singleton.

How efficient is this transition rule in other situations? Let us consider a
configuration when there are several systems that are tied for the best, while other
systems are relatively easy to screen out. In this case we might worry that the cost of
prescreening could get too high before the adaptive procedure proceeds to Phase II.
Is our transition rule still efficient?

Because now we are concerned that prescreening may be too expensive, we
assume that prescreening lasts a long time and eliminates all inferior systems: the
set I (M) of systems used in Phase II equals I , the set of systems that survive
screening and reach their required sample sizes, and the Phase II cost of screening
Ẽs = 0. Again we assume that I is the same whether we use prescreening or not:
here we assume it contains only the systems that are tied. We now show how the
transition rule in inequality (3) provides a bound on Ẽp − Es , the excess cost of
prescreening in the adaptive procedure over the cost of screening in a procedure
without restarting. The effort required to screen out inferior systems is similar
in either procedure, so Ẽp − Es ≈KN(M − 1), the number of samples from the
K = |I | surviving systems that the adaptive procedure throws out by restarting.

Prescreening stops after stage 	=M − 1, the first time that the cost (R − 1)

|I (	+ 1)|N(	) of the next stage exceeds (c2|I (	+1)| − c2
1) maxi∈I (	+1) σ̂ 2

i (	). Under
our present assumption that the residual variance estimates are approximately
correct, this yields the approximate upper bound:

N(M − 2)≤ (c2|I (M−1)| − c2
1) maxi∈I (M−1) σ 2

i

(R − 1)|I (M − 1)|

≤ (c2
K − c2

1) maxi∈I σ 2
i

(R − 1)K

because I (M − 1) contains I (M)= I whose size is K , and c2
p defined in Equa-

tion (2) increases in p at a rate that is less than linear. Thus:

KN(M − 1)≤ KRN(M − 2)

≤ R(c2
K − c2

1) maxi∈I σ 2
i

R − 1

For R = 1.5, R/(R − 1)= 3, and the relative efficiency improvement is:

E

Ẽ
= Es + c2

k

∑
i∈I σ 2

i

Ẽp + Ẽs + c2
K

∑
i∈I σ 2

i

= Es + c2
k

∑
i∈I σ 2

i

Es + 3(c2
K − c2

1) maxi∈I σ 2
i + c2

K

∑
i∈I σ 2

i

≈ c2
k

∑
i∈I σ 2

i

3(c2
K − c2

1) maxi∈I σ 2
i + c2

K

∑
i∈I σ 2

i
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FIGURE 5 Effect of ties on approximate efficiency improvement due to restarting
with αa = 0.8α and αb = 0.2α.
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approximately, if the cost Es of screening is small. If the variances of the tied
systems are approximately equal, this simplifies to:

Kc2
k

3(c2
K − c2

1)+Kc2
K

For k = 256 and k = 64 the efficiency improvements as a function of the number
K of tied systems are shown in Figure 5. A value less than 1 represents a loss
of efficiency. We see that even when some systems are tied, restarting with our
transition rule can still produce substantial benefits. Even when all the systems are
tied, the loss of efficiency is very slight.

The transition rule we have presented is heuristic and is one of many similar
rules that all work well. This rule is advantageous because of its simplicity and
because it allows us to reap most of the benefits of restarting, without causing
significant inefficiencies when restarting could be harmful. More efficient transition
rules could be designed that take into account not only the sample variances of
the systems, but also their sample means. However, such rules are complicated,
and in most cases provide either small or no savings. Because the benefits seem
insufficient to justify the additional complexity, we do not consider this approach
here.
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FIGURE 6 Basket put option example: dependence of risk measure (maximum
expectation of discounted payout) on strike price.
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4 PERFORMANCE OF THE ADAPTIVE MULTI-STAGE PROCEDURE

In this section we illustrate our procedure’s performance on the basket put and
options portfolio examples discussed in Section 2. The risk measure in the basket
put example, which can be interpreted as an upper bound for the value of the basket
put option (Staum (2004)), is US$3.877. Figure 6 shows how this risk measure
depends on the strike price of the basket put option. The confidence interval widths
may be compared to the variation in the risk measure depicted by Figure 6. The
risk measure in the options portfolio example is US$16,107. Figure 7 shows how it
depends on the number T of days until the time horizon at which the potential loss is
measured. The curve shows the usual concave behavior for time horizons between
zero and 20 days: risk increases as the portfolio is held for a longer period of time,
but at a rate that decreases as a function of the time horizon. The change in slope
at about T = 20 occurs because the greatest conditional expectation of discounted
loss is produced by different generalized scenarios for time horizons of less than 20
days than for time horizons of more than 20 days. That is, the generalized scenario
most to be feared over short time horizons is different from that most to be feared
over longer time horizons.

To test the adaptiveness of the procedure, in addition to the ordinary configura-
tion with one best system, we also consider configurations “2 best” (obtained by
adding a duplicate of the best system), “4 best” (by adding three duplicates) and
“16 best” (by adding 15 duplicates), so that configuration “2 best” in the basket
put example has 64+ 1= 65 systems in total, while configuration “16 best” has
64+ 15= 79 systems. This is not the same as in Figure 5, where the total number
k of systems remains constant while the number K that are tied varies.
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FIGURE 7 Options portfolio example: dependence of risk measure (maximum
conditional expectation of discounted loss) on number of days elapsed while
portfolio is held.
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We split the 1− α = 1% allowable error into components αa = 0.8% for the
lower confidence limit and αb = 0.2% for the upper confidence limit. The error
allocated to screening is αI = 0.04% and, when using control variates, αC =
0.002% is allocated to controlling them. We choose the initial sample size n0 and
the maximal number m of Phase I stages to be 30, and the growth factor R to be
1.5. We use common random numbers in all examples.

For ease of interpretation, we specify the fixed confidence interval width L as a
percentage of a quantity that provides a natural scale for the example. For the basket
put example, this quantity is the true value, the largest mean, which is US$3.877.
For the options portfolio example, this quantity is the portfolio’s standard deviation,
which is US$6,012. Confidence intervals, averaged over many independent runs
of the adaptive procedure, are reported in Table 3. The number of independent
runs varies over entries in the table: we used between 30 and 400, depending on
how many were required to attain the desired statistical accuracy for the averages
presented.

In Section 4.1, we show that the adaptive procedure is efficient: it can be
hundreds of times faster than the standard procedure and, in many examples,
only generates 10–20% more samples than the minimum that could possibly be
needed to generate a confidence interval of the required width. We also show
that it is adaptive: because the transition rule picks a good time to restart, the
adaptive procedure works well on all the problem instances we looked at, whereas
each particular parametrization of a procedure from Lesnevski et al (2007) works
well for some problem instances and not for others. Section 4.2 contains an
empirical analysis of the rate at which the confidence interval width decreases
as the computational resources required by the adaptive procedure increase. We
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TABLE 3 Average 99% confidence intervals (in US dollars) produced by the
adaptive procedure.

Example

Options portfolio Basket put
Precision Precision

Confidence limit 0.3% 1% 5% 0.3% 1% 5%

Upper 16,117 16,140 16,271 3.884 3.900 3.968
Lower 16,099 16,080 15,974 3.872 3.861 3.776

TABLE 4 Efficiency relative to the standard procedure at 99% confidence.

Example

Options portfolio Basket put
Precision Precision

Configuration 0.3% 1% 5% 0.3% 1% 5%

1 best 252 244 154 208 158 22
2 best 104 98 81 85 76 19
4 best 51 48 43 40 38 15

16 best 12 12 12 11 10 6.7

tentatively find that the adaptive procedure shows the typical Monte Carlo behavior
for sufficiently narrow confidence intervals, and that confidence interval width
decreases more rapidly for larger widths. In Section 4.3, we show that the efficiency
of the adaptive procedure is not impaired even when there are several systems very
similar to the best system, a case that might seem to be difficult for the adaptive
procedure because of the difficulty of screening out systems that are close to the
best.

4.1 Relative efficiency and adaptiveness

We report efficiency as a speed improvement relative to a standard procedure that
is a modification of the two-stage procedure of Chen and Dudewicz (1976), as
explained in Lesnevski et al (2007). That is, we report the ratio of the average
number of samples required by the standard procedure to the average number of
samples required by the adaptive multi-stage procedure. The results are summarized
in Table 4. Recall that efficiency improvement can be larger than the number of
systems k, which is 64 for the ordinary configuration of the basket put and 256 for
that of the options portfolio. The reason for this is that the improvement depends
not only on k, but also on the size of the best system’s standard deviation relative
to the standard deviations of other systems.

Table 5 shows how much work the procedure does in excess of the work required
by the “clairvoyant” procedure, the procedure that knows in advance which systems
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TABLE 5 Sample size relative to the clairvoyant procedure at 99% confidence.

Example

Options portfolio Basket put
Precision Precision

Configuration 0.3% 1% 5% 0.3% 1% 5%

1 best 1.0 1.1 1.7 1.1 1.4 10
2 best 1.2 1.2 1.5 1.2 1.3 5.4
4 best 1.1 1.2 1.3 1.2 1.2 3.2

16 best 1.1 1.1 1.1 1.1 1.1 1.7

are tied for the best, and applies the standard procedure to only these systems in
isolation. That is, the clairvoyant procedure screens out all inferior systems by
guessing right with no work.

Like the multi-stage procedure with restarting analyzed in Lesnevski et al
(2007), the adaptive procedure is less than 10% more expensive than estimating
a single mean in the “1 best” configuration when a precise estimate is required.
If there are ties the procedure first tries to break them, but when this becomes
too expensive it proceeds to estimation: this is its advantage over the multi-stage
procedure with restarting. Table 5 demonstrates the robustness of the adaptive
procedure’s performance to configuration.

As we see from the last column of Table 5, in the configuration with no ties at
5% precision the adaptive procedure looks relatively inefficient compared to the
clairvoyant procedure (10 times slower), but adding ties can make the adaptive
procedure look more favorable. This is because 5% is a low precision, so the final
sample size is not very large relative to the sample size required for screening. At
5% precision the clairvoyant procedure has a big advantage in screening perfectly
for free.

Table 6 shows the efficiency improvement of the adaptive procedure relative to
the most efficient procedure of Lesnevski et al (2007): the multi-stage procedure
with restarting. (In all cases reported in Table 6, the multi-stage procedure with
early stopping was somewhat more expensive than the multi-stage procedure with
restarting.) In some cases, the efficiency is slightly less than 1, ie, the adaptive
procedure required slightly more samples than the multi-stage procedure with
restarting: the adaptive procedure does not always pick the best possible time to
restart, but it picks a good time.

The efficiency of both of the procedures depends heavily on the actual config-
uration of the means and the total screening budget of n0R

m−1 observations per
system. We tested these procedures with n0 = 30 and R = 1.5 while varying the
maximal number of stages available for screening from 5 to 30, so that the total
budget available for screening varied from 152 to 3, 835, 022 observations per
system. We set R = 1.5, not R = 2 as in Lesnevski et al (2007), as this choice
of the growth factor makes all procedures more efficient when there are ties.
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TABLE 6 Efficiency relative to the multi-stage procedure with restarting at 99%
confidence.

Options portfolio Basket put
Number of screening stages m Number of screening stages m

Configuration
and precision 5 10 15 20 25 30 5 10 15 20 25 30

1 best 0.3% 1.0 1.0 1.0 1.0 1.0 1.0 41 2.8 1.0 1.0 1.0 1.0
1% 1.0 1.0 1.0 1.0 1.0 1.0 30 2.3 1.0 1.0 1.0 1.0
5% 1.0 1.0 1.0 1.0 1.0 1.0 4.7 1.0 0.9 0.9 1.0 1.0

2 best 0.3% 0.9 0.9 0.9 0.9 1.0 1.8 17 1.6 0.9 1.0 1.6 6.1
1% 0.9 0.9 0.9 1.0 2.0 10 16 1.5 1.0 1.8 7.8 54
5% 0.9 0.9 1.2 4.0 25 205 4.6 1.0 1.6 6.5 44 328

4 best 0.3% 0.9 0.9 0.9 0.9 1.0 1.8 8.3 1.3 0.9 1.0 1.5 5.8
1% 0.9 0.9 0.9 1.0 2.1 10 7.8 1.2 1.0 1.8 7.7 53
5% 0.9 0.9 1.2 4.1 27 197 3.4 1.1 2.0 10 68 509

16 best 0.3% 0.9 0.9 0.9 0.9 1.0 1.7 3.1 1.0 1.0 1.0 1.6 5.7
1% 0.9 0.9 1.0 1.1 2.0 9.2 3.0 1.1 1.1 1.8 7.7 52
5% 0.9 1.0 1.2 4.3 27 201 2.1 1.1 2.7 15 110 833

The results in Table 6 illustrate the danger for our previous multi-stage pro-
cedures of choosing the budget for screening either too small or too large. What
constitutes too small or too large depends on the actual configuration, whereas the
adaptive procedure works well in all of them.

4.2 Rates of convergence

Figure 8 shows the average number of simulation observations required by the
adaptive procedure for the experiments reported in Table 4. (The average number
of observations required by the standard procedure is the product of corresponding
data points in Table 4 and Figure 8.) Figure 9 shows a similar plot, but here
computational effort is measured in time instead of observations. Both figures are
log–log plots on which a typical Monte Carlo procedure’s performance yields a
straight line of slope −1/2, meaning that confidence interval width is proportional
to the reciprocal of the square root of the computational resources used. Figure 8
shows approximately this typical behavior for the options portfolio examples:
the performance curves are nearly straight and have slopes close to −1/2. For
the basket put examples with a small number of systems tied for the best, the
performance curves are at first steeper and then they have slopes near −1/2. This
phenomenon has already been discussed while interpreting Table 5. The number of
observations used that are then thrown out when restarting is negligible when a very
narrow confidence interval is required, but non-negligible when the demand for
precision is sufficiently low. Thus we expect that, viewed over a wide enough range
of confidence interval widths, the performance curve for the adaptive procedure on
any example would be convex, with a slope approaching−1/2 from below as more
precision is required.
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FIGURE 8 A log–log plot of the average number of samples required by the
adaptive procedure to attain a fixed confidence interval width.
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FIGURE 9 A log–log plot of the average number of seconds required by a MATLAB
implementation of the adaptive procedure to attain a fixed confidence interval
width.
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When computational cost is measured in seconds, in Figure 9 the performance
curves have a qualitatively similar shape and behavior. The performance curves
for examples with a larger number of systems tied for the best are closer to being
straight lines, because more of the computation in those examples is performed
for systems that are never screened out. In the range of precision investigated,
many of the slopes were much steeper than −1/2, and none were very close to
it. This may have to do with a non-negligible computational cost of screening in
these examples. The results presented in Figure 9 are elapsed times of simulation
experiments in which the adaptive procedure was run in MATLAB 7.0 under
Windows XP on a 3.0 GHz Pentium IV processor with 1 GB of RAM. Caution must
be used in interpreting these results: in particular, because of the impact of loops
on running times of MATLAB programs, the absolute and relative times reported
in Figure 9 are not necessarily indicative of results that would be obtained with an
implementation of the adaptive procedure in another language, such as C.

This discussion of convergence does not address how the procedures’ compu-
tational requirements grow as the number k of generalized scenarios grows. It
would be difficult to address this topic briefly because the answer depends on how
the set P of generalized scenarios is enlarged: for example, adding generalized
scenarios that are much worse than the best and have low variance causes a slight
increase in the number of samples that the adaptive procedure requires, while a
large increase results from adding generalized scenarios that are nearly as good as
the best, independent of it, and have high variance.

4.3 Similar systems nearly tied for the best

When simulating a coherent risk measure with common random numbers, several
highly correlated systems may have nearly the largest mean. Such situations can
occur when one or several factors that are usually important in computation of a
risk measure turn out to be insignificant in a particular instance, or when parameters
differ only slightly for some systems. For example, an equity derivative may have
very similar values in generalized scenarios that differ only in interest rates. One
might worry that simulation in this case is expensive and relatively inefficient,
similar to what we see in Table 4.

However, even if the variances of the systems are large, the variances of the
differences of the means of such systems will tend to be small. Unless some systems
are identical, which is easy to recognize when carrying out simulations with
common random numbers and in which case the duplicates should be taken out,
small variances of the differences allow even very small differences in performance
to be quickly detected, and even slightly inferior systems will be screened out
relatively quickly.

For example, in the case of the basket put, the best system is the one that has a
pairwise correlation of 0.75 between the assets. Table 7 shows the effect of adding
a system that has a pairwise correlation of 0.74 between assets (configuration “2
similar”), adding three systems that have two out of three pairwise correlations of
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TABLE 7 Increase in average sample size due to adding systems similar to the best
at 99% confidence.

Example

Options portfolio Basket put
Precision Precision

Configuration 0.3% 1% 5% 0.3% 1% 5%

2 similar <1% <1% <1% <1% <1% 1%
4 similar <1% <1% 1% <1% 2% 7%

16 similar <1% <1% 7% 1% 7% 28%

0.74 and one pairwise correlation of 0.75 (“4 similar”) and adding 15 similar sys-
tems that have pairwise correlations of 0.75, 0.74 and 0.73 in various combinations
(“16 similar”). In the case of the options portfolio, the best system (scenario) is the
one that has the first and the fourth factors “up”, while the other two factors are
unrestricted. We can add a similar system by assigning to one of the “up” events
a probability of 9/(10

√
20) (in place of 1/

√
20 in the best system) and the other a

probability of 10/(9
√

20) (configuration “2 similar”). In configuration “4 similar”
we add two more systems by assigning to one of the “up” events a probability of
99/(100

√
20) and to the other a probability of 98/(100

√
20), while in configuration

“16 similar” we add 12 more similar systems of this form.
From Table 7 we see that the increase in the average sample size due to adding

similar systems is usually small. It is also not very sensitive to the similarity param-
eter, such as the pairwise correlation in the basket put example: in configuration “2
similar” it stays roughly the same whether we use a correlation of 0.73 or 0.7499.
Even though the two systems have almost exactly the same mean, the variance of
the difference is so small that it is easily detected with common random numbers.
The correlation between the best system and the similar system that we have added
in configuration “2 similar” is 99.99% in the basket put example and 99.83% in the
options portfolio example. Adding more such systems does not increase the sample
size by much, as the correlation is so high that the procedure will quickly screen
out systems with smaller means. This increase is mostly due to the larger number
of systems that need to be screened out, while the total sample size per system stays
roughly the same.

This allows us to conclude that efficiency loss due to closeness of the best means
should not in general be significant in financial applications, and that in most cases
we will have a clear best.

5 ROBUSTNESS TO NON-NORMALITY

Under normal-theory assumptions, our procedures are exact, ie, they deliver at least
the nominal coverage probability. Although these assumptions are reasonable in
many situations, they are usually not precisely correct. Our screening procedures
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TABLE 8 Effect of strike price and initial sample size n0 on error rates at 90%
confidence and 5% precision in the basket put example.

Error rate

Strike price Upper Lower Screening
(zero payout probability) n0 (5% nominal) (5% nominal) (1% nominal)

K = 85 5 16% 4% 0%
(≈71%) 7 7% 2% 0%

10 5% 1% 0%

K = 65 30 7% 6% �1%
(≈92%) 50 5% 5% 0%

100 4% 5% 0%

K = 55 30 42% 7% 3%
(≈98%) 100 7% 5% 0%

300 4% 5% 0%

use sample averages when the sample sizes are still small, and since the distri-
butions of sample averages might be very far from normal, one might worry that
screening errors might occur much more often than if distributions were normal.

It is comforting to know that the screening procedures are protected by the use
of very conservative probability inequalities (such as the Bonferroni inequality) in
their derivation. Error is allocated to pairwise comparisons between all systems
during the maximal possible number of stages, but many of these comparisons are
never performed. Because of this, we can expect screening to be very robust to
non-normality. In fact, in most of our experiments, all of which included 5,000
independent replications, screening errors never occurred.

On the other hand, our estimation procedure will typically require large sample
sizes. As we become more demanding, requiring a smaller confidence interval
width or higher confidence, the final sample size becomes larger, making normality
of mean estimators more plausible. For this reason moderate non-normality does
not seem to be a problem for the final estimator.

However, if non-normality is extreme and the initial sample size is not adequate,
the sample sizes after Phase I might be too small and the estimates of the variances
that are used to compute final sample sizes could have a distribution that is far from
(scaled) χ2.

Let us consider the basket put example (see Table 8). In the ordinary configura-
tion the strike price is 85 and the probability of a zero payout is approximately 71%.
If the probability of a zero payout is 98% and n0 is smaller than 200–300, estimates
of the variances are so poor that coverage is inadequate. When the probability of
a zero payout is 92%, this can happen if n0 is smaller than 50–100. When non-
normality is not so extreme, such as in the case of when the probability of a zero
payout is 90% or less, coverage is adequate as long as n0 is larger than 10–20.

Importance sampling might be a way to improve the coverage when the payout
is highly non-normal. Importance sampling is usually used as a variance reduction
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TABLE 9 Effect of initial sample size n0 on error rates at 90% confidence and 5%
precision in the options portfolio example.

Error rate

Upper Lower Screening
n0 (5% nominal) (5% nominal) (1% nominal)

5 4% 5% 0%
10 4% 5% 0%
30 4% 5% 0%

TABLE 10 Error rates with log-t returns in the basket put example at 90%
confidence and 5% precision (n0 = 30).

Error rate

Upper Lower Screening
(5% nominal) (5% nominal) (1% nominal)

4% 5% 0%

technique, to make the variance of the product of likelihood ratio and payout under
a new probability measure lower than the variance of the payout under the orig-
inal probability measure (see Glasserman (2004, Section 4.6)). Here importance
sampling could also be used to make the distribution of the product of likelihood
ratio and payout under a new probability measure closer to normal. For example, a
standard form of importance sampling applied to the out-of-the-money basket put
changes the mean asset returns in a way that decreases the probability of a zero
payout and could thus reduce skewness and produce a more normal distribution.

In the options portfolio example non-normality is not very significant, so the
coverage is adequate even when n0 is very small (see Table 9).

The coverage is also adequate when distributions are heavy-tailed. For example,
if in the basket put example logarithmic returns are not normal, but rather have the t

distribution with three degrees of freedom, the coverage is adequate (see Table 10).
For our experiments in this section we chose relatively low 5% precision and

90% confidence. Because in this case the total sample sizes are smaller and
therefore the sample averages are less normal, this should represent the hardest
test for our procedure.

6 EMPIRICAL ANALYSIS OF RARE ERRORS

In this section we analyze the event of probability at most 1− αa − αb, in which
the confidence interval does not contain the true value. Because screening is so
conservative and screening errors are so extremely rare, the error event consists
primarily of estimation errors.

In Table 11 we present the relative root-mean-squared distances from the true
largest mean to the nearest confidence limit: to the upper limit when the true value
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TABLE 11 Root-mean-squared distance from true value to confidence interval as a
percentage of its width and error rates at 90% confidence.

Options portfolio Basket put
Precision Precision

0.3% 1% 5% 0.3% 1% 5%

n0 = 30
Upper distance 17 17 18 16 16 13
Lower distance 18 18 18 18 16 14

Upper error (5% nominal) 4% 4% 4% 4% 4% 5%
Lower error (5% nominal) 5% 5% 5% 5% 5% 1%

n0 = 10
Upper distance 17 16 17 900 92 91
Lower distance 17 17 17 55 64 21

Upper error (5% nominal) 4% 4% 4% 4% 4% 6%
Lower error (5% nominal) 5% 5% 5% 5% 5% 1%

lies above the confidence interval and to the lower limit when the true value lies
below the confidence interval, as a percentage of its width. These are conditional
on the error event, ie, they are distances given that the true value is above or below
the confidence interval:

1

L

√
E
[(

µk −
(

max
i∈I µ̂i + b

))2 | µk > max
i∈I µ̂i + b

]
for the upper distance and:

1

L

√
E
[((

max
i∈I µ̂i − a

)
− µk

)2 | µk < max
i∈I µ̂i − a

]
for the lower distance. If we were estimating the mean of just one system in
isolation, which has the same mean and variance as the best system and which
is normally distributed, we would have a relative root-mean-squared distance of
approximately 17% for both the upper and the lower confidence limits at 90%
confidence:

0.17≈ 1

2z.95

√∫ ∞
z.95

(x − z.95)2 φ(x)

0.05
dx

where φ is the probability density function and z.95 =�−1(0.95) is the 95%-
quantile of the standard normal distribution. Table 11 shows that when non-
normality of sample averages is not extreme the errors of the adaptive procedure
on average are no more severe than the errors that happen when estimating a mean
of a normal population.

However, when non-normality is extreme and n0 has not been chosen adequately
large, the estimation errors can be much more severe. For example, when using
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FIGURE 10 Distances from the upper confidence limit at 90% confidence and 1%
precision as percentages of confidence interval width, for initial sample size n0 =
30 and n0 = 10.
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n0 =30 n0 =10

n0 = 10 in the case of the basket put, we found that the coverage was adequate, but
the root-mean-squared distance from the upper confidence limit was approximately
equal to the confidence interval width when using 1% precision, and it was about
nine times that width when using 0.3% precision. (Recall that the confidence
interval width is proportional to the precision.) Because non-coverage is a rare
event, these large root-mean-squared distance estimates are not very precise, even
though we used more than 5,000 replications to estimate them. This indicates
that when non-normality is extreme the procedure might significantly under- or
overestimate the risk measure: see Figure 10, representing the non-coverage events
in a representative batch of 5,000 replications.

7 CONCLUSIONS

The adaptive procedure proposed here generates a two-sided, fixed-width confi-
dence interval for a coherent risk measure based on a finite number of generalized
scenarios.

Under normal-theory assumptions, the coverage of the confidence interval can
be guaranteed. Unless non-normality is extreme and the first-stage sample size n0 is
too small, the procedure is very robust: the coverage meets or exceeds the nominal
level, and even when the confidence interval does not contain the true value the
errors are usually not severe. In extreme cases we have to make sure that n0 is large
enough to get variance estimates with the right statistical properties. Generally n0 =
30 should be sufficient, but in some cases a preliminary assessment of normality of
sample averages might be necessary in order to pick an appropriate initial sample
size. In financial applications, similar simulation problems tend to arise from day-
to-day (eg, risk measurement of a portfolio when the portfolio’s composition and
the market environment have changed only slightly since yesterday), in which case
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extra simulation effort would not be required to determine an appropriate value
of n0. The problems due to non-normality can also be mitigated by importance
sampling. It might also be possible to improve robustness to non-normality by
changing the screening procedure. We have carried out screening on the basis of
a two-sample t test with paired observations. Screening could also be carried out
based on a non-parametric test. One relevant approach is the nonparametric subset
selection procedure of Hsu (1980).

The adaptive procedure improves upon previous procedures, which might
decrease efficiency when applied to the wrong problem or with the wrong parame-
ters, by being more reliably efficient and easier to use. One might fear that the time
required to estimate a coherent risk measure based on k generalized scenarios would
be of the order of k times as long as the time required to estimate a single mean,
and this is true for standard methods. The adaptive procedure is typically dozens
to hundreds of times faster than standard methods for k = 64 or k = 256, even for
challenging problems in which some of the generalized scenario means are very
similar or even tied. Even for these challenging problems, the adaptive procedure
was only a few percent to 40% more expensive than estimating a single mean for
the examples we investigated of generating a moderately precise 99% confidence
interval for a coherent risk measure (Tables 5 and 7, precision 1% or less).

It seems difficult, then, to construct a procedure that is much more efficient
for these problems while providing a valid confidence interval. However, it may
be possible to improve efficiency for problems where a wide confidence interval
is acceptable. We tried using fully sequential screening instead of multi-stage
screening, but found that this seldom improved efficiency. Another possibility is
to avoid using the conservative probability inequalities we used to guarantee the
confidence interval’s coverage probability. Pursuing this line of thought, one might
also develop a procedure that provides only a point estimate for the risk measure and
not a confidence interval: it may be possible to get a point estimator of comparable
quality faster than our confidence interval by screening more aggressively than
our probability inequalities permit or by avoiding restarting. Furthermore, for
applications that require a point estimator, it could be valuable to apply bias-
reduction techniques to get a point estimator superior to the straightforward one,
which is the maximum surviving sample average maxi∈I µ̂i around which our
confidence interval is constructed.

APPENDIX A VALIDITY OF THE PROCEDURE

While I is the set of systems that survives screening after Phase II, let [k] be the
index of the best system, the one with the largest mean. Let I (M) be the set of
systems that survives screening in Phase I, and let [k]M be the best system in I (M).

PROPOSITION A.1 If, for each i = 1, 2, . . . , k, Xij = µi + (Cij − ξi)
′βi + ηij,

where the residuals {ηij, j = 1, 2, . . .} and controls {Cij , j = 1, 2, . . .} are inde-
pendent sets of independently and identically distributed normal random variables,
βi is an unknown constant vector, E[Ci1] = ξi and E[ηi1] = 0, then the procedure
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satisfies:

Pr
{
µ[k] ≥max

i∈I µ̂i − a
}
≥ 1− αa (A.1)

and:
Pr

{
µ[k] ≤max

i∈I µ̂i + b
}
≥ 1− αb (A.2)

PROOF We decompose the screening error αI in the following way. Allocate αI /2
to Phase I and αI/2 to Phase II.

Phase I has at most m stages and there are at most k systems during any stage,
so there are at most m(k − 1) comparisons with system [k] during screening in
Phase I. Therefore, during Phase I we use screening thresholds:

Whi(	)= Shi(	)tN(	)−1,1−αI/(2m(k−1))√
N(	)

at stage 	 for differences of sample averages of observations generated during
stages 1 to 	. Phase II has at most P screening stages and there are at most K

systems during any stage, so there are at most P(K − 1) comparisons with system
[k]M during screening. Although P and K are random, they are determined before
Phase II begins by data from Phase I, which is not used for estimation in Phase II,
so this randomness does not pose a difficulty. Therefore, during Phase II we use
thresholds:

Whi(	)= Shi(	)tN(	)−N(M−1)−1,1−αI/(2P (K−1))√
N(	)− N(M − 1)

at stage 	 for differences of sample averages generated during stages M to 	. By
the Bonferroni inequality, Pr[[k] /∈ I (M)] ≤ αI /2 and Pr[[k]M /∈ I ] ≤ αI /2.

Applying Proposition 4 of Nelson and Staum (2006) to the randomly generated
problem of estimating the value of the best system in I (M) shows that:

Pr{µ̂i − µi > x} ≤ 1−Ga(cx) and Pr{µ̂i − µi <−x} ≤ 1−Gb(cx)

holds with Ga(x)=Gb(x)= FtN(M)−N(M−1)−q−1(x)− αC for each i ∈ I (M). This
statement is true even for a system i ∈ I (M) \ I that is screened out during Phase II:
although the procedure does not compute the estimate µ̂i , this random variable
exists on the probability space under consideration and satisfies these inequalities.
Proposition 3.1 of Lesnevski et al (2007) then implies that:

Pr
{

max
i∈I (M)

µi ≥max
i∈I µ̂i − a

}
≥ 1− αa

and:
Pr

{
max

i∈I (M)
µi ≤max

i∈I µ̂i + b
}
≥ 1− αb + αI /2

Consider the lower confidence limit and notice that µ[k] =maxi=1,2,...,k µi ≥
maxi∈I (M) µi , whatever the subset I (M)⊆ {1, 2, . . . , k} generated after Phase I
may be. Consequently:

Pr
{
µ[k] ≥max

i∈I µ̂i − a
}
≥ Pr

{
max

i∈I (M)
µi ≥max

i∈I µ̂i − a
}
≥ 1− αa
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which verifies inequality (A.1). Next consider the upper confidence limit and notice
that if [k] ∈ I (M), then µ[k] =maxi∈I (M) µi . Consequently:

Pr
{
µ[k] ≤max

i∈I µ̂i + b
}
≥ Pr

{
[k] ∈ I (M), µ[k] ≤max

i∈I µ̂i + b
}

= Pr
{
[k] ∈ I (M), max

i∈I (M)
µi ≤max

i∈I µ̂i + b
}

≥ 1− Pr{[k] /∈ I (M)} − Pr
{

max
i∈I (M)

µi > max
i∈I µ̂i + b

}
≥ 1− αI/2− (αb − αI/2)= 1− αb

which verifies inequality (A.2).
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