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Abstract

In reality, markets are incomplete, meaning that some payoffs cannot be replicated
by trading in marketed securities. The classic no-arbitrage theory of valuation in a
complete market, based on the unique price of a self-financing replicating portfolio,
is not adequate for nonreplicable payoffs in incomplete markets. We focus on pric-
ing over-the-counter derivative securities, surveying many proposed methodologies,
drawing relationships between them, and evaluating their promise.

1 Introduction

Incomplete markets are those in which perfect risk transfer is not possi-
ble. Despite the ever-increasing sophistication of financial and insurance mar-
kets, markets remain significantly incomplete, with important consequences
for their participants: workers and homeowners remain exposed to risks involv-
ing labor income, property value, and taxes, investors and portfolio managers
have limited choices, and traders of derivative securities must bear residual
risks. From a theoretical perspective, incomplete markets complicate the study
of financial market equilibrium, portfolio optimization, and derivative securi-
ties.

Although the theory of derivative securities in complete markets is under-
stood very well, and is the subject of numerous textbook accounts, there is
as yet no fully developed, sound theoretical framework for pricing derivative
securities in incomplete markets. This has profound consequences for the prac-
tice of trading, speculating, and hedging with derivative securities. This chapter
surveys the topic of incomplete markets, with an emphasis on pricing and hedg-
ing derivative securities.

Other surveys have treated different aspects of incomplete markets. For
portfolio optimization in incomplete markets, see Skiadas (2006). The finance
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literature emphasizes the existence and characteristics of equilibria, including
market efficiency. Magill and Quinzii (1996) offer a book-length exposition,
and Hens (1998) provides an overview with a low level of technicalities. Appen-
dix B presents perspectives from the finance literature, not usually addressed in
financial engineering, on the degree to which markets are actually incomplete,
and the implications for welfare.

Surveys of derivative security pricing in incomplete markets include Jouini
(2001), who covers no-arbitrage bounds, utility maximization, and equilibrium
valuation, as an introduction to a special journal issue on these topics. Cont
and Tankov (2004, Chapter 10) cover these approaches and others, includ-
ing quadratic and entropy criteria, as well as calibration. Another survey is
by Davis (2004b), whose “intention is not to aim at a maximum level of gener-
ality but, on the contrary, to concentrate on specific cases and solved problems
which give insight into the nature of optimal strategies for hedging and invest-
ment.” In contrast, we will cover all major approaches to pricing derivative
securities in incomplete markets, as well as providing enough background to
evaluate them and understand them in relation to one another.

Thus, due to limitation of space, we will not be able to concentrate on spe-
cific derivative securities or models of markets, although we will give simple
examples that illustrate major ideas. Likewise, we can neither recount the de-
velopment of each method nor provide an exhaustive list of references, so
many significant papers will not be mentioned. Instead, we will merely provide
references to the literature as a substitute for an exposition of the technical de-
tails of all the methods we survey, for which there is also not space. However,
we address the technicalities of defining incompleteness in Appendix A.

We begin with background for the problem of incomplete markets. In Sec-
tion 2, there is a description of the over-the-counter market for derivative
securities and the financial engineering problems we will address. The causes
of incomplete markets are addressed in Section 3. Next, we turn to general the-
oretical considerations about pricing in incomplete markets. The connections
between pricing and optimization occupy Section 4, which covers no-arbitrage
bounds, indifference prices, good deal bounds, and minimum-distance pricing
measures. In Section 5, simple examples based on expected utility illustrate is-
sues in pricing and optimization. Subsequent sections are devoted to various
particular methods. The quadratic approach to hedging occupies Section 6.
Exponential utility, with its connection to relative entropy, is the topic of Sec-
tion 7. Several methods based on considering only losses, not gains, appear
in Section 8: these include partial replication schemes such as quantile hedg-
ing. Restrictions on pricing kernels, including methods based on low-distance
pricing kernels, are covered in Section 9. Ambiguity and robustness to model
risk is the topic of Section 10. The standard practice of calibrating a model to
market prices occupies Section 11. In Section 12, we offer some conclusions,
evaluation, and directions for future research.
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2 The over-the-counter market

Let us imagine ourselves in the position of a market-maker in an over-the-
counter (OTC) derivatives market. Throughout this survey, we will consider
incomplete markets from the market-maker’s perspective, focusing on the fi-
nancial engineering of solving the problems of pricing and risk management.
The same considerations apply to customers in the OTC market.

2.1 The workings of OTC markets

Although some derivative securities, including some stock options and com-
modity or currency futures, are listed on exchanges and traded in the same
manner as the underlying securities, many are not. A hedger or speculator
who wishes to trade them must participate in the OTC market by calling OTC
market-makers, usually at investment banks, and requesting a quote for bid
and ask prices at which the market-makers are willing to buy or sell, respec-
tively. Duffie et al. (2006) address the relationship of frictions and liquidity
in OTC markets to valuation. We will focus on the process by which market-
makers prepare these prices. Through an analogous process, the potential
customer must then decide whether to sell at the highest of the quoted bid
prices, buy at the lowest of the quoted ask prices, or do nothing.

If the customer indeed transacts a deal with a market-maker, the market-
maker must bear risk associated with this trade, because markets are incom-
plete. In order to measure the risk of his portfolio and manage it through
hedging, he needs to model the future value of the OTC derivatives he has
traded. As time passes, he must track the profit or loss generated by his hedged
portfolio, based on values of OTC derivatives updated in light of current mar-
ket prices, a process known as marking to market. It is a matter of debate among
practitioners whether and when it is appropriate to mark to market using a bid
price, a “mid-market price” between the bid and ask prices, or an “unwind
price” at which the derivative might be sold. Marking to market is not studied
enough relative to pricing, but the risk-adjusted value processes of Artzner et
al. (2007) may be useful in this regard.

Establishing bid and ask prices for an OTC derivative security is not the
same as determining the equilibrium price for a new security if it were to be
listed on an exchange, which is another goal often considered in the literature
on incomplete markets. Determining the equilibrium price is more difficult
than it might seem, because introducing a new security could alter the exist-
ing security prices (Boyle and Wang, 2001). In financial engineering, although
equilibrium concepts may be useful in pricing, it is too ambitious to attempt
to construct an entire equilibrium, based on the preferences and endowments
of all participants. This is more appropriate in finance, where one may use a
simplified model to formulate a hypothesis or explain some phenomenon.
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2.2 Standard practice

Whether using a model in which markets are complete or incomplete, deriv-
atives traders know that markets are actually incomplete, and that after trad-
ing, they will not be able to hedge away all the risk, to which they are averse.
Nonetheless, their standard practice is to assign prices to OTC derivative secu-
rities primarily on the basis of consistency with the market prices of underlying
and other derivative securities. We will further discuss and evaluate this stan-
dard practice in Section 11.

According to the classic theory of financial engineering, in a complete mar-
ket, the unique no-arbitrage price of a derivative security whose payoff is X
is the expected discounted payoff EQ[DX] under the risk-neutral probability
measure Q, under which the marketed securities’ expected returns equal the
risk-free rate of interest. Traders calibrate the parameters of Q to prices of
marketed securities so as to minimize the discrepancy between these market
prices and the prices given by the model, i.e. the expected discounted payoffs.
To recoup their business expenses and to earn compensation for bearing the
risks that they will not be able to hedge, traders establish a bid–ask interval
around the expected discounted payoff. The exact level of the bid and ask de-
pend on informal consideration of several factors, such as how the trade will
affect the portfolio’s Greeks, the trader’s outlook on likely market events, what
the competition is charging, and the relationship with the customer. One of the
major challenges facing financial engineering in the area of derivative securi-
ties is to establish a sound basis for this pricing decision, based on quantitative
risk assessment using models of incomplete markets.

If the market is incomplete, then pricing by calibration of a complete-market
model does not systematically account for the costs of hedging or the risks that
remain after hedging. This approach wrongly prices the unhedgeable part of
the risk as though it too could be hedged away; it assigns to a derivative security
the same price as a fictitious replicating portfolio strategy, when this strategy
will not actually succeed in replicating the target payoff. As Foldes (2000) says,

Enthusiasm for methods of hedging and valuation of derivatives in complete
markets, and for associated methods of computation, seems often to obscure
the fact that these techniques do not provide a general theory of valuation and
that they are liable to give at best only imprecise results when applied beyond
their proper domain.

The need to quantify and value residual risks motivates the search for a prac-
tical method of pricing with incomplete-markets models.

2.3 The apparent and real problems

The apparent problem of pricing in incomplete markets is mathematical:
given the statistical probability measure P, there is a set Q of equivalent mar-
tingale measures (EMMs) such that the expected discounted payoff EQ[DX] is
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an arbitrage-free price for X.1 There is an interval

(1)
(

inf
Q∈Q

EQ[DX]� sup
Q∈Q

EQ[DX]
)

of arbitrage-free prices for X, and it is usually too wide for these no-arbitrage
bounds (Section 4.2.1) to serve as useful bid and ask prices (see e.g. Eberlein
and Jacod, 1997). The problem may appear to be that we want a way of choos-
ing one of the pricing measures Q ∈ Q, so that we may then assign the unique
price EQ[DX] to each payoff X.

Another way to view the situation is that the no-arbitrage criterion allows
a multiplicity of possible pricing kernels Π. A pricing kernel Π = D dQ/dP
where dQ/dP is the likelihood ratio, i.e. Radon–Nikodym derivative, between
some Q ∈ Q and P. The value Π(ω) of the pricing kernel in state ω can be
interpreted as the price now for $1 to be paid if state ω occurs. With no restric-
tion on the pricing kernel, the price can be anywhere within the no-arbitrage
price bounds. However, some of these pricing kernels may seem implausible
from an economic perspective. See Section 9 for methodologies that work by
eliminating implausible pricing kernels.

The real problem of pricing in incomplete markets depends on the objective.
For example, a goal in setting bid and ask prices is to ensure that any trade un-
dertaken at these prices is advantageous to the firm. A grounding of the pricing
scheme in financial economics would be desirable. It is not clear how select-
ing a single pricing measure Q ∈ Q will accomplish this goal; indeed, given a
unique price EQ[DX], further considerations would be required to generate
distinct bid and ask prices. Another objective is marking to market, in which
the goal is to assign to the firm’s portfolio of derivative securities a value, not
a price, that is accurate from an accounting or actuarial perspective. Again,
for risk management, there may be different goals that involve assessing the
future value of derivative securities. However, in all cases, we want a method-
ology that respects the no-arbitrage bounds, is computationally efficient, and is
robust to those errors that are likely in specifying its inputs, e.g. to stale prices
of marketed securities, or to estimation error of statistical probabilities.

In constructing bid and ask prices, the difficulty posed by incomplete mar-
kets is more significant than it might at first seem, because of adverse selection.
If the ask price is too high, few potential customers will be willing to pay so
much, and the result is forgone profits. If the ask price is too low, the resulting
trade is bad for the firm and good for the customer, which entices many cus-
tomers to make trades that entail likely loss for the firm. For example, Dunbar
(2005) describes an incident in which it was thought that a large portion of a
$200 million loss by JP Morgan could be attributed to this adverse selection:

� � � by selling a swaption straddle that expired the day before a non-farm payroll
announcement and buying one that expired immediately after, a hedge fund

1 For precise details, see Appendix A. We assume an arbitrage-free market.
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could profit from [the] potential volatility. However, a dealer on the other side
of this one-day calendar spread trade might find it difficult to hedge its position
over such a short interval of time, and ought to price this risk into the trade, or
not undertake the trade at all. But JP Morgan seemed to lack such caution, say
market sources, and in effect offered ‘lottery tickets’ to the market.

As we see from this example, a calibrated model can assign a wrong price. The
price for the calendar spread was consistent with market prices, but did not
account for an unusual feature of the statistical probability measure P: interest
rate volatility is concentrated at the date of an important news announcement.
See Section 11 for further discussion.

3 Causes of incompleteness

Several phenomena cause incompleteness. One is an insufficiency of mar-
keted assets relative to the class of risks that one wishes to hedge, which may
involve jumps or volatility of asset prices, or variables that are not derived from
market prices. Market frictions, such as transaction costs and constraints on
portfolios, may also cause incompleteness. A source of effective incomplete-
ness is ambiguity, i.e. ignorance of the true stochastic model for market prices:
it is effectively the same if it is impossible to transfer risk perfectly or if one
merely does not know how to do so.

3.1 Insufficient span of marketed assets

Markets are incomplete with respect to payoffs that are not entirely de-
termined by market prices: examples include weather derivatives, catastrophe
bonds, and derivatives written on economic variables such as gross domestic
product. Corporate investment projects provide another example; real options
analysis applies to a valuation problem in an incomplete market.

Features such as jumps and stochastic volatility of marketed asset prices may
also cause incompleteness, depending on the available trading opportunities.
For example, in the Heston (1993) model of a stock with stochastic volatil-
ity and a bond with constant interest rate, the market is incomplete because
it is not possible to hedge the risk factor associated with stochastic volatility.
However, if an option on the stock were also to be marketed, both risk factors
could be hedged by trading in stock and option, and the market would be com-
plete. Jumps tend to cause incompleteness except in very simple or unusual
models (see e.g. Dritschel and Protter, 1999). Whereas in the Black–Scholes
model, delta is the hedge ratio that matches the locally linear dependence of
an option’s value on infinitesimal changes in the stock price, it is not so easy to
hedge against potential jumps of various sizes, because value is not linear. To
complete a market in which jumps of all sizes are possible might require many
more marketed securities, for example, vanilla European options of all strikes
and maturities.
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Jumps and stochastic volatility are important as ways to model volatility
smiles. A primary alternative is a local volatility model, in which the market
is complete. However, the local volatility model is criticized (e.g. by Davis,
2004a, §2a) for the crucial, counterfactual assumption that an asset’s volatility
is a function of its price: precisely the absence of a second risk factor, which
makes the model complete, prevents it from saying anything about volatility
risk and vega hedging.

For evidence that it may be necessary to model jumps, or jumps and sto-
chastic volatility, in describing equity or equity index returns adequately, see
Andersen et al. (2002), Carr et al. (2002). The most realistic models imply in-
complete markets.

3.2 Market frictions

Constraints produce incompleteness by forbidding portfolio strategies that
replicate some payoffs. For example, an executive who is granted stock options
is not supposed to hedge them by selling stock in the company. Different in-
terest rates for borrowing and lending may be modeled by constraints: where
rb > r� are the rates for borrowing and lending respectively, only positive
shares of a money market account paying rate r� and negative shares of one
paying rate rb are allowed.

Transaction costs produce incompleteness less straightforwardly. Continu-
ous-time portfolio strategies accrue transaction costs at every instant the port-
folio is rebalanced. These strategies are effectively forbidden if their costs
are infinite, which can happen, for instance, in the Black–Scholes model be-
cause of the infinite first variation of geometric Brownian motion. Fixed and
proportional transaction costs are the most frequently studied; the latter are
equivalent to bid–ask spreads for marketed securities. There is a substantial
literature on the topic, looking back to Hodges and Neuberger (1989). More
recent work on the topic includes Clewlow and Hodges (1997).

Rather than model transaction costs explicitly, one might use a model in
which trading is allowed only at a fixed, discrete set of times. This also elimi-
nates continuous-time strategies that would incur infinite costs, and it can be
more tractable; however, rebalancing the portfolio at fixed times is typically
not as good as rebalancing at a finite number of random times.

3.3 Ambiguity

Suppose a stock index follows a geometric Brownian motion whose volatility
is known to be 20%. How many years’ data are required to construct a 95%
two-sided confidence interval of width 1% for the drift? The answer is 6,147:
this yields a width of approximately 2 × 1�96 × 20%/

√
6147 = 1%. On the

other hand, according to this Black–Scholes model, knowledge of the drift is
unnecessary for option pricing, and the volatility can be estimated perfectly by
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observing any time interval, no matter how short. This has to do with the non-
equivalence of Black–Scholes models with different volatilities, but it is merely
an artifact of the continuous-time model. In reality, estimating volatility from
high-frequency data is quite difficult (Zhang et al., 2005). Moreover, a cursory
examination of financial time series shows that, for instance, daily historical
volatility has varied dramatically from year to year. Ambiguity about volatility
is so important that, according to Carr (2002), a frequently asked question in
option pricing is whether one should hedge at historical or implied volatility.
Carr (2002, §IX) provides a formula for the error resulting from hedging a
derivative security at the wrong volatility, given a diffusion model. The hedging
error can be quite substantial.

4 Pricing and optimization

Pricing can be grounded in portfolio optimization (Sections 4.1–4.2) or in
an optimization over pricing measures (Section 4.4).

4.1 Portfolio optimization

Conditions for the existence of optimal portfolio strategies and related
probability measures have attracted much attention. There may be no opti-
mal strategy or measure if there is a sequence of them converging to a limit
point that is excluded from the feasible set, or if the optimization problem is
unbounded. If the limiting strategy is infeasible, one may be satisfied to choose
a nearly optimal strategy. When the problem is unbounded, usually something
is wrong with the way it has been posed. For example, if there is no bound on
the expected utility one can attain by investing, it may be that the set of al-
lowed strategies is unrealistically large, the utility function is unsuitable, or the
probability measure is erroneous.

In the interests of simplicity, we will not treat the question of the exis-
tence of an optimal solution: the interested reader can find precise results
in the literature cited in the sections on specific methodologies. We will also
speak primarily of optimizing random wealth at a fixed future date, and the
connected problem of pricing payoffs at that date, although the same ideas ap-
ply to continuous consumption streams, American options, etc. We ignore the
structure of the portfolio strategies, which could be a single vector of weights
determining a static portfolio in a one-period problem, or a continuous-time
vector stochastic process, or something in between, focusing instead on the
payoffs they provide. Expository treatments of portfolio optimization include
Karatzas and Shreve (1998), Schachermayer (2002), Skiadas (2006).

However, we will now consider briefly two issues in formulating an optimiza-
tion underlying a pricing scheme: whether the optimization takes into account
only the market risk of the OTC trade itself or also accounts for the opportu-
nities for future trades, and whether the portfolio strategy is instantaneously,
myopically optimal or optimal over an entire time interval.
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4.1.1 Opportunity
Accounting for changing investment opportunities leads to better portfolio

strategies. The optimal portfolio can be decomposed into a term that would
be optimal if asset returns were independent, plus a term that corrects for
the dependence of current asset returns and the conditional distribution of
all future asset returns. For example, suppose that there is a riskless asset and
one risky stock whose log price follows a diffusion with stochastic drift and
volatility. A state with a higher ratio of drift to volatility constitutes a more
favorable investment opportunity (cf. the Sharpe ratio) and thus a greater
certainty equivalent for wealth. Suppose further that the change in this drift-
volatility or mean–variance ratio is negatively correlated with the asset return.
The optimal allocation to the stock is greater than it would be if the mean–
variance ratio were deterministic: a loss from investing in the stock is cushioned
by an increased certainty equivalent for each dollar of wealth. This increased
demand for stock in the optimal portfolio is hedging demand. For a very lucid
theoretical account of this phenomenon in the context of quadratic hedging
(Section 6), see Schweizer (1995, especially p. 16). Extensive numerical results
for hedging options occupy Brandt (2003); Example 4.1 is related.

Analogously, for an OTC market-maker, there is a stochastic process of
OTC trade opportunities, i.e. requests for a quote of bid and ask prices by
a potential customer, where each customer has reservation prices below or
above which he is willing to buy or sell. Routledge and Zin (2004) take a step
in this direction, which merits greater attention. The methods of pricing cov-
ered in this survey all focus on whether an individual OTC trade is attractive
to the market-maker without considering its effect on future trades. However,
a trade done now affects the portfolio the trader will have in the future, and in
light of which he will evaluate future trades. For example, if there is a risk con-
straint, doing an OTC trade now might prevent the trader from doing a more
attractive trade in the future. Therefore, each opportunity should be evaluated
in light of the stochastic process of future opportunities: the compensation for
doing a trade should reflect the direct cost of possible losses and also the indi-
rect cost of lost opportunity for profit on future trades that may be passed up
due to the risk associated with this trade.

4.1.2 Local vs. global
In pricing an OTC security, a global optimization optimizes over portfo-

lio strategies that cover an entire time interval. This may be difficult to solve,
whether numerically or analytically, or even to set up. A simpler alternative is
a local optimization, in which the objective and constraints contain only static
criteria, changes over a single time step, or instantaneous rates of change. A lo-
cal optimization optimizes over the current portfolio weights only: whether one
intends to hedge dynamically or not, a local optimization is a static problem, in
a sense.

Global criteria include terminal wealth, total utility from consumption over
an entire time interval, value at risk, and squared hedging error. The global
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criteria can be constraints as well as objectives, for example, the constraint
that the wealth process never be negative. Local criteria include Greeks and
often form pairs with global criteria. For example, in quadratic hedging there
is a locally risk-minimizing strategy and a global variant, the variance-optimal
hedge: see Example 6.1. Analogous to the usual expected utility maximization
(Section 4.2.3) is the local utility maximization Kallsen (2002a), discussed in
Section 9.2 similar to the following example based on Schweizer (1995, §5),
but in continuous time.

Example 4.1. There is a riskless bank account whose value is always $1, and
a risky asset whose prices are given by Table 1. An investor has $100 of initial
wealth and utility function u(W ) = −(W /100)−4. The investor maximizes the
expected utility of wealth at time 2 over self-financing strategies: the decision
variables are ξ1, the number of shares of the risky asset to hold over the first
step, and ξ(+)

2 , ξ(0)2 , and ξ(−)
2 , the number of shares to hold over the second

step, respectively if the risky asset price at time 1 is 1, 0, or −1.

Local optimization of one-step expected utility in each of the four scenarios
yields ξ1 = ξ(0)2 = ξ(−)

2 = 0 and ξ(+)
2 = 16�13: only when the risky asset’s price

is $1 at time 1 is its one-step expected return positive, so that it is worth invest-
ing in it, from a local perspective. A global optimization of two-step expected
utility yields ξ1 = −3�27, ξ(0)2 = ξ(−)

2 = 0, and ξ(+)
2 = 15�60: the negative

position in the risky asset over the first step hedges the increase in the derived
utility of wealth at time 1 if the asset’s price should rise. See Example 6.1 for a
continuation.

That is, local optimization ignores hedging demand, while global optimiza-
tion captures it. Intermediate wealth is worth more in states with better invest-
ment opportunities, and the global optimization yields greater expected utility
from terminal wealth by producing more wealth in the intermediate states with
poorer investment opportunities.

Table 1.
Risky Asset Prices.

State Probability Time 0 Time 1 Time 2

1 1/9 $0 $1 $3
2 1/6 $0 $1 $2
3 1/18 $0 $1 $0

4 1/6 $0 $0 $1
5 1/6 $0 $0 −$1

6 1/6 $0 −$1 $0
7 1/6 $0 −$1 −$2
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4.2 Pricing via portfolio optimization

No-arbitrage bounds (Section 4.2.1) and indifference prices (Section 4.2.2)
are special cases of the mathematical structure of good deal bounds (Sec-
tion 4.2.4). Let R be the set of replicable payoffs, π(Y) be the market price
to replicate a payoff Y ∈ R, and A be an acceptance set of payoffs that are
acceptable compared to the status quo. The lower good deal bound for a pay-
off X, which might be interpreted as a bid price, is

(2)b(X) = sup
Y∈R

{−π(Y) | Y + X ∈ A
}
�

If we can buy X over the counter for less than b(X) then there is a Y that
we can buy in the market for π(Y), such that in total we get X + Y , which is
acceptable, for a cost b(X) + π(Y) < 0. The upper good deal bound or ask
price for X is

(3)a(X) = −b(−X) = inf
Y∈R

{
π(Y) | Y − X ∈ A

}
�

To sell X or to buy −X has the same effect. The other minus sign in a(X) =
−b(−X) reflects the convention that the buyer pays the price to the seller.
Because of the relationship a(X) = −b(−X), one may specify only b (or a),
getting distinct price bounds unless b is antisymmetric.

The interpretation of −b(X) is the cost of rendering X acceptable, and this
can be thought of as a risk measure. As Jaschke and Küchler (2001, n. 6) say,
“any valuation principle that yields price bounds also induces a risk measure
and vice versa.” Indeed, under some conditions, −b is a coherent or convex
risk measure (Artzner et al., 1999; Föllmer and Schied, 2002). The no-arbitrage
bounds provide an example. For generalities, see Jaschke and Küchler (2001,
Prop. 7) and Staum (2004, Prop. 4.2).

The acceptance set A must include {Z | Z � 0}, the set of riskless payoffs,
which is the acceptance set that generates no-arbitrage bounds. It must not
intersect the set {Z | Z < 0} of pure losses with no chance of gain. Finally,
Z ∈ A and Z′ � Z must imply Z′ ∈ A. These three properties correspond to
a subset of the axioms defining coherent risk measures (Artzner et al., 1999).

The acceptance set A must also be consistent with market prices π, or ar-
bitrage will result. For example, if there is an acceptable payoff Y ∈ A with
negative cost π(Y) < 0, then b(0) > 0, and the trader is thus expressing will-
ingness to give money away in exchange for nothing. For a concrete example
using expected utility indifference pricing, see Section 5.2.1. For general re-
marks, related to duality, see Section 4.2.5.

4.2.1 No-arbitrage pricing
The no-arbitrage price bounds are given by Eqs. (2) and (3) with the accep-

tance set A = {Z | Z � 0} = {Z | ess infZ � 0}:
(4)bNA(X) := sup

Y∈R
{−π(Y) | Y + X � 0

} = − inf
Y∈R

{
π(Y) | Y � −X

}
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and

(5)aNA(X) := inf
Y∈R

{
π(Y) | Y − X � 0

} = inf
Y∈R

{
π(Y) | Y � X

}
�

That is, a payoff is acceptable if and only if it has no risk of loss under the
statistical probability measure P. Buying X for less than bNA(X) or selling it
for more than aNA(X) admits arbitrage. For instance, for any ε > 0, there
is a Yε ∈ R such that π(Y) < ε − bNA(X) and Yε � −X. Thus, if we buy
X for bNA(X) − ε and also buy Yε, we acquire Yε + X � 0 (this is super-
replication of −X) for a negative total cost: we get paid now and assume no risk
of loss. El Karoui and Quenez (1995) give a dynamic programming algorithm
for computing the no-arbitrage bounds.

While −ess infX measures the worst possible loss X can yield, −bNA is also
a risk measure, measuring the cost of hedging to prevent the worst possible
loss. The solution Y ∗ to Problem (4) is an optimal hedge for X: it is the cheap-
est payoff that combines with X to produce a portfolio with zero probability
of loss. The typical result for a complete market is that Y ∗ = −X, X solves
Problem (5), and bNA(X) = aNA(X) = π(X), the cost of replicating X. In
an incomplete market, bNA(X) and aNA(X) are usually too low and too high,
respectively, to be of use to an OTC market-maker: few customers would be
willing to trade at such prices (see e.g. Eberlein and Jacod, 1997).

4.2.2 Indifference pricing
Indifference prices are good deal bounds with acceptance set A = {Z |

P(Z) � P(0)} in Eqs. (2) and (3), where P is a preference function specify-
ing complete preferences. Completeness of preferences is different from com-
pleteness of markets: it means that for any pair of payoffs X and Y , either
one prefers X to Y , is indifferent between X and Y , or prefers Y to X.
With a preference function, these three cases correspond to P(X) > P(Y),
P(X) = P(Y), and P(X) < P(Y) respectively. Buying X for less than b(X)
results in a nonnegative cost to acquire a total payoff X + Y that is at least as
good as the status quo, i.e. P(X + Y) � 0.

The main point of indifference pricing is not the mathematics of a prefer-
ence function versus an acceptance set; it is possible to convert between them
as for risk measures and acceptance sets (Jaschke and Küchler, 2001). The
point is the interpretation of the set A as the set of all payoffs that are at least
as good as the status quo. The no-arbitrage bounds are not to be interpreted as
indifference prices. They have the form of indifference prices with P equal to
the essential infimum, which is far too conservative: it says that zero is prefer-
able to any payoff with a positive probability of loss.

Indifference pricing takes place against the background of the portfolio op-
timization problem

(6)sup
Y∈R

{
P̃(W + Y) | π(Y) � c

}
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where the initial endowment consists of c dollars and the random wealth W ,
and P̃ is a preference function over the total random wealth. Then V ∗ =
W + Y ∗ is the total random wealth produced by the trader’s optimal portfo-
lio strategy. A trader who has the opportunity to purchase X over the counter
formulates the problem

(7)b(X) = sup
Y∈R

{−π(Y) | P̃(V ∗ + X + Y) � P̃(V )
}

to find the indifference bid price. If Y ∗ solves Problem (7) with the constraint
tight, then the trader is indeed indifferent between V ∗ + X + Y ∗ and V ∗, i.e.
between doing and not doing the trade at b(X).

Problem (7) coincides with Problem (2) when P(Z) = P̃(V ∗ + Z) − P̃(Z).
That is, preferences over payoffs, which are changes in wealth, used in con-
structing indifference prices, are derived from more fundamental preferences
over total wealth. Therefore, preferences over payoffs depend on the optimal
total random wealth V ∗ in Problem (6). For various reasons, e.g. that the proce-
dure takes too long or that one does not trust its results, one may wish to avoid
solving Problem (6) first, instead simply solving Problem (7) with V , deter-
mined by the status quo portfolio strategy, replacing the optimal V ∗. However,
Problem (7) can be quite sensitive to V , and if V �= V ∗, the indifference price
can violate the no-arbitrage principle. There is an example and further discus-
sion in Section 5.2.1. Another way of dealing with this situation is to formulate
indifference prices by incorporating the portfolio optimization problem (6):

(8)b(X) = sup
Y∈R

{
c − π(Y) | P̃(X + Y) � sup

V ∈R
{
P̃(V ) | π(V ) � c

}}

based on an initial budget of c.

4.2.3 Expected utility
Expected utility theory specifies the preference function as P̃(W ) =

E[u(W )], where the utility function u is increasing because more money is bet-
ter and concave because of risk aversion. It is characteristic of expected utility
indifference pricing that a(X) �= b(X) for a typical nonreplicable payoff X: it
leads to price bounds, not a unique price, because of aversion to risk that can-
not be hedged. As Musiela and Zariphopoulou (2004b) emphasize, “no linear
pricing mechanism can be compatible with the concept of utility based valua-
tion,” so we should not expect to have the ask price a(X) = −b(−X) equal
to the bid price b(X). Marginal indifference pricing (Section 4.3) delivers a
unique price based on expected utility.

Expected utility indifference pricing is difficult to implement in the context
of derivative security pricing. The key inputs to expected utility maximization
are the endowment V , the statistical probability measure P, and the utility
function u. As Carr et al. (2001, §1) observe,

Unfortunately, the maximization is notoriously sensitive to these inputs, whose
formulation is suspect at the outset. This shortcoming renders the methodology
potentially useless � � �
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OTC traders prefer calibration (Section 11), which does not require them to
specify the endowment, the utility function, or the parameters of P, but only
the form of the pricing measure Q. In particular, it is not required to estimate
the expected return of marketed assets under P, which is difficult (Section 3.3),
but of the utmost importance for expected utility maximization. It is likewise
difficult to determine an appropriate utility function in the corporate setting
of making a market in OTC derivatives. What is the basis for corporate risk
aversion? The view of the equity of a firm with debt as a call option on the
firm’s value suggests that shareholders should be risk-seeking, so as to max-
imize the value of this call option. Does corporate risk aversion come from
regulatory capital requirements, or from financial distress costs (for which see
Jarrow and Purnanandam, 2004, and references therein), and if so, how is it
to be quantified? To model the firm’s endowment, one ought to include not
only all securities, loans, and liabilities currently on the books, but also future
business earnings as a going concern: for instance, one would want to know the
dependence between portfolio returns and earnings from doing advisory work
on mergers and acquisitions.

Aside from these perplexities in modeling, continuous-time expected utility
maximization also involves difficult technicalities. For example, it is not easy to
pick a suitable set of portfolio strategies over which to optimize (Delbaen et al.,
2002; Kabanov and Stricker, 2002; Schachermayer, 2003). Work has continued
in this area, to clarify the conditions that are necessary for existence of optimal
portfolios and unique prices (Hugonnier and Kramkov, 2004; Hugonnier et al.,
2005; Karatzas and Žitković, 2003). Schachermayer (2002) and Skiadas (2006)
give expository treatments of the problem of expected utility maximization in a
continuous-time incomplete market, providing a basis for indifference pricing.

4.2.4 Good deal bounds
The acceptance set A for use in the good deal bounds (2) and (3) includes

only payoffs that are preferable to the status quo, but possibly not all of them.
At prices below b(X), it is preferable to buy; at prices above a(X), it is prefer-
able to sell. In indifference pricing, A contains all payoffs preferable to the
status quo, so at prices between b(X) and a(X) it is preferable to do noth-
ing. Otherwise, b(X) is a lower bound on the indifference bid price and a(X)
is an upper bound on the indifference ask price, and the best policy at prices
between b(X) and a(X) is unknown. This is the difference of interpretation
between good deal bounds and indifference prices, which are a mathematical
special case of the former.

There are two alternative interpretations of good deal bounds. One treats
good deal bounds as possible bid and ask prices for a market-maker, much like
indifference prices: see e.g. Cochrane and Saá-Requejo (2000, p. 86), Carr et
al. (2001, §7), Staum (2004), and Larsen (2005, §5). This is financial engineer-
ing, with the goal of making only subjectively good deals, by trading outside the
subjective price bounds, buying below b(X) and selling above a(X). The other
interpretation is that A is a subset of the payoffs that many traders prefer to
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the status quo, as in Section 9. It treats good deal bounds like no-arbitrage
bounds, asserting that good deals should not be available, because almost
everyone would be willing to take them: see e.g. Cochrane and Saá-Requejo
(2000, p. 82), Carr et al. (2001, §1), and Černý and Hodges (2002). This may
be mathematical finance, with the goal of making a more precise statement
about observed prices in incomplete markets than does the no-arbitrage prin-
ciple. However, if these objective good deal bounds are narrow enough, they
indeed offer market-makers useful guidance about prices: they should buy be-
low a(X) and sell above b(X). In such a trade, the counterparty sells below
a(X) and buys above b(X), not receiving a good deal from the market-maker.
If the counterparty also insists on buying below a(X) and selling above b(X),
trades take place inside the price bounds, so that neither party gets a good deal.

So far we have been discussing an abstract framework. How can it be given
economic content by specifying the acceptance set A? The primary approaches
include restrictions on the pricing kernel (Section 9) and robustness (Sec-
tion 10). A simple version involves a convex risk measure formed by a finite
number of valuation measures and stress measures with floors (Carr et al.,
2001; Larsen et al., 2005), which might be specified by looking at the mar-
ginal utility and the risk management constraints of several market participants
(Carr et al., 2001, §2). In Section 8, we consider methods that yield price
bounds and have the same mathematical form as good deal bounds, except
that they use acceptance sets A that violate the axioms in Section 4.2. This
causes them to be unsuitable for OTC pricing, although they have other uses.

4.2.5 Duality
Duality provides Formula (1) for no-arbitrage bounds and related expres-

sions for a good deal bound or indifference price as in Eq. (2): see Jaschke and
Küchler (2001, §4) and Staum (2004, Thm. 4.1). It yields both computational
advantage and insight. For example, in pricing a path-independent European
option given continuous trading, the dual optimization is taken over a set of
probability measures on terminal payoffs, which is more tractable than the set
of continuous-time portfolio strategies appearing in the primal problem. The
two major ways of grounding pricing in optimization involve the two sides of
this duality: portfolio optimization is optimization over portfolios or the pay-
offs they provide, while the methods of selecting minimum-distance measures
or subsets of the set Q of EMMs involve optimization over probability mea-
sures. For more on duality in indifference pricing, see Frittelli (2000a, §3).

For an exposition of portfolio optimization in incomplete markets in terms
of convex duality, including equivalent martingale measures and marginal in-
difference pricing, see Schachermayer (2002). Convex duality also appears in
representation and optimization of risk measures (Ruszczyński and Shapiro,
2004). The conditions for the price bounds (2) and (3) to avoid arbitrage are
best understood in terms of duality: for a version of the first fundamental the-
orem of asset pricing, see Staum (2004).
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Under some conditions, including that the acceptance set A be related to a
coherent risk measure, the price bounds (2), (3) have the dual representation

(9)
(

inf
Q∈D

EQ[DX]� sup
Q∈D

EQ[DX]
)
�

where D is a subset of the set Q of EMMs (Jaschke and Küchler, 2001). For the
no-arbitrage bounds, D = Q. When the price bounds coincide and are linear,
D is a singleton, i.e. the method selects a single EMM (see Section 2.3 for
a discussion). Marginal indifference pricing and minimum-distance measures
are the principal methods of selecting a single EMM.

4.3 Marginal pricing

For any price bounds b and a, limγ↓0 γa(X/γ) and limγ↓0 γb(X/γ) may co-
incide and provide a unique price p̃(X) suitable for small trades. For a general
result on good deal bounds, see Staum (2004, Prop. 5.2). Under expected util-
ity preferences, P̃(W ) = E[u(W )], this suggestion corresponds to using the
marginal utility u′ to define a pricing measure Q:

(10)p̃(X) = EP
[
u′(V )DX

] = EQ[DX]�
where D is the discount factor and dQ/dP = u′(V )/E[u′(V )]. That is, in the
most straightforward case, marginal indifference pricing results in the selec-
tion of a single EMM Q whose likelihood ratio with respect to the statistical
probability measure P is proportional to the marginal utility of terminal wealth
provided by an optimal portfolio.

Marginal indifference pricing is based on the idea that a single trade is small
and does not need to be hedged. This argument is appropriate for finding the
equilibrium price of a security that is traded and infinitely divisible, but see
Section 2.1. If a small trade has negligible impact on the whole portfolio’s risk
profile, e.g. it has little effect on marginal utility, that is an argument for using
the unique marginal indifference price. This argument is not generally appro-
priate for OTC market-making. A single small trade might seem to be priced
adequately by marginal indifference, but many small trades cumulatively can
involve large risks. Ignoring the likely cumulation of risks can cause initial, my-
opic underpricing of OTC securities that are in high demand, followed by a
concentration of related risks and thus the need to set high prices, at which
fewer trades would be made (see Section 4.1.1). The contribution of a small
trade to total risk depends on the opportunities for hedging, which should
therefore affect pricing.

4.4 Minimum-distance pricing measures

Marginal indifference prices based on expected utility are an example of
pricing with a minimum-distance measure. The expected utility is an expecta-
tion under a statistical probability measure P. The marginal indifference price
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is an expected discounted payoff under a minimax martingale measure Q ∈ Q
that is “closest” to P in the sense of providing the least possible expected utility
to an investor who could buy any payoff V for EQ[DV ]. That is, Q corresponds
to the “least favorable market completion”: in the fictitious complete market
in which the price of any payoff V is EQ[DV ], the utility derived from opti-
mal investment is as low as possible (Skiadas, 2006). The minimax martingale
measure Q is the solution to

(11)min
Q∈Q

max
V

{
EP

[
u(V )

] | EQ[DV ] � c
}
�

For a version based on local utility, see Kallsen (2002b) and references
therein. Particular choices of utility yield quadratic and exponential methods
in Sections 6–7; the latter distance can also be described in terms of rela-
tive entropy. The same concepts appear in Section 9, featuring not just the
minimum-distance measure but a set of EMMs having low distance to P. For
more on portfolio optimization and minimum-distance measures, see Goll and
Rüschendorf (2001).

Somewhat different is the case of calibration (Section 11), which is not based
on a statistical probability measure P. Instead it starts from a parametric fam-
ily P , and selects the pricing measure Q̂ ∈ P that is closest to Q in the sense of
having the least error in replicating the prices of marketed derivative securities;
an EMM in Q would yield zero replication error.

Figure 1 illustrates the structure of four schemes for selecting a probability
measure for pricing in an incomplete market. It uses the very simple setting of
a one-period model with three states and two marketed securities: a riskless
bond paying $1 in all states and with initial price of $1, and a stock worth $2
in state 1, $1 in state 2, and $0 in state 3 and having initial price $0�80. To
simplify matters even further for purposes of two-dimensional representation,
we will assume that the bond must be repriced exactly, so the price assigned to
a payoff X is EQ[DX] = EQ[X] where the pricing measure Q = (q1� q2� q3) is
a true probability measure, such that the probabilities of the three states sum to
one: q1 +q2 +q3 = 1. Thus, q3 = 1−(q1 +q2), so all possible pricing measures
can be parametrized by the triangle in Fig. 1: q1 � 0� q2 � 0� q1 + q2 � 1. The
diagonal line 2q1 + q2 = 0�8 represents the constraint of repricing the stock,
so its line segment in the interior of the triangle is the set Q of EMMs for any
statistical probability measure P that assigns positive probability to all states.
The vertical line segment inside the triangle and defined by q1 = 0�5 represents
a set P of models. Of course, this example is so simple that there is no need
to restrict attention to a subset of the possible pricing measures that does not
include any measures that reprice the stock; also, ordinarily models include
underlying securities’ initial prices as parameters, so all underlying securities,
as opposed to derivative securities, are repriced exactly. The point of the setup
in Fig. 1 is that the resulting structure is not only very simple, but also similar
to that encountered in practice, in which one works with a parametric family
of models that does not include an EMM.
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Fig. 1. Structures of schemes for selecting a pricing measure.

Calibrating the family of models P to the stock price selects Q̂ = (0�5� 0� 0�5)
as the pricing measure, which minimizes the error in repricing the stock by as-
signing it the price $1, the least possible within this family of models. Another
scheme begins with a statistical probability measure P, which may have been
estimated within the family P by econometric inference, and then selects the
EMM Q that is closest to P. In Figure 1, Q = (0�34� 0�12� 0�44) minimizes
Euclidean distance, but several distances have been proposed, relating e.g. to
entropy or expected utility. Instead of selecting only Q, which minimizes the
distance to P, to get a unique price, one may select a set of pricing measures
having low distance to P, and get an interval of prices: the empty dots con-
nected by a curved arc around Q represent the extreme measures selected
by this scheme. Where distance is a function of dQ/dP, this scheme includes
some approaches based on pricing kernel restrictions (Section 9). The fourth
scheme begins with multiple probability measures, here P and P′, yielding ro-
bustness to ambiguity about the statistical probability measure (Section 10).
Each of these yields a minimum-distance EMM, here Q and Q′ respectively,
and this resulting set of EMMs can be used to generate a unique price or a
price interval.

5 Issues in pricing and expected utility examples

Our main example is adapted from Carr et al. (2001).

Example 5.1. Consider a single-period economy with five possible states and
three assets: a riskless bond, a stock, and a straddle. The bond and stock are
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Table 2.
Terminal Asset Values.

State 1 State 2 State 3 State 4 State 5

Bond $1 $1 $1 $1 $1
Stock $80 $90 $100 $110 $120
Straddle $20 $10 $0 $10 $20

Table 3.
Expected Utility Indifference Pricing of a Straddle.

Initial
wealth

Initial portfolio Transaction
type

Portfolio adjustment Indifference
priceBond Stock Bond Stock

$100 77�6 0�334 buy −25�1 0�147 $9�92
sell 21�3 −0�082 $12�11

$1000 776 3�34 buy −22�8 0�111 $10�94
sell 22�5 −0�105 $11�17

marketed, with initial prices $0�9091 and $88�1899 respectively. The terminal
values of the three assets are given in Table 2. The no-arbitrage bounds for
the straddle price are $2�72 and $18�18. Consider the utility function u(W ) =
−(W /100)−4 for W > 0, and suppose the states have equal probabilities.

For any level of initial wealth, the optimal portfolio in marketed securities
has 70�55% of the wealth in the bond and 29�45% in the stock.2 Pricing by mar-
ginal utility uses the probabilities Q = (26�55%� 22�68%� 19�46%� 16�78%�
14�53%), yielding a unique price of $11�06 for the straddle. The bid and ask
indifference prices when the initial wealth is $100 or $1000 allocated optimally
are ($9�92� $12�11) and ($10�94� $11�17) respectively. Table 3 shows the corre-
sponding portfolio adjustments providing optimal payoff Y ∗.

5.1 Dependence on trading opportunities

The opportunities to trade in the market affect the indifference price. For
example, suppose that the stock were not marketed, but the initial portfolio
still had 29.45% of its wealth in the stock. Then the indifference prices based
on initial wealth of $100 would be ($9�86� $12�14): with fewer opportunities to
rebalance the portfolio, the price interval would become wider. The marginal

2 Power and log utilities, having constant relative risk aversion, can lead to optimal portfolios whose
allocation fractions do not depend on the initial wealth: see e.g. Karatzas and Shreve (1998, Exam-
ples 3.6.6–7).
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indifference price given by Eq. (10) would not change: it involves an infinites-
imal change in the portfolio, in the direction defined by the straddle payoff,
and no portfolio rebalancing. On the other hand, there is a difference in the
marginal prices derived from the indifference price (8) incorporating portfolio
optimization, depending on whether the optimal portfolio is allowed to con-
tain stocks and bonds, or only bonds. In the latter case, the optimal portfolio
provides the same wealth in each state, so the marginal indifference price is
$12, based on Q = (20%� 20%� 20%� 20%� 20%).

5.2 Dependence on current portfolio

The indifference prices and the optimal portfolio adjustments also depend
on the random wealth V provided by the initial portfolio. This is intuitively rea-
sonable, as a trader should be less eager to acquire a payoff that exacerbates
unhedgeable risk in the current portfolio than one that cancels out such risks.
As Rouge and El Karoui (2000) say, “it is unrealistic that agents with different
endowments should have the same attitude toward risk.” Indeed, OTC market
makers describe an unhedgeable risk in their portfolios as an “axe,” thinking
of the expression “having an axe to grind.” For example, suppose a trader is
long OTC options on a stock with no marketed options. It would not be easy to
hedge the risk of a decline in the implied volatility (and hence value) of these
options, so this long position is an “axe” which the trader would like to “grind”
by selling OTC options. The trader would set low ask and bid prices, to encour-
age sales of options, which decrease this risk, and get adequate compensation
for purchases, which increase this risk.

Table 4 illustrates this point for Example 5.1. It shows that after a trader has
bought a straddle and re-optimized the portfolio, as in Table 3, the bid and ask
prices decrease. The new ask price is the same as the original bid price, which
makes sense: together, the two transactions return the trader to the original
portfolio, so a net cost of zero produces indifference. The marginal indiffer-
ence price after buying a straddle and optimally rebalancing is $8.77 for the
case of $100 initial wealth; this too decreases because the change in the portfo-
lio has reduced marginal utility in most of the states in which the straddle pays
off.

Table 4.
Effect of Initial Portfolio on Expected Utility Indifference Pricing.

Initial
wealth

Initial portfolio Transaction
type

Hedge portfolio Indifference
priceBond Stock Bond Stock

$100 52�5 0�481 buy −33�5 0�258 $7�66
plus 1 straddle sell 25�1 −0�147 $9�92

$1000 753 3�45 buy −23�2 0�118 $10�72
plus 1 straddle sell 22�8 −0�111 $10�94
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The dependence of indifference price on initial portfolio, illustrated in Ta-
ble 4 for constant relative risk aversion, occurs even with constant absolute risk
aversion (exponential utility, Section 7), which is often used to obtain separa-
tion of investment and hedging decisions. In Example 5.1, if the utility function
is replaced by u(W ) = − exp(−(0�0453)W ), the optimal allocation of $100 ini-
tial wealth remains very nearly the same, leading to a similar bid–ask spread
of ($9�89� $12�10). After the trader has bought a straddle and re-optimized the
portfolio, the bid–ask spread becomes ($7�64� $9�89).

5.2.1 Optimality as prerequisite for indifference pricing
Indifference prices should fall within the no-arbitrage bounds, so as to avoid

arbitrage in OTC trades. To prevent the indifference price in Eq. (7) from
violating no-arbitrage bounds, the initial portfolio V must be optimal, i.e.
V = V ∗ = W + Y ∗ where Y ∗ solves the portfolio optimization problem (6).
If V is suboptimal, the indifference price may exceed the market price for a
replicable payoff that increases the preference index P̃ in Problem (6). Like-
wise, the indifference price for a non-replicable payoff may exceed its upper
no-arbitrage bound. Example 5.2 illustrates these effects.

Example 5.2. Continuing Example 5.3, suppose the initial portfolio delivers
$100 except in state 1, in which it delivers only $60. Consider the payoff Y
provided by a portfolio long 100 shares of the bond and short one share of the
stock.

Based on marginal utility, the valuation probability of state 1 is 76.28%, giv-
ing a marginal indifference price for the put of $6�93. Its indifference price is
$8�42. These both exceed the upper no-arbitrage bound of $5�23. Acquiring Y
increases expected utility. Its market price is $2�72, but its marginal indiffer-
ence price is $9�49 and its indifference price is $7�28.

The need to base indifference pricing on an optimal portfolio causes a grave
difficulty in using expected utility. Because expected utility maximization is not
robust to ambiguity about the statistical probability measure P (Section 4.2.3),
it is not actually a good idea to adopt the supposedly optimal portfolio. Typ-
ically, the true expectation of V ∗ is lower than EP[V ∗], because the optimal
portfolio overinvests in assets that are wrongly believed to have high expected
returns. Consequently, the trader does not optimize his portfolio, V �= V ∗,
but to avoid arbitrage, the indifference prices must be based on V ∗. The result
is that the trader is not indifferent between trading and not trading at these
“indifference prices”; someone else with a different portfolio would be. The
economic justification for expected utility indifference pricing evaporates.

5.3 Risk vs. preference

It is tempting to think of the optimal portfolio adjustment Y ∗ in Problem (7)
as a hedge for the payoff X, but as we have seen, Y ∗ and the indifference price
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b(X) depend on the payoff V from the existing portfolio strategy as well as
on the payoff X. Only in special cases such as neutralization of Greeks does
hedging apply to payoffs without reference to a portfolio: delta-hedging each
security in a portfolio produces the same net position as delta-hedging the
whole portfolio. The hedge that minimizes a portfolio’s risk does not gener-
ally coincide with the sum of such hedges for each security in the portfolio.

Another way in which the optimal Y ∗ in Problem (2) or (7) is not a hedge is
that it need not reduce risk. To formulate a less risky alternative, suppose that
market prices π are linear and there is a reference security (e.g. riskless bond)
with payoff denoted 1. One can finance the purchase of a payoff X for b(X) by
acquiring Y ∗ or, more simply, by acquiring −(b(X)/π(1))1. By definition, it is
preferable to acquire Y ∗: P(V +X+Y ∗) � P(V +X−(b(X)/π(1))1, but it need
not be less risky to acquire Y ∗. Unless the preference P and risk measure ρ are
related as P = −ρ, it is possible that ρ(V +X+Y ∗) > ρ(V +X−(b(X)/π(1))1.
The following example illustrates this point.

Example 5.3. We extend Example 5.1 by including another non-traded asset, a
put option on the stock with strike $90. Its only nonzero payoff is $10 in state 1,
in which the stock is worth $80. As a risk measure of a payoff W , we use the
tail conditional expectation (see Artzner et al., 1999) of W − 110, the shortfall
relative to investing $100 in bonds.

The no-arbitrage bounds on the put’s price are ($0� $5�23) and the bid and
ask indifference prices when the initial wealth is $100 allocated optimally are
($2�22� $2�60), with marginal indifference price $2�41. Table 5 shows the state-
by-state values of the original optimized portfolio V , of the portfolio V +X −
(b(X)/π(1))1 after buying the put for $2�22 by selling bonds, and of the re-
optimized portfolio V +X+Y ∗. Table 6 shows these portfolio’s tail conditional
expectations at several probability levels, corresponding to average values over
the worst 1–5 states.

The last column, tail conditional expectation at the 100% level, is E[110 −
W ], which simply measures the portfolio’s expected value. The other columns
are more properly risk measurements. They each show that buying the put
by selling bonds reduces risk, while re-optimizing the portfolio increases risk
even beyond its original levels. Because the put adds extra wealth in state 1,
the worst state for the original portfolio, it allows the re-optimized portfolio

Table 5.
Portfolio Values when Buying a Put.

Portfolio State 1 State 2 State 3 State 4 State 5

Original Optimal $104.32 $107.66 $111.00 $114.34 $117.68
Buy Put, Sell Bonds $111.88 $105.22 $108.55 $111.89 $115.23
Re-optimized $107.97 $103.61 $109.24 $114.88 $120.51
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Table 6.
Risk in Buying a Put.

Portfolio Tail Conditional Expectation

20% 40% 60% 80% 100%

Original Optimal 5.68 4.01 2.34 0.67 −1�00
Buy Put, Sell Bonds 4.78 3.11 1.45 0.61 −0�56
Re-optimized 6.39 4.21 3.06 1.07 −1�24

to allocate a greater fraction of wealth to the stock. This maximizes expected
utility, but it increases risk: for instance, the re-optimized portfolio has less
wealth ($103.61) in its worst state than does the original portfolio ($104.32) in
its worst state.

Even if preferences are risk-averse, preference and risk are not simply oppo-
sites, as the example shows, even though it is always preferable and less risky to
have more wealth. To incorporate risk management concerns, one may add a
risk constraint. We could reformulate the trader’s portfolio optimization prob-
lem (6) as

(12)sup
Y∈R

{
P̃(W + Y) | π(Y) � c� ρ(W + Y) � r

}
�

where internal or external regulators impose the risk measure ρ and the limit r
on the risk of the trader’s portfolio. Given this formulation, one might think of
the solution to Problem (6) as an optimal portfolio adjustment and of the dif-
ference between the solutions to Problems (6) and (12) as a hedge. “Hedging”
is a good description of neutralizing Greeks, which is solely risk minimization,
with no other preference involved; when optimizing with preferences distinct
from risk, portfolio re-optimization need not be hedging i.e. risk reduction.

6 Quadratics

Quadratic hedging is a much-studied, mathematically elegant approach to
incomplete markets. Surveys include Pham (2000) and Schweizer (2001). The
quadratic method is a special case of expected utility indifference pricing, with
quadratic utility u(x) = −x2. Because it is decreasing for x > 0, quadratic
utility is not a realistic model of preferences, as has often been pointed out, e.g.
by Dybvig (1992). Quadratic utility penalizes the gain due to a hedge’s excess
over the liability to be covered, as well as the loss due to shortfall with respect to
the liability. The same charge has been leveled against mean–variance portfolio
analysis. Markowitz (2002, pp. 155–156) responds:

� � � the problem was to reconcile the use of single-period mean–variance analy-
sis by (or on behalf of) an investor who should maximize a many-period utility
function. My answer lay in the observation that for many utility functions and
for probability distributions of portfolio returns “like” those observed in fact,
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one can closely approximate expected value of the (Bellman 1957 “derived”)
utility function knowing only the mean and variance of the distribution.

For details, see the references Markowitz (2002) cites after this quote. It would
be interesting to investigate how well the mean and variance can approximate
the derived utility of hedged portfolios resulting from OTC market-making.

One might try to separate the problems of hedging, to be solved with a
quadratic approach for tractability, and optimal investment, to be solved with
an appropriate utility function. However, Dybvig (1992) provides a negative
result for the case where incompleteness is due to nonmarket risks: this sepa-
ration does not occur except with constant absolute risk aversion (exponential
utility) and independence of the hedging residual and the marketed risks.

Föllmer and Schweizer (1991) developed a martingale decomposition theo-
rem that yields a locally risk-minimizing hedging strategy for a payoff X, where
risk is instantaneous or one-step variance. The solution relates to the mini-
mal martingale measure P̂ . For senses in which P̂ is minimal, relating both to
quadratic and entropy criteria, see Schweizer (1999). In local risk minimiza-
tion, it is standard to optimize over hedging strategies that need not be self-
financing. A non-self-financing portfolio strategy has an associated cost process
C, where C(t) is the cumulative cash influx required to rebalance the port-
folio over the time interval [0� t]. At each instant t, a locally risk-minimizing
strategy minimizes E[(C(T) − C(t))2|Ft], the conditional expectation of the
squared cumulative future costs, without regard to past costs. A locally risk-
minimizing strategy is “mean-self-financing” in the sense that its cost process
is a martingale (Schweizer, 2001, Lem. 2.3), so C(t) = E[C(T)|Ft], and
thus local risk minimization is equivalent to minimizing the conditional vari-
ance of the cumulative cost. In discrete time, a backward recursion shows
that this is equivalent to choosing the portfolio weights at time ti to mini-
mize Var[(C(ti+1) − C(ti))

2|Fti ], the conditional variance of the cost incurred
at time ti+1. This method is local in the sense that it involves one-step op-
timizations, and in the sense that an infinitesimal perturbation of the locally
risk-minimizing strategy must increase the variance of the cost over the next
step or instant. The optimal cost process is orthogonal to the gains process of
the locally risk-minimizing strategy, which is a projection of the P̂-conditional
expectation process of X (Pham, 2000, Thm. 4.2).

The mean–variance optimal self-financing hedging strategy minimizes E[(Y−
X)2], the variance of the hedging residual. This global quadratic criterion re-
lates to the variance-optimal martingale measure P̃ (Schweizer, 1996), which is
a minimum-distance measure (Section 4.4) based on L2-distance. Bertsimas et
al. (2001) provide a stochastic dynamic programming algorithm for comput-
ing the mean–variance optimal hedging strategy. This hedging problem can be
studied by means of martingale measures or backward stochastic differential
equations: for recent work on the latter, see Lim (2004) and references therein.
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Heath et al. (2001) provide a theoretical and numerical comparison of the
local and global quadratic approaches. The following example illustrates the
difference between a local and global approach in the quadratic setting.

Example 6.1. Continuing Example 4.1, suppose that a trader wishes to hedge
the sale of a contingent claim paying $1 in state 1.

The locally risk-minimizing hedge is ξ1 = 0�1, ξ(0)2 = ξ(−)
2 = 0, and ξ(+)

2 =
0�2. The variance-optimal hedge is ξ1 = ξ(0)2 = ξ(−)

2 = 0 and ξ(+)
2 = 0�33.

The cost processes associated with these hedges are given in Table 7. The total
cost is the hedging residual. Its variance is minimized by the variance-optimal
hedge, yielding a variance of 0�037, as opposed to 0�047 for the locally risk-
minimizing hedge, which does not take into account the partial cancellation of
costs incurred at different times in state 2. The conditional variances at time 1
of the cost incurred at time 2 are 0 when the risky asset’s price is 0 or −1,
under either hedging scheme, and 0�133 or 0�222 for the locally risk-minimizing
and variance-optimal hedges respectively, when the risky asset’s price is 1. The
unconditional variance of the cost incurred at time 1 is 0�007 or 0�037 for the
locally risk-minimizing and variance-optimal hedges respectively.

Suppose that the set R of replicable payoffs is a linear space. The quadratic
criteria behave linearly in the sense that, if the hedge Y is optimal for a pay-
off X, then for any multiple γ ∈ R, γY is optimal for γX. Consequently, the
quadratic methods result in unique prices and select a single martingale mea-
sure P̂ or P̃ .

However, it is not appropriate to interpret an expected discounted pay-
off under P̂ or P̃ as a price. As suggested earlier, because quadratic utility
does not model preferences well, these prices may not be compatible with
the trader’s preferences (Bertsimas et al., 2001). Moreover, they may violate
the no-arbitrage bounds. The measures P̂ and P̃ may be signed, that is, they
may assign negative values to some events. Pricing under a signed measure

Table 7.
Quadratic Hedging Cost Processes.

State Probability Locally risk-minimizing Variance-optimal

Time 1 Time 2 Total Time 1 Time 2 Total

1 1/9 $0.1 $0�4 $0�5 $0.33 $0 $0�33
2 1/6 $0.1 −$0�4 −$0�3 $0.33 −$0�67 −$0�33
3 1/18 $0.1 $0 $0�1 $0.33 $0 $0�33

4 1/6 $0 $0 $0 $0 $0 $0
5 1/6 $0 $0 $0 $0 $0 $0

6 1/6 $0.1 $0 $0�1 $0 $0 $0
7 1/6 $0.1 $0 $0�1 $0 $0 $0
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would imply willingness to pay to give away a lottery ticket, i.e. Arrow–Debreu
security, for such an event (Schweizer, 1995). The reason this happens is pre-
cisely that quadratic utility penalizes gains as well as losses, so its marginal
utility may be negative. For examples of arbitrage resulting from quadratic
pricing, see Schweizer (1995, §5) or Frittelli (2000b, p. 50). For similar reasons,
jump processes in continuous time pose difficulties for the quadratic approach:
there may be negative marginal utility for wealth in a state in which a jump
in marketed asset prices causes the optimal portfolio’s value to exceed the li-
ability X. An example of what can go wrong occurs in Example 6.1, where
P̂(ω1) = P̃(ω1) = 0, so the optimal initial capital for local or global quadratic
hedging of the Arrow–Debreu security for state 1 is zero.

According to Biagini and Pratelli (1999), in discrete time or with jumps, the
results of local risk-minimization depend on the numéraire: the hedging strat-
egy depends on whether the costs of the portfolio, which is not self-financing,
are measured in units of cash, bonds, stocks, etc. One response to this is that
the trader should simply choose the numéraire such that the variance of costs
as measured in this numéraire best describes his preferences. However, this ob-
servation draws attention to a theoretical shortcoming of using strategies that
are not self-financing: costs which are cashflows at different times are simply
added, ignoring the time value of money. This may not be a significant issue
unless long time spans or high interest rates are involved.

7 Entropy and exponential utility

Another special case of expected utility indifference pricing uses exponen-
tial utility, also known as negative exponential utility, which may be conveniently
expressed as u(x) = 1 − exp(−αx). It has the feature of constant absolute risk
aversion, which can produce theoretically elegant results, such as separation
of hedging and investment decisions, and independence of the indifference
price in Eq. (8) of the initial budget c. Also interesting is the relationship be-
tween maximization of exponential utility and minimization of relative entropy
EQ[ln(dQ/dP)]. The marginal exponential utility indifference price is the ex-
pected discounted payoff under a minimum-distance measure (Section 4.4),
the minimal entropy martingale measure (MEMM) having minimal relative en-
tropy with respect to the statistical probability measure P (Frittelli, 2000b;
Rouge and El Karoui, 2000). Relative entropy also appears in Section 10 as
a way of quantifying ambiguity.

Delbaen et al. (2002) cover the topic of exponential utility maximization and
valuation via the MEMM with special attention to the set of feasible portfolio
strategies over which the optimization occurs. Becherer (2003) gives a general
presentation and more explicit results in a special case in which the financial
market is complete, but one must value payoffs that depend also on risks in-
dependent of the financial market. Mania et al. (2003) discuss special cases
in which the MEMM can be constructed explicitly. Another explicit example,
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with intuition, and an algorithm for indifference pricing in a similar setting are
in Musiela and Zariphopoulou (2004a, 2004b). Fujiwara and Miyahara (2003)
discuss representation of the MEMM in terms of Esscher transforms when the
underlying process is a geometric Lévy process, giving as examples Brownian
motion plus a compound Poisson process, a stable process, and the variance
gamma process.

Under some conditions, including restrictions on the form of the mean–
variance ratio, the minimal martingale measure coincides with the MEMM
(Mania et al., 2003, Prop. 3.2). The minimal martingale measure P̂ (see Sec-
tion 6) is the solution to the dual of the problem of maximizing exponential
utility given an initial endowment equal to a multiple of the mean–variance ra-
tio (Delbaen et al., 2002, Thm. 5.1). An alternative is to minimize the entropy-
Hellinger process instead of relative entropy. Choulli and Stricker (2005) de-
velop this approach and show that it corresponds to the neutral derivative
prices of Kallsen (2002a), for which see Section 9.1, and that it selects the
minimal martingale measure (Section 6) when the discounted price process
is continuous. Choulli et al. (2006) provide an extension of this approach and a
more general framework including it and other minimum-distance measures.

8 Loss, quantiles, and prediction

What unifies the ideas covered in this section is an emphasis on the loss or
shortfall (Y − X)− associated with hedging the sale of the payoff X by ac-
quiring the payoff Y . They ignore the positive part of the hedging residual,
(Y − X)+. Unfortunately, the nomenclature surrounding these methods is a
bit confusing: they may also involve a loss function �, which is another way
of expressing utility: �(x) = −u(−x). Minimizing the expected loss is then
the same as maximizing expected utility, so pricing via expected loss mini-
mization could be understood as a special case of expected utility indifference
pricing. That is, the trader would be seeking the cheapest hedge Y such that
E[�((V + Y − X − B)−)] � E[�((V − B)−)], where V is the endowment
and B is a benchmark relative to which losses are measured, possibly zero. (If
V = B = 0, the resulting indifference prices are the no-arbitrage bounds, be-
cause gains are ignored and cannot make up for losses.) However, this is not
the way that loss minimization has usually been treated.

This literature primarily addresses the problem of minimizing expected loss
given a fixed initial budget with which to hedge a liability, without reference to
an endowment payoff V . The focus is solely on the shortfall of an approximate
hedge. This literature also addresses the very closely related problem of deter-
mining the minimal required initial budget to hedge so that expected loss does
not exceed some prespecified threshold.

We will consider how the latter problem may apply to pricing in incomplete
markets. The approach falls into the framework described in Section 4.2, with
the acceptance set A = {Z | E[�(Z−)] � p}. Because the loss function ignores
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gains, if A is nontrivial, it must include a payoff Z < 0. Therefore, pricing a
payoff X as the minimal initial budget required to hedge so that expected loss is
less than p can result in giving the counterparty an arbitrage. For example, the
minimal cost of a replicable payoff Y subject to the constraint E[�(Y−)] � p
for p > 0 may be negative. This method is not generally sound for OTC pric-
ing, as illustrated in Example 8.1.

The two following subsections describe two particular choices of loss func-
tion, whose original application was for hedging given a capital constraint, and
show that this expected loss methodology should not be transposed directly to
the application of OTC pricing.

8.1 Expected shortfall

The choice �(x) = x is minimization of expected shortfall. For theoretical
results, see Cvitanić (2000), who discusses the form of the optimal hedge in a
market that is incomplete due to stochastic volatility or trading constraints.

Example 8.1. Continuing Example 5.1, consider the minimal initial capital re-
quired to hedge the straddle given a constraint on expected shortfall.

Figure 2 shows this initial capital as a function of the level p of the con-
straint. The lower curve in Fig. 2 has negative values for large p because the op-
timal “hedge” has a negative value in some states, and its cost is negative. The
upper curve gives the initial capital required to attain the expected shortfall
constraint given the additional constraint that the hedge must be nonnegative;
this constraint is appropriate only when treating nonnegative payoffs X such
as the straddle. The result is that for p = $12, which is the expected shortfall
of the unhedged straddle, the required initial capital is $0. This is still below

Fig. 2. Cost of hedging a straddle to achieve an expected shortfall constraint.
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the lower no-arbitrage bound, which is $2�72. For p = 0, the initial capital
equals the no-arbitrage upper bound. The initial capital required for hedging a
replicable payoff does not, in general, equal its market price. For example, the
no-arbitrage price is $0 for an equity swap replicated by a portfolio that is long
1 share of stock and short approximately 97 shares of the bond. However, with
an expected shortfall constraint of p = 0�25, the price assigned is −$0�26.

8.2 Quantile hedging

Another special case, �(x) = 1{x > 0}, is known as quantile hedging
(Föllmer and Leukert, 1999). With this loss function, the hedger tries to mini-
mize the probability of a positive shortfall, without regard to the magnitude of
shortfall. Alternatively, one might try to apply quantile hedging to pricing by
finding the minimal initial budget required to hedge so that the probability of
a positive shortfall does not exceed p. The special case p = 0 results in super-
replication, that is, any feasible hedge Y satisfies Y � X, corresponding to the
no-arbitrage upper bound.

However, for p > 0, the method may not work: if there is an event F such
that P[F] � p and a replicable payoff YF of negative price π(YF) such that
YF1F � 0, the optimization minY∈R{π(Y) | P[Y − X < 0] � p} tends to
be unbounded. For example, if the space of replicable payoffs R and market
prices π are linear, and Y ∗ � X is a superreplicating payoff, then Y ∗ + λYF

is feasible for all λ ∈ R, so the optimization is unbounded. Even if portfolio
constraints and nonlinear market prices render the optimization bounded, the
results are still likely to be unusable. The optimal solution will tend to involve,
for any X, a large negative price to be paid to the buyer of X, funded by in-
curring large liabilities on some event F of sufficiently small probability. The
more complete the market is, the worse this problem will be, as it becomes eas-
ier to concentrate liabilities on events of low probability but high state price.
One way to ameliorate this problem is to restrict the hedge to be nonnegative
(Föllmer and Leukert, 1999). This still leaves the methodology with the same
deficiencies as for expected shortfall.

8.3 Statistical prediction intervals

Related to quantile hedging is a statistical approach based on prediction
intervals for financial quantities such as cumulative interest rates and volatil-
ity over an option’s life (Mykland, 2003a, 2003b). Quantile hedging looks for
a hedge Y that covers the liability X on some event FX of probability p, i.e.
1FX (Y −X) � 0 and P[FX ] = p. By contrast, this statistical approach specifies
a fixed event G, a prediction interval of probability p used for all payoffs X,
and requires that Y satisfy 1G(Y − X) � 0. This makes the bounds wider for
this prediction interval approach than for quantile hedging at the same error
level p, assuming the same statistical probability measure P in both cases. An
advantage of the prediction interval approach is that it need not be based on a
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single probability measure P. Without assuming a specific model for stochastic
volatility and interest rates, much less that its parameters are known, Mykland
(2003a, 2003b) works out bounds for European option prices and the related
hedging strategies in a diffusion setting, given prediction intervals for cumu-
lative volatility

∫ T
0 σ2(t) dt, or for this and cumulative interest rates

∫ T
0 r(t) dt

together.
Because it is similar to quantile hedging, this prediction interval approach

has a similar drawback as a method for OTC pricing: it assigns zero value to
payoffs that are zero inside the prediction interval but positive outside it, which
allows arbitrage. The prediction interval approach may be most useful in risk
management, for reducing model risk (Mykland, 2003b, §1) or in formulating
a liquidation strategy for a trade (Mykland, 2003a, §6).

9 Pricing kernel restrictions

One way of expressing the problem of pricing in incomplete markets is that
total ignorance about the pricing kernel Π allows the price to be anywhere
within the no-arbitrage price bounds (Section 2.3). This suggests that one may
apply a restriction to the pricing kernel to get price bounds. The main idea
is that some of the pricing kernels that are possible, in the sense of repricing
all marketed securities, are economically implausible. One basis for this is to
assert that some pricing kernels make some of the replicable payoffs into ob-
jective good deals (Section 4.2.4), and it is implausible that such good deals
should exist. That is, one may exclude pricing kernels that would result in too
good a deal for a typical investor or most investors.

An early approach, not related to good deals, is to impose restrictions on
the moments of asset prices under the pricing measure, rather than directly on
the moments of the pricing kernel. If the statistical probability measure P is
known, this restriction on the pricing measure Q is equivalent to a restriction
on the pricing kernel Π = DdQ/dP. Lo (1987) applied restrictions on a stock’s
variance under Q to pricing an option on that stock. Further research has
incorporated restrictions on higher moments and developed computational al-
gorithms. It may seem advantageous that the bounds derived from Q-moment
restrictions do not depend on the statistical probability measure P, and thus
do not require a choice of statistical model – but from where does knowl-
edge of Q-moments come? Lo (1987) showed that, for two simple models, the
Q-variance can be computed from the P-variance under the statistical mea-
sure, and that method-of-moments estimation yields the same result for the
two models. However, in general, the need to connect Q-variance to estimable
quantities can introduce dependence on a model.
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9.1 Low-distance pricing measures: pricing kernels and good deals

Pricing by minimum-distance measure (Section 4.4) selects the single pricing
measure Q with the lowest distance from the statistical probability measure P,
or equivalently, the corresponding pricing kernel or likelihood ratio dQ/dP
representing the lowest distance. For example, the relative entropy distance
(Section 7) is a function of the likelihood ratio. A modification of this method
is to select a set of pricing measures {Q | d(P�Q) < ε} with low distance d
from P. The distance constraint is equivalent to a restriction on the pricing
kernel. It may be more convenient to consider restrictions directly in terms of
the pricing kernel.

One approach is to place restrictions on the moments of the pricing ker-
nel, which can be translated into restrictions on the assets’ returns. Hansen
and Jagannathan (1991) discussed relations between the mean and variance of
the pricing kernel, connecting this to assets’ Sharpe ratios. Cochrane and Saá-
Requejo (2000) adapted these results to asset pricing and initiated the phrase
“good-deal bounds” for their price bounds based on a ceiling for the variance
of the pricing kernel. The point is to bound the prices of payoffs based on the
assumption that they should not have Sharpe ratios that are too high. Here
“too high” means more than some arbitrary multiple of the highest Sharpe ra-
tio of any replicable payoff. A similar approach to establishing bounds is taken
by all papers discussed in this section.

Bernardo and Ledoit (2000) have an approach very similar to that of
Cochrane and Saá-Requejo (2000), restricting not the Sharpe ratio, but the
gain–loss ratio EQ[X+]/EQ[X−] of any payoff X replicable at zero cost. Here
Q is a benchmark pricing measure: although one might not trust it to assign
unique prices to all contingent claims, it can serve as the basis for assessing
whether a deal is good in the sense that gains outweigh losses. Subjective con-
siderations might be taken into account through the choice of benchmark pric-
ing kernel. Bernardo and Ledoit (2000) relate the gain–loss ratio restriction to
a restriction not on the pricing kernel’s variance, but to bounds on the ratio be-
tween the pricing kernel and the benchmark pricing kernel. However, as Černý
(2003, pp. 195–196) points out, it may not be possible to find any other pricing
kernels that satisfy such a bound at any finite level. For example, in the Black–
Scholes model, the ratio between pricing kernels is proportional to a power
of the stock price, based on the equation dQ/dP = exp(−(λ2/2)T − λB(T)),
where λ is the market price of risk, B is Brownian motion under P, and T is
the time horizon: this ratio is unbounded because B(T) is unbounded.

A drawback of the Sharpe ratio approach is that the Sharpe ratio is a poor
measure of preference, especially for derivative securities having nonlinear
payoffs. As Bernardo and Ledoit (2000, p. 166) point out, this can cause the
lower good-deal bound based on pricing kernel variance (Sharpe ratio) for an
out-of-the-money call option to be zero, because the upside variance is too
great. As Černý (2003, p. 193) illustrates, one payoff may stochastically domi-
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nate another, while the latter has a higher Sharpe ratio than the other. These
problems relate to the defects of quadratic utility (Section 6).

Summaries of the main points and mathematical results of Bernardo and
Ledoit (2000) and Cochrane and Saá-Requejo (2000) can be found in Geman
and Madan (2004). For an example of good deal bounds, involving Sharpe
ratios, applied to pricing European options on a stock following the Hes-
ton stochastic volatility model, see Bondarenko and Longarela (2004, §4.2).
Björk and Slinko (2006) provide a solid mathematical foundation for good
deal bounds based on Sharpe ratios in the case of a continuous-time under-
lying price process that has jumps.

Černý (2003) proposes to adapt the approach of Cochrane and Saá-Requejo
(2000) by replacing the Sharpe ratio, with its connection to quadratic utility,
with a generalized Sharpe ratio based on a more suitable utility function. For
example, using exponential utility corresponds to a bound on relative entropy
(Section 7), power utility corresponds to a bound on the expectation of a neg-
ative power of the pricing kernel, and log utility corresponds to a bound on the
expected log of the pricing kernel. A 6-period example of a call option shows
that the good deal bounds do not depend very much on the choice of utility
function, i.e. of which generalized Sharpe ratio to use, but depend strongly on
the level of the bound which defines the set A of good deals (Černý, 2003,
§4.2). This makes sense, as changing the utility function changes the shape of
A, while changing the bound changes the size of A.

In a dynamic model, one can implement the pricing kernel restrictions
globally or locally (see Section 4.1.2). The local approach in continuous time
rules out instantaneous good deals, forbidding any pricing kernel such that, if
one could trade all claims frictionlessly at the prices it assigns, one could in-
crease expected utility at too fast a rate at any instant. This relates to the
local utility maximization of Kallsen (2002a), whose “neutral derivative pric-
ing” assigns prices such that the opportunity to trade in derivatives does not
allow for greater local utility than does trading in marketed securities alone.
He derives price bounds by considering prices that are consistent with a lim-
ited nonzero position for the derivative security within an optimal portfo-
lio. Exploring the local approach, Černý (2003, §5.1) concludes that, if the
discounted gains processes from portfolio strategies are Itō processes, then
ruling out instantaneous good deals imposes, for all utility functions having
the same coefficient of absolute risk aversion, the same bound on the norm
‖λ(t)‖ of the market price of risk vector stochastic process λ. As the minimal
martingale measure of Section 6 corresponds to a pricing kernel dQ/dP =
exp(− ∫ T

0 ‖λ(t)‖/2 dt− ∫ T
0 λ(t) dB(t)) where ‖λ(t)‖ is minimal for each t, this

means the instantaneous good deal bounds always contain the value assigned
by the minimal martingale measure (Černý, 2003, §7).
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9.2 Equilibrium and stochastic dominance

Other pricing kernel restrictions are related to equilibrium among expected
utility maximizers. Structural considerations can impose direct restrictions on
the pricing kernel, and bounds for prices of nonreplicable payoffs can be con-
structed by comparison to replicable payoffs.

A structural feature of equilibrium among expected utility maximizers is that
the pricing kernel should be decreasing in aggregate wealth (or consumption,
depending on the economic model). Usually, the pricing kernel is decreasing in
the price of an asset that is held in net positive supply, unless it has a negative
association with aggregate wealth. For example, if there are two assets, a stock
in net positive supply and a bond in net zero supply, the set of pricing kernels
can be restricted to include only those that are decreasing in the stock price.
Chazal and Jouini (2004) show that this restriction can significantly tighten the
option pricing bounds when added to restrictions on the first two moments in
the manner of Lo (1987). This approach goes back at least to Perrakis and
Ryan (1984), who also initiated a literature on option price bounds based on
comparisons among portfolios.

That method might be thought of as ruling out comparative good deals.
Perrakis and Ryan (1984) used the CAPM pricing rule, in which the expected
return of a portfolio is an affine function of the covariance between a represen-
tative investor’s marginal utility of consumption and the portfolio’s final value.
Although this marginal utility and the distribution of portfolio value may not
be known, the comparison of three portfolios allows Perrakis and Ryan (1984)
to formulate bounds for the price of a European call option in a model with
one stock and bond. The lower and upper bounds involve an expectation of a
function of the terminal stock price, discounted at either the risk-free rate or
the stock’s expected return, respectively. To use the bounds, one need not know
the statistical probability measure P, but one must know the P-expectations of
some functions of the terminal stock price. Various extensions have been de-
rived, involving intermediate trading, transaction costs, and puts. An apparent
limitation of the methodology is the necessity, for each new security, to iden-
tify new comparison portfolios. For a review of subsequent literature related
to Perrakis and Ryan (1984), see Constantinides and Perrakis (2002, §1).

Bizid and Jouini (2005) point out that an equilibrium among various agents
in an incomplete market need not coincide with the equilibrium in a comple-
tion of that market. They demonstrate that the bounds imposed by very weak
equilibrium conditions in an incomplete market, without assuming that the
pricing kernel is a nonincreasing function of aggregate consumption, might
be wider than those that result from considering any possible completion of
that market. They view the reliance of Perrakis and Ryan (1984) on the CAPM
as invoking a possible, but unknown, completion of the market. On the other
hand, the CAPM might be justified not by market completeness, but by in-
voking the approximately quadratic preferences of well-diversified investors.
Moreover, Constantinides and Perrakis (2002) rederive and extend results of
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Perrakis and Ryan (1984) and related work, while relying on stochastic domi-
nance rather than the CAPM.

They use stochastic dominance considerations to rule out option prices that
allow trades in the option to increase expected utility, versus a portfolio only
of marketed securities, under all increasing, convex utility functions. If a deriv-
ative security were offered for less than this lower bound, any expected utility
maximizer would prefer to buy some of it than to keep all wealth invested in
the market. This is very much in the spirit of bounding the Sharpe ratios, etc.,
of all payoffs to be no more than a certain multiple of the maximum Sharpe
ratio of a replicable payoff. The differences are that the multiple is fixed at 1,
and no particular measure such as a generalized Sharpe ratio is used, rather, a
price is excluded only if it gives rise to an increase in any expected utility. The
CAPM approach is even more similar, with the excess return “alpha” in the
CAPM substituting for the Sharpe ratio.

For stochastic dominance constraints in optimization, which may be applied
to portfolio optimization or pricing, see Dentcheva and Ruszczyński (2003).

10 Ambiguity and robustness

Risk, as something that can be quantified by means of a probability distribu-
tion, is to be distinguished from ambiguity or Knightian uncertainty, which rep-
resent a greater degree of ignorance. (Sometimes “uncertainty” is used more
broadly to include both risk and ambiguity.) When we can assign a probability
distribution and compute risk, we know something. For example, suppose we
can assign to a potentially infinite sequence of repeatable experiments a prob-
ability measure such that the experiments are independent, and an event F
has probability 30% of occurring in any repetition. Although we do not know
whether F will occur in the next repetition, we do know, by the law of large
numbers, that the fraction of experiments in which F occurs will eventually
be between 29.99 and 30.01%. If we do not possess such knowledge, then we
cannot assign a probability measure to this phenomenon, and we may require
concepts such as that of imprecise probability (Walley, 1991). We may, for ex-
ample, regard all probability measures in a set P as plausible, and all those
not in P as implausible, and assign infP∈P P[F] and supP∈P P[F] as bounds for
the probability of F . There is a substantial literature devoted to the Ellsberg
(1961) experiment, which showed that such considerations affect willingness to
gamble: subjects prefer to bet on unambiguous gambles rather than ambiguous
ones, and these preferences are not consistent with maximizing any expected
utility function. This may be because subjects have no faith that they can de-
scribe an ambiguous gamble with a single probability measure.

The unreliability of our stochastic models of financial markets suggests that
ambiguity should be an important consideration in financial engineering. As
discussed in Section 3.3, to be able to hedge all payoffs perfectly, the hedger
must be in a complete market and know the stochastic process that marketed
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security prices follow. Ambiguity about this stochastic process is a source of
effective incompleteness, as it becomes impossible to find the perfect hedge.

The theme of the application of ambiguity to incomplete markets is the
decomposition of uncertainty about eventual outcomes into risk and ambi-
guity. A trader’s aversions to delaying consumption (intertemporal substitu-
tion), to risk, and to ambiguity all determine the price at which he is will-
ing to trade. Aversion to ambiguity is often described as a desire for ro-
bustness to misspecification of the stochastic model. A common approach
in the financial literature (Chen and Epstein, 2002; Anderson et al., 2003;
Maenhout, 2004) is to consider an equilibrium in which all traders have the
same preferences, resulting in an analysis of assets’ equilibrium expected re-
turns in terms of market prices of risk and of ambiguity. Anderson et al. (2003)
conclude, “Because mean returns are hard to estimate, � � � there can still be
sizable model uncertainty premia in security prices,” and Maenhout (2004)
concurs: “Empirically a 3% to 5% wedge is difficult to detect given the usual
length of available time series. Given plausible values of risk aversion and un-
certainty aversion, an equilibrium equity premium between 4% and 6% can
then be sustained.” Liu et al. (2005) proceed in similar fashion, but consider
only ambiguity about rare jump events, not diffusion coefficients, and examine
the impact on option prices. This main stream of financial research, discussed
in Section 10.1, is an example of equilibrium marginal indifference pricing.
A somewhat different, subjective approach occupies Section 10.2.

10.1 Complete preferences

In Section 4.2.3, expected utility maximization was criticized as a basis for
portfolio optimization or derivative security pricing because it is too sensi-
tive to unknown inputs, such as the probability measure. This defect has in-
spired work on robust utility. The literature looks back primarily to Gilboa
and Schmeidler (1989), who considered portfolio optimization in which the
expected utility E[u(V )] of random wealth V is replaced by

(13)U(V ) = inf
P∈P EP

[
u(V )

]
�

where P is a set of plausible probability measures or multiple priors. Given P ,
one can choose a portfolio to maximize the robust utility of Eq. (13), which as
a preference function specifies complete preferences and is a foundation for
indifference prices (Section 4.2.2). Talay and Zheng (2002) describe such an
approach to derivative security pricing given considerations of model risk.

Although the form of Eq. (13) makes it look like a convex risk measure
(Föllmer and Schied, 2002), not all convex risk measures have an interpreta-
tion in terms of ambiguity or robustness. For example, Schied (2004) describes
the problem of maximizing robust utility functionals, equivalently, minimizing
convex risk measures, subject to a capital constraint. He provides more explicit
results for law-invariant risk measures ρ, where ρ(X) depends only on the
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law of X under P0, a reference probability measure. This lacks the interpre-
tation of ambiguity, in which the law of X under other measures also counts.
An example of a law-invariant risk measure is expected shortfall, defined by
P = {P | dP/dP0 � r}, i.e. a pointwise (almost sure) constraint on the likeli-
hood ratio. This considers only one probability measure P0, but all conditional
probability measures P0[·|F], where F is an event such that P0[F] < 1/r.

The pointwise constraint on the likelihood ratio contrasts with a constraint
on the relative entropy EP[ln(dP/dP0)]. The set

(14)P = {
P | EP

[
ln(dP/dP0)

]
< ε

}

can be interpreted as a set of probability measures that are plausible, given that
econometric inference leaves P0 as the best estimate, but the econometrician
remains uncertain as to the true probability measure. After estimation, some
probability measures are more plausible, i.e. have a higher p-value or poste-
rior likelihood, than others. An entropy criterion can be tractable, at least if
one works with the intersection of P in Eq. (14) with a family of models, such
as diffusions. However, entropy may not be a suitable way of describing which
probability measures are plausible. It may be that different events have differ-
ent levels of ambiguity, or that some aspects or parameters of the model are
more ambiguous than others. For example, practitioners of financial engineer-
ing often have less confidence in their estimates of correlations or of means
than of volatilities. Interesting effects arise when one considers that there may
not simply be one correct entropy penalty or constraint for all traders to use
in accounting for the ambiguity surrounding a probability measure estimated
from commonly available data. Some assets may be more ambiguous than oth-
ers, which can lead to under-diversification (Uppal and Wang, 2003) or cause
negative skewness in short-term returns and premia for idiosyncratic volatility
(Epstein and Schneider, 2005). Different traders may assign different levels of
ambiguity to assets, which could explain the home-bias puzzle in investments
(Epstein and Miao, 2003) and limited participation in the stock market (Cao
et al., 2005).

Anderson et al. (2003) consider a portfolio-optimizing econometrician who
wishes to construct a portfolio whose utility is robust with respect to the am-
biguity about the true probability measure, that is, is high for all alternatives
which remain plausible given the observed data. This leads them to an opti-
mization including a penalty proportional to the relative entropy between each
model under consideration and the best-fit model. Results can be computed
using a worst-case model among those that are plausible. Maenhout (2004)
considers a more tractable version of this methodology, in which the entropy
penalty depends on wealth in a way that makes the optimal portfolio weights
wealth-independent, and gives some more explicit results. An alternative to a
penalty on relative entropy is a constraint on relative entropy, as in Eq. (14).
Entropy penalty and entropy constraint model different preferences, but not
only do they both result in the use of a worst-case model, entropy-penalty
and entropy-constraint problems come in pairs sharing the same solution, i.e.
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worst-case model and optimal portfolio (Hansen et al., 2006, §5). Thus, it is
not possible to deduce whether a trader’s portfolio is the result of solving a
problem with an entropy penalty or constraint.

This issue is known as observational equivalence, and it appears frequently in
the finance literature. Skiadas (2003) shows that, in a market driven by Brown-
ian motion, the entropy-penalty value function coincides with that of stochastic
differential utility (SDU): see also the discussion of source-dependent risk
aversion in Skiadas (2006). Maenhout (2004) shows that his homothetic ver-
sion of the entropy-penalty formulation is also observationally equivalent to
SDU, but emphasizes that this observational equivalence is limited to portfolio
choice and asset prices within a single model. The observational equivalence
arises because the solution to the portfolio optimization with robust prefer-
ences reduces to the use of a worst-case model, which can then be mapped to a
specific case of SDU. However, if market opportunities change, then the worst-
case model will also change, becoming equivalent to a different case of SDU,
so the observational equivalence breaks down in a broader context (Chen and
Epstein, 2002, §1.2).

Moreover, from a financial engineering perspective, different methods that
may yield the same answer given different inputs are different. As instrumental
rather than descriptive devices, one method may be superior: it may be easier
to specify good inputs and compute a useful result with one method than the
other. For example, when preferences featuring risk aversion and ambiguity
aversion are observationally equivalent to preferences featuring risk aversion
only, the level of risk aversion is greater in the latter case. It would be eas-
ier to specify risk aversion and ambiguity aversion by introspection than to
guess what level of risk aversion alone yields the same price. Indeed, Maenhout
(2004) uses ambiguity aversion to explain the equity premium puzzle, which is
that the level of risk aversion required to justify an expected return for equities
matching the historical average is implausibly high when compared to the level
of risk aversion that most subjects display when confronted with unambiguous
gambles (Mehra, 2003; Mehra and Prescott, 2003). However, it may be that
they display much greater risk aversion in financial markets, much of which is
actually generated by aversion to these markets’ ambiguity. Liu et al. (2005)
find that aversion towards ambiguity about rare events involving jumps in the
aggregate endowment can account for option pricing smirks. Routledge and
Zin (2004) model fluctuations in the liquidity supplied by market-makers who
have multiple priors, giving explicit, simple examples of OTC option trading,
with the market-maker’s optimal bid, ask, and hedges based on robust utility.

It is possible to construct a set P of multiple priors on principles other than
entropy. One major motivation for not using the tractable entropy methodol-
ogy is dynamic consistency. Various versions of dynamic consistency have been
much discussed in the recent literature on risk measures: see Roorda and Schu-
macher (2005). Roughly speaking, dynamic consistency means that for payoffs
X and Y occurring at time T , if X will always be preferred to Y at time t < T ,
then X must be preferred to Y at any time s < t. To do otherwise would create
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inconsistency between choices at different times. Whether such inconsistency
is unacceptable depends on the application: for example, it is more trouble-
some in regulation than in pricing OTC securities. Such inconsistency might
even be appropriate given certain kinds of beliefs incorporating ambiguity: see
Epstein and Schneider (2003, §4) and Roorda et al. (2005, §4).

Dynamic consistency requires that the set P of multiple priors be rectangu-
lar. In a discrete-time model, this means that P has the following property:
for any event Fi that involves only step i, any event F<i that involves only
steps 1� � � � � i − 1, and any pair P1� P2 ∈ P , there must exist a P3 ∈ P such
that P3(Fi ∩ F<i) = P1(Fi)P2(F<i). That is, any one-step conditional proba-
bility for step i must appear in combination with all probability measures for
steps 1� � � � � i − 1. For example, if P contains two probability measures, both
of which correspond to multi-period binomial models of a log stock price with
independent increments, and one of them says that the probability of an up
move is 40% and the other says that it is 60%, then P is not rectangular. It
would also have to contain, among others, a probability measure under which
the probability of an up move is 40% at step 1 and 60% at step 2.

Rectangularity leads to the preference structure known as “recursive mul-
tiple priors” (Chen and Epstein, 2002; Epstein and Schneider, 2003), which
can be viewed as a combination of stochastic differential utility and the robust
utility of Equation (13). The set P of multiple priors defined by an entropy con-
straint is not rectangular (Epstein and Schneider, 2003; Hansen et al., 2006).
Advocates of dynamic consistency suggest enlarging a non-rectangular can-
didate set of multiple priors until it becomes rectangular, while others (e.g.
Hansen et al., 2006, § 9) object that the resulting rectangular set is too large,
depriving the modeler of the ability to impose interesting restrictions on prob-
abilities. In terms of pricing in incomplete markets, the result is price bounds
that are too wide.

10.2 Incomplete preferences

Using the robust utility of Eq. (13) to define complete preferences as in
Gilboa and Schmeidler (1989) is suitable for the application of a one-time
portfolio optimization, in which a portfolio strategy is chosen with a pessimistic
attitude in the face of ambiguity about which of the probability measures inP is
correct. The result is the selection of a worst-case model P∗ ∈ P , similar to the
least favorable completion mentioned in Section 4.4. The methods discussed in
Section 10.1 price all payoffs under an equilibrium pricing measure Q∗ derived
from P∗. Assigning this price to all payoffs at all times would reflect an ongoing
concern with maximizing expected utility under the worst-case model, and no
concern for expected utility under any other plausible model in P .

To see what might be undesirable about this, consider the difference be-
tween optimizing over random total wealth and optimizing over a payoff,
which is a change in wealth, discussed in Section 4.2.2. Also, whereas indiffer-
ence pricing is based on complete preferences, no-arbitrage pricing and other
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good deal bounds are based on incomplete preferences. No-arbitrage pricing
is based on the incomplete preference such that V is weakly preferable to W
when ess inf(V − W ) � 0, i.e. V � W . When neither V � W nor W � V , this
preference structure expresses neither indifference nor preference between V
and W , but rather cannot decide between them. A complete preference struc-
ture using the essential infimum as the preference function for total wealth
evaluates portfolios based on the worst-case scenario: V is preferred to W if
ess infV > ess infW . This is not a suitable preference structure for financial
decisions. According to this preference function, it is better to get one cent for
sure than to have a 99.99% chance of getting one million dollars and a 0.01%
chance of getting nothing.

The same problem can occur with the Gilboa and Schmeidler (1989) robust
utility. If the set P of plausible measures is large, reflecting a great degree of
ambiguity, we may find that a change in the portfolio that increases expected
utility under the worst-case measure decreases it under other plausible mea-
sures. Then we may lack confidence that this change is an improvement, or
even suspect it of being a bad deal. In other words, the acceptance set

(15)AGS =
{
Z | inf

P∈P E
[
u(V + Z)

]
� inf

P∈P E
[
u(V )

]}

defined by robust utility for use in subjective good deal bounds (see Section 4.2)
may not be suitable as a set of good deals.

An alternative is robust evaluation not of total wealth but of changes in it, or
equivalently, incomplete preferences over portfolios, as in no-arbitrage price
bounds. This corresponds to the incomplete preference scheme of Bewley
(2002), in which the acceptance set is

(16)AB =
{
Z | inf

P∈P E
[
u(V + Z)

] − E
[
u(V )

]
� 0

}
⊆ AGS�

That is, a change is considered a good deal if it increases expected utility un-
der every plausible probability measure, not if it merely increases expected
utility under the worst-case measure. This smaller acceptance set is more con-
servative in that it recognizes fewer good deals and thus leads to wider good
deal bounds. This Bewley (2002) approach also responds better to an error of
wrongly including an implausible measure Px in P = P ′ ∪ {Px}, where P ′ is
the correct set of plausible probability measures. Then there might be a pay-
off Z such that infP∈P E[u(V + Z)] > infP∈P E[u(V )] � infP∈P ′ E[u(V )] >
infP∈P ′ E[u(V + Z)], so that Px is the worst-case model and the Gilboa and
Schmeidler (1989) approach would have us erroneously switch from V to
V + Z, which actually makes us worse off. The Bewley (2002) approach fo-
cusing on changes in portfolios would only cause us wrongly to reject some
good deals, not wrongly accept bad deals.

The question is how aversion to ambiguity manifests itself in OTC market-
making. Is one willing to pay high prices for “ambiguity hedges,” that is, payoffs
that reduce the ambiguity of one’s expected utility? Or does one accept only
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unambiguously good deals, paying a low enough price so that it is implausible
that they do not improve one’s portfolio?

11 Calibration

It is standard practice to price with an incomplete-markets model much as
described in Section 2.2 for complete-markets models, by calibrating Q to mar-
keted securities’ prices and assigning the expected discounted payoff EQ[DX]
as the price for a payoff X. If one calibrates to a family of complete-market
models containing the true model, then Q must be the unique no-arbitrage
pricing measure. However, if the market is incomplete, choosing Q such that
EQ[DS] is the market price for any payoff S of a marketed security does not
guarantee that EQ[DX] is an arbitrage-free price for any payoff X. This is
merely a curve-fitting scheme. Arbitrage-free pricing requires that Q be equiv-
alent to the statistical probability measure P. Moreover, it is characteristic of
incomplete markets that more than one pricing measure Q yields arbitrage-
free prices.

Researchers who propose new incomplete-markets models of underlying
asset prices often provide a formula for a single “risk-neutral” price, which
appeals to practitioners. A typical procedure is to posit a model for the sta-
tistical probability measure P, next to assume that one should look for an
equivalent pricing measure Q of the same parametric form, and finally to re-
late the parameters under P and Q. The last step can be done by means of an
unspecified market price of risk (e.g. Heston, 1993), or through construction
of an equilibrium among expected utility maximizers, in which case unspeci-
fied parameters of the utility function are involved (e.g. Madan et al., 1998;
Kou, 2002). This last step is not important in practice, because practitioners
calibrate the parameters of Q to market prices without any regard to P.

What usually happens is that parsimonious models, with a small number
of parameters, cannot exactly match the prices of all marketed securities: the
models are not perfect.3 Although multiple pricing measures Q are consis-
tent with observed market prices, in practice, none of the probability measures
within the family under consideration will be perfectly consistent. Calibration
selects the member of the family that is most consistent. The rationale for us-
ing prices based on calibration in OTC trading is that because these prices are
nearly consistent with market prices, they are likely to avoid arbitrage and to
assign reasonable values to payoffs if market prices are reasonable.

That is, if market prices exclude arbitrage and good deals, then it seems
likely that OTC prices calibrated to market prices should also exclude arbitrage
and good deals. However, the plausibility of this conclusion depends on how

3 Models with many parameters may fit the data exactly, but their calibrated parameters tend to change
substantially over time, a sign that they are not perfect either; they tend to suffer from over-fitting.
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similar payoffs of OTC securities are to those of marketed securities. If there
are no marketed securities whose prices yield information through the model
about events that are important to valuing the OTC securities, the scheme will
be unreliable. An example is the calendar spread on swaption straddles dis-
cussed in Section 2.3. Good price quotes are available for swaptions expiring
on one of a limited set of dates, all of which are much more than two days
apart. Therefore, calibration to these swaptions’ prices can only give informa-
tion about the total volatility under Q of interest rates over the long periods
between adjacent expiration dates, not about how volatility is spread between
the expiration dates. Typical calibration schemes interpolate smoothly, assum-
ing that there is no reason for volatility to be concentrated. However, interest
rate volatility under P is concentrated around dates of scheduled major eco-
nomic announcements. Therefore the prices at which JP Morgan sold the
calendar spreads on swaption straddles, although consistent with market prices
of swaptions, resulted in a good deal for the customers and a bad deal for JP
Morgan. Having a better model could not solve this problem, because market
prices do not contain the information required to calibrate the model. What is
needed is a better method, one which is grounded in an assessment of statisti-
cal probabilities, allowing the trader to base pricing on such information as the
concentration of volatility around economic announcements.

12 Conclusion

One might dream of a unified theory of contingent claim valuation in incom-
plete markets, covering not only derivative securities but also equilibrium pric-
ing of underlying securities and corporate investment via the real options ap-
proach. Although these applications have much in common, we have focused
entirely on making a market in OTC derivatives, in the belief that the practical
settings of these applications differ so much that any valuation methodology
should be evaluated differently, depending on the use to which it is to be put.
For example, when making a market in derivatives, a trader is concerned that
potential customers may possess superior information, while executives mak-
ing corporate investment decisions are concerned that interested subordinates
may have provided biased information about future cashflows; also, hedging
is of paramount importance in trading derivatives, but of at most secondary
importance in corporate investment. For the application of OTC derivatives
market-making, we want a valuation methodology that is robust to misspecifi-
cation of inputs that are hard to infer, that ensures that each trade made at the
bid or ask prices is beneficial, and that is tractable, allowing rapid computation.

What is beneficial may be the subject of some debate, but a suitable valua-
tion methodology should either have an appropriate economic grounding, as
expected utility indifference pricing does, or be shown to give answers that
agree with the results of a well-grounded method under specified circum-
stances. The economic grounding should involve the subjective situation of
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the market-maker who is considering a trade, including his current portfolio,
the risk management framework in which he operates, and his future oppor-
tunities; again, an objective methodology that does not take account of the
individual’s situation would be appropriate only in circumstances in which it
could be shown to yield results that are subjectively beneficial. For example, if
some objective good deal bounds were wider than a trader’s subjective good
deal bounds and still narrow enough to be usable, they would be appropriate.
It is more helpful to a decision-maker to identify a price at which trade benefits
him than to identify a “fair price”; $300,000 might be a fair price for a luxury
automobile, but if one cannot resell it, it might not be beneficial to buy it at or
near this price.

We conclude by assessing the extent to which various methods achieve these
desiderata. Along the way, we will point out some cases in which further re-
search is needed for such an evaluation. We focus on a few major kinds of
methods. These include, first, the standard practice of calibrating to market
prices without reference to a statistical probability measure. Second are meth-
ods based on expected utility maximization and indifference, including mar-
ginal indifference pricing or minimum-distance measures, whether founded
on local or global criteria. Third, there are methods of pricing kernel restric-
tion founded on constraints, such as pricing with low-distance measures rather
than minimum-distance measures. Finally, there are methods that account for
ambiguity, whether they deal with it by using just a worst-case model or by
considering all plausible models.

The most tractable method is calibration: it prices all payoffs by taking ex-
pectations under a single probability measure calculated by a single parametric
optimization. Next best are other methods that also price using just one proba-
bility measure, such as any minimum-distance method or marginal indifference
pricing, whether it is founded on expected utility or robust utility yielding a
worst-case model. It appears that it takes more work to identify these single
measures than calibration requires. Less tractable than these is non-marginal
indifference pricing, which is not simply pricing under one measure: it requires
a new optimization to price each payoff. Local variants are more tractable than
global variants. Pricing kernel restrictions and robust methods that use opti-
mization over multiple probability measures look most difficult of all. These
optimizations may be non-parametric, e.g. requiring computation of a pricing
kernel in all states.

Robustness is the aim of the methods founded on multiple statistical prob-
ability measures, but it remains to be confirmed by extensive empirical study
that the resulting prices are indeed robust to statistical sampling error. Pricing
kernel restrictions featuring low-distance measures also use a single statistical
probability measure P, but use multiple pricing measures; their robustness too
is an open question. Any method involving expected utility indifference or dis-
tance minimization, including the quadratic and exponential special cases, is
not robust with respect to the statistical probability measure P.
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Calibration is more robust to its observed inputs, because it is easier to
observe market prices than to infer the parameters of econometric models;
however, because price data may be out of date, erroneous, or have noise due
to market microstructure and bid–ask spreads, robustness to this data is still
an issue. The more parsimonious models tend to be more robust. Calibration
is not robust to the choice of the family P of models within which calibration
takes place. The resulting risk of trading losses is known as model risk. It would
be interesting to know whether model risk can be mitigated by using multi-
ple calibrated models Q̂ from different families P in the manner of the robust
methods (Section 10), or by using all the models from a single family that have
sufficiently low calibration error, instead of just the one with minimal error, in
the manner of low-distance measures (Section 9).

To ensure that trades made at bid and ask prices are beneficial, it helps to
use a method that produces price bounds that are suitable for use as bid and
ask prices. When using a method that produces unsuitable price bounds, or
a single price, a trader is reduced to intuition in setting bid and ask prices,
making it difficult to tell whether trades include adequate compensation for
unhedgeable risk.

Expected utility indifference pricing, based on the trader’s optimized portfo-
lio, is the paradigm of a method for generating price bounds that are beneficial,
but this method’s fatal flaw is its lack of robustness. Either the trader must op-
timize his portfolio according to an unreliable expected utility maximization
procedure, or the indifference prices are suited to an imagined optimal port-
folio, not his actual portfolio (Section 5.2.1).

The methods founded on marginal indifference pricing and minimum-
distance measures have weaker economic grounding than expected utility in-
difference pricing. It remains to be seen whether and under what circumstances
they yield results that are approximately the same as expected utility indiffer-
ence pricing, despite the apparent flaws of various of these methods, such as
producing a single price, using an inappropriate utility function, and an ob-
jective orientation that disregards the trader’s portfolio. This last point also
affects the methods based on low-distance measures. A major issue in using
them is the question of how great a distance is “low.”

Calibration provides no reason to believe that trading at the resulting price
is beneficial. Its successes have much to do with traders’ skillful use of their
experience and intuition, the ability to hedge well in very competitive OTC
markets, and large bid–ask spreads in OTC markets where hedging is harder.
Its failures point to its limitations. As hedge funds know, the ability to price
all OTC securities well must include an assessment of the statistical proba-
bility measure P, which calibration avoids. A synthesis with econometrics is
desirable. This returns us to the problem of robustness to statistical errors
in specifying P. Methods based on robustness to subjective ambiguity try to
overcome this problem while retaining the justifiability of expected utility in-
difference prices, for instance, by using robust utility. However, it remains to
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show how to model and quantify the ambiguity left after econometric inference
in a way that yields a useful method for OTC pricing.

A fundamental question is how we derive information from current mar-
ket prices of derivative securities and from econometric study of underlying
securities’ price histories. In particular, how do we respond when derivative se-
curities’ current prices seem to be out of line with our beliefs about underlying
securities’ future prices, as expressed in the statistical probability measure P,
making possible a good deal by trading in marketed securities? If we are not
only making a market in OTC securities but also willing to speculate or invest
in marketed securities, then this is an opportunity to trade against a perceived
mispricing. This trade would generate enough risk for our indifference price
bounds for marketed securities to adjust so that they contain the actual market
prices. If we are not willing to speculate or invest in marketed securities, do we
simply take account of their market prices when computing hedging costs, or
do we infer something about P based on the belief that good deals should not
exist? If the latter, inference about P might seek not just to maximize statistical
likelihood, but to balance this objective with minimizing a distance to the set
Q of EMMs.
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Appendix A. Definition of incompleteness and fundamental theorems

We might like to define a complete market as one in which it is possible
to replicate any cashflow. This raises several questions. What is the set C of
cashflows that we hope to be able to replicate? What is the set Θ of possible
portfolio strategies with which we hope to replicate them? What does it mean
to replicate?

First, we must specify the set C of cashflows to be replicated. As usual, let
us focus on cashflows that are simply random variables representing a payoff
at a terminal time T . In assessing completeness of the market, it makes sense
to consider replication only of payoffs that are functions of underlying finan-
cial variables observed over the time interval [0� T ]. Even this set is too large
for mathematical convenience, and the literature usually imposes a further re-
striction that the payoffs under consideration must be integrable or bounded.
There are also economic reasons for a boundedness restriction.
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The second question is of which portfolio strategies are allowed, and with
limited credit, it is impossible to execute a portfolio strategy whose value is un-
bounded below. Along with this restriction of “admissibility” or “tameness,” we
also restrict attention to portfolio strategies that are self-financing (after any
transaction costs), for the same reasons as in the study of no-arbitrage pricing
and the first fundamental theorem of asset pricing. We must also consider only
portfolio strategies whose initial cost is finite; this is a substantive restriction in
models with an infinite number of marketed securities. We might also consider
imposing other restrictions. For instance, we may consider only “stopping time
simple” portfolio strategies, which (almost surely) include only a finite number
of times at which the portfolio is rebalanced, because continuous-time hedging
is impossible. We might also restrict the number of marketed securities in the
portfolio to be finite, even if an infinite number are available in the model, for
similar reasons. The result of defining the set Θ of possible portfolio strategies
is a set of exactly replicable payoffs, R := {Y | ∃θ ∈ Θ  Y = θTST }, where S
is the stochastic process of marketed securities’ prices and θTST is the terminal
value of portfolio strategy θ.

Third, what does it mean to replicate? Exact replication led to the definition
of R, and one candidate definition for completeness is C = R, all payoffs can
be exactly replicated. Jarrow et al. (1999) refer to this property as algebraic
completeness, saying, “This definition is too strong and would hardly ever be
satisfied in practice.” After a discussion of mathematics, we will argue that
algebraic completeness is unnecessarily strong, and completeness should be
defined differently.

The mathematical finance literature originally focused on algebraic com-
pleteness, but this created difficulties with the second fundamental theorem of
asset pricing (FTAP), which relates market completeness to uniqueness of a
pricing kernel. These difficulties were analogous to those that previously beset
the first FTAP, which relates absence of arbitrage to existence of a pricing ker-
nel. The difficulties with the first FTAP were solved by introducing a weaker
notion than arbitrage, namely the free lunch with vanishing risk (Delbaen and
Schachermayer, 1999; Protter, 2006). While an arbitrage is a portfolio strategy
in Θ with nonpositive initial cost and terminal value that is nonnegative and
nonzero, a free lunch with vanishing risk is a sequence of portfolio strategies
in Θ with nonpositive initial cost and whose limiting terminal value is non-
negative and nonzero. Mathematically, the idea is to replace the no-arbitrage
condition with a stronger one, which excludes even approximate arbitrages,
such as a free lunch with vanishing risk. What constitutes an “approximate”
arbitrage is determined by a topology on the space of payoffs i.e. terminal val-
ues: the concepts of closure and limit depend on this topology (Cherny, 2005;
Staum, 2004). By analogy, for the second FTAP, it would make sense to re-
place algebraic completeness with a weaker, topological notion (Battig and
Jarrow, 1999; Jarrow et al., 1999; Jarrow and Madan, 1999). The resulting
second FTAPs connect uniqueness of a pricing kernel that is continuous with
respect to some topology to approximate replicability of any payoff Y ∈ C in
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the sense that, for any neighborhood U of Y , there is a portfolio strategy in Θ
whose terminal value is in U .

That is, the more successful mathematical notion of completeness relates
the target payoffs C and the replicable payoffs R by means of a topology
specifying what approximate replication means. This is an eminently practi-
cal notion, because we need only concern ourselves with whether a payoff can
be approximately replicated. If we can find a hedging scheme that results in
an arbitrarily small hedging error, we will be satisfied. An incomplete market,
then, is one in which there are target payoffs that cannot even be approximately
replicated, so that we must find a methodology for dealing with the resulting
non-negligible residual risks after hedging.

Appendix B. Financial perspectives on incompleteness

B.1 Descriptive analysis: Are markets incomplete? How much so?

Whereas a financial engineer might directly test financial time series for fea-
tures that are known to cause incompleteness (see Section 3.1), tests of market
incompleteness in the financial literature often look for evidence of incom-
pleteness in consumption data. As Saito (1999, §II) says, “When markets are
complete, the intertemporal rate of substitution is equalized among agents.” If
so, then a calibrated representative agent model would reflect aggregate pref-
erences, and microeconomic data would show that households are capable of
fully insuring themselves against idiosyncratic risks. The approach focusing on
calibration to aggregate data typically finds that calibrated parameters reflect
implausible aggregate preferences. For instance, this is one guise of the equity
premium puzzle. One response is to conclude that markets must not be com-
plete after all. However, attempts to explain away the equity premium puzzle
on the basis of incomplete markets have not been universally accepted (Mehra,
2003; Mehra and Prescott, 2003). An alternative conclusion is that the models
being calibrated are themselves wrong, so that these tests do not correctly as-
sess market completeness. However, Hansen and Jagannathan (1991) devised
a test which is based on fewer assumptions and not specific to a particular
model, and once again one is led to the conclusion that there is a puzzle if mar-
kets are complete. Another approach to testing is to use microeconomic data
to show that household consumption has not been fully insured against idiosyn-
cratic risks. A tentative conclusion is that markets are significantly incomplete,
but some doubts may remain. See Saito (1999, §II) for further references.

B.2 Normative analysis: What should we do about incompleteness?

Completing the market increases welfare, but increasing the attainable span
in an incomplete market without completing it may increase or decrease wel-
fare. See Huang (2000, §III.A) for a qualitative summary and Duffie and Rahi
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(1995, §2.2) for a mathematical synopsis of one result. Even something as
apparently straightforward as an increase in welfare does not have clear nor-
mative implications. One way in which incomplete markets can lower welfare
is by inducing agents to engage in precautionary saving as a substitute for un-
available insurance against risks. The resulting investment exceeds the level
consistent with maximal welfare of agents existing today and thus produces
economic growth which is in this sense excessive (Saito, 1999, §IV.B), but which
may lead to greater welfare for future generations.

It is also unclear how great the welfare loss due to incompleteness is. Many
factors influence the welfare loss generated within a model of an incomplete-
market equilibrium: how many goods there are, whether the model describes
only exchange or also production, what assets are marketed, whether there is
aggregate risk or only idiosyncratic risk, and whether the time horizon and the
persistence of shocks are infinite, short, or long relative to agents’ patience,
which has to do, for instance, with whether one can find a new job after be-
ing laid off, and with the length of business cycles. Levine and Zame (2002)
ask “Does market incompleteness matter?” They answer that it does not in a
model of an exchange economy with a single perishable good, agents who are
patient, i.e. have a low discount rate in their intertemporal utility functions,
and have an infinite time horizon, shocks that are not persistent, and only idio-
syncratic risk; incompleteness matters if it prevents insuring against aggregate
risks or the relative prices of multiple goods. To their question, Kübler and
Schmedders (2001) respond unequivocally that “incomplete markets matter
for welfares,” even if agents are patient. Kim et al. (2003) study a simple inter-
national model of two countries and report that welfare loss is negligible when
agents are patient and shocks are transitory, but is considerable and highly
sensitive to the model’s parameters in the more realistic case of patience and
persistent shocks.

Equilibria in incomplete markets may even be Pareto inefficient given the
constraints about contingent claims that cannot be traded, because agents
make decisions based on the current equilibrium prices, whereas everyone’s
welfare might be increased at a different price system and allocation: see Hens
(1998, §4), Huang (2000, §III.B), and Duffie and Rahi (1995, §3.3). This raises
the possibility that suitably crafted regulatory intervention might increase wel-
fare (for a simple example, see Huang, 2000, Appendix), but such a suggestion
needs to be treated with the utmost caution, as the relevant central plan-
ning problem would require a tremendous amount of information: see Huang
(2000, §§IV–VI) and Herings and Polemarchakis (2005).

There is a connection between Pareto inefficiency and the topic of sunspot
equilibria in incomplete markets. On sunspot equilibrium see e.g. Hens
(1998, §9). A sunspot equilibrium is one in which allocations of goods depend
on extrinsic events, such as sunspots, having nothing to do with preferences,
endowments, and production possibilities; agents may have self-fulfilling ex-
pectations associated with these extrinsic events, generating volatility in excess
of what is warranted by fundamentals (Prescott and Shell, 2002). According
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to Hens (1998, §9.2), “sunspots matter if and only if markets are incomplete.”
Sunspot equilibria generate excess uncertainty and are Pareto inefficient and
dominated by nonsunspot equilibria in strictly convex economies (Prescott and
Shell, 2002). Pareto efficiency of sunspot and non-sunspot equilibria remains
a subject of active research, e.g. Pietra (2004). The existence of sunspot and
non-sunspot equilibria has an interesting relation to options. Antinolfi and
Keister (1998) report that the introduction into a market of a small number
of options can render it “strongly sunspot immune,” i.e. eliminate the possi-
bility of sunspot equilibria no matter what extrinsic phenomenon constitutes
the sunspots; this is in contrast to previous results they cite, asserting that op-
tions can have a destabilizing effect. For instance, according to Bowman and
Faust (1997), it is possible for the addition of a market in options to introduce
sunspot equilibria into an economy that previously did not have any, even if
that economy’s market was already complete! This has to do with the fact that
options, as derivative securities, have payoffs related to underlying security
prices and not directly to the state of the economy.

Public prices reveal private information and one may analyze how much
private information a certain market structure reveals (Duffie and Rahi, 1995,
§3.2); recent work on this topic includes Kübler et al. (2002). One is tempted
to suppose that complete revelation is desirable because it increases market
efficiency (in the sense of the efficient markets hypothesis, not Pareto effi-
ciency) and thus promotes the allocation of resources to maximally productive
uses. However, the normative issues surrounding information revelation are
not simple. When private information is not revealed, uninformed investors
may be hesitant to trade; this is the rationale behind the prohibition on insider
trading, and the insight underlying an extensive economic literature spawned
by the famous paper on lemons (Akerlof, 1970). Yet private information might
be revealed in a way that resolves uncertainty about individuals’ endowments
so that they cannot well insure it. Hirshleifer (1971) describes how public in-
formation can disrupt a market’s ability to provide insurance. For example,
suppose that the only uncertainty about the price of corn at harvest comes from
ignorance about the total number of acres planted. In this case farmers would
not be able to insure themselves well against price risk by hedging in futures
markets, because the very act of their attempting to hedge their crops would
reveal the total crop size, thus resolving all uncertainty about the price. Marin
and Rahi (2000) and Dow and Rahi (2003) study this tension; the magnitude
of these opposing informational effects is unknown.
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