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Abstract

We introduce a new class of Gaussian random fields (GRFs), which we call generalized integrated
Brownian fields (GIBFs). We focus on the use of GIBFs for Gaussian process modeling in deter-
ministic and stochastic simulation metamodeling. We build GIBFs from the well-known Brownian
motion and discuss properties such as the Markov property and mean reversion; we provide a formal
definition of the latter. We show that GIBFs have no mean reversion and differentiability that can
vary in each coordinate, as well as the Markov property in one dimension. We also show how to
implement stochastic kriging with GIBFs, covering trend modeling and parameter fitting. Lastly,
we use tractable examples to demonstrate superior prediction ability as compared to the GRFs
corresponding to the Gaussian and Matérn covariance functions.

1 Introduction

Stochastic simulations are often used to model complex systems in industrial engineering and
operations research. Because simulation models are typically not limited by the complexity of the
underlying system, simulation runs may be time-consuming to execute, especially when there are
many scenarios that need to be evaluated. This limits the use of simulation models for supporting
real-time decision making. When the simulation model can be run for a significant amount of time
before decisions must be made, we can use the output from the simulation to build a statistical
model of the response surface. We call this statistical model a simulation metamodel. Using the
metamodel, we can predict the value of the response surface for any scenario, even if it has not
been simulated.

A great deal of research has been directed towards fitting linear regression models to simulation
output. However, we are particularly interested in general metamodeling approaches that assume
less structure than linear models. In the deterministic computer experiments literature, the use of
Gaussian process models has been remarkably successful for global metamodeling [Santner et al.,
2010]. Following the introduction of Gaussian process models into the design and analysis of de-
terministic computer experiments, Mitchell and Morris [1992] introduced Gaussian process models
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for representing the response surface in stochastic simulation. Since the predictions are made by
fitting a Gaussian process, we are able to obtain a measure of uncertainty in predictions, which
gives rise to confidence intervals. Furthermore, the measure of uncertainty in predictions facili-
tates sequential, adaptive experiment designs, and can provide statistical inference about the fitted
model [Ankenman et al., 2010].

In simulation metamodeling using Gaussian process models, the response surface is modeled
as a sample path of a Gaussian random field (GRF). A critical choice in fitting Gaussian process
models is specifying the GRF. To obtain better prediction ability, the GRF should have desirable
properties and be flexible enough to capture the characteristics of the response surface, such as
the level of differentiability. A GRF is completely specified by its mean function (often assumed
to be identically zero) and covariance function. Thus, selecting the proper covariance function
is crucial for determining the prediction ability of the resulting Gaussian process model. Indeed,
much research has been done that discusses the choice of covariance functions for Gaussian process
modeling [Santner et al., 2010, Xie et al., 2010, Paciorek and Schervish, 2004].

Gaussian process models were initially used in geostatistics to predict the amount of gold in
underground deposits [Krige, 1951]. For these applications, if we were interested in predicting the
amount of gold underneath a region, knowing the amount of gold underneath the boundary of the
region would not be sufficient information for our prediction. For example, if we knew there was
a lot of gold nearby, but none necessarily underneath the boundary, we would still expect there
to be gold underneath the region in which we were interested. We are mainly concerned with
response surfaces in operations research, which are different than response surfaces in geostatistics.
In operations research, if we are interested in predicting the value of the response surface in a
region, then given sufficient information about the response surface on the boundary, information
about the response surface outside of the region often would not assist in our predictions. By
sufficient information, we mean the level of the response surface and perhaps some derivatives. For
GRFs, this property is analogous to the Markov property: the GRF inside a region, given sufficient
information (level and derivatives) on the boundary, is independent of the GRF outside [Pitt, 1971].

The ability to control the differentiability of the GRF is a characteristic that has received
considerable attention in the literature [Santner et al., 2010]. A common class of GRFs that
are used for metamodeling corresponds to the power exponential covariance function, for which
the differentiability is controlled by a single parameter. However, these GRFs can only be non-
differentiable or infinitely differentiable, depending on the value of the parameter. Another class of
covariance functions is the class of Matérn covariance functions, which also has a single parameter
that controls the differentiability of the GRF. In contrast to the power exponential covariance
function, the GRFs corresponding to the Matérn class can have differentiability of any order.
However, the differentiability cannot differ in each coordinate. See the beginning of Section 3 for
further discussion.

Mean reversion is often an undesirable characteristic of the metamodel that arises from using
a mean-reverting GRF. An example of mean reversion is given in Figure 1, which contains a plot
of the response surface (the expected waiting time in an M/M/1 queue) and the metamodel built
using a mean-reverting GRF. Mean reversion results because the covariances among the design
points, the scenarios at which we run the simulation, and prediction points, the scenarios at which
we want to make a prediction, gets weaker as the distance between them becomes greater, thus, the
prediction reverts to the overall mean of the GRF. Any GRF in which the covariance between two
points monotonically decreases to zero as the distance between the points increases exhibits mean
reversion (see Section 5.1 for further discussion). Due to the poor predictions that can result from
mean reversion, many methods have been proposed to reduce it for Gaussian process modeling
(see, for example, Joseph et al. [2008], Joseph [2006], and Li and Sudjianto [2005]). Furthermore,
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Figure 1: Mean reversion in a metamodel. The solid line is the expected waiting time for a customer
in an M/M/1 queue, the dashed line is the metamodel, and the dotted line is the mean of the fitted
Gaussian process. The data used to fit the metamodel are noiseless observations of the expected
waiting time at the points 0, 0.2, 0.5, 0.8, and 0.995.

for these covariance functions, extrapolation causes severe mean reversion since the design points
will only be on one side of the prediction point. As in the procedure in Liu and Staum [2010],
it can sometimes be very expensive to avoid extrapolation, especially in high dimension, since an
extremely large number of design points would be needed to cover a high-dimensional design space,
the space of all possible design points. Thus, we would prefer to use a GRF which leads to a
metamodel that does not exhibit mean reversion.

In this paper, we introduce a new class of GRFs, which we call generalized integrated Brownian
fields (GIBFs), focusing on the use of GIBFs for Gaussian process modeling in deterministic and
stochastic simulation metamodeling. There are two ways to construct GIBFs: using a probabilistic
approach or the theory of reproducing kernels. In the latter, the covariance functions of GIBFs
can be constructed using a novel parametrization of the reproducing kernel corresponding to the
Sobolev-Hilbert space [Berlinet and Thomas-Agnan, 2004], which is a tensor-product Hilbert space.
Although we will use the first construction and build GIBFs from Brownian motion, we will use
the theory of reproducing kernels to prove a property of GIBFs. By placing the constuction of
GIBFs in the probabilistic setting, we can discuss properties such as the Markov property and
mean reversion; we provide a formal definition of the latter. We show that GIBFs have the Markov
property in one dimension and no mean reversion. Furthermore, the differentiability of GIBFs can
vary in each coordinate. We also show how to implement stochastic kriging with GIBFs, and use
tractable examples to compare the prediction ability of GIBFs with the GRFs corresponding to
the Gaussian and Matérn covariance functions.

Gaussian process modeling with GIBFs is a generalization of using smoothing splines with
integrated Brownian motion in one dimension [Wahba, 1990]. Berlinet and Thomas-Agnan [2004]
and Gu and Wahba [1992] provide very general guidelines for creating smoothing splines in a tensor-
product Hilbert space. In addition to being very general, these guidelines also assume the user has
performed a decomposition of the tensor-product Hilbert space, and has chosen which subspaces
to include in the penalty term and which subspaces to disregard altogether by performing a model
selection. Furthermore, each term in the penalty is weighted with a separate coefficient, which
leads to many coefficients in high dimensions. The method presented in this paper is much easier

3



to implement; once the trend is chosen, the covariance function follows automatically, and the
parameters are chosen from the simulation output using maximum likelihood estimation.

Although the use of Gaussian process models in simulation metamodeling has led to several
different metamodeling techniques (see, for example, van Beers and Kleijnen [2003], Kleijnen and
van Beers [2005], and Yin et al. [2011]), we will focus on the simulation metamodeling technique
called stochastic kriging, which we discuss in Section 2. We then present GIBFs using a probabilistic
approach in Section 3, and provide a guide to using these random fields with stochastic kriging
in Section 4. We discuss several properties of GIBFs in Section 5 and conclude the paper with
numerical experiments in Section 6 which show the improved prediction accuracy as compared to
the well-known and highly-used Gaussian and Matérn covariance functions.

2 Stochastic Kriging

Gaussian process models have been used for approximating the output of deterministic computer
experiments following the work of Sacks et al. [1989], which introduced kriging into the design
and analysis of deterministic computer experiments. In kriging, the response surface y(·) at x is
modeled as a realization of the random variable

YM(x) = f(x)>β + M(x), (1)

where x is a point in the design space X (the space of all possible design points), f(·) is a p × 1
vector of known functions, i.e., f(·) = (f1(·), f2(·), . . . , fp(·))>, β is a p × 1 vector of unknown
parameters, and M(·) is a mean-zero GRF. In other words, sample paths of M(·) can be thought of
as being randomly sampled from a space of functions mapping Rd → R, according to a Gaussian
measure [Ankenman et al., 2010]. The GRF M(·) is assumed to exhibit spatial covariance, which is
determined by the covariance function ΣM(·, ·;θ), where θ is a vector of parameters. Specifically,
the covariance between M(·) at two points x and x′ in the design space is given by

Cov[M(x),M(x′)] = ΣM(x,x′;θ).

For deterministic computer experiments where the output of the experiment contains no noise,
the response surface can be observed exactly at each of the design points at which the computer
experiment is run. Kriging results in an interpolation of the data, i.e., the metamodel is equal to
the computer experiment output at each of the scenarios run, which fits the deterministic nature
of the problem.

In the stochastic simulation case, we no longer observe the response surface without noise.
Rather, we run the simulation model at k design points x1,x2, . . . ,xk for a total of ni replications
at design point xi. Replication j at design point xi is denoted by Yj(xi). At design point xi we
collect the sample mean Ȳ(xi) = (1/ni)

∑ni
j=1 Yj(xi), and the sample standard deviation s2(xi) =

(1/(ni−1))
∑ni

j=1(Yj(xi)−Ȳ(xi))
2. Gaussian process modeling in stochastic simulation utilizes the

sample means and sample standard deviations at the design points to build the Gaussian process
model.

In stochastic kriging [Ankenman et al., 2010], the response surface is modeled as a sample path
of the GRF YM(·), given by Equation (1), with mean function f(·)>β and covariance function
ΣM(·, ·;θ). The simulation output on replication j at design point x is modeled as a realization of
the random variable

YM,εj (x) = YM(x) + εj(x),

where the mean-zero sampling noise in the replications ε1(x), ε2(x), . . . at a design point x is in-
dependent and identically distributed across replications. Following the recommendations of Chen
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et al. [2012], we assume the sampling noise is independent across design points, i.e., we do not use
Common Random Numbers (CRN), although our method will still work when CRN are used. The
sampling noise is referred to as intrinsic uncertainty, since it is inherent in the stochastic simulation.
The stochastic nature of M is called extrinsic uncertainty, since it is imposed on the problem to aid
in the development of the metamodel [Ankenman et al., 2010].

Suppose that the simulation model has been run at the k design points x1,x2, . . . ,xk yield-
ing the vector of observed simulation output Ȳ = (Ȳ(x1), Ȳ(x2), . . . , Ȳ(xk))

>, and we now want
to predict the response surface at x0. Let Σ̂M be the k × k variance-covariance matrix with
ijth entry ΣM(xi,xj ; θ̂), where θ̂ is the maximum likelihood estimate (MLE) of θ, let F =

(f(x1), f(x2), . . . , f(xk))
> be the k × p regression matrix, and let Σ̂M(x0, ·) be the k × 1 vector

of spatial covariances between the design points and the prediction point, i.e., the ith entry of
Σ̂M(x0, ·) is ΣM(x0,xi; θ̂). Also, let Σ̂ε = diag{s2(x1)/n1, s

2(x2)/n2, . . . , s
2(xk)/nk}. For brevity,

we write Σ̂ = Σ̂M + Σ̂ε. The stochastic kriging prediction at x0 is given by

ŶM(x0) = f(x0)>β̂ + Σ̂M(x0, ·)>Σ̂−1(Ȳ − Fβ̂), (2)

where β̂ = (F>Σ̂−1F)−1F>Σ̂−1Ȳ. The mean-squared error (M̂SE) of the prediction ŶM(x0) is

M̂SE(ŶM(x0)) = ΣM(x0,x0; θ̂)− Σ̂M(x0, ·)>Σ̂−1Σ̂M(x0, ·) + η>(F>Σ̂−1F)−1η, (3)

where η = f(x0) − F>Σ̂−1Σ̂M(x0, ·). The last term arises because the p × 1 vector of regression
coefficients needs to be estimated, which inflates the MSE of the prediction. If β was known instead
of estimated, the last term of M̂SE(ŶM(x0)) would drop from the expression.

When derivatives of the response surface can be estimated using the simulation model, it has
been shown that incorporating derivative information can substantially improve the prediction
performance [Chen et al., 2013]. The model for the derivative of the response surface at the design
point x ∈ X is given by

∂|α|YM(x)

∂xα
=

(
∂|α|f(x)

∂xα

)>
β +

∂|α|M(x)

∂xα
,

and the corresponding model for the derivative estimate on simulation replication j at x is given
by

Dα
j (x) =

∂|α|YM(x)

∂xα
+ γαj (x),

where α = (α1, α2, . . . , αd)
>, |α| =

∑d
i=1 αi, ∂

|α|/∂xα = ∂|α|/(∂xα1
1 ∂xα2

2 · · · ∂x
αd
d ), and γαj (x) for

j = 1, 2, . . . represent the mean-zero, independent and identically distributed sampling noise in the
derivative estimates of the αth derivative. Since we are not using CRN, the sampling noise in the
derivative estimates is independent across design points, i.e., γα1

k (xi) is independent of γα2
l (xj),

for any α1,α2, k and l and all i 6= j. Furthermore, γαk (xi) is independent of εl(xj), for any α, k,
and l and all i 6= j. The covariance functions of the derivative processes are derived by taking the
corresponding derivatives of the covariance function ΣM, i.e., for x,y ∈ X ,

Cov

[
∂|α|YM(x)

∂xα
,
∂|β|YM(y)

∂xβ

]
=
∂|α|+|β|

∂sα∂tβ
ΣM(s, t;θ)

∣∣∣∣∣
(x,y)

.

To illustrate stochastic kriging with derivative estimates, we present a one-dimensional, two-
point example, and refer the reader to Chen et al. [2013] for details on implementation and results.
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Consider a simulation model in which the design space is one-dimensional, with two design points
x1 and x2. We run the simulation model at x1 and x2 for n1 and n2 replications, respectively. We
obtain noisy estimates (the sample averages) of the response surface, Ȳ(x1) and Ȳ(x2), as well as
a noisy estimate of the derivative at x1, D̄1(x1) = (1/n1)

∑n1
j=1D1

j (x1). The vector of observations

Ȳ+ = (Ȳ(x1), Ȳ(x2), D̄1(x1))> has mean F+β, where

F+ =

(
f(x1), f(x2),

∂f(x1)

∂x

)>
,

and variance-covariance matrix Σ+ = ΣM+ + Σε+ , where

ΣM+ =

 ΣM(x1, x1;θ) ΣM(x1, x2;θ) ∂ΣM(s,t;θ)
∂t |(x1,x1)

ΣM(x2, x1;θ) ΣM(x2, x2;θ) ∂ΣM(s,t;θ)
∂t

|(x2,x1)

∂ΣM(s,t;θ)
∂s |(x1,x1)

∂ΣM(s,t;θ)
∂s |(x1,x2)

∂2ΣM(s,t;θ)
∂s∂t |(x1,x1)


and

Σε+ =

 Var [ε̄(x1)] 0 Cov [γ̄(x1), ε̄(x1)]
0 Var [ε̄(x2)] 0

Cov [ε̄(x1), γ̄(x1)] 0 Var [γ̄(x1)]

 .

Also, let ΣM+(x0, ·) be the vector of covariances between the prediction point x0 and the design
points,

ΣM+(x0, ·) =

 ΣM(x0, x1;θ)
ΣM(x0, x2;θ)
∂ΣM(s,t;θ)

∂t |(x0,x1)

 .

The stochastic kriging predictor, as well as the MSE of the prediction, is obtained by replacing
Ȳ,F, Σ̂, and Σ̂M(x0, ·) by Ȳ+,F+, and the estimated versions of Σ+ and ΣM+(x0, ·), respectively,
in Equations (2) and (3).

3 Generalized Integrated Brownian Fields

In stochastic kriging, the response surface is modeled as a sample path of the GRF YM(·), given
by Equation (1), with mean function f(·)>β and covariance function ΣM(·, ·;θ). The GRFs we
construct in this section, i.e., GIBFs, have desirable properties such as the Markov property in one
dimension, no mean reversion, and differentiability that can vary in each coordinate. We want to
use GRFs with these properties in an effort to obtain better prediction ability.

A widely-used GRF corresponds to the so-called Gaussian covariance function, for which the
covariance between the GRF at x and x′ is given by ΣM(x,x′;θ) = σ2 exp{−

∑
i θi(xi − x′i)

2},
where θi, xi, and x′i are the ith coordinates of θ, x, and x′, respectively, and σ2 is the variance
of the GRF. This GRF is mean-reverting, and is often criticized as being too smooth since it is
infinitely differentiable in every coordinate. Another widely-used GRF corresponds to the Matérn
covariance function, for which the covariance between the GRF at x and x′ is given by

ΣM(x,x′; θ) = σ2 1

Γ(v)2v−1

(√
2v||θ>(x− x′)||2

)v
Kv

(√
2v||θ>(x− x′)||2

)
,

where Γ(·) is the gamma function and Kv(·) is the modified Bessel function of the second kind. This
GRF is mean-reverting and the differentiability is controlled by the single parameter v. However,
the differentiability cannot differ in each coordinate.
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(a) 0-GIBM (b) 1-GIBM (c) 2-GIBM

Figure 2: Sample paths of GIBMs on the unit interval.

GIBFs are generalized versions of integrated Brownian fields [Fill and Torcaso, 2004], which
are multivariate versions of integrated Brownian motions. We first construct one-dimensional gen-
eralized integrated Brownian motions and then construct multi-dimensional generalized integrated
Brownian fields.

3.1 One-Dimensional Generalized Integrated Brownian Motions

Consider one-dimensional Brownian motion B(·; θ) on the interval [0, 1] with volatility θ. This
process is a real-valued, mean-zero Gaussian stochastic process with continuous, non-differentiable
sample paths. The covariance between B(·; θ) at x, y ∈ [0, 1] is given by ΣB(x, y; θ) = θmin{x, y}.
An m-times differentiable stochastic process can be obtained by integrating B(·; θ) for m times,
which gives us m-integrated Brownian motion Bm(·; θ) with volatility θ. The integral representation
of m-integrated Brownian motion with volatility θ at x is

Bm(x; θ) =

∫ x

0
Bm−1(u; θ)du =

∫ x

0

(x− u)m

m!
dB(u; θ), (4)

where the first equality expresses Bm(x; θ) recursively with B0(·; θ) = B(·; θ), and the second
equality follows from integration by parts, which expresses Bm(x; θ) as an integral with respect
to Brownian motion with volatility θ. From the first integral in Equation (4), it is clear that the

process Bm(·; θ) and its m derivatives B
(i)
m (·; θ), for i = 1, 2, . . . ,m, are zero at the boundary x = 0.

These boundary conditions make Bm(·; θ) unsuitable for metamodeling, since the response surface
and its derivatives may not be zero at the boundary x = 0. We modify Bm(·; θ) by adding a
random polynomial whose coefficients are m + 1 independent standard normal random variables
Z0, Z1, . . . , Zm scaled by some parameters. This process is denoted by Xm(·;θ) and is called a
generalized m-integrated Brownian motion (m-GIBM) and is defined by

Xm(x;θ) ,
m∑
n=0

√
θnZn
n!

xn +Bm(x; θm+1), (5)

where θ has been relabelled as θm+1 for convenience, θ = (θ0, θ1, . . . , θm+1)>, and Bm(·; θm+1) is
independent of Zn for all n = 1, 2, . . . ,m. Figure 2 shows sample paths of a 0-GIBM, a 1-GIBM,
and a 2-GIBM on the unit interval. Directly from the definitions of Bm(·; θ) and Xm(·;θ), it follows
that the covariance between Xm(·;θ) at x, y ∈ [0, 1] is given by

ΣXm(x, y;θ) =
m∑
k=0

θk
xkyk

(k!)2
+ θm+1

∫ ∞
0

(x− u)m+ (y − u)m+
(m!)2

du.
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For any m, the integral can be easily computed and has a convenient closed-form solution, composed
of terms that are products of the functions min and max. If we let x ∧ y , min{x, y} and x ∨ y ,
max{x, y}, then the closed-form solutions for the cases m = 0, 1, 2 are given by∫ ∞

0

(x− u)0
+(y − u)0

+

(0!)2
du = x ∧ y,∫ ∞

0

(x− u)1
+(y − u)1

+

(1!)2
du =

(x ∧ y)2(x ∨ y)

2
− (x ∧ y)3

6
,∫ ∞

0

(x− u)2
+(y − u)2

+

(2!)2
du =

(x ∧ y)3(x ∨ y)2

12
− (x ∧ y)4(x ∨ y)

24
+

(x ∧ y)5

120
,

respectively. The random polynomial given by the first term on the right hand side of Equation (5)
is the linear combination of standard normal random variables with coefficients that are monomials
of degree at most m. By specifying m, we are able to control the differentiability of the GIBM.

3.2 Multi-Dimensional Generalized Integrated Brownian Fields

In the multi-dimensional case, consider d-dimensional Brownian field B(·;θ) on [0, 1]d with volatility
θ [Holden et al., 2010], where θ = (θ1, θ2, . . . , θd)

> is a vector of parameters. Here B(·;θ) is
the tensor product of d independent copies of one-dimensional Brownian motions with varying
volatilities. This field is a real-valued, mean-zero GRF with continuous, non-differentiable sample
paths. The covariance between B(·;θ) at x,y ∈ [0, 1]d is given by ΣB(x,y;θ) =

∏d
i=1 θi min{xi, yi}.

Similar to the one-dimensional case, we can integrate Brownian field with volatility θ over each
coordinate to get a differentiable process. In the multi-dimensional case, each coordinate can
be integrated a different number of times. If we integrate mi times in the ith coordinate for
i = 1, 2, . . . , d, the resulting GRF is called m-integrated Brownian field Bm(·;θ) with volatility θ
[Fill and Torcaso, 2004], where m = (m1,m2 . . . ,md)

>. Using integration by parts, Bm(x;θ) can
be expressed as a multiple integral with respect to Brownian field with volatility θ,

Bm(x;θ) ,
∫ x1

0
· · ·
∫ xd

0

d∏
i=1

(xi − ui)mi

mi!
dB(u;θ).

It follows immediately from this representation that the covariance between Bm(·;θ) at x,y ∈ [0, 1]d

is given by

ΣBm(x,y;θ) =
d∏
i=1

θi

∫ ∞
0

(xi − ui)mi
+ (yi − ui)mi

+

(mi!)2
dui.

The covariance function ΣBm(·, ·;θ) is the product of the covariance functions of the one-dimensional
integrated Brownian motions Bm1(·; θ1), Bm2(·; θ2), . . . , Bmd

(·; θd). Similar to the one-dimensional
case, m-integrated Brownian field with volatility θ has boundary conditions Bm(x;θ) = 0 and

B
|n|
m (x;θ) = 0 for all n such that |n| ≤ |m| and x ∈ [0, 1]d such that xi = 0 for some i. We define

a new process whose covariance function is the product of covariance functions of d GIBMs, in the
same way that the covariance function of Bm(·;θ) is the product of the covariance functions of
Bm1(·; θ1), Bm2(·; θ2), . . . , Bmd

(·; θd).

Definition 3.1. The mean-zero Gaussian random field Xm(·;θ) on [0, 1]d whose covariance at
x,y ∈ [0, 1]d is given by

ΣXm(x,y;θ) =
d∏
i=1

(
mi∑
k=0

θi,k
xki y

k
i

(k!)2
+ θi,mi+1

∫ ∞
0

(xi − ui)mi
+ (yi − ui)mi

+

(mi!)2
dui

)
, (6)
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(a) (0, 0)-GIBF (b) (1, 1)-GIBF

(c) (1, 2)-GIBF (d) (2, 2)-GIBF

Figure 3: Sample paths of GIBFs on the unit square.

where θ = (θ1,0, . . . , θ1,m1+1, θ2,0, . . . , θd,md+1)> is a vector of parameters, is called a generalized
m-integrated Brownian field (m-GIBF).

Figure 3 shows sample paths of a (0, 0)-GIBF, a (1, 1)-GIBF, a (1, 2)-GIBF, and a (2, 2)-GIBF
on the unit square [0, 1]2. We have defined Xm(·;θ) in terms of its covariance function, which is
all that is required to fully define a mean-zero GRF. To get a better understanding of an m-GIBF,
an equivalent formulation of Xm(·;θ) at x is given by

Xm(x;θ) ,
m∑

n=0

Cn(θ)xnZn +
∑

1≤i≤d
1≤j1<j2<...<ji≤d

∑
0≤kj≤mj

j 6=jl,∀l

Cji,kd−i
(x,θ)B

ji,kd−i

(mj1
,...,mji

)(xj1 , . . . , xji ; 1),

(7)
where ji = {j1, j2, . . . , ji}, kd−i = {kj : j 6= jl,∀l}, and the multi-dimensional sum is over all
n = (n1, n2, . . . , nd) such that 0 ≤ n ≤ m. The functions Cn(·) and Cji,kd−i

(·, ·) are deterministic
functions of x and θ, and although closed-form expressions can be obtained for each, they are
not needed for implementation and do not add any insight into the process. Equation (7) is the
multi-dimensional analog of Equation (5). The first term in Equation (7) is a random polynomial
of degree m, which is the linear combination of standard normal random variables with coefficients
that are monomials of degree at most m. The second term is the sum of integrated Brownian fields
over every i-face of [0, 1]d, for i = 1, 2, . . . , d. In other words, we sum integrated Brownian fields
over each edge, face, cell, 4-face, 5-face, etc. of [0, 1]d. Since the functions Cn(·) and Cji,kd−i

(·, ·)
are deterministic functions of x and θ, the randomness in Xm(·;θ) is due to the standard normal

random variables Zn and the integrated Brownian fields B
ji,kd−i

(mj1
,...,mji

)(·,1), which are all independent

from each other. From the formulation of Xm(·;θ) given by Equation (7), it is clear that m-GIBF
does not have any boundary conditions. Furthermore, we are able to control the differentiability
in each coordinate by specifying each entry of the vector m = (m1,m2, . . . ,md).
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Remark : The covariance function of Xm(·;θ) on [0, 1]d is the reproducing kernel of the tensor
product Hilbert space H =

⊗d
i=1H

mi+1[0, 1], where

Hmi+1[0, 1] = {φ : φ, φ(1), . . . , φ(mi)absolutely continuous, φ(mi+1) ∈ L2[0, 1]},

endowed with the inner product

〈φ1, φ2〉 =

mi∑
k=0

1

θk
φ

(k)
1 (0)φ

(k)
2 (0) +

1

θi,mi+1

∫ 1

0
φ

(mi+1)
1 φ

(mi+1)
2 dµ (8)

for φ1, φ2 ∈ Hmi+1[0, 1]. Therefore, the same results can be obtained by considering multi-
dimensional tensor product smoothing splines on the space H endowed with the inner product
with our parameterization, given by Equation (8).

4 Stochastic Kriging with Generalized Integrated Brownian Fields

For stochastic kriging with m-GIBF, the response surface y(·) at x is modeled as a realization of
the random variable

YXm(x;θ) = f(x)>β + X̃m(x;θ), (9)

where f(·) and β are as before, and X̃m(·;θ) is a modified version of m-GIBF, discussed in Section
4.1, which accounts for the basis functions in f(·). To implement stochastic kriging with GIBFs,
we need to choose the vector of basis functions f(·) to be used for trend modeling and values for
the parameters m, β, and θ. This section discusses these aspects of fitting GIBFs, including trend
modeling in Section 4.1, followed by maximum likelihood estimation of the parameters in Section
4.2, assuming that the vector of basis functions has been fixed. The properties of metamodels built
using m-GIBF are given in Section 5.

4.1 Trend Modeling

To maintain the differentiability of the metamodel, we assume that each basis function in the p× 1
vector of basis functions f(·) is mi times continuously differentiable in the ith coordinate. Any
function can be a basis function as long as it satisfies this differentiability condition.

For certain basis functions, the covariance function needs to be modified. For stochastic kriging
with m-GIBF, when a basis function is the monomial xα, where α = (α1, α2, . . . , αd)

> and αi ≤ mi

for i = 1, 2, . . . , d, we need to subtract
∏d
i=1 θi,αix

αi
i y

αi
i /(αi!)

2 from the covariance function given
by Equation (6). The need for this modification of the covariance function is the following. For
stochastic kriging with the GRF YM(·), given by Equation (1), the difference y(·)−f(·)β is modeled
as a sample path of the mean-zero GRF M(·). When xα is included in f(·), the variability of the
simulation output Ȳ associated with the subspace spanned by xα is eliminated by taking the
difference Ȳ −Fβ̂. To avoid redundancy when we use an m-GIBF as the mean-zero GRF M(·), we
remove the term Cα(θ)xαZα in the random polynomial in Equation (7). This term is the GRF
whose covariance at x,y ∈ [0, 1]d is given by

∏d
i=1 θi,αix

αi
i y

αi
i /(αi!)

2.
Another explanation for the modification of the covariance function can be given in terms of

boundary conditions. The formulation of m-GIBF given by Equation (7) is the sum of a term
involving an m-integrated Brownian field and other terms that compensate for its boundary condi-
tions. When the basis function xα is included in f(·), we do not need the term Cα(θ)xαZα in the
random polynomial

∑m
n=0Cn(θ)xnZn, since the corresponding boundary condition is compensated
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by the term involving xα in the trend function. For example, consider the GRF YXm(·;θ) with
f(·) = (1)>, whose value at x is given by

YXm(x;θ) = β0 + X̃m(x;θ),

where X̃m(x;θ) = Xm(x;θ)−C0(θ)Z0. Although X̃m(·;θ) has the boundary condition X̃m(0;θ) =
0, YXm(·) has no boundary conditions since the constant trend compensates for the boundary
condition of X̃m(·;θ) at the origin, i.e., YXm(0;θ) = β0. In general, we define the GRF X̃m(·;θ) to
be the mean-zero GRF whose covariance function is the covariance function of the m-GIBF with
the proper terms subtracted. We denote the covariance function of X̃m(·;θ) by Σ

X̃m
(·, ·;θ).

4.2 Parameter Estimation

Assuming that the vector of basis functions has been fixed, let m̂, β̂, and θ̂ denote the maximum
likelihood estimators (MLEs) for m,β, and θ, respectively. Finding the MLEs involves solving
an optimization problem with both continuous and integer decision variables, since m must be a
vector of integers. Here we describe parameter estimation when the simulation output does not
include derivative estimates. When derivative estimates are used in stochastic kriging, parameter
estimation is exactly the same as below with the proper matrices substituted [Chen et al., 2013].
Given fixed values for m and θ, the MLE of β is

β̂(m,θ) =
(
F>Σ(m,θ)−1F

)−1
F>Σ(m,θ)−1Ȳ,

where Σ(m,θ) = Σ
X̃m

(θ) + Σ̂ε, Σ
X̃m

(θ) is the k × k variance-covariance matrix with ijth entry

Σ
X̃m

(xi,xj ;θ), and β̂ and Σ have been written as functions of m and θ to explicitly show depen-
dence. If we profile over the MLE of β and ignore constants, then the profile log-likelihood function
[Shao, 2010] is given by

L(m,θ|Ȳ) = −1

2
log(|Σ(m,θ)|)− 1

2
(Ȳ − Fβ̂(m,θ))>Σ(m,θ)−1(Ȳ − Fβ̂(m,θ)),

where Ȳ is the vector of simulation output. The MLEs of m and θ are given by

(m̂, θ̂) = arg min
m,θ

{
−L(m,θ|Ȳ)

∣∣∣m ∈ Zd+,θ ∈ RM+
}
,

where M =
∑d

i=1(mi + 2), and Zd+ and RM+ are the feasible values for m and θ, respectively. To
solve this optimization problem, we first fix m to some value m′ ∈ Zd+ and search for the MLE of
θ ∈ RM+ given the fixed value m′ of the order. Then, we choose a different value of m 6= m′ in Zd+
and repeat the process until we are satisfied with our solution, i.e., we do not exhaust the search
space Zd+ of m.

Instead of searching over the unbounded space Zd+ for the MLE of m, we limit our search to the
bounded set {1, 2}d, which has 2d elements. We only search the bounded set {1, 2}d for the MLE of
m, since we have found in our practical experience with metamodeling of engineering simulations
that it is sufficient to only consider GIBFs that are at least once-differentiable in each coordinate
and at most twice-differentiable in each coordinate, i.e., these GIBFs are flexible enough for most
response surfaces. When the order of the GIBF is increased in a coordinate, the computational cost
of finding the MLEs of the parameters increases since the number of parameters increases. When
mi is at most two in each coordinate, the number of parameters is manageable.
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For a fixed value m′ of m, instead of searching over the unbounded space RM+ for the MLE of
θ, we add a dummy parameter τ which allows θ to be restricted to the unit hypercube [0, 1]M . In
other words, only the magnitudes of the parameters in θ relative to each other are important since
the actual magnitude is absorbed in τ . The re-parameterized covariance function for m′-GIBF is

ΣXm′ (x,y;θ, τ) = τ
d∏
i=1

 m′i∑
k=0

θi,k
xki y

k
i

(k!)2
+ θi,m′i+1

∫ 1

0

(xi − ui)
m′i
+ (yi − ui)

m′i
+

(m′i!)
2

dui

 ,

where now θ ∈ [0, 1]M and τ ≥ 0. Given m′, the MLE of θ is now given by

θ̂ = arg min
θ

{
−L(m′,θ, τ∗(m′,θ)|Ȳ)

∣∣θ ∈ [0, 1]M
}
, (10)

where

L(m,θ, τ |Ȳ) = −1

2
log(|Σ(m,θ, τ)|)− 1

2
(Ȳ − Fβ̂(m,θ, τ))>Σ(m,θ, τ)−1(Ȳ − Fβ̂(m,θ, τ))

is the re-parameterized profile log-likelihood function, β̂ and Σ have been written as functions
of m,θ, and τ to explicitly show dependence, and τ∗(m,θ) is the value of τ that minimizes
L(m,θ, τ |Ȳ) with m and θ fixed. Finding τ∗(m,θ) can be done efficiently using a line search
method, and supplying the solver with the gradient ∂L(m,θ, τ |Ȳ)/∂τ , which can be easily com-
puted using matrix calculus. We can now solve the constrained optimization problem (10) by
evaluating −L(m′,θ, τ∗(θ)|Ȳ) at a low-discrepancy point-set in [0, 1]M and use the point that
minimizes this quanitity as the starting solution for a non-linear optimization algorithm.

5 Properties

In this section, we discuss several properties of GIBFs and metamodels built using stochastic kriging
with GIBFs. We focus particularly on the differentiability of the metamodel, the non-stationarity
and lack of mean reversion of GIBFs, as well as the Markov property of GIBFs.

To analyze the differentiabilty of metamodels built using stochastic kriging with GIBFs, we
rewrite the stochastic kriging predictor as the affine combination of the k basis functions Σ

X̃m̂
(·,xi; θ̂),

for i = 1, 2, . . . , k. Indeed, we rearrange Equation (2) for x ∈ X as

Ŷ(x) =

p∑
i=1

fi(x)β̂i +
k∑
i=1

ciΣX̃m̂
(x,xi; θ̂),

where c = Σ(m̂, θ̂)−1(Ȳ − Fβ̂). Using this formulation of the stochastic kriging predictor, we can
see that fi(·) and Σ

X̃m̂
(·,xi; θ̂) are the only terms that depend on x in this expression, so the

differentiability of the metamodel is determined by f(·) and Σ
X̃m̂

(·, ·; θ̂). Since we are assuming

each function in the trend vector is m̂i times differentiable in the ith coordinate and the covariance
function Σ

X̃m̂
(·, ·; θ̂) is m̂i times differentiable in the ith coordinate, the metamodel is m̂i times

differentiable in the ith coordinate.
In contrast to the stationary GRFs corresponding to the Gaussian and Matérn covariance

functions, GIBFs are non-stationary. However, we are not concerned with the non-stationarity of
GIBFs since we only use the conditional distribution, given the simulation output at the design
points. The conditional distribution for any GRF, stationary or non-stationary, is always non-
stationary; as we move away from the design points, the conditional variance increases. Consider
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kriging with Brownian motion: although Brownian motion is non-stationary (as we move away
from the origin, the variance of Brownian motion increases), when we condition on the simulation
output at two design points, the resulting process between the design points is a Brownian bridge.
The variance of the Brownian bridge will be largest in the center of the design points, and decrease
as we get closer to either design point. This property is exactly what we want for metamodeling.

5.1 No Mean Reversion

As mentioned in the introduction, a well-known problem of Gaussian process models is the presence
of mean reversion. The concept of mean reversion is well-defined for stochastic processes that are
parameterized on the time domain: the process is mean-reverting if it tends to drift towards its
long-term mean over time. A well-known example of a mean-reverting stochastic process is the
Ornstein-Uhlenbeck process. In contrast, the concept of mean reversion has not been defined in
terms of random fields parameterized on a multi-dimensional spatial domain. In this case, we no
longer have a concept of time. We make the following definition of mean reversion for random fields
parameterized on a multi-dimensional spatial domain:

Definition 5.1. Let M(·) be a random field with mean function m(·) defined on a convex cone C.
The random field M(·) is mean-reverting if

E[M(λx)−m(λx)|M(x̃1),M(x̃2), . . . ,M(x̃k)]
d−→ 0 (11)

as λ→∞, for any k ≥ 1 points x̃1, x̃2, . . . , x̃k ∈ C and any x 6= ~0 in C.

Essentially, we can think of the points x̃1, x̃2, . . . , x̃k as being the design points at which we
are able to observe the value of the random field M(·). E[M(λx)|M(x̃1),M(x̃2), . . . ,M(x̃k)] is the
kriging predictor at the point λx, based on the observations at the design points. The difference
E[M(λx)|M(x̃1),M(x̃2), . . . ,M(x̃k)]−m(λx) is the difference between the kriging predictor and the
unconditional mean. Thus, a random field is mean-reverting if the difference between the kriging
predictor and the unconditional mean converges in distribution to zero as we move away from
the design points. The next theorem shows that this definition of a mean-reverting random field
is consistent with the behavior of GRFs that correspond to the Gaussian and Matérn covariance
functions.

Theorem 5.2. Let M(·) be a GRF defined on Rd+ with mean function m(·) and covariance function
Cov[M(x),M(x′)] = τ2r(x− x′;θ), for some scalar τ and function r(·;θ) such that r(x;θ)→ 0 as
||x|| → ∞ and r(0;θ) = 1. Then, M(·) is mean-reverting.

Proof. Let x̃1, x̃2, . . . , x̃k be any k ≥ 1 points in Rd+ and x be any point in Rd+ not equal to the
zero vector. Furthermore, let r(λx, ·) be the column vector whose ith entry is r(λx − x̃i;θ) and
R be the correlation matrix whose ijth entry is r(x̃i − x̃j ;θ). Using this notation, the conditional
expectation in Equation (11) can be written as

E[M(λx)−m(λx)|M(x̃1),M(x̃2), . . . ,M(x̃k)] = r(λx, ·)>R−1

M(x̃1)−m(x̃1)
...

M(x̃k)−m(x̃k)

 , (12)

which is an affine combination of mean-zero Gaussian random variables, and thus also follows a
Gaussian distribution

E[M(λx)−m(λx)|M(x̃1),M(x̃2), . . . ,M(x̃k)]
d
=N (0, τ2r(λx, ·)>R−1r(λx, ·)). (13)
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Since M(·) is a GRF, the variance τ2 of M(·) is finite. Thus, the variance of the conditional
expectation converges to zero iff r(λx, ·)>R−1r(λx, ·)→ 0 as λ→∞. The vector r(λx, ·) converges
to a vector of zeros as λ→∞ since ||λx− x̃i|| → ∞ for i = 1, 2, . . . , k. Furthermore, the inverse of
the correlation matrix R−1 is positive-definite, so the quadratic form defined by f(x) = x>R−1x
is a continuous, strictly convex function with f(0) = 0. Therefore, the variance of the conditional
expectation τ2r(λx, ·)>R−1r(λx, ·) converges to zero as λ→∞, which implies that the conditional
expectation converges in distribution to zero.

The main property of the covariance function τ2r(x− x′;θ) on which the proof above relies is
that r(x;θ) decays to zero as ||x|| → ∞. As we will see in the next theorem, GIBFs do not exhibit
mean reversion because their covariance functions do not have this property. In our definition
of mean reversion, the domain of the random field must be a convex cone. However, we defined
GIBFs on the unit hypercube [0, 1]d so that the covariance function of Xm(·, ·;θ) on [0, 1]d is the
reproducing kernel for the tensor product Hilbert space H. Thus, for the following theorem, we
consider GIBFs on the convex cone Rd+. Besides the domain of the random field, nothing in our
definition of GIBFs changes. Furthermore, we need the notion of a non-trivial GIBF: at least one
θi in the covariance function, given by Equation (6), is strictly positive.

Theorem 5.3. Let Xm(·;θ) be a non-trivial m-GIBF on Rd+. Then, Xm(·;θ) is not mean-
reverting.

Proof. Let x̃1, x̃2, . . . , x̃k be any k ≥ 1 points in the interior of Rd+. Furthermore, let x be any point
in the interior of Rd+. The conditional expectation in Equation (11) can be written as

E[Xm(λx;θ)|Xm(x̃1;θ),Xm(x̃2;θ), . . . ,Xm(x̃k;θ)] = Σ(λx, ·)>Σ−1

Xm(x̃1;θ)
...

Xm(x̃k;θ)

 ,

where Σ(λx, ·) is the column vector whose ith entry is Cov[Xm(λx;θ),Xm(x̃i;θ)] and Σ is the
covariance matrix whose ijth entry is Cov[Xm(x̃i;θ),Xm(x̃j ;θ)]. The conditional expectation is
an affine combination of mean-zero Gaussian random variables, so its distribution is Gaussian with
mean zero and variance Σ(λx, ·)>Σ−1Σ(λx, ·).

Since Xm(·;θ) is non-trivial and x̃1, x̃2, . . . , x̃k and x lie in the interior of Rd+, each entry in the
vector Σ(λx, ·) is non-decreasing and at least one is strictly increasing in λ, so we have

lim inf
λ→∞

||Σ(λx, ·)|| > ε

for some ε > 0. Using this fact, we will show that the variance of the conditional expectation
does not converge to zero as λ → ∞. Since x̃1, x̃2, . . . , x̃k lie in the interior of Rd+ and Xm(·;θ)
is non-trivial, the covariance matrix Σ is positive definite. Thus, the maximum eigenvalue λmax

of Σ is strictly positive. For the quadratic form defined by f(x) = x>Σ−1x, a standard result for
positive-definite matrices gives us the inequality

1

λmax
x>x ≤ x>Σ−1x. (14)

Using (14) we have
1

λmax
||Σ(λx, ·)||2 ≤ Σ(λx, ·)>Σ−1Σ(λx, ·),
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and since lim infλ→∞ ||Σ(λx, ·)|| > ε as λ→∞,

ε2

λmax
<

1

λmax
lim inf
λ→∞

||Σ(λx, ·)||2 ≤ lim inf
λ→∞

Σ(λx, ·)>Σ−1Σ(λx, ·)

and the result follows.

5.2 Markov Property

Consider a GRF M(·) defined on a set S ⊆ Rd with continuous derivatives M(α)(·), for all α ≤m,
where M(α)(x) = ∂|α|M(x)/∂xα. Roughly speaking, we call M(·) a Markov random field if, for
every bounded open set O ⊆ S,

E[M(x)|M(α)(z), ∀z ∈ O{,∀α ≤m] = E[M(x)|M(α)(z), ∀z ∈ ∂O, ∀α ≤m]

for any x ∈ O, where ∂C is the boundary of C [Pitt, 1971]. For a more precise, measure-theoretic
definition, see Pitt [1971] or Künsch [1979]. The formal proof of the Markov property for a one-
dimensional m-GIBM involves the reproducing kernel Hilbert space whose reproducing kernel is
the covariance function of the m-GIBM. However, for an intuitive argument for why an m-GIBM is
Markov, consider a time-based interpretation of the Markov property: given sufficient information
(level and derivatives) at the present, the past and future are independent. The value of an m-GIBM
at some time t can be written as its initial value plus the integral of an (m− 1)-GIBM:

Xm(t;θ) = Xm(0;θ) +

∫ t

0
Xm−1(u;θm−1)du,

where we have used the parameter t to denote time and θm−1 denotes the parameters of the
(m − 1)-GIBM that make the equation true. Let t0 denote the present time. Using this integral
representation of Xm(t;θ), we have

E[Xm(t;θ)|X(v)
m (s;θ), s ≤ t0, v ≤ m]

= Xm(t0;θ) + E

[∫ t

t0

Xm−1(u;θm−1)du
∣∣∣X(v)

m (s;θ), s ≤ t0, v ≤ m
]
.

The information up to time t0 is the sigma-algebra generated by {X(v)
m (s;θ), s ≤ t0, v ≤ m}

and is equal to the sigma-algebra generated by {Xv(s;θv), s ≤ t0, v ≤ m}, since X
(v)
m (s;θ) =

Xm−v(s;θm−v), where θm−v are the parameters of the corresponding (m−v)-GIBM that make the
equality true and θm = θ. Furthermore, the sigma-algebra generated by {Xv(s;θv), s ≤ t0, v ≤ m}
is equal to the sigma-algebra generated by {Xm(0;θ), Xv(s;θv), s ≤ t0, v ≤ m− 1}, since Xm(s;θ)
for 0 < s ≤ t0 is completely determined by Xm(0;θ) and Xv(s;θv), s ≤ t0, v ≤ m− 1. Thus,

E[Xm(t;θ)|X(v)
m (s;θ), s ≤ t0, v ≤ m]

= Xm(t0;θ) + E

[∫ t

t0

Xm−1(u;θm−1)du |Xm(0;θ), Xv(s;θv), s ≤ t0, v ≤ m− 1

]
.

Finally, since Xm(0;θ) and Xm−1(s;θm−1) are independent for 0 ≤ s ≤ t, we have

E[Xm(t;θ)|X(v)
m (s;θ), s ≤ t0, v ≤ m]

= Xm(t0;θ) + E

[∫ t

t0

Xm−1(u;θm−1)du
∣∣∣X(v)

m−1(s;θm−1), s ≤ t0, v ≤ m− 1

]
.
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Thus, Xm(·;θ) will be Markov if Xm−1(·;θm−1) is Markov. Using induction, we only need to show
that X0(·;θ) is Markov. This can easily been shown since X0(·;θ) is a translation and scaling of
Brownian motion, i.e., X0(x;θ) = θ′2B(x+ θ′1) for some θ′1, θ

′
2 ≥ 0, which is a Markov process. We

now give a formal proof of the Markov property for one-dimensional GIBMs.

Theorem 5.4. The Gaussian stochastic process Xm(·;θ) is Markov.

Proof. We use Theorem 5.1 of Künsch [1979] and the fact that the covariance function of Xm(·;θ)
restricted to [0, 1] is the reproducing kernel of the reproducing kernel Hilbert space

Hm+1[0, 1] = {φ : φ, φ(1), . . . , φ(mi)absolutely continuous, φ(mi+1) ∈ L2[0, 1]},

endowed with the inner product

〈φ1, φ2〉 =
m∑
k=0

θkφ
(k)
1 (0)φ

(k)
2 (0) + θm+1

∫ 1

0
φ

(m+1)
1 φ

(m+1)
2 dµ.

for φ1, φ2 ∈ Hm+1[0, 1]. By Theorem 5.1 of Künsch [1979], we only need to show two things: if
φ1, φ2 ∈ Hm+1[0, 1] with suppφ1 ∩ suppφ2 = ∅, then 〈φ1, φ2〉 = 0, and if φ = φ1 +φ2 ∈ Hm+1[0, 1]
with suppφ1 ∩ suppφ2 = ∅, then φ1 and φ2 ∈ Hm+1[0, 1].

We first show that if φ1, φ2 ∈ Hm+1[0, 1], with suppφ1 ∩ suppφ2 = ∅, then 〈φ1, φ2〉 = 0.
Indeed, let φ1, φ2 ∈ Hm+1[0, 1] be such that suppφ1 ∩ suppφ2 = ∅. Since suppφ1 ∩ suppφ2 = ∅,
the interval [0, ε), for some ε > 0, is contained in at most one of suppφ1 or suppφ2. Assume

without loss of generality that [0, ε) * suppφ1. Then, φ
(0)
1 (0), φ

(1)
1 (0), . . . , φ

(m)
1 (0) = 0. Thus, we

have
∑m

k=0 θkφ
(k)
1 (0)φ

(k)
2 (0) = 0. To finish showing that 〈φ1, φ2〉 = 0, we only need to show that

the integral in the inner product is equal to zero. Since suppφ
(m+1)
1 ⊆ suppφ1 and suppφ

(m+1)
2 ⊆

suppφ2, we have that suppφ
(m+1)
1 ∩ suppφm+1

2 = ∅. Thus, their product φ
(m+1)
1 φ

(m+1)
2 is zero and∫ 1

0
φ

(m+1)
1 φ

(m+1)
2 dµ = 0.

Together with
∑m

k=0 θkφ
(k)
1 (0)φ

(k)
2 (0) = 0, we have 〈φ1, φ2〉 = 0.

Next, we show that if φ ∈ H(m+1)[0, 1] is decomposed as φ = φ1+φ2, with suppφ1∩suppφ2 = ∅,

then φ1, φ2 ∈ H(m+1). We first show that φ
(m+1)
1 and φ

(m+1)
2 ∈ L2[0, 1]. Since φ ∈ H(m+1)[0, 1], we

have that φ(m+1) ∈ L2[0, 1]. Thus, ∫ 1

0

(
φ(m+1)

)2
dµ <∞.

The fact that φ
(m+1)
1 and φ

(m+1)
2 are also in L2[0, 1] follows directly from the inequality∫ 1

0

(
φ

(m+1)
i

)2
dµ ≤

∫ 1

0

(
φ(m+1)

)2
dµ,

for i = 1, 2. We have left to show that if φ(i), for i = 1, 2, . . . ,m, is absolutely continuous, then φ
(i)
1

and φ
(i)
2 are absolutely continuous. We only need to prove that φ

(i)
1 is absolutely continuous, since

the absolute continuity of φ
(i)
2 follows from the fact that the difference of two absolutely continuous

functions is absolutely continuous. Since φ1 vanishes on (suppφ1){ and φ2 vanishes on (suppφ2){,

we have suppφ
(i)
1 ⊆ suppφ1 and suppφ

(i)
2 ⊆ suppφ2. Thus, suppφ

(i)
1 ∩ suppφ

(i)
2 = ∅. Since φ(i) is
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absolutely continuous, for any ε > 0 there exists a δ > 0 such that whenever a finite set of disjoint
intervals {[xk, yk]}k of [0, 1], with xk ≤ yk for all k, satisfies∑

k

(yk − xk) < δ, then
∑
k

|φ(i)(yk)− φ(i)(xk)| < ε.

Each interval [xk, yk] can be classified into one of the following three cases:

i both φ
(i)
1 (yk) = φ

(i)
1 (xk) = 0,

ii exactly one of φ
(i)
1 (yk) or φ

(i)
1 (xk) is 0 and unequal to the corresponding φ(i)(yk) or φ(i)(xk),

iii both φ
(i)
1 (yk) = φ(i)(yk) and φ

(i)
1 (xk) = φ(i)(xk).

For an interval [xk, yk] satisfying case (i), we have |φ(i)
1 (yk)−φ

(i)
1 (xk)| = 0. Similarly, for an interval

[xk, yk] satisfying case (iii), we have |φ(i)
1 (yk)− φ

(i)
1 (xk)| = |φ(i)(yk)− φ(i)(xk)|.

For an interval [xk, yk] satisfying case (ii), we can assume without loss of generality that

φ
(i)
1 (xk) = 0. Furthermore, we can assume that φ

(i)
1 (yk) 6= 0, otherwise if φ

(i)
1 (yk) = 0 we would

have case (i). Since suppφ
(i)
1 ∩ suppφ

(i)
2 = ∅, there exists a zk ∈ [xk, yk] such that φ(i)(zk) = 0.

Let Π be the set of indices for which case (ii) holds. Since |zk − xk|+ |yk − zk| ≤ |yk − xk| for any
k ∈ Π, we have ∑

k∈Π{

|yk − xk|+
∑
k∈Π

(|zk − xk|+ |yk − zk|) < δ.

From the absolute continuity of φ(i),∑
k∈Π{

|φ(i)(yk)− φ(i)(xk)|+
∑
k∈Π

(|φ(i)(zk)− φ(i)(xk)|+ |φ(i)(yk)− φ(i)(zk)|) < ε.

Since φ(i)(zk) = 0 and φ(i)(yk) = φ
(i)
1 (yk) for k ∈ Π, we have∑

k∈Π{

|φ(i)(yk)− φ(i)(xk)|+
∑
k∈Π

(|φ(i)(xk)|+ |φ
(i)
1 (yk)|) < ε. (15)

Using (15), we have∑
k

|φ(i)
1 (yk)− φ

(i)
1 (xk)| =

∑
k∈Π{

|φ(i)
1 (yk)− φ

(i)
1 (xk)|+

∑
k∈Π

|φ(i)
1 (yk)|

≤
∑
k∈Π{

|φ(i)(yk)− φ(i)(xk)|+
∑
k∈Π

(|φ(i)(xk)|+ |φ
(i)
1 (yk)|) < ε.

Thus, φ1 is absolutely continuous and the proof is complete.

For the Markov property of multi-dimensional GIBFs, we make a conjecture.

Conjecture 5.1. The Gaussian random field Xm(·;θ) is Markov.
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Figure 4: The credit risk response surface.

6 Numerical Experiments

The purpose of our experiments is to assess the prediction ability of stochastic kriging with GIBFs.
We are mainly concerned with how different types of response surfaces and whether or not we
incorporate derivative information effect our predictions. Furthermore, we will experiment with
different levels of Monte Carlo noise, including experiments with no noise in the simulation output,
i.e., we are able to observe the actual response surface at the design points. In our experiments, we
compare stochastic kriging with GIBFs to stochastic kriging with the GRFs corresponding to the
Gaussian and Matérn covariance functions. The GRFs corresponding to the Gaussian and Matérn
covariance functions can result in metamodels with mean reversion. We wish to demonstrate the
superiority of GIBFs to the GRFs corresponding to the Gaussian and Matérn covariance functions
even when the latter do not cause mean reversion, so we use experiment designs with sufficiently
many design points.

6.1 Credit Risk Example

In this example, the response surface is the expected loss of a credit portfolio, given values of latent
variables that trigger the default of the obligors, normalized by the number of obligors [Glasserman
et al., 2008]. Consider a credit portfolio with m obligors, and let Yk be the default indicator
(= 1 for default, = 0 otherwise) for the kth obligor, pk be the marginal probability that the kth
obligor defaults, and lk be the deterministic loss resulting from default of the kth obligor. The
dependence among the default indicators Yk is modeled by a multifactor Gaussian copula model
with a finite number of types. In other words, Yk = 1{Z̃k > Φ−1(1−pk)}, where Φ is the cumulative
normal distribution, and Z̃1, Z̃2, . . . are correlated standard normal random variables. To model the
correlation of the standard normal random variables Z̃1, Z̃2, . . ., we assume that there are d factors
and t types of obligors. If obligor k is of type j, then the latent variable is given by Z̃k = a>j Z+bjεk,

where aj ∈ Rd, Z is a d-dimensional standard normal random vector that represents market risk
factors which affect all of the obligors, bj = (1 − a>j aj)

1/2, and the εk are independent standard
normal random variables. The total loss from defaults is Lm =

∑m
k=1 lkYk, which is a discrete

random variable. The closed-form expression for the response surface is

ycr(x) =
1

m
E[Lm|Z = x] =

1

m

m∑
k=1

lk Φ

(
a>j z + Φ−1(pk)

bj

)
, (16)
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and is plotted in Figure 4. We use the closed-form expression to obtain noiseless observations of
the response surface, as well as to determine the accuracy of the predictions. To obtain noisy
observations (simulation output) of the response surface, we use the importance sampling method
of Glasserman et al. [2008] to estimate the expected loss E[Lm|Z = x] of the credit portfolio.
Specifically, for each replication r = 1, 2, . . . , R we use the importance sampling method to get
an estimate P r(Lm > i|Z = x) of P (Lm > i|Z = x), i = 1, 2, . . . ,m − 1. Then, our estimate of
E[Lm|Z = x] on the rth replication is

m−1∑
i=0

P r(Lm > i|Z = x),

and our estimate of the expected loss of the credit portfolio at design point x is

1

R

R∑
r=1

m−1∑
i=0

P r(Lm > i|Z = x).

Our estimate of the gradient at a design point is obtained using the method of finite-differences
with CRN and the same number of replications R used to obtain the estimates of the response
surface.

For our particular example, consider the case with two factors and four types of obligors:
a>1 = (0.85, 0),a>2 = (0.25, 0),a>3 = (0, 0.85), and a>4 = (0, 0.25). Each type has three obligors, i.e.,
m = 12, with lk = 1 and pk = 0.01 for every obligor. The design space for this example is the
square [−5, 10]2. The design points are the first k points from a scrambled Sobol point-set rescaled
to fit within the design space. The prediction points p1,p2, . . . ,p1023 are the first 1023 points from
the Halton point-set rescaled to fit inside the square [−3.5, 8.5]2, so the metamodels are assessed
within the interior of the design space. We repeat each experiment 50 times to get 50 metamodels
ŷ1
cr, ŷ

2
cr, . . . , ŷ

50
cr , and use the Root Empirical Mean Squared Error

REMSE =

√√√√ 1

51150

50∑
j=1

1023∑
i=1

(
ŷjcr(pi)− ycr(pi)

)2

as our measure of prediction ability, where ŷjcr(pi) is the value of the jth simulation metamodel ŷjcr
at pi, and ycr(pi) is the actual value of the response surface at pi. The actual value of the response
surface is computed using the closed-form expression given above. We use a constant trend model
for GIBFs and the GRFs corresponding to the Gaussian and Matérn covariance functions.

Experiment Results

The experiment results for the credit risk example are given in Tables 1 and 2 for varying amounts
of design points and Monte Carlo noise. An interesting characteristic of the credit risk response
surface ycr occurs in regions of the design space where there is a change in the number of types
of obligors that are likely to default. In these regions of the design space, there is an abrupt
change in the response surface. Although the response surface remains twice differentiable in these
areas, the first partial derivatives change very rapidly. We can see from the experiment results that
using GRFs whose differentiability can be controlled, i.e., the GRF corresponding to the Matérn
covariance function and GIBFs, resulted in better predictions than the GRF corresponding to
the Gaussian covariance function, which is infinitely differentiable. When we use a GRF whose
differentiability can be controlled, the order of differentiability can be adjusted to account for the
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Table 1: REMSE for the credit risk example, k = 31

GMRF no noise R = 100 R = 25

(1, 1)-GIBF 0.019 0.021 0.024

(2, 2)-GIBF 0.031 0.032 0.035

Matérn 0.04 0.041 0.046

Gaussian 0.045 0.048 0.05

(1, 1)-GIBF-gradient 0.012 0.014 0.016

(2, 2)-GIBF-gradient 0.018 0.025 0.026

Matérn-gradient 0.024 0.027 0.031

Gaussian-gradient 0.033 0.036 0.041

Table 2: REMSE for the credit risk example, k = 63

GMRF no noise R = 100 R = 25

(1, 1)-GIBF 0.0033 0.0039 0.0042

(2, 2)-GIBF 0.0041 0.0046 0.0053

Matérn 0.016 0.019 0.023

Gaussian 0.032 0.041 0.046

(1, 1)-GIBF-gradient 0.002 0.0023 0.003

(2, 2)-GIBF-gradient 0.0023 0.0027 0.0034

Matérn-gradient 0.009 0.011 0.014

Gaussian-gradient 0.018 0.021 0.025

lack of smoothness of the response surface. In this example, the MLEs for the parameters of both
the GRF corresponding to the Matérn covariance function and GIBFs resulted in GRFs with lower
orders of differentiability. Between the GRF corresponding to the Matérn covariance function and
GIBFs, the metamodels constructed using GIBFs resulted in better predictions. When gradient
information was included, the GRFs with controllable differentiability still gave better predictions
than the GRF corresponding to the Gaussian covariance function, and the metamodels constructed
using GIBFs still outperformed the GRF corresponding to the Matérn covariance function.

Although Tables 1 and 2 give results for both (1, 1)-GIBF and (2, 2)-GIBF, the MLE for the
order of GIBF in each experiment was (1, 1). We also give the results for (2, 2)-GIBF to see how
using a GIBF with a higher order of differentiability affects the performance on a problem where
a lower order of differentiability is beneficial. Even though the credit risk response surface is twice
differentiable, as is (2, 2)-GIBF, the once differentiable (1, 1)-GIBF was a better choice for this
experiment design. Although (2, 2)-GIBF resulted in worse predictions than (1, 1)-GIBF, it still
outperformed the GRFs corresponding to the Matérn and Gaussian covariance functions. Finding
the MLEs for the parameters of (1, 1)-GIBF and (2, 2)-GIBF required more effort than the GRFs
corresponding to the Gaussian and Matérn covariance functions, since (1, 1)-GIBF and (2, 2)-GIBF
have more parameters, but was still fast and efficient.

6.2 Jackson Network Example

The response surface in the previous example had the same order of differentiability in each coordi-
nate and was twice differentiable. Our next response surface has varying orders of differentiability
in each coordinate and is non-differentiable in several regions of the design space.
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In this example, we use a 3-station Jackson network with deterministic routing. In this network,
3 types of products arrive to the first station of a system of 3 single-server stations according to a
Poisson Process with a total arrival rate of λ. Let α1, α2 and α3 be the fraction of each product,
with the obvious constraint α1 + α2 + α3 = 1, and let ρ < 1 be the utilization of the system, i.e.,
the utilization of the bottleneck station. The response surface is the expected steady-state cycle
time of product 2, as a function of the fraction αi of each product type and the utilization ρ. At
the jth station, the service time for product i is exponentially distributed with rate µj , i.e., the
service rate only depends on the station and not the product type. Furthermore, products of type
i make δij visits to the jth station. For given values of α1, α2, α3, and ρ, we adjust the arrival rate
λ so that the utilization of the system is indeed equal to the given ρ. Thus, we keep the service
rate at each station fixed, and only adjust the arrival rate λ to get the specified utilization ρ of the
system.

The closed-form expression for the response surface is

yjn(x) =
3∑
j=1

δ1j

µj

[
1− ρ

( ∑3
k=1 αkδkj/µj

maxh
∑3

k=1 αkδkh/µh

)] , (17)

where x = (α′1, α
′
2, ρ) ∈ [0, 1]2 × [0.7, 0.95]. We use the method in Borkowski and Piepel [2009] to

transform (α′1, α
′
2, ρ) into (α1, α2, α3, ρ) with α1 + α2 + α3 = 1, which we then use to calculate the

right hand side of Equation (17). As in the credit risk example, we use the closed-form expression
to obtain noiseless observations of the response surface, as well as to determine the accuracy of the
predictions. To obtain noisy observations (simulation output) of the response surface, we simulate
the Jackson network for a specified run-length with a varied number of replications R at each design
point. To reduce the bias of the estimator for the expected steady-state cycle time, we delete the
initial transient.

For our particular example, the service rate at each station is given by the vector (µ1, µ2, µ3)> =
(4, 3, 2.8)> and the number of visits by product i to station j is given by the matrix

[δ]ij =

 1 2 1
3 2 1
1 1 2

 .

The design points are the first k points from a scrambled Sobol point-set rescaled to fit within the
design space, and the prediction points p1,p2, . . . ,p1023 are the first 1023 points from the Halton
point-set rescaled to fit inside the hyper-rectangle [0.1, 0.9]2 × [0.725, 0.925], so the metamodels
are assessed within the interior of the design space. As in the credit risk example, we repeat each
experiment 50 times to get 50 metamodels and use the REMSE as our measure of prediction ability.
The actual value of the response surface is computed using the closed-form expression given above.
We use a constant trend model for GIBFs and the GRFs corresponding to the Gaussian and Matérn
covariance functions.

Experiment Results

The experiment results for the Jackson network example are given in Tables 3 and 4 for varying
amounts of design points and Monte Carlo noise. The response surface yjn is differentiable in the
coordinate corresponding to ρ. However, some areas of yjn are nondifferentiable in the coordinates
corresponding to α′1 and α′2. These areas of nondifferentiability arise because, for a fixed utilization
ρ, as we change the fraction of each product, the bottleneck station of the Jackson network may
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Table 3: REMSE for the Jackson network example, k = 100

GMRF no noise R = 100 R = 50

(1, 1, 1)-GIBF 0.27 0.35 0.41

(1, 1, 2)-GIBF 0.26 0.32 0.37

Matérn 0.44 0.51 0.62

Gaussian 0.57 0.68 0.80

Table 4: REMSE for the Jackson network example, k = 200

GMRF no noise R = 100 R = 50

(1, 1, 1)-GIBF 0.19 0.25 0.32

(1, 1, 2)-GIBF 0.16 0.20 0.26

Matérn 0.31 0.39 0.53

Gaussian 0.34 0.44 0.60

switch, creating a sudden change in the behavior of the system. From the experiment results in
Tables 3 and 4, we can see that using a GRF whose differentiability can be controlled, i.e., the GRF
corresponding to the Matérn covariance function and GIBFs, resulted in better predictions than
the infinitely differentiable GRF corresponding to the Gaussian covariance function. Furthermore,
GIBFs gave better predictions than the GRF corresponding to the Matérn covariance function.

The MLE for the order of the GIBF differed for different experiments; the MLE was either
(1, 1, 1) or (1, 1, 2). For example, the MLE for the order of the GIBF on the ith experiment for a
certain noise level might have been (1, 1, 1), whereas the MLE for the order of the GIBF on the jth
experiment, i 6= j, for the same noise level might have been (1, 1, 2). Thus, the results in Tables 3
and 4 are for fixed orders of GIBF, namely (1, 1, 1)-GIBF and (1, 1, 2)-GIBF, and are not chosen
using maximum likelihood estimation. Overall, (1, 1, 2)-GIBF gave better predictions than (1, 1, 1)-
GIBF. Similar to the credit risk example, finding the MLEs for the parameters of (1, 1, 1)-GIBF
and (1, 1, 2)-GIBF required more effort than the GRFs corresponding to the Gaussian and Matérn
covariance functions, but was still relatively fast and efficient.

7 Conclusion

In this paper, we introduced a new class of GRFs called GIBFs, focusing on their use with stochastic
kriging for deterministic and stochastic simulation metamodeling. We gave a probabilistic repre-
sentation of GIBFs and discussed several of their properties, including the Markov property and
the absence of mean reversion, as well as the differentiability of the resulting metamodel. Using
stochastic kriging, we showed how to implement GIBFs and used several examples to assess the
prediction ability of stochastic kriging with GIBFs. These examples exhibited the benefit gained
using stochastic kriging with GIBFs instead of the GRFs corresponding to the Gaussian and Matérn
covariance functions. The examples also showed the improvement in performance when gradient
estimates were included in the prediction. As the dimension increases, the number of parameters in
our parameterization of GIBFs can quickly become difficult to handle. However, other parameteri-
zations exist. Since the computational effort required to find the MLEs of the parameters of GIBFs
of any order increases substantially as the dimension increases, other parameterizations, especially
those with fewer parameters, should be investigated.
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H. Künsch. Gaussian Markov random fields. Journal of the Faculty of Science, University of Tokyo,
Mathematics, 26:53–73, 1979.

R. Li and A. Sudjianto. Analysis of computer experiments using penalized likelihood in Gaussian
kriging models. Technometrics, 47(2):111–120, 2005.

23



M. Liu and J. Staum. Stochastic kriging for efficient nested simulation of expected shortfall. Journal
of Risk, 12(3):3–27, 2010.

T. J. Mitchell and M. D. Morris. The spatial correlation function approach to response surface
estimation. In Proceedings of the 1992 Winter Simulation Conference, pages 565–571, Piscataway,
NJ, 1992. IEEE.

C. J. Paciorek and M. J. Schervish. Nonstationary covariance functions for Gaussian process
regression. In Proceedings of the Conference on Neural Information Processing Systems. MIT
Press, 2004.

L. D. Pitt. A Markov property for Gaussian processes with a multidimensional parameter. Archive
for Rational Mechanics and Analysis, 43(5):367–391, 1971.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of computer experiments.
Statistical Science, 4(4):409–423, 1989.

P. Salemi, J. Staum, and B. L. Nelson. Generalized integrated Brownian fields for simulation
metamodeling. In Proceedings of the 2013 Winter Simulation Conference, Piscataway, NJ, 2013.
IEEE.

T. J. Santner, B. J. Williams, and W. I. Notz. The Design and Analysis of Computer Experiments.
Springer-Verlag New York, LLC, 2010.

J. Shao. Mathematical Statistics. Springer Texts in Statistics, New York, NY, 2010.

W. van Beers and J. Kleijnen. Kriging for interpolation in random simulation. The Journal of the
Operational Research Society, 54(3):255–262, 2003.

G. Wahba. Spline Models for Observational Data. CBMS-NSF Regional Conference Series in
Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990.

W. Xie, B. L. Nelson, and J. Staum. The influence of correlation functions on stochastic kriging
metamodels. In Proceedings of the 2010 Winter Simulation Conference, Piscataway, NJ, 2010.
IEEE.

J. Yin, S. H. Ng, and K. M. Ng. Kriging metamodel with modified nugget-effect: The heteroscedas-
tic variance case. Computers and Industrial Engineering, 61(3):760–777, 2011.

24


