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In a two-level nested simulation, an outer level of simulation samples scenarios, while the inner level uses simulation to
estimate a conditional expectation given the scenario. Applications include financial risk management, assessing the effects
of simulation input uncertainty, and computing the expected value of gathering more information in decision theory. We
show that an ANOVA-like estimator of the variance of the conditional expectation is unbiased under mild conditions, and
we discuss the optimal number of inner-level samples to minimize this estimator’s variance given a fixed computational
budget. We show that as the computational budget increases, the optimal number of inner-level samples remains bounded.
This finding contrasts with previous work on two-level simulation problems in which the inner- and outer-level sample
sizes must both grow without bound for the estimation error to approach zero. The finding implies that the variance of a
conditional expectation can be estimated to arbitrarily high precision by a simulation experiment with a fixed inner-level
computational effort per scenario, which we call a one-and-a-half-level simulation. Because the optimal number of inner-
level samples is often quite small, a one-and-a-half-level simulation can avoid the heavy computational burden typically
associated with two-level simulation.
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1. Introduction
To clarify what we mean by estimating the variance of
a conditional expectation, we begin with a mathematical
specification and some examples. We consider a random
variable X and its conditional distribution given a random
vector Z. We are interested in the conditional expecta-
tion M 2= E6X � Z7 and its mean � 2= E6M7 = E6X7 and
variance �2

M 2= Var6M7. We refer to Z as the scenario
and to the conditional expectation M as the value of the
scenario.

For example, consider the problem of assessing the effect
of uncertainty about the parameters of distributions used
in a simulation model. In particular, suppose the simula-
tion model is of a queueing system, and there is uncer-
tainty about the distributions of service time and of the time
between arrivals. A scenario Z consists of the parameters
of these distributions. The distribution FZ of Z represents
uncertainty about these parameters. It might be a Bayesian
posterior distribution derived from prior beliefs about the
system and from observed service times and times between
arrivals (Chick 2001, Zouaoui and Wilson 2003). Let X be
the time in system of some job, such as the 100th job. (We
wish to avoid a discussion of the bias that might arise in
studying the steady-state time in system.) The conditional
expectation M is the expected time in system of the 100th
job given the distribution parameters specified by Z. Its
mean � is the overall expectation of the time in system

of the 100th job, taking into account both the stochastic
behavior of the system and uncertainty about the parame-
ters of the service time and interarrival time distributions.
The variance �2

M of M quantifies uncertainty about the
mean time in system of the 100th job due to uncertainty
about the parameters (Zouaoui and Wilson 2003). There are
also applications in decision theory (Brennan et al. 2007)
and financial engineering (Staum 2009) that involve condi-
tional expectation as the value of a scenario.

Next we discuss simulation-based estimation. We assume
that we know how to sample from the distribution FZ of Z
and from the conditional distribution FX �Z=z of X given
Z = z for any z, but that we cannot sample directly from
the distribution FM of M .

If we were interested only in the mean �, an ordi-
nary, one-level, nonnested simulation would suffice. We
could estimate � by

∑K
k=1 Xi/K, where X11 0 0 0 1XK are

sampled independently from the unconditional distribution
of X. This can be accomplished as follows: for each k =

11 0 0 0 1K, sample Zk randomly from FZ, then sample Xk

randomly from FX �Z=Zk
. This is a one-level simulation in

the sense that there is only one realization of X sampled
conditional on any particular value of Z; simulating Z is
merely an intermediate step in simulating a realization of
X. A one-level simulation suffices because the random vari-
ables M and X have the same mean, �. They do not have
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the same variance, so a one-level simulation of X does not
suffice for estimating the variance �2

M of M .
Two-level nested simulation enables estimation of the

variance �2
M of FM , as well as estimation of other quanti-

ties, such as probabilities FM4y5 and percentiles F −1
M 4p5 for

p ∈ 40115. Two-level nested simulation works as follows:
• For k = 11 0 0 0 1K:

—Sample Zk randomly from FZ.
—For j = 11 0 0 0 1 nk:

Sample Xkj randomly from FX �Z=Zk
.

In the simplest form of two-level nested simulation, each
scenario has the same number of inner-level samples:
nk = n for all k = 11 0 0 0 1K. If the inner-level sample
size n is sufficiently large, two-level nested simulation pro-
vides an accurate estimator X̄k 2=

∑n
j=1 Xkj/n of Mk 2=

E6X �Z =Zk7. A straightforward estimator of the vari-
ance or 99th percentile of the distribution FM is the vari-
ance or 99th percentile of the empirical distribution F̂M of
X̄11 0 0 0 1 X̄K , which is given by F̂M4y5=

∑K
k=1 18X̄k ¶ y9/K.

For example, this estimator of the variance is

1
K

K
∑

k=1

4X̄k − ¯̄X521 (1)

where ¯̄X 2=
∑K

k=1 X̄k/K is an estimator of the mean �. Such
estimators can be badly biased unless the inner-level sample
size n is quite large, for the following reason. Define the
conditional variance V 2= Var6X �Z7. Then, for all k,

Var6X̄k7= Var6E6X̄k �Zk77+ E6Var6X̄k �Zk77

= �2
M + E6V 7/n > �2

M (2)

if V is nonzero. The estimator (1) exemplifies a typical sit-
uation in two-level nested simulation: for its mean-squared
error to converge to zero, it is necessary that both the outer-
and inner-level sample sizes K and n grow without bound.
To make its variance converge to zero, K → � is neces-
sary, and n → � is necessary to make its bias converge
to zero. The literature on two-level nested simulation dis-
cusses this both in general (Lan et al. 2007) and in detail
for estimation of probabilities and quantiles of FM (Gordy
and Juneja 2010, Lee 1998).

Often, the finding is that the inner-level sample size
might need to be quite large for a two-level nested simula-
tion estimator to achieve an acceptably low mean-squared
error: the average inner-level sample size ranges from sev-
eral hundred to several thousand in experiments reported
by Brennan et al. (2007) and Lan (2010). Gordy and Juneja
(2010) reach a different conclusion in studying two-level
nested simulation in portfolio risk management: in their
examples, the inner-level sample size should be 24 or
less. An important message of Gordy and Juneja (2010)
is that, contrary to conventional wisdom, the inner-level
sample size should be small when simulating a large port-
folio. Their finding is specific to portfolio simulation: they

show how to make the conditional variance V and thus the
bias small when simulating a large portfolio. In contrast,
our findings apply to general nested simulation problems
and do not require that V be small. Our main message
is that nested simulation supports unbiased estimation of
the variance of a conditional expectation, and the optimal
inner-level sample size remains bounded as the outer-level
sample size grows to make the estimation error go to zero.
We use the term 1 1

2 -level simulation to refer to a nested
simulation framework in which the inner-level sample size
remains constant as the computational budget grows, to dis-
tinguish it from a two-level simulation, in which both outer-
and inner-level sample sizes grow without bound.

The purpose of this paper is to show how to estimate effi-
ciently the variance of a conditional expectation by nested
simulation. First, using an analysis-of-variance (ANOVA)
approach, we obtain an unbiased estimator for the vari-
ance of the conditional expectation. Zouaoui and Wilson
(2003) used a similar approach, but we dispense with their
assumption that the conditional variance V is the same for
any scenario Z. Our main contribution is to show how to
choose the inner-level sample size for maximum computa-
tional efficiency. We demonstrate that a 1 1

2 -level simulation
is optimal, i.e., the optimal inner-level sample size remains
bounded as the computational budget grows without bound.
We find that this asymptotically optimal inner-level sample
size is nearly optimal for many finite budgets encountered
in practice, and we discuss how to choose a good inner-
level sample size.

The rest of this paper is organized as follows. In §2 we
present a general framework and an unbiased estimator.
Section 3 is about the optimal inner-level sample size. In
§4, we present a method for choosing the inner-level sam-
ple size based on a pilot simulation, and we test it numer-
ically. Section 5 contains a more complicated and realistic
example to illustrate 1 1

2 -level simulation and its benefits.
We give conclusions and research directions in §6. Some
derivations are deferred to the electronic companion to this
paper, which is available as part of the online version at
http://or.journal.informs.org/.

2. Derivation of an Unbiased Estimator
The ANOVA framework involves defining new random
variables, the effect � 2=M −� of a scenario and the error
� 2= X − M associated with observing the effect. Thus,
we write the jth inner-level sample conditional on the kth
outer-level scenario Zk as

Xkj =�+ �k + �kj1 where �k 2=Mk −� and

�kj 2=Xkj −Mk0 (3)

The point of this construction is that the effect and error
have zero mean, and indeed the error always has zero
conditional mean given the scenario. Hence, the error has
zero conditional mean given the effect, which makes the
effect and error uncorrelated: E6��7 = E6� E6� � �77 = 0 =

E6�7E6�7.
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The unconditional variance Var6X7 is the sum of two
variance components, �2

M 2= Var6M7, in which we are pri-
marily interested, and �2

� 2= E6V 7, the average error vari-
ance. Model (3) is a one-way, random effects ANOVA
model (Searle et al. 1992), so we use ANOVA methods to
estimate �2

M . It is not necessary to assume that the effects
and errors are independent, which is not generally true in
simulation applications. In particular, the conditional error
variance V = Var6� �Z7 is often strongly related to the con-
ditional mean M and thus the effect. For example, in the
queuing example mentioned in §1, scenarios that result in
larger mean time in system could also have larger variabil-
ity of the time in system.

ANOVA estimation of variance components refers to the
following general strategy:

1. Propose some quadratic forms of the data, often called
sums of squares.

2. Compute the expectations of the sums of squares as
linear functions of the variance components.

3. If the quadratic forms were properly chosen, it is pos-
sible to solve the resulting system of linear equations for
the variance components as linear functions of the expecta-
tions of the sums of squares. Consequently, the correspond-
ing linear functions of the sums of squares are unbiased
estimators of the variance components.

The quadratic forms used in standard ANOVA are

SS� =

K
∑

k=1

nk4X̄k − ¯̄X521 and

SS� =

K
∑

k=1

nk
∑

j=1

4Xkj − X̄k5
21 (4)

where

¯̄X =
1
C

K
∑

k=1

nkX̄k1 X̄k =
1
nk

nk
∑

j=1

Xkj1 and C =

K
∑

k=1

nk0

From model (3), we have

X̄k =
1
nk

nk
∑

j=1

4�+ �k + �kj5=�+ �k + �̄k1 and

¯̄X =
1
C

K
∑

k=1

nk4�+ �k + �̄k51 (5)

where �̄k =
∑nk

j=1 �kj/nk. Substituting Equation (5) into SS� ,
while using the facts that the effects and errors all have
zero mean and are uncorrelated, and that E6�̄2

k7 = �2
�/nk,

we have

E6SS� 7=
K
∑

k=1

nk E
[(

�k −
1
C

K
∑

i=1

ni�i

)

+

(

�̄k −
1
C

K
∑

i=1

ni�̄i

)]2

=

K
∑

k=1

nk

{[(

1 −
nk

C

)2

+
1
C2

K
∑

i=11 i 6=k

n2
i

]

�2
M

+

[(

1 −
nk

C

)2 1
nk

+
1
C2

K
∑

i=11 i 6=k

n2
i

ni

]

�2
�

}

=

(

C −

K
∑

i=1

n2
i /C

)

�2
M + 4K − 15�2

� 0 (6)

Likewise, substituting Xkj − X̄k = �kj − �̄k into SS� yields

E6SS�7=
K
∑

k=1

nk
∑

j=1

E64�kj − �̄k5
27

=

K
∑

k=1

nk
∑

j=1

E
[[(

1 −
1
nk

)

�kj −
1
nk

nk
∑

i=11i 6=j

�ki

]2]

=

K
∑

k=1

nk
∑

j=1

[(

1 −
1
nk

)2

+
1
n2
k

4nk − 15
]

�2
�

= 4C −K5�2
� 0 (7)

Solving Equations (6) and (7) for the variance components
�2
M and �2

� , and substituting SS� and SS� for their expec-
tations, yields the unbiased ANOVA estimators

�̂2
� =

SS�

C −K
and �̂2

M =
SS� − 4K − 15�̂2

�

C −
∑K

i=1 n
2
i /C

0 (8)

The unbiasedness of these estimators is shown by Searle
et al. (1992, p. 71), whose proof does not require that
effects and errors are independent and which is valid under
the weaker assumption that they are uncorrelated. However,
the variance of �̂2

M is affected by the dependence between
the effects and observation errors, as we will see in the next
section. For this reason, the standard ANOVA model typi-
cally assumes independence between the effects and obser-
vation errors, to facilitate testing of hypotheses related to
variance components.

In the special case where the inner-level sample size nk =

n is the same for each scenario k, which makes C =Kn,

�̂2
� =

1
K4n− 15

K
∑

k=1

n
∑

j=1

4Xkj − X̄k5
21 and

�̂2
M =

1
K − 1

K
∑

k=1

4X̄k − ¯̄X52
−

1
n
�̂2
� 0 (9)

Zouaoui and Wilson (2003, Equations (20)–(21)) used the
estimators in Equation (9) for nested simulation.

3. The Optimal Number of Inner
Level Replicates

In this section, we study the variance of the estimator �̂2
M

for the purpose of deciding how to choose the number K of
outer-level scenarios given a fixed computational budget C.
One might take the computational cost to be K�+

∑K
k=1 nk,

where � is the relative computational expense of generating
an outer-level scenario Z compared to generating an inner-
level sample X conditional on Z. To simplify the analysis,
and because � is negligible in many simulation applica-
tions, we take � = 0. Additional analysis, not included in
this paper, suggested that all our major conclusions hold
when � > 0, but with the optimal inner-level sample sizes
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somewhat larger. For simplicity, we also focus on the spe-
cial case where the inner-level sample size nk = n is the
same for each scenario k, which makes the computational
budget constraint Kn = C. Then choosing the number K
of scenarios is equivalent to choosing the inner-level sam-
ple size n, and the electronic companion shows that the
variance of �̂2

M4n1K5 is

Var6�̂2
M4n1K57=

1
K

E6�47−
4K−35
K4K−15

�4
M +

2
K2n24K−15

�4
�

+
24K+15

K2n4K−15
�2
M�

2
� +

2
K2n3

E6�47

+
24n2 +4Kn−45n+35

K2n34n−15
E6V 27

+
4K+2
K2n

E6�2�27+
4

K2n2
E6��371 (10)

where we have added the argument 4n1K5 to �̂2
M to make

explicit its dependence on the number of inner and outer
replicates.

Recall that � = X −M is the error associated with one
observation of the effect � = M − �, and that � and �
are not necessarily independent, although they are uncor-
related by definition. Hence minimization of Equation (10)
over n for a fixed budget C = nK requires that we know
(or estimate) several cross-moments of � and � . However,
the following arguments, in conjunction with the results
in Figure 1, suggest that in many problems a nearly opti-
mal choice of n can be found using a simple asymp-
totic approximation that is valid for large K. This case
is of particular interest, because K → � is necessary for
Var4�̂2

M4n1K55→ 0.

Figure 1. The inner-level sample size that minimizes
the estimator variance in Equation (10) for
a fixed computational budget C when errors
and effects are independent and effects are
normally distributed, vs. the ratio of the stan-
dard deviations of errors and effects.
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Define the normalized variance h4n1K5= Var44nK51/2 ×

�̂2
M4n1K55 = 4nK5Var4�̂2

M4n1K55. When comparing two
different choices of 4n1K5, each having the same bud-
get C = nK, the one with the smaller value of h4n1K5 is
preferable. If we intend to use large values of K, then we
might consider using the value of n that minimizes the
asymptotic normalized variance defined as

h4n5= lim
K→�

h4n1K5

= n4E6�47−�4
M5+

2
n− 1

E6V 27+ 4 E6�2�271 (11)

which follows directly from Equation (10). The unique
(noninteger) value of n¾ 1 that minimizes h4n5 is

n∗
= 1 +

√

2 E6V 27

E6�47−�4
M

= 1 +

√

2 E6V 27

�4
M4�M − 15

= 1 +

√

24�4
� + Var6V 75

�4
M4�M − 15

1 (12)

where �M = E6�47/�4
M denotes the kurtosis of the distribu-

tion of M . Equation (12) follows by setting h′4n5 = 0 and
by noting that h′′4n5= 44n− 15−3 E6V 27 > 0 for all n > 1.
Speaking loosely, we will refer to n∗ in Equation (12) as
the asymptotically optimal inner-level sample size; we next
make the notion of an asymptotically optimal inner-level
sample size more precise.

An inner-level sample size must be an integer that is
greater than one, and n∗ may not have these properties.
Suppose that the kurtosis �M > 1. Because of the convexity
of h on 411�5,

n∗∗ 2= arg min
n=2131000

h4n5

=























2 if n∗ < 2

�n∗� if n∗ ¾ 2 and h4�n∗�5¶ h4�n∗�5

�n∗� if n∗ ¾ 2 and h4�n∗�5¾ h4�n∗�5

0

The following theorem states that, in the limit as the com-
putational budget C → �, the policy of setting the inner-
level sample size to n∗∗ is as good as any policy of
setting the inner-level sample size as a function of C. The
remarkable finding that the asymptotically optimal inner-
level sample size is a finite constant, as opposed to being
unbounded as the budget C grows, is the basis for the
phrase “1 1

2 -level simulation.” The second part of the fol-
lowing theorem states that the variance reduction ratio of
1 1

2 -level simulation, compared to a simulation in which
the inner-level sample size goes to infinity as the budget
increases, itself goes to infinity as the budget increases.
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Theorem 1. If �M > 1, then for any sequences 8Ci9i∈�,
8ni9i∈�, and 8Ki9i∈� of natural numbers such that Ci → �

as i → � and for all i ∈�, ni > 1, Ki > 2, and niKi =Ci,

lim sup
i→�

Var6�̂2
M4n

∗∗1 �Ci/n
∗∗�57

Var6�̂2
M4ni1Ki57

¶ 10

Furthermore, if ni → � as i → �, then

lim
i→�

Var6�̂2
M4n

∗∗1 �Ci/n
∗∗�57

Var6�̂2
M4ni1Ki57

= 00

Proof. From Equation (10), it follows that for any integers
n> 1 and K > 2,

nKVar6�̂2
M4n1K57

¾ n4E6�47−�4
M5+

2
n− 1

E6V 27+

(

4 +
2
K

)

E6�2�27

−
8

Kn4n− 15
E6V 27+

4
nK

E6��37

> h4n5−
8

Kn4n− 15
E6V 27+

4
nK

E6��370

Therefore, for all i ∈ �, CiVar6�̂2
M4ni1Ki57 > h4ni5 −

48/4Ci4ni − 1555E6V 27+ 44/Ci5E6��37, which implies

lim inf i→�CiVar6�̂2
M4ni1Ki57¾ lim inf i→�h4ni50 (13)

Given �M > 1, for all i ∈�,

h4ni5¾ ni4E6�
47−�4

M5¾ �4
M4�M − 15 > 01 (14)

so both sides of Equation (13) are strictly positive. As
i → �, CiVar6�̂2

M4n
∗∗1 �Ci/n

∗∗�57 converges to the limit
h4n∗∗5 given by Equation (11). Therefore,

lim sup
i→�

Var6�̂2
M4n

∗∗1 �Ci/n
∗∗�57

Var6�̂2
M4ni1Ki57

= lim sup
i→�

CiVar6�̂2
M4n

∗∗1 �Ci/n
∗∗�57

CiVar6�̂2
M4ni1Ki57

=
limi→� CiVar6�̂2

M4n
∗∗1 �Ci/n

∗∗�57

lim inf i→�CiVar6�̂2
M4ni1Ki57

=
h4n∗∗5

lim inf i→�h4ni5
0

Because h4n∗∗5 is the smallest value attained by h at any
integer greater than one, this proves the first part of the
theorem.

If ni → � as i → �, then Equation (14) implies
lim inf i→�h4ni5¾ lim inf i→�ni4E6�

47−�4
M5= � and thus

lim
i→�

Var6�̂2
M4n

∗∗1 �Ci/n
∗∗�57

Var6�̂2
M4ni1Ki57

= 00 �

Equation (12) shows that the asymptotically optimal
inner-level sample size n∗ depends only on the aver-
age inner-level variance �2

� = E6V 7, the cross-scenario
variability Var6V 7 of inner-level variance, the outer-level
variance �2

M , and the outer-level kurtosis �M . A smaller
inner-level sample size is better when the inner-level vari-
ance is smaller or less variable across scenarios, or when
the outer-level distribution has higher variance or kurtosis.
The middle expression in Equation (12) shows that n∗ is a
function of �M and the ratio of E6V 27 = E64Var6X � Z7527
to �4

M = 4Var6E6X �Z7752. Figure 2 shows how n∗ depends
on the outer-level kurtosis �M and on the fourth root of
this ratio; if the inner-level variance V = Var6X � Z7 does
not depend on the scenario, then Var6V 7= 0 and the fourth
root 4E6V 27/�4

M5
1/4 = ��/�M is the ratio of inner- to outer-

level standard deviations. The kurtoses of the normal, t, and
Pareto distributions included in Figure 2 are 3, 9, and 251,
respectively—a wide range of values. For �M ¾ 251 and
E6V 27 ¶ �4

M , n∗ must be rounded up to 2, which is the
smallest inner-level sample size that supports unbiased esti-
mation of �2

M . For �M ¾ 3 and E6V 271/4/�M ¶ 3, n∗ ¶ 10;
for �M ¾ 3 and E6V 271/4/�M ¶ 10, n∗ ¶ 100. These inner-
level sample sizes are much smaller than what many prac-
titioners typically use.

Because Equation (12) gives an inner-level sample
size n∗ that is asymptotically optimal as the computational
budget C grows, one might wonder how large C must be
before n∗ is nearly optimal for a finite budget C. Figure 1
answers this question for a special case that fits a standard
ANOVA framework: errors and effects are independent, and
effects are normally distributed. In this case, Var6V 7 = 0
and �M = 3, so Equation (12) becomes n∗ = 1 + �2

�/�
2
M .

We obtained the optimal inner-level sample size for a finite

Figure 2. The inner-level sample size n∗ that is asymp-
totically optimal for large computational bud-
gets, given by Equation (12), vs. a ratio of
inner- to outer-level variability, for three dif-
ferent outer-level distributions.
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budget C by minimizing Equation (10), which can be eval-
uated explicitly in this special case, in which errors are
normally distributed with constant variance V = �2

� . The
asymptotically optimal inner-level sample size n∗ is close
to that which is optimal for a finite budget unless the budget
is extremely small and the ratio E6V 271/4/�M = ��/�M of
the inner- to outer-level standard deviations is quite large,
compared to typical values we have seen in two-level sim-
ulation problems.

In light of this, our recommendation to practitioners who
want to estimate the variance of a conditional expectation
via two-level simulation is simply to use n∗ given by Equa-
tion (12) as the inner-level sample size, regardless of the
computational budget. This requires estimates of unknown
quantities in Equation (12), or guesses for them. The next
section presents a method for estimating n∗ based on sim-
ulation output.

4. Pilot Estimation
Suppose we have the output of a pilot simulation exper-
iment in which there are K0 scenarios and an inner-level
sample size of n0. To use Equation (12), we plug in esti-
mates of three quantities: E6V 27, �4

M , and E6�47. The result
is that we choose the inner-level sample size

n̂∗
=











1 +

√

√

√

√

2�E6V 27

�E6�47− ̂�4
M











0 (15)

Here we propose estimators that have some justifica-
tion, although they are not optimal. We estimate E6V 27 =

E64E6�2 �Z7527 by

�E6V 27=
1
K0

K0
∑

k=1

(

1
n0 − 1

n0
∑

j=1

X2
kj −

4
∑n0

j=1 Xkj5
2

n0

)2

0

A natural estimator of �4
M is

̂�4
M = 4�̂2

M5
2
=

(

SS�

n04K0 − 15
−

SS�

n0K04n0 − 15

)2

1

where the forms of SS� and SS� are given in Equation (4),
but in the present context we substitute n0 for n and K0

for K in Equation (4). Finally, we estimate E6�47 by

�E6�47=
K4

0

4K0 − 154 + 4K0 − 15

×

{

1
K0

K0
∑

k=1

4X̄k − ¯̄X54
−

34K0 − 1542K0 − 35
K3

0

�̂4
M

−
64K0 − 154 + 64K0 − 15

K4
0n0

�E6�2�27

}

1

where �E6�2�27 is an estimate of E6�2�27. For simplicity, we
use an estimator that is natural in the special case where �
and � are independent:

�E6�2�27=̂�2
��

2
M

=

(

SS�

K04n0 − 15

)(

SS�

n04K0 − 15
−

SS�

n0K04n0 − 15

)

0

The justification of the estimator �E6�47 is as follows. First,
denote

�̄ 2=
1
K0

K0
∑

k=1

�k and ¯̄� 2=
1
K0

K0
∑

k=1

�̄k =
1

K0n

K0
∑

k=1

n
∑

j=1

�kj1

and observe

E
[

1
K0

K0
∑

k=1

4X̄k − ¯̄X54

]

=
1
K0

K0
∑

k=1

E4X̄k − ¯̄X54

=
1
K0

K0
∑

k=1

E64�k − �̄ + �̄k − ¯̄�5470

A derivation in the electronic companion, starting with
(EC.8), shows that E64�k − �̄+ �̄k − ¯̄�547 is given by (EC.9).
From this, it follows that

E
[

1
K0

K0
∑

k=1

4X̄k−
¯̄X54

]

=
4K0 −154 +4K0 −15

K4
0

E6�47+
34K0 −1542K0 −35

K3
0

�4
M

+
34K0 −1542K0 −35

K3
0n

2
0

�4
� +

64K0 −1542K0 −35
K3

0n0

�2
M�

2
�

+
4K0 −154 +4K0 −15

K4
0n

3
0

E6�47

+
34n0 −1544K0 −154 +4K0 −155

K4
0n

3
0

E6V 27

+
44K0 −154 +44K0 −15

K4
0n

2
0

E6��37

+
64K0 −154 +64K0 −15

K4
0n0

E6�2�270

We approximate

E
[ K0
∑

k=1

4X̄k − ¯̄X54/K0

]

≈
4K0 − 154 + 4K0 − 15

K4
0

E6�47+
34K0 − 1542K0 − 35

K3
0

�4
M

+
64K0 − 154 + 64K0 − 15

K4
0n0

E6�2�27 (16)

because if n0 and K0 are growing large, the terms on the
right side of Equation (16) are O415, O41/K05, and O41/n05,
respectively, and the terms that we dropped all decrease at
rates faster than 1/n0. Solving Equation (16) for E6�47 and
substituting estimators for expected values leads to the esti-
mator �E6�47 given above. A more careful analysis, leading
to better estimators of E6V 27, �4

M , and E6�47, could lead
to better estimation of n∗ via pilot simulation, particularly
when the pilot simulation has a small budget.
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To demonstrate that this pilot estimation method can
choose an inner-level sample size that leads to substantial
variance reduction compared to an existing two-level sim-
ulation method, we ran an experiment using Example 1
of Steckley and Henderson (2003). In this example, the
conditional expectation M has a �44145 distribution, and
the conditional distribution of the noise � given the sce-
nario Z is always normal with mean 0 and variance 0.5.
Steckley and Henderson’s purpose is estimating the den-
sity of a conditional expectation; for more on this topic,
see Steckley (2006). We compare the variance of our esti-
mator �̂2

M when using the inner-level sample sizes cho-
sen by Steckley and Henderson for efficiency in estimating
the density of M to the variance of �̂2

M when using the
inner-level sample size n̂∗ chosen by pilot estimation for
efficiency in estimating �2

M . We compare our inner-level
sample sizes to theirs because they have a simple, con-
crete formula for choosing the inner-level sample size as a
function of the budget C in this two-level nested simula-
tion problem, even though the formula is not designed for
efficient estimation of �2

M . Moreover, their formula makes
the inner-level sample size proportional to C2/7, which is
slower growth than the C1/3 rate that is MSE-optimal in the
cases analyzed by Gordy and Juneja (2010) and Lee (1998).
In this sense, the Steckley-Henderson formula is the closest
we can find in the simulation literature to 1 1

2 -level simu-
lation. The numerical results reported below illustrate that
our pilot estimation method works well enough to choose a
1 1

2 -level simulation experiment design that is substantially
better for our purpose than its closest relative among two-
level simulation experiment designs.

Steckley and Henderson let the budget C range from
2,048 to 262,144, and set the inner-level sample size nC =

�30C2/7�. We used 10% of the total budget C for a pilot
simulation with an arbitrarily chosen small inner-level sam-
ple size n0 = 8 and K0 = �001 × C/n0� outer-level sce-
narios. We computed n̂∗ in Equation (15), and then threw
out the data from the pilot simulation. We then ran a
main simulation with a budget of 90% of C, inner-level
sample size n = n̂∗, and K = �009 × C/n̂∗� scenarios.
We do not necessarily advocate throwing out data from a
pilot simulation, but this provides the toughest test for the
value of pilot estimation. We measured the estimator vari-
ance by running 50 independent macro-replications of the
whole experiment. Each macro-replication yielded a sin-
gle realization of �̂2

M4nC1 �C/nC�5 and a single realization
of �̂2

M4n̂
∗1 �009 ×C/n̂∗�5. By computing sample variances

over the 50 macro-replications, we obtained estimates of
Var6�̂2

M4nC1 �C/nC�57 and Var6�̂2
M4n̂

∗1 �009 ×C/n̂∗�57.
The results of this experiment appear in Figure 3.

The error bars in the figure are computed via the delta
method. Even for the smallest budget used by Steckley and
Henderson, C = 21048, pilot estimation is advantageous in
choosing the inner-level sample size. The variance reduction
ratio of Var6�̂2

M4nC1�C/nC�57 to Var6�̂2
M4n̂

∗1�009×C/n̂∗�57

Figure 3. Comparison of our estimator’s variance when
using the inner-level sample size of Steckley
and Henderson (2003) (solid line), vs. when
choosing the inner-level sample size n by our
pilot estimation method (dashed line).
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is about 2.6. While Steckley and Henderson use inner-
level sample size n21048 = 264, the average of n̂∗ in these
50 macro-replications was about 8. The values of n̂∗ were
quite variable across macro-replications with C = 21048,
ranging from 4 to 49, but there was still a marked variance
reduction compared to an inner-level sample size chosen
for the purpose of estimating the density of M . As the bud-
get C increases, the variability of n̂∗ decreases: for C ¾
651536, n̂∗ was 7 or 8 in each of the macro-replications. As
expected in light of Theorem 1, the variance reduction ratio
also increases as the budget C increases: for C = 2621144,
the variance reduction ratio is about 8.1.

Despite the success of pilot estimation in this particu-
lar example, in our experience, it is sometimes difficult to
estimate n∗ accurately with a pilot simulation that is com-
putationally inexpensive compared to the main simulation.
In the example treated in the next section, we had to get a
good estimate of n∗ from the output of a simulation with a
large budget and large inner-level sample size. We believe
a practitioner who has previously dealt with similar simu-
lation problems by running simulation experiments with a
large budget and large inner-level sample size might be able
to estimate n∗ well from the output of those experiments.
Also, by improving upon the estimator n̂∗ in Equation (15),
it might be possible to estimate n∗ using a small pilot sim-
ulation. We leave the further analysis and development of
methods for choosing n∗ to future research.

5. Illustrative Example and
Numerical Results

In this section, we provide numerical results demonstrating
the increased computational efficiency of 1 1

2 -level simu-
lation compared to two-level simulation in an illustrative
example drawn from financial engineering. In this example,

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Sun, Apley, and Staum: Efficient Nested Simulation
Operations Research 59(4), pp. 998–1007, © 2011 INFORMS 1005

the goal is to estimate the variance of the profit and loss
(P&L) that a trading strategy would produce, by simulating
the strategy before actually using it. One point of using
such a complicated example is to show that the ANOVA
framework, although simple, is flexible enough to accom-
modate even complicated examples.

The example is of delta-hedging a portfolio that is short
one European put option and one European call option,
with the same strike price Q and maturity T , on an under-
lying stock, whose price is assumed to follow a geometric
Brownian motion. Delta-hedging is a trading strategy in
which one adds −ã shares of stock to the original portfolio,
where ã is the sensitivity of the original portfolio to the
stock price, i.e., the partial derivative of the original portfo-
lio’s value with respect to the stock price. The purpose of
hedging is to lower the risk of the portfolio by making the
new portfolio less sensitive to changes in the stock price
than the original portfolio was. Specifically, the variance
of the P&L of the new portfolio at a future time T should
be less than the variance of the P&L of the original port-
folio at T . The hedging strategy consists of self-financing
trading in a risk-free money market account with interest
rate r and in the underlying stock, at equally spaced times
t0 = 01 t11 0 0 0 1 ts−1, where ts = T is the options’ maturity.
The example is very similar to one used by Baysal et al.
(2008, §3). Here we focus on formulating the example in
a way that fits our ANOVA framework. The scenario Z is
a path taken by the stock price over time and the P&L in
that scenario is the conditional expectation M = E6X � Z7,
where the random variable X, given in Equation (18) below,
can be interpreted as the P&L that would result in this sce-
nario if one were to hedge using a noisy estimate of ã.

At time ti, the number of shares of stock in the hedging
strategy is updated to −ãi, where ãi is the sensitivity at
time ti of the original portfolio to the stock price: ãi is
a function of ti and Si. The amount in the money market
account is chosen to satisfy the self-financing condition. As
shown in Baysal et al. (2008, §3), the P&L of the hedged
portfolio at time T is

4p0 +ã0S05e
rT

+

s
∑

i=1

4ãi −ãi−15Sie
r4T−ti5 − �Ss −Q�1 (17)

where p0 and �Ss −Q� are, respectively, the initial price and
the payoff of the options. Thus, the P&L is a function of
the path S11 0 0 0 1 Ss of stock prices at times t11 0 0 0 1 ts = T .
This path is the scenario Z in our ANOVA framework.

When the stock follows geometric Brownian motion,
there is a formula for ã, which allows the P&L to be
computed as an explicit function of the path. Thus, for
this particular example, we can compute an accurate esti-
mate of the variance of P&L by one-level simulation. In
general, a formula for ã is not available, and one uses
nested simulation to estimate the variance of P&L. The
inner level provides estimates of ã at every time step
on every path. The P&L that results from the path Z =

Figure 4. Illustration of nested simulation in the delta-
hedging example.

k = 1
j = 1

k = 1
j = 2

k = k
j = n

S111=111.7

S113=97.0

S112=92.5
S114=88.6

S11s–2=111.3

S11s–1=108.9

S11s–3=99.5

S12s–2=111.0
S12s–3=110.7S121=114.8

S124=102.9

S123=88.7

S122=85.9

Skn2=107.4
Skn4=105.8

Skns–3=116.6
Skns–2=120.3

Skns–1=108.5
Skn1=103.0

Skn3=94.6

S12s–1=110.7

1

k

Outer-level path Z

Outer-level path Z

4S11 0 0 0 1 Ss5 is the conditional expectation M = E6X � Z7

in our ANOVA framework, where the random variable X

is given in Equation (18). Figure 4 illustrates the nested
simulation. Each outer-level scenario Zk is a path of stock
prices Sk11 0 0 0 1 Sks . Conditional on this scenario, an inner-
level sample Xkj involves simulating a collection of stock
prices 8Skji9i=110001s−1. They do not constitute another path,
rather Skji is a stock price at time T simulated conditional
on the stock price at time ti being Ski. The stock prices
8Skji9i=110001s−1 are used to provide estimates of ã at each
time ti on the kth path.

We next exhibit a random variable X such that the P&L
in scenario Z is M = E6X � Z7. The inner level of simu-
lation is based on pathwise estimation of ãi as the sensi-
tivity of the portfolio value to the stock price Si, which is
unbiased under some conditions (Glasserman 2003, §7.2).
A pathwise estimator of ãi is

�i = −e−r4T−ti5
S̃

Si
sign4S̃ −Q51
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where S̃ has the risk-neutral conditional distribution of Ss
given Si. The random variable

X = 4p0 +ã0S05e
rT

+

s
∑

i=1

4�i −�i−15Skie
r4T−ti5 − �Ss −Q�

(18)

can be interpreted as the P&L in the scenario Z =

4S11 0 0 0 1 Ss5 if one were to use the hedge ratio �i instead
of ãi. Its conditional expectation M = E6X �Z7 is the P&L
given in Equation (17) because of the unbiasedness of the
pathwise sensitivity estimation. In the context of the nested
simulation illustrated in Figure 4, Zk = 4Sk11 0 0 0 1 Sks5,

�kji = −e−r4T−ti5
Skji

Ski
sign4Skji −Q51 and

Xkj = 4p0 +ã0S05e
rT

+

s
∑

i=1

4�kji −�k1 j1 i−15Skie
r4T−ti5

− �Sks −Q�1

where Skji has the risk-neutral conditional distribution of
the stock price at time T given that the stock price at
time ti is Ski. Each panel of Figure 4 shows the simulated
stock prices used in one scenario Zk and one inner-level
sample Xkj generated conditional on Zk. The top two pan-
els involve the same scenario Z1, while the bottom panel
involves a different scenario ZK .

In implementing the example, we have assumed that
�kj0 = ã0, the initial delta, is known to high accuracy.
Because it is common to all paths, which share the same
value of S0, there is little additional cost in estimating it
very accurately. The example would yield similar results if
�kj0 were simulated in the same way as �kj1.

Figure 5 illustrates the benefit of 1 1
2 -level simulation by

showing how the variance of the ANOVA estimator �̂2
M

depends on the inner-level sample size n given a fixed
computational budget C. For each pair of n and C, we
used 1,000 macro-replications to assess the variance of �̂2

M .
Based on the output of a simulation experiment with K0 =

100 outer-level scenarios and inner-level sample size n0 =

101000, using methods described in §4, we estimated the
asymptotically optimal inner-level sample size n∗ of Equa-
tion (12) by n̂∗ = 45. We then ran nested simulations with
different inner-level sample sizes n to see how the variance
of �̂2

M with n = n̂∗ compares to the variance with other
choices of n. This exercise also demonstrated good agree-
ment of the formula for Var6�̂2

M 7 in Equation (10), where
estimates were substituted for unknown quantities, with the
direct estimates of Var6�̂2

M 7 based on macro-replications.
The numerical results indicate that n̂∗ = 45 is indeed nearly
optimal for the computational budgets considered here.
These results provide some validation for our analysis of
Var6�̂2

M 7 and n∗. The finding that n∗ is near 45 is strik-
ing because 45 is a much smaller inner-level sample size
than would ordinarily be used in two-level simulation in

such an example. In this example, to attain a relative root
mean square error of 1% in estimating the P&L M at
the inner level would require an inner-level sample size of
about 11600. Figure 5 shows that using n = 11600 instead
of n= 45 makes the variance of �̂2

M increase dramatically:
when the computational budget C = 8001000, this makes
the variance increase by a factor of about 12. Put another
way, to attain the same accuracy in estimating �2

M by �̂2
M

that is attained with budget C = 8001000 and n= 45, if we
were to use n = 11600 then we would require a budget of
over 10 million.

6. Conclusions and Research Directions
Our principal findings are twofold. First, the ANOVA esti-
mator �̂2

M of Equation (8) or Equation (9) is an unbi-
ased estimator of the variance of a conditional expectation
in nested simulation. Second, this implies that where the
inner-level sample size is the same for all scenarios, it is
optimal for it to remain bounded as the computational bud-
get grows, leading to the concept of 1 1

2 -level simulation.
Our recommendation for the nested simulation problems
most often encountered in practice is simply to use the
asymptotically optimal inner-level sample size n∗ given by
Equation (12), or its estimator n̂∗ given by Equation (15).
This sample size n∗ is often much smaller than that which
would be needed for accurate estimation of the conditional
expectation in all scenarios, which is unnecessary for the

Figure 5. Variance of the ANOVA estimator �̂2
M in the

delta-hedging example, as a function of the
inner-level sample size given a fixed compu-
tational budget, for three different computa-
tional budgets C. The solid curves give point
estimates of the variance, and the error bars
are 95% confidence intervals for the variance.
The dashed curves represent the formula for
the variance given in Equation (10), with esti-
mates substituted for unknown quantities.
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purpose of estimating the variance of the conditional expec-
tation. The smaller sample size can greatly increase com-
putational efficiency.

We believe there is promise in extensions of the cen-
tral idea presented in this paper to functionals other
than variance of the distribution FM of the conditional
expectation M . We showed how to construct an unbiased
estimator of �2

M = Var6M7 and hence E6M27 if the inner-
level sample size n ¾ 2. Likewise, it is not hard to show
how to construct an unbiased estimator of E6Mm7 if n ¾
m: tools mentioned in Douillet (2009, §5) might be use-
ful in this task. Thus we conjecture that 1 1

2 -level simula-
tion would be optimal for estimation of any moment of the
conditional expectation M . However, it would be harder to
choose the optimal inner-level sample size.

Unbiased estimation of the moments suggests using
moment-based approximations of other functionals of FM ,
for example, using the Cornish-Fisher expansion to approx-
imate quantiles, or using the Taylor expansion of a func-
tion f to approximate E6f 4M57. A different idea is to apply
the technique of deconvolution used in signal processing: if
effects and errors in model (3) are independent, the distri-
bution of X =M +� is the convolution of the distributions
of M and of �. Then FM can be estimated by estimating FX
and F� and “deconvolving” them. This approach might be
viable for those simulation problems in which the condi-
tional distribution of error does not vary much across sce-
narios. It seems that a promising domain for deconvolution
would be nested simulation problems with low outer-level
variability that are challenging because the inner-level vari-
ability is very high compared to the outer-level variability:
the right part of Figure 2 shows that these problems call
for a large inner-level sample size when estimating �2

M . It
remains to be seen what advantages these approaches might
have over the method, described in the introduction, of run-
ning a two-level simulation and estimating a functional of
FM by evaluating that functional on F̂M .

7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.
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