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When estimating risk measures, whether from historical data or by Monte
Carlo simulation, it is helpful to have confidence intervals that provide
information about statistical uncertainty. We provide asymptotically valid
confidence intervals and confidence regions involving value-at-risk (VaR),
conditional tail expectation and expected shortfall (conditional VaR), based
on three different methodologies. One is an extension of previous work
based on robust statistics, the second is a straightforward application
of bootstrapping, and we derive the third using empirical likelihood. We
then evaluate the small-sample coverage of the confidence intervals and
regions in simulation experiments using financial examples. We find that
the coverage probabilities are approximately nominal for large sample
sizes, but are noticeably low when sample sizes are too small (roughly, less
than 500 here). The new empirical likelihood method provides the highest
coverage at moderate sample sizes in these experiments.

1 INTRODUCTION

We want to measure the risk of a given portfolio that has random profits at the
end of a predetermined investment period. We can sample from the distribution
of the portfolio’s profits using Monte Carlo simulation based on a stochastic
model of financial markets. Our focus will be on estimating risk measures for
our portfolio based on simulated profits and providing information in the form of
confidence intervals and regions about the statistical uncertainty of these estimates.
We address only this Monte Carlo sampling error in estimating risk, not the
model risk that includes errors introduced by using an incorrect model of financial
markets and statistical error in estimating the model’s parameters from data. We
will emphasize moderate Monte Carlo sample sizes, which are appropriate when
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4 R. E. Baysal and J. Staum

it is computationally expensive to simulate financial scenarios and determine the
value of the portfolio in each scenario.

Define V to be the random profit of the given portfolio at a specific investment
horizon. The 95% value-at-risk (VaR95%) of the portfolio is the 95% quantile of the
loss −V . A related risk measure is the 95% conditional tail expectation (CTE95%),
which is:

CTE95% = E[−V | −V ≥ VaR95%]
Another closely related risk measure is expected shortfall (ES95%), which is:

ES95% = − 1

0.05
(E[V 1{V≤v0.05}] + v0.05(0.05 − Pr[V ≤ v0.05]))

where ν0.05 is the lower 5% quantile (Definition 5.2) of the distribution of V . Under
continuity conditions on the loss distribution, CTE equals ES (Acerbi and Tasche
(2002)). ES always equals conditional value-at-risk (CVaR), which is coherent
(Acerbi and Tasche (2002); Rockafellar and Uryasev (2002)). A risk measure
is coherent if it satisfies certain axioms of translation invariance, subadditivity,
positive homogeneity and monotonicity (Artzner et al (1999)). We use the term
“expected shortfall” here because ES includes an expectation, which is closely
related to simulation, on which we focus, while CVaR is closely associated with
a minimization formula due to Rockafellar and Uryasev (2000, 2002).

Our goal is to construct confidence intervals and regions for the above risk
measures based on a simulated sample V1, . . . , Vk of independent profits with
common distribution F0. Let V[1], . . . , V[k] be ascending order statistics. The
obvious point estimators of VaR and CTE at the (1 − p) level, assuming kp is an
integer, are:

V̂aR1−p,k = −V[kp] (1)

ĈTE1−p,k = − 1

kp

kp∑
i=1

V[i] (2)

respectively. Other point estimators are discussed in Section 7.
Here we focus on constructing a confidence interval for ES and a confidence

region for VaR and CTE simultaneously. We consider three methods for construct-
ing them. To facilitate comparisons between their error rates, we also compare the
three methods’ confidence intervals for VaR to a standard confidence interval for
VaR. This standard is the binomial confidence interval for a quantile (Clopper and
Pearson (1934)), which we summarize in Section 2. In Section 3, we construct
confidence intervals and regions by extending results of Yamai and Yoshiba (2002)
and Manistre and Hancock (2005) based on the influence function used in robust
statistics. Section 4 briefly discusses how to construct them by bootstrapping. The
major new results are in Section 5, where we show how to construct them using
empirical likelihood (Owen (2001)). In Section 6, we present computer simulation
experiments to show that these confidence intervals and regions achieve close to
nominal coverage for large sample sizes, but not for moderate sample sizes that are
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Empirical likelihood for value-at-risk and expected shortfall 5

too small. Empirical likelihood provides the highest coverage at moderate sample
sizes in these experiments, for the most part.

One contribution of this paper is simply in providing the first test (known to us)
of the coverage of confidence regions and intervals involving CTE on financial
examples. This provides some guidance about how large the sample size must
be before the coverage is adequate, or how low the coverage might be at low
sample sizes. Through a non-trivial application of empirical likelihood, we provide
a method for generating confidence regions and intervals with higher coverage.
The empirical likelihood approach is also useful in enabling risk measurement
procedures that can cope with the need to use simulation at two levels: in sampling
from a distribution of risky scenarios and in estimating the portfolio loss in each of
those scenarios (Lan et al (2007)).

2 BINOMIAL CONFIDENCE INTERVALS FOR VALUE-AT-RISK

There is a well-known confidence interval for quantiles (Clopper and Pearson
(1934)), and thus VaR, based on the binomial distribution of the number of losses
N(q) :=∑k

i=1 1{−Vi ≥ q} that exceed a threshold q. The lower and upper limits
of a two-sided confidence interval for VaR1−p with (1 − α) nominal coverage
probability are respectively:

inf

{
q

∣∣∣∣ k∑
n=N(q)+1

(
k

n

)
pn(1 − p)k−n ≥ α/2

}

and:

sup

{
q

∣∣∣∣
N(q)∑
n=0

(
k

n

)
pn(1 − p)k−n ≥ α/2

}

The limit of a one-sided upper confidence interval for VaR1−p with (1 − α)

nominal coverage probability is sup{q |∑N(q)

n=0

(
k
n

)
pn(1 − p)k−n ≥ α}.

These endpoints of the confidence interval equal order statistics of the data
sample, ie, quantiles of the empirical distribution function. It is not generally
possible to get exactly nominal coverage for the confidence interval because
of the discreteness of the empirical distribution function, or, viewed differently,
because of the discreteness of the binomial distribution (Agresti and Coull (1998)).
Nonetheless, these confidence intervals are often called “exact” because they are
related to an exact hypothesis test for the value of the quantile. The justification
of these confidence intervals does not involve the convergence of a statistic’s
distribution to a limiting distribution as sample size k grows, as do the methods
described in later sections.

3 INFLUENCE FUNCTION

The approach based on the influence function in the theory of robust statistics
allows us to compute the variances of the asymptotic normal distributions of the
estimators in Equations (1) and (2). As Manistre and Hancock (2005, note 6) state,
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6 R. E. Baysal and J. Staum

under regularity conditions discussed in Staudte and Sheather (1990):

k Var(ĈTE1−p,k)→ Var(−V | −V > VaR1−p)+ p(CTE1−p − VaR1−p)2

(1 − p)
(3)

k Var(V̂aR1−p,k)→ p(1 − p)

f 2(VaR1−p)
(4)

k Cov(ĈTE1−p,k, V̂aR1−p,k)→ p(CTE1−p − VaR1−p)
f (VaR1−p)

(5)

where f (VaR1−p) is the value of the probability density of the underlying dis-
tribution at the quantile. Similar results appear in Yamai and Yoshiba (2002), but
complicated by a truncation argument. Yamai and Yoshiba (2002) report confidence
intervals for VaR and ES, but not a confidence region for both simultaneously. It
also remains to show how to estimate the unknown quantities in Equations (3)–(5)
to construct a confidence interval or region.

Manistre and Hancock (2005) propose the following estimates of asymptotic
variances and covariances:

V̂ark(ĈTE1−p,k)= (kp − 1)−1∑kp
i=1(ĈTE1−p,k + V[i])2 + p(ĈTE1−p,k + V[kp])2

k (1 − p)

(6)

V̂ark(V̂aR1−p,k)= p(1 − p)

kf̂ 2(−V[kp])
(7)

Ĉovk(ĈTE1−p,k, V̂aR1−p,k)= p(ĈTE1−p,k + V[kp])
k f̂ (−V[kp])

(8)

where f̂ (−V[kp]) is an estimate of the probability density. Manistre and Hancock
(2005) proposed the use of:

f̂ (−V[kp])= ξ

F−1
k (p)− F−1

k (p − ξ)

where Fk(x)= (1/k)
∑k
i=1 1{Vi≤x} is the empirical distribution derived from the

sample of size k and ξ is chosen to be a small number. Note that the choice of ξ
affects the empirical density function estimate f̂ considerably, especially for small
samples. Hence, we propose to use the kernel method to estimate f via a Gaussian
kernel estimator function:

f̂k(−V[kp])= 1

kh

k∑
i=1

�′
(−V[kp] + V[i]

h

)
(9)

where h= (4/3k)1/5σ , �′(u)= (2π)−1/2 exp (−u2/2) and the sample standard
deviation can be used for σ .

We extend the above results to create confidence intervals and regions. We define

Y :=
(

V̂aR1−p,k
ĈTE1−p,k

)
based on a sample of size k. This is asymptotically normal with
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Empirical likelihood for value-at-risk and expected shortfall 7

mean y0 :=
(

VaR1−p
CTE1−p

)
and covariance matrix � described by Equations (3)–(5).

There exists a unique symmetric positive definite matrix A such that A�A = �−1.
We define Z := A(Y − y0) whose components are independent and asymptotically
standard normal. Then, the quadratic form (Y − y0)

��−1(Y − y0)= Z�Z is dis-
tributed asymptotically as χ2 with two degrees of freedom. Note that the asymptotic
formulas (6)–(8) can be used to construct �̂ as an estimate of the covariance
matrix �. With probability one, V̂ark(ĈTE1−p,k) converges to Var(ĈTE1−p,k)
(Hong (2006)). Weak convergence results for the kernel density estimate f̂k (9)
are given by Silverman (1978) and Chang et al (2003). Hence, �̂ is a consistent
estimator of � and by the converging-together lemma of Durrett (1996) an
asymptotically valid (1 − α) confidence region for VaR1−p and CTE1−p, is an
elliptical region centered at (V̂aR1−p,k, ĈTE1−p,k) and is given by:

{y0 | (Y − y0)
��̂−1(Y − y0)≤ χ2

(2),1−α} (10)

where χ2
(2),1−α is the 1 − α quantile of the chi-squared distribution with two

degrees of freedom. By applying the converging-together lemma to ĈTE1−p,k and
V̂ark(ĈTE1−p,k), one can show that where Z1−α/2 is the 1 − α/2 quantile of the
standard normal distribution:

{µ0 | |ĈTE1−p,k − µ0| ≤ Z1−α/2
√

V̂ark(ĈTE1−p,k)} (11)

is a two-sided confidence interval for CTE1−p (Hong (2006)). Correspondingly:

{µ0 | µ0 ≤ ĈTE1−p,k + Z1−α
√

V̂ark(ĈTE1−p,k)} (12)

is a one-sided upper confidence interval for CTE1−p. Likewise:

{q0 | |V̂aR1−p,k − q0| ≤ Z1−α/2
√

V̂ark(V̂aR1−p,k)} (13)

is a two-sided confidence interval for VaR1−p and:

{q0 | q0 ≤ V̂aR1−p,k + Z1−α
√

V̂ark(V̂aR1−p,k)} (14)

is a one-sided upper confidence interval for VaR1−p.

4 BOOTSTRAPPING

The idea of bootstrapping to create confidence intervals for CTE was suggested
by Dowd (2005) and Hardy (2006). Bootstrap methods are in general motivated
by the need to evaluate the accuracy of an estimate in the absence of distributional
assumptions (Chernick (1999)). Shao and Tu (1995) discuss in detail the application
of bootstrap methods to hypothesis testing and confidence interval estimation for
various statistics including quantiles. The logic behind bootstrapping for quantile
estimation is readily applicable to estimating VaR, CTE and ES.

Research Paper www.thejournalofrisk.com



8 R. E. Baysal and J. Staum

As before, let V[1] ≤ · · · ≤ V[k] be order statistics, sorted after sampling profits
independently from the common distribution F0. We assume kp is an integer. To
estimate VaR1−p and CTE1−p based on this sample, we compute the obvious
estimators previously mentioned:

V̂aR1−p,k = −V[kp] and ĈTE1−p,k = − 1

kp

kp∑
i=1

V[i]

We will denote them by q̂k(p) and µ̂k(p), respectively, to emphasize their depen-
dence on the initial sample of size k. Because kp is an integer, the estimate µ̂k(p)
of CTE1−p is also an estimate of ES1−p.

In order to assess the uncertainty associated with these estimates, we generate
B independently and identically distributed (iid) bootstrap samples by resampling
from the empirical distribution function Fk of the initial Monte Carlo sample.
For risk management applications, resampling may be considerably faster than
generating samples from the original distribution F0. We denote the bootstrap
samples by V̂ b[1], . . . , V̂

b[k] for b = 1, . . . , B. From the bth bootstrap sample, we
compute the estimates:

µ̂b(p)= − 1

kp

kp∑
i=1

V̂ b[i] and q̂b(p)= −V̂ b[kp]

Note that we only need V̂ b[1], . . . , V̂
b
[kp] to compute q̂b(p) and µ̂b(p), and the

bootstrap sample for the first kp order statistics can be generated efficiently by
V̂ b[j] = F−1

k (U[j]), where U[1], . . . , U[k] are the order statistics of an iid sample
of size k from the standard uniform distribution. The following algorithm of order
O(kp) from Dagpunar (1988) can be used to generate U[1], . . . , U[kp]:

U[0] = 0

for i = 1 to kp

generate Vi ∼ Uniform[0, 1]
U[i] = 1 − (1 − U[i−1])V 1/(kp−i+1)

i

end for

4.1 Bootstrap confidence intervals for VaR and ES

There are various methods for constructing asymptotically valid confidence inter-
vals for VaR1−p and ES1−p from q̂1(p), . . . , q̂B(p) and µ̂1(p), . . . , µ̂B(p), such
as the bootstrap t , the bootstrap percentile, the bootstrap bias-corrected percentile
and the bootstrap bias-corrected/accelerated (BCa) percentile methods (Shao and
Tu (1995)). We use the bootci function of the MATLAB Statistical Toolbox to
construct BCa intervals in our experiments. We set the upper confidence limits
of one-sided 100(1 − α)% upper confidence intervals to the upper limits of the
corresponding two-sided confidence intervals with (1 − 2α) nominal coverage
probability.

The Journal of Risk Volume 11/Number 1, Fall 2008



Empirical likelihood for value-at-risk and expected shortfall 9

4.2 Bootstrap confidence regions for VaR and CTE

Davison and Hinkley (1997) suggest basing a joint bootstrap confidence region for
a vector parameter y0 on the quadratic form:

Q = (Y − y0)
��̂−1(Y − y0)

where Y is an estimate of y0 and �̂ is the estimated covariance matrix of Y . When
Y is approximately normal, Q will be approximately χ2

(2). Its distribution can be
assessed by bootstrapping instead.

As in Section 3, we let:

y0 =
(

VaR1−p
CTE1−p

)
, Y =




−V[kp]

− 1

kp

kp∑
i=1

V[i]




and �̂−1 be the influence function estimate of the covariance matrix of Y , as in
Equations (6)–(8). We calculate:

Qb = (Yb − Y )��̂−1
b (Yb − Y )

for each bootstrap sample b = 1, . . . , B, yielding an estimate Yb of CTE1−p and
an estimated covariance matrix �̂−1

b . We denote the ordered bootstrap values as
Qb

[1] ≤ · · · ≤ Qb
[B]. Then a bootstrap confidence region for the vector parameter y0

is the set:
{y0 | (Y − y0)

��̂−1(Y − y0)≤ Qb
[B(1−α)]} (15)

which is similar to Equation (10) but with Qb
[B(1−α)] replacing χ2

(2),1−α .

5 EMPIRICAL LIKELIHOOD

Empirical likelihood (EL) is a non-parametric method for hypothesis testing (and
therefore for confidence region construction) that is similar to the usual parametric
likelihood ratio approach, which rejects a hypothesis when its likelihood ratio is too
low. The empirical likelihood ratio, instead of being constructed from a parametric
family of distributions, considers the family Fk := {F | F � Fk} of discrete distri-
butions absolutely continuous with respect to the empirical cumulative distribution
Fk whose support equals the observed data points. Such a distribution F � Fk puts
weights (ie, probability mass)w1, . . . , wk on order statistics V[1], . . . , V[k], where
the weights must be non-negative and sum to 1. The empirical likelihood of F is∏k
i=1 wi and the empirical likelihood ratio of F is defined as R(F) :=∏k

i=1(kwi ),
since the maximum likelihood member of Fk is the empirical distribution, Fk,
which has all weights equal to 1/k and thus has empirical likelihood k−k .

Let T (·) be some statistical functional of the distribution F0, where F0 is the true
distribution of portfolio profit V . The non-parametric maximum likelihood estimate
of T (F0) is T (Fk) and sets of the form:

{T (F) | R(F)≥ r, F ∈ Fk} (16)

Research Paper www.thejournalofrisk.com



10 R. E. Baysal and J. Staum

can be used as confidence regions for T (F0), where r is chosen appropriately to
obtain the right asymptotic coverage, as k → ∞ (Owen (1998)).

In particular, the empirical likelihood confidence interval for VaR coincides with
the binomial confidence interval of Section 2 (Owen (2001, Section 3.6)).

5.1 A non-parametric confidence region for VaR and CTE

DEFINITION 5.1 For any 0< p < 1, any valueQp such that Pr(V ≤Qp)≥ p and
Pr(V ≥Qp)≥ 1 − p is a p-quantile of F0 (Owen (2001)).

We defined the 95% VaR of our portfolio as the 95% quantile of the loss given
by Q95%

−V . Using the above definition, we see that this is equivalent to the negative
of the 5% quantile of the profit, which is given by −Q5%

V . Then, the 95% CTE of
our portfolio is E[−V | −V ≥Q95%

−V ] = −E[V | V ≤Q5%
V ].

Our goal is to construct an empirical likelihood confidence region for VaR1−p =
−Qp

V and CTE1−p = −E[V | V ≤Q
p

V ] and to provide asymptotic coverage prob-
ability results for such confidence regions.

DEFINITION 5.2 The lower and upper p-quantiles of any distribution F are defined
as νp := inf{v | F(v)≥ p} and νp := inf{v | F(v) > p}, respectively (Acerbi and
Tasche (2002)).

DEFINITION 5.3 The ES at level 1 − p of V is defined as:

ES1−p := −p−1(E[V 1{V≤vp}] + vp(p − Pr[V ≤ vp]))
where νp is the lower p-quantile of the distribution of V (Acerbi and Tasche
(2002)).

Because it is not, in general, uniquely defined, it is not possible to write Qp

V of
Definition 5.1 as a statistical functional T (F0). This poses a problem for construct-
ing confidence regions of the form (16). However, if F0 is continuous and strictly
increasing at Qp

V , then Qp

V is unique and is equal to νp. Furthermore, Pr(V ≤
Q
p
V )= Pr(V ≤ νp)= p, which by Definition 5.3 implies ES1−p = CTE1−p. Under

this simple restriction on F0, the empirical likelihood results for M-estimates
(Owen (1990)) can be used to construct empirical likelihood confidence regions
for VaR1−p and ES1−p.

DEFINITION 5.4 An M-estimate is a statistical functional defined as a root t =
Tψ(F) of: ∫

ψ(V, t)F (dV )= 0 (17)

where V ∼ F (Owen (1990)).

PROPOSITION 5.1 If F0 is continuous and strictly increasing at its p-quantile,
the functional Tψ defined by Equation (17) is an M-estimate for the vector
(VaR1−p, ES1−p) where the function ψ : R × R2 → R2 is given by:

ψ(V, (q, µ)) :=
(
p − 1{V≤−q}, µ+ 1

p
V 1{V≤−q}

)

The Journal of Risk Volume 11/Number 1, Fall 2008
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PROOF The unique root of Equation (17) with F = F0 is (VaR1−p, ES1−p), as fol-
lows. First,

∫
(p − 1{V≤−q})F0(dV )= p − F0(−q)= 0 which implies F0(−q)=

p. Since we assumed F0 has a unique p-quantile with F0(Q
p

V )= p, we find
Q
p

V = −q and VaR1−p = −Qp

V = q. Second:

∫ (
µ+ 1

p
V 1{V≤−q}

)
F0(dV )= µ+ 1

p

∫ −q

−∞
VF0(dV )= 0

which implies µ= −E[V | V ≤ −q]. Again by uniqueness of Qp

V = νp = −q and
therefore of ES1−p = −E[V | V ≤ vp], we obtain µ= ES1−p.

Note that forψ(V, (q, µ)) defined as in Proposition 5.1 and Tψ(F) defined as in
Definition 5.4, the set {Tψ(F) | F � Fk, R(F)≥ r} equals the confidence region
{(q, µ) | ∫ ψ(V, (q, µ))F (dV )= 0, F � Fk, R(F)≥ r)} for VaR1−p and ES1−p
depicted in Figure 1.

PROPOSITION 5.2 For ψ defined as in Proposition 5.1, if F0 is continuous
and strictly increasing at its p-quantile, and if V 1{V≤QpV } is not a constant

and E[V 21{V≤QpV }]<∞, then {Tψ(F) | F � Fk, R(F) ≥ exp(− 1
2χ

2
(2),1−α)} is a

confidence region for VaR1−p and CTE1−p with (1 − α) asymptotic coverage
probability.

PROOF By Proposition 5.1, Tψ(F0) exists and is unique if F0 is continuous
and increasing at νp, which we have already assumed. The assumption that
V 1{V≤QpV } is not a constant and E[V 21{V≤QpV }]<∞ implies that the rank of
Var[ψ(V, t)] is two. Then, we can use Theorem 3 of Owen (1990) to show
that Pr[Tψ(F0) /∈ {Tψ(F) | F � Fk, R(F) ≥ r}] → α as k→ ∞ if we pick r =
exp(− 1

2χ
2
(2),1−α).

While computing {Tψ(F) | F � Fk, R(F)≥ r}, we must restrict our attention
to F within the family Fk such that for some l, Wl defined by:

Wl :=
l∑
i=1

wi (18)

is equal to p. Otherwise, Tψ(F) does not exist. It is worth noting that Tψ(F)
is not unique for such F ∈ Fk since for any q such that −q ∈ [V[l], V[l+1]),
(q,−(1/p)∑l

i=1 wiV[i]) is a root of
∫
ψ(V, t) dF(V )= 0; however, we require

only Tψ(F0) to be unique.
A confidence region with (1 − α) asymptotic coverage probability can be

written as:

CR1−α =
{
t

∣∣∣∣
∫
ψ(V, t) dF(V )= 0, F � Fk, R(F)≥ r

}

Research Paper www.thejournalofrisk.com



12 R. E. Baysal and J. Staum

FIGURE 1 Influence function and empirical likelihood confidence regions.
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C
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influence function estimate

=
k−1⋃
l=1

{
µ

∣∣∣∣ k∏
i=1

(kwi )≥ r,

l∑
i=1

wi = p, µ= − 1

p

l∑
i=1

V[i]wi, wi ≥ 0,
k∑
i=1

wi = 1

}

× (−V[l+1],−V[l]]

=
k−1⋃
l=1

(−V[l+1],−V[l]] × {µ | Rψl (µ)≥ r}

where:

R
ψ

l (µ) := max
w

{ k∏
i=1

(kwi)

∣∣∣∣ l∑
i=1

wi = p, µ= − 1

p

l∑
i=1

V[i]wi, wi ≥ 0,
k∑
i=1

wi = 1

}
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Empirical likelihood for value-at-risk and expected shortfall 13

In the first part of Appendix A we show that this maximum is attained at
{w∗

i }i=1,...,k given by:

w∗
i =



p

l
[1 − (V[i] + µ)λ∗]−1 for i = 1, . . . , l

1 − p

k − l
for i = l + 1, . . . , k

(19)

where λ∗ is the unique solution to:

l∑
i=1

V[i] + µ

1 − (V[i] + µ)λ∗ = 0

which can be computed by numerical root finding within the interval:[
1 − 1/ l

µ+ V[1]
,

1 − 1/ l

µ+ V[l]

]

By Lemma A.2 in Appendix A, for each l, Rψl (µ) is single peaked at

−(1/ l)∑l
i=1 V[i] and continuous and monotone on either side of this peak. This

implies that Iψl := {µ | Rψl (µ)≥ r} is an interval if it is not empty. Because

maxµ R
ψ

l (µ)= kk(p/l)l[(1 − p)/(k − l)]k−l, Iψl is non-empty if:

k log k + l log
p

l
+ (k − l) log

1 − p

k − l
≥ −1

2
χ2
(2),1−α

Therefore Iψl ⊆ [−V[l], V[1]] can be computed as Iψl = [µlo
l , µ

hi
l ] where:

µlo
l is the unique root of Rψl (µ)= r in

[
−V[l],−1

l

l∑
i=1

V[i]
]

and:

µhi
l is the unique root of Rψl (µ)= r in

[
−1

l

l∑
i=1

V[i],−V[1]
]

Finally, we compute CR1−α =⋃k−1
l=1 (−V[l+1],−V[l]] × [µlo

l , µ
hi
l ]. Figure 1 com-

pares the shape of such a confidence region to the shape of a confidence region
constructed by the influence function approach.

5.2 Non-parametric confidence intervals for ES

Complications arise when we try to compute a confidence interval for CTE even if
we restrict our attention to continuous distributions for which CTE is coherent.
This is because ψ(V, (q, µ)) is a non-smooth function of (q, µ) and hence
theoretical justification is lacking to profile out either component of (q, µ) to obtain
a confidence interval for the other. We, therefore, turn our attention to ES for
which we can use empirical likelihood theory to compute an asymptotically valid
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14 R. E. Baysal and J. Staum

confidence interval. Note that ES is still coherent even if the profit distribution F0

is not continuous or strictly increasing at Qp.
Empirical likelihood most naturally produces two-sided confidence intervals,

and we will focus on these in this section. We produce one-sided confidence
intervals according to the following suggestion of Owen (2001, Section 2.7). Where
(L, U) is a two-sided 100(1 − 2α)% empirical likelihood confidence interval,
(−∞, U) can be used as a one-sided 100(1 − α)% confidence interval.

Acerbi and Tasche (2002) show that ES1−p of Definition 5.3 can be repre-
sented as a functional T by T (F0) := −(1/p) ∫ p0 F−1

0 (u) du, where F−1
0 (u) :=

inf{v | F0(v)≥ u}. The empirical likelihood ratio of the hypothesis µ= T (F0) is
defined as:

R(µ) := max

{ k∏
i=1

(kwi)

∣∣∣∣ T (F)= µ, F � Fk

}

where F has weights {wi}i=1,...,k and with W defined as in Equation (18):

T (F)= − 1

p

{ l−1∑
i=1

∫ Wi

Wi−1

V[i] du+
∫ p

Wl−1

V[l] du

}

= − 1

p

{ l−1∑
i=1

wiV[i] + (p −Wl−1)V[l]
}

with l determined by Wl ≥ p and Wl−1 < p.

PROPOSITION 5.3 If |F−1
0 (u)| isO(u− 1

3 +ε) as u→ 0, for some ε > 0, then a con-
fidence interval for ES1−p with 100(1 − α)% asymptotic coverage probability is:

{µ | F � Fk, R(µ)≥ exp(− 1
2χ

2
(1),1−α)}

PROOF We start by writing ES1−p = T (F0)= ∫ 1
0 F

−1
0 (u)g(u) du, where g(u)=

−(1/p)1{u≤p}. Note that T (F) produces an L-estimator when we plug in the
cumulative distribution function Fk for F . According to Theorem 10.2 of Owen
(2001):

Pr[T (F0) /∈ {µ | F � Fk, R(µ)≥ exp(− 1
2χ

2
(1),1−α)}] → α

as k→ ∞ if for some c ∈ (0,∞), some M ∈ (0,∞) and some d ∈ (1/6, 1/2),
both:

|g(u)| ≤M[u(1 − u)]1/c−1/2+d and |F−1
0 (u)| ≤M[u(1 − u)]−1/c

hold for all 0< u< 1. In our case, g(u)= 0 for u > p, so only the left tail behavior
is relevant. That is, we are only concerned with the behavior of F−1

0 as u→ 0,
because our L-estimator uses only values less than the median of the data sample.
We will show that:

|g(u)| ≤Mu1/c−1/2+d (20)
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and:

|F−1
0 (u)| ≤Mu−1/c (21)

hold for suitable values of c, d and M , given the assumption that F−1
0 (u) is

O(u−1/3+ε) as u→ 0.
The interesting case is when losses are unbounded, in which case ε < 1/3. Take

c = 1/(1/3 − ε) and d = 1/6 + ε. Then inequality (21) holds for sufficiently large
M by assumption and inequality (20) holds forM ≥ 1/p because 1/c− 1/2 + d =
0 and |g(u)| = 1/p for u < p.

If losses are bounded, take M to be the maximum of the bound and 1/p. Take
c = 3 and d = 1/3. Then inequality (21) holds because |F−1

0 (u)| ≤M ≤Mu−1/3

and inequality (20) holds because |g(u)| ≤M ≤Mu−1/6.

We compute R(µ) by R(µ)= maxl=1,...,k Rl(µ) where:

Rl(µ)= sup

{ k∏
i=1

(kwi )

∣∣∣∣ µ= T (F), Wl ≥ p, Wl−1 < p, Wk = 1, wi ≥ 0

}

= max{Rψl (µ), Rint
l (µ)}

and Rint
l (µ) is defined as:

Rint
l (µ) := sup

{ k∏
i=1

(kwi)

∣∣∣∣ µ= T (F), Wl > p, Wl−1 < p, Wk = 1, wi ≥ 0

}

We observe that:

R
ψ

l (µ)= max

{ k∏
i=1

(kwi )

∣∣∣∣ µ= T (F), Wl = p, Wk = 1, wi ≥ 0

}

is as defined in the previous section because for Wl = p, we obtain T (F)=
−(1/p)∑l

i=1 wiV[i] with Wl−1 < p, optimally. As Wl → p and as Wl−1 → p,
limits of feasible points in this maximization converge to feasible points in the
maximizations of the previous section whose optimal values are, respectively,
R
ψ
l (µ) and Rψl−1(µ). This reasoning shows that:

R(µ)= max
l=1,...,k

{max{Rψl (µ), Rint
l (µ)}}

= max
{

max
l=1,...,k

R
ψ
l (µ), max

l∈Lint(µ)
Rint
l (µ)

}
(22)

where l ∈ Lint(µ) if and only if Rint
l (µ) is attained at an interior solution character-

ized by Wl > p and Wl−1 < p, since otherwise Rint
l (µ)= R

ψ

l (µ) or Rψl−1(µ).
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16 R. E. Baysal and J. Staum

Since we have already found a way to compute Rψl (µ), we need only concern
ourselves with interior solutions Rint

l (µ)with l ∈ Lint(µ) to the following problem:

maximize
k∏
i=1

(kwi)

subject to µ= −V[l] − 1

p

l−1∑
i=1

wi(V[i] − V[l])

Wl > p and Wl−1 < p

Wk = 1 and wi ≥ 0

(23)

which we will refer to as Maximization Problem II. It is maximization of a concave
objective with linear constraints and non-zero Hessian, so there is an interior
solution if and only if there is a solution to the two first-order conditions in two
unknowns, which are:

W ∗
l−1 −

l−1∑
i=1

gi(W
∗
l−1, λ

∗)= 0 (24)

and:
l−1∑
i=1

gi(W
∗
l−1, λ

∗)(V[l] − V[i])− p(µ+ V[l])= 0 (25)

where gi is a function specifying the optimal weight wi for i = 1, . . . , l − 1. In
Appendix B, we show that:

gi(W
∗
l−1, λ

∗) :=
[
k − l + 1

1 −W ∗
l−1

+ λ∗(V[l] − V[i])
]−1

so the optimal weights are:

w∗
i =




[
k − l + 1

1 −W ∗
l−1

+ λ∗(V[l] − V[i])
]−1

for i = 1, . . . , l − 1

1 −W ∗
l−1

k − l + 1
for i = l, . . . , k

(26)

where λ∗ and W ∗
l−1 ∈ (p − [(1 − p)/(k − l)], p) solve the first-order conditions.

We construct a confidence interval with 100(1 − α)% asymptotic coverage
probability for ES as CI1−α := {µ | F � Fk, R(µ)≥ r}. By Equation (22), µ is
in CI1−α if and only if Rψl ≥ r for some l or Rint

l (µ)≥ r for some l ∈ Lint(µ).
Then, CI1−α can be computed as:

CI1−α =
( k⋃
l=1

I
ψ
l

)
∪
( k⋃
l=1

I int
l

)

where we define:

I int
l := {µ | l ∈ Lint(µ), Rint

l (µ)≥ r} = {µ | µ ∈M int
l , R

int
l (µ)≥ r}
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and M int
l = {µ | l ∈ Lint(µ)} is the set of µ such that Equations (24) and (25) have

an interior solution. We show by Lemma B.2 of Appendix B that M int
l is an open

interval whose lower endpoint mlo
l satisfies Equations (24) and (25) with W ∗

l−1 =
p − [(1 − p)/(k − l)] and whose upper endpoint mhi

l satisfies Equations (24)
and (25) with W ∗

l−1 = p.

We have already shown how to calculate Iψl in Section 5.1 and it remains to
compute I int

l . By definition, I int
l is a subset ofM int

l = (mlo
l , m

hi
l ), wheremlo

l andmhi
l

can be found by solving Equation (24) for λ∗ with W ∗
l−1 = p − [(1 − p)/(k − l)]

and W ∗
l−1 = p, respectively, and then by solving Equation (25) for µ with these

W ∗
l−1 and λ∗. Continuity of Rint

l and Lemma B.3 of Appendix B justify the
following procedure:

1) If l ≤ kp: if Rint
l (m

lo
l ) < r , then I int

l is empty. Otherwise, the lower endpoint
of I li is mlo

l and the upper endpoint of I int
l is the root of Rint

l (µ)− r = 0 on
(mlo

l , m
hi
l ).

2) If kp< l < kp + 1: the roots of Rint
l (µ)− r = 0 on (mlo

l , T (Fk)) and
(T (Fk), m

hi
l ) are the lower and upper endpoints of I int

l .
3) If l ≥ kp + 1: if Rint

l (m
hi
l ) < r , then I int

l is empty. Otherwise, the upper end-
point of I li ismhi

l and the lower endpoint of I int
l is the root of Rint

l (µ)− r = 0
on (mlo

l , m
hi
l ).

Finally, since both I int
l and Iψl are intervals, we compute:

CI1−α =
( k⋃
l=1

I
ψ

l

)
∪
( k⋃
l=1

I int
l

)
= [µlo, µhi]

by setting µhi equal to the maximum of the upper endpoints of Iψl and of I int
l and

likewise by setting µlo equal to the minimum of the lower endpoints of Iψl and I int
l .

6 EXPERIMENTAL RESULTS

We use the following two examples from Manistre and Hancock (2005) to test the
performance of our confidence intervals and regions.

1) Put option: the owner of the portfolio has issued an in-the-money European
put option and we use Monte Carlo simulation to estimate risk measures of
this simple portfolio. The put option matures in 10 years with a strike price of
$110. The current stock price is $100 and is assumed to follow a lognormal
return process with drift 8% and volatility 15%. The continuous discount rate
is 6%.

2) Pareto distribution: the loss is assumed to have a Pareto distribution, whose
tail behavior is similar to that observed in some applications. The Pareto
distribution is tractable enough for obtaining closed form expressions for the
variance of the CTE estimator. We use Monte Carlo simulation to estimate
risk measures for losses generated by a heavy-tailed Pareto distribution with
shape and scale parameters set to 2.5 and 25, respectively.
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18 R. E. Baysal and J. Staum

FIGURE 2 Coverage probability of one-sided confidence intervals for VaR: put
option; N = 50,000 macroreplications.
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These are simple examples, but the results should be indicative of the coverage
we would expect these procedures to provide for similar, larger examples. The
simulations reported here do not use variance reduction. It is not straightforward
to combine variance reduction techniques, such as those applied to this problem
by Manistre and Hancock (2005), with the methods for constructing confidence
intervals and regions.

To evaluate the procedures for generating confidence intervals and regions, we
run each of them 10,000 or 50,000 times. Each of these N macroreplications
contains k simulated losses, where the sample size k is 500, 1,000, 2,000 or more in
the experiments whose results are depicted in Figures 2–7. From each macrorepli-
cation, we calculate one-sided and two-sided confidence intervals for ES0.95 and
confidence regions for VaR0.95 and CTE0.95 at a nominal confidence level of 95%
by the influence function, bootstrap and empirical likelihood methods. We also
calculate one-sided confidence intervals for VaR0.95 at a nominal confidence level
of 95% by the binomial, influence function and bootstrap methods. The number of
bootstrap samplesB we use is either 2,000 or 10,000. We compute, for each sample
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FIGURE 3 Coverage probability of one-sided confidence intervals for ES: put
option; N = 50,000 macroreplications.
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size k, the observed coverage probabilities of confidence intervals or regions:

(1 − α̂) := #{confidence intervals or regions that include the true value}/N

where the true values are computed according to the formulas given by Manistre
and Hancock (2005). The coverage results for confidence intervals and regions
are summarized in Figures 2–7. The error bars in these figures represent 95%
binomial confidence intervals for coverage probabilities based on observing N
macroreplications, each of which is a success if the true value is included, a failure
otherwise.

We first consider the example of selling a put option in the Black–Scholes
model. We examine one-sided confidence intervals for VaR in Figure 2 to see
how the methods under consideration differ in the well-studied setting of quantile
estimation. As has been documented by Agresti and Coull (1998), the one-
sided binomial confidence interval show modest overcoverage for sample sizes
between 500 and 2,000. The bootstrap and influence function methods show modest
undercoverage, but attain coverage above 94% by sample size 4,000. Bootstrapping
is slightly better than the influence function method at small sample sizes.
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FIGURE 4 Coverage probability of two-sided confidence intervals for ES: put
option; N = 50,000 macroreplications.
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In Figure 3 we turn to one-sided confidence intervals for ES. Again bootstrap-
ping shows modest undercoverage, but for ES it attains nominal coverage by sample
size 4,000. Empirical likelihood provides somewhat worse undercoverage until
sample size 4,000. The influence function method has the worst undercoverage and
has not attained nominal coverage even by sample size 8,000.

Figure 4 shows the coverage of two-sided confidence intervals for ES. The
results are qualitatively similar to those for one-sided confidence intervals, but
as usual, the two-sided confidence intervals have less undercoverage. Figures 4
and 5 also show that the bootstrap sample size B = 2,000 that we use elsewhere is
adequate: the improvement in coverage created by using a bootstrap sample size of
B = 10,000 is negligible.

In Figure 5 we investigate the coverage of the confidence regions for VaR
and CTE. The empirical likelihood method attains nominal coverage by sample
size 2,000, while the bootstrap and influence function methods produce disastrous
undercoverage at these small sample sizes. We suspect that this deficiency is due to
the difficulty of density estimation, resulting in poor covariance matrix estimates.

Figures 6 and 7 portray the results of experiments on the Pareto distribution
example, which serve to illustrate how well the methods perform when the loss
distribution’s tail is heavy instead of light. We focus on one-sided confidence
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FIGURE 5 Coverage probability of confidence regions for VaR and CTE: put option;
N = 50,000 macroreplications.
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intervals for ES in this example. Figure 6 shows that this example is much
more challenging. All the methods produce severe undercoverage at small sample
sizes, where bootstrapping is slightly better than empirical likelihood, which is
in turn much better than the influence function method. At large sample sizes,
bootstrapping and empirical likelihood perform similarly. They still undercover
somewhat even at a sample size of k = 128,000, but they are greatly superior to
the influence function method.

Considering that confidence intervals fail to produce nearly nominal coverage
even for very large sample sizes when the distribution is heavy-tailed, we inves-
tigate empirically how quickly the coverage rate converges to the nominal level.
Figure 7 is a log–log plot of coverage error, defined as the absolute value of
the difference between observed coverage and nominal coverage |α̂ − α| against
sample size k. For each method, the slope of the curve indicates how quickly the
coverage rate converges to the nominal level. For example, the coverage error for
one-sided confidence intervals is typically O(k−1/2) when produced by empirical
likelihood (Owen (2001, Section 2.7)) and O(k−1) when produced by the BCa
bootstrapping method (Owen (2001, Section A.6)). This implies that on a log–log
plot of coverage error versus sample size, these methods should yield curves whose
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FIGURE 6 Coverage probability of one-sided confidence intervals for ES: Pareto
distribution; N = 10,000 macroreplications.

0.75

0.8

0.85

0.9

0.95

Nominal

Influence function

Bootstrap (B = 2,000)

Empirical likelihood

500 1000 2000 4000 8000 16000 32000 64000 128000

C
ov

er
ag

e
pr

ob
ab

ili
ty

Sample size (k)

slopes approach −0.5 and −1, respectively, for large sample size. It is possible to
correct empirical likelihood one-sided confidence intervals so that their coverage
error is also O(k−1) (Owen (2001, Chapter 13)).

However, far from finding that BCa bootstrapping dominates empirical likeli-
hood asymptotically, we found that as sample size increases, the empirical
likelihood method catches up with bootstrapping. Also, the influence function
method becomes increasingly uncompetitive. We can see this in Figure 7, where
we estimated slopes on the log–log plot of coverage error versus sample size of
−0.34 for the influence function method, −0.42 for the empirical likelihood method
and −0.38 for bootstrapping, over a range of sample sizes from 500 to 128,000.
The slope of −0.42 for empirical likelihood is not too far from the theoretical
asymptotic slope of −0.5, but the slope of −0.38 for BCa bootstrapping is far from
the typical theoretical asymptotic slope of −1. Of course, for finite sample sizes,
the slope may differ from the asymptotic slope as sample size goes to infinity. We
conjecture that there is another reason that the slope is far from −1 in Figure 7
for the coverage error of the BCa bootstrap one-sided confidence interval. In this
example, the loss distribution is extremely heavy-tailed: the Pareto distribution with
shape parameter 2.5 has first and second moments, but no third moment. Because
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FIGURE 7 Log–log plot of coverage error of one-sided 95% confidence intervals
for ES versus sample size: Pareto distribution; N = 10,000 macroreplications.
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the BCa method is based on a skewness correction, one would not expect it to work
if skewness does not exist.

7 CONCLUSIONS AND FUTURE RESEARCH

Based on empirical likelihood, we have developed an asymptotically valid confi-
dence interval for ES and confidence region for VaR and CTE. In Monte Carlo
experiments, we found that they have coverage close to nominal for moderate
sample sizes: about 1,000 samples in a financial example in which losses are light-
tailed and somewhat more in an example in which the loss distribution is Pareto.
The confidence interval based on empirical likelihood performed about as well as
one based on bootstrapping and better than one based on the influence function.
The confidence region based on empirical likelihood performed better than both its
competitors.

The confidence intervals and regions discussed here are based on the most
straightforward point estimators of VaR and CTE or ES. The most straightforward
point estimator of VaR, which is a quantile, is a sample quantile. There is a large
literature on quantile estimation which shows that more complicated estimators,
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such as kernel estimators and the Harrell–Davis estimator, can outperform the
sample quantile (Chang et al (2003); Sheather and Marron (1990)).

In this study, we have applied the basic version of empirical likelihood, but more
advanced versions could be applied to the same problem. Methods such as Bartlett
correction can improve the coverage of empirical likelihood confidence intervals
(Owen (2001, Chapter 13)). It has been found that smoothed or adjusted empirical
likelihood methods can produce confidence intervals for quantiles with improved
coverage (Chen and Hall (1993); Zhou and Jing (2003)). It is also possible to apply
data tilting methods, which are generalizations of empirical likelihood, to construct
confidence intervals for quantiles. Peng and Qi (2006) do this for extreme quantiles
by explicitly estimating the tail index of the loss distribution. This method may also
be applied to CTE or ES.

As suggested by Dowd (2005), the techniques described here could be applied to
any spectral measure of risk (Acerbi and Tasche (2002)) as well as to ES. Another
direction for future research is to show how to construct confidence intervals and
regions when variance reduction techniques are used in the Monte Carlo sampling.
This would yield smaller confidence intervals and regions given the same amount
of computational effort.

APPENDIX A MAXIMIZATION PROBLEM I

The problem of computing Rψl (µ) given by:

R
ψ

l (µ)= max

{ k∏
i=1

(kwi)

∣∣∣∣ l∑
i=1

wi = p, µ= − 1

p

l∑
i=1

V[i]wi, wi ≥ 0,
k∑
i=1

wi = 1

}
(A.1)

reduces to solving the following problem referred to as Maximization Problem I:

maximize
l∑
i=1

log(kwi )+ (k − l) log

(
k

1 − p

k − l

)

subject to − 1

p

l∑
i=1

wiV[i] = µ

l∑
i=1

wi = p

(A.2)

since Wl =∑l
i=1 wi is restricted to be exactly equal to p by (A.1) and in this case

R
ψ
l (µ) is achieved by assigning equal weights to the remaining k − l portfolio

values V[l+1], . . . , V[k].
Note that the first equation in (A.2) can be written as

∑l
i=1 wi(µ+ V[i])= 0 by

pµ+∑l
i=1 wiV[i] = (∑l

i=1 wi
)
µ+∑l

i=1 wiV[i].
Since a strictly concave function is maximized on a linear set of equality

constraints, the solution to this maximization problem will be found by using the
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Lagrangian function:

L =
l∑
i=1

log(kwi)+ (k − l) log

(
k

1 − p

k − l

)

+ l

p
λ

l∑
i=1

wi(V[i] + µ)+ γ

( l∑
i=1

wi − p

)

and the first-order conditions:

∂L
∂w∗

i

= 1

w∗
i

+ l

p
λ∗(V[i] + µ)+ γ ∗ = 0 ∀i = 1, . . . , l (A.3)

are sufficient.
Using Equations (A.3), we obtain:

l∑
i=1

w∗
i

∂L
∂w∗

i

= 0

which leads together with constraints in (A.2) to l + 0 + γ ∗p = 0 and hence γ ∗ =
−l/p. Plugging the value of γ ∗ back into Equations (A.3), we obtain:

w∗
i = p

l
[1 − (V[i] + µ)λ∗]−1 ∀i = 1, . . . , l (A.4)

Plugging the values of w∗
i calculated above into the first constraint in (A.2), we

obtain:
l∑
i=1

V[i] + µ

1 − (V[i] + µ)λ∗ = 0 (A.5)

LEMMA A.1 If µ ∈ (−V[l],−V[1]), then Equation (A.5) is satisfied for some:

λ∗ ∈
(

l − 1

l(µ+ V[1])
,

l − 1

l(µ+ V[l])

)

PROOF Define:

fi(µ, λ) := V[i] + µ

1 − (V[i] + µ)λ
and f

µ
i (λ) := fi(µ, λ)

Each f µi has one discontinuity at (V[i] + µ)−1, where f µi is not defined. Therefore∑l
i=1 f

µ
i (λ) is continuous on ((V[1] + µ)−1, (V[l] + µ)−1). Because the partial

derivative:
∂fi

∂λ
= (V[i] + µ)2

[1 − (V[i] + µ)λ]2

is positive unless µ= −V[i], in which case it is zero, we can see that
∑l
i=1 f

µ
i (λ)

is increasing in λ on ((V[1] + µ)−1, (V[l] + µ)−1). Because:

lim
λ↑(V[l]+µ)−1

f
µ
l (λ)= ∞ and lim

λ↓(V[1]+µ)−1
f
µ

1 (λ)= −∞
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there exists λ∗ ∈ ((V[1] + µ)−1, (V[l] + µ)−1) such that
∑l
i=1 f

µ
i (λ

∗)= 0.
In fact, we can find tighter bounds for λ∗ than (V[1] + µ)−1 and (V[l] + µ)−1.

Because:

w∗
1 = p

l
[1 − λ∗(V[1] + µ)]−1 ≤ p and V[1] <−µ⇒ V[1] + µ < 0

we find:

λ∗ > l − 1

l(µ+ V[1])
Likewise, using:

w∗
l = p

l
[1 − λ(V[l] + µ)]−1 ≤ p and − µ< V[l] ⇒ V[l] + µ > 0

we find:

λ∗ < l − 1

l(µ+ V[l])

LEMMA A.2 R
ψ

l is increasing on (−V[l], µ∗
l ) and decreasing on (µ∗

l ,−V[1]),
where µ∗

l is defined as µ∗
l := −(1/ l)∑l

i=1 V[i].

PROOF The empirical likelihood ratio Rψl is maximized at µ∗
l , where the solution

to Maximization Problem I with µ= µ∗
l involves λ∗ = 0, so the optimal weights

are p/l for i = 1, . . . , l and are (1 − p)/(k − l) for i = l + 1, . . . , k. Consider
some µ ∈ (−V[l], µ∗

l ). Let Fµ, with weights {wµi }i=1,...,k, be the distribution at

which R
ψ

l (µ) is attained. Because µ < µ∗
l , Equations (A.2) and (A.4) imply

that λ∗
µ > 0 at the solution to Maximization Problem I. This makes the optimal

weights {wµi }i=1,...,l increasing in i. In the trivial case where V[i] is the same for
all i = 1, . . . , l, the conclusion of the lemma holds; we henceforth assume that
there exist m< n≤ l such that V[m] < V[n]. Because the weights are increasing,
for some ε > 0, wµm =w

µ
n − ε. For any µ′ ∈ (µ, µ+ (ε/2)(V[n] − V[m])), let δ =

(µ′ − µ)/(V[n] − V[m]). Construct F ′ with weights {w′
i}i=1,...,k such that F ′ = Fµ

exceptw′
m = w

µ
m + δ and w′

n = w
µ
n − δ. Because δ ∈ (0, ε/2),w′

mw
′
n > w

µ
mw

µ
n , so

R(F ′) > R(Fµ). This leads to the conclusionRψl (µ
′)≥ R(F ′) > R(Fµ)= R

ψ
l (µ).

We have therefore shown that for all µ ∈ (−V[l], µ∗
l ), R

ψ

l is increasing on a non-

empty open interval whose left endpoint is µ, which in turn proves that Rψl is
increasing on (−V[l], µ∗

l ). A similar analysis for µ> µ∗
l , involving λ∗

µ < 0, proves

that Rψl is decreasing on (µ∗
l ,−V[1]).

APPENDIX B MAXIMIZATION PROBLEM II

Maximization Problem II is more complicated due to the inequality constraints
for Wl and Wl−1. We write wl = p −Wl−1 + δ where δ > 0 so that the con-
straint Wl > p is satisfied. The ES constraint can be written as p(µ+ V[l])=∑l−1
i=1 wi(V[l] − V[i]). Since wl does not appear in the modified ES constraint,

Rint
l (µ) will be attained when wl is as close as possible to wl+1 = · · · =wk =
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(1 −Wl−1)/(k − l + 1) and this implies Wl−1 > p − (1 − p)/(k − l) since δ is
defined to be positive. Then, the problem of finding Rint

l (µ) reduces to solving
the following maximization problem:

maximize
l−1∑
i=1

log(kwi )+ (k − l + 1) log

(
k

1 −Wl−1

k − l + 1

)

subject to
l−1∑
i=1

wi(V[l] − V[i])= p(µ+ V[l])

Wl−1 =
l−1∑
i=1

wi

Wlb < Wl−1 <Wub

(B.1)

where:

Wlb := p − 1 − p

k − l
and Wub := p

The Hessian of the above objective function is an l-dimensional diagonal matrix
with: {

− 1

w2
i

}
i,...,l−1

and − 1

(1 −Wl−1)2

as the diagonal entries and therefore is negative definite. Since a concave function
is maximized subject to linear constraints, there exists a unique global optimum for
the above maximization problem. This maximum can be computed by using the
Lagrangian function:

L =
l−1∑
i=1

log(kwi )+ (k − l + 1) log

(
k

1 −Wl−1

k − l + 1

)

− λ

( l−1∑
i=1

wi(V[l] − V[i])− p(µ+ V[l])
)

− γ

(
Wl−1 −

l−1∑
i=1

wi

)

and the first-order conditions:

0 = ∂L
∂w∗

i

= 1

w∗
i

− λ∗(V[l] − V[i])+ γ ∗, ∀i = 1, . . . , l − 1 (B.2)

0 = ∂L
∂W ∗

l−1
= − k − l + 1

1 −W ∗
l−1

− γ ∗ = 0 (B.3)

are sufficient. Using Equations (B.2) and (B.3), we write:

w∗
i := gi(W

∗
l−1, λ

∗)=
[
k − l + 1

1 −W ∗
l−1

+ λ∗(V[l] − V[i])
]−1

, ∀i = 1, . . . , l − 1

(B.4)
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and obtain the following system of non-linear equations in two unknowns:

W ∗
l−1 −

l−1∑
i=1

gi(W
∗
l−1, λ

∗)= 0

l−1∑
i=1

gi(W
∗
l−1, λ

∗)(V[l] − V[i])− p(µ+ V[l])= 0

LEMMA B.1 The function gi defined in Equation (19) is strictly decreasing in each
of its arguments.

PROOF The partial derivatives of gi with respect to Wl−1 and λ are:

∂gi(Wl−1, λ)

∂Wl−1
= − (k − l + 1)w2

i

(1 −Wl−1)2
(B.5)

∂gi(Wl−1, λ)

∂λ
= −(V[l] − V[i])w2

i (B.6)

which are negative everywhere.

The following lemma provides bounds on µ for which Rint
l (µ) can be found by

solving the first-order conditions for Maximization Problem II. DefineM int
l as a set

which contains µ if and only if Equations (24) and (25) have a solution (W ∗
l−1, λ

∗)
with W ∗

l−1 ∈ (Wlb, Wub).

LEMMA B.2 The set M int
l is an interval (mlo

l , m
hi
l ) such that Equations (24)

and (25) can be solved for µ=mlo
l and Wl−1 =Wlb and for µ=mhi

l and Wl−1 =
Wub. If (Wl−1, λ) and (W̃l−1, λ̃) satisfy the first-order conditions (24) and (25) for
µ and µ̃, respectively, while Wlb ≤Wl−1 < W̃l−1 ≤Wub, then λ̃ < λ and µ̃ > µ.

PROOF The first statement follows from the second, whose proof fol-
lows. Suppose that a pair (Wl−1, λ) with Wl−1 < p solves Equations (24)
and (25) for some µ. This implies that wi = gi(Wl−1, λ) as in Equation (19).
If Wl−1 is increased by δ to W̃l−1 =Wl−1 + δ < p, then gi(W̃l−1, λ) <

gi(Wl−1, λ), ∀i = 1, . . . , l − 1 and
∑l−1
i=1 gi(W̃l−1, λ) <

∑l−1
i=1 gi(Wl−1, λ)=

Wl−1. By Lemma B.1,
∑l−1
i=1 gi(W̃l−1, λ

′)=Wl−1 can be satisfied only for
a unique λ′ < λ. Since V[1], . . . , V[k] are sorted in ascending order, (V[l] −
V[i]) is decreasing in i and the derivative of gi(Wl−1, λ) with respect
to λ given in Equation (B.6) is increasing in i. Therefore, for λ′ <
λ, i < j implies gi(W̃l−1, λ

′)− gi(W̃l−1, λ) > gj (W̃l−1, λ
′)− gj (W̃l−1, λ). If∑l−1

i=1 gi(W̃l−1, λ
′)=∑l−1

i=1 gi(Wl−1, λ) is satisfied, then there exists iδ < l − 1
such that gi(W̃l−1, λ

′)≥ gi(Wl−1, λ) for i ≤ iδ and gi(W̃l−1, λ
′) < gi(Wl−1, λ)

for i > iδ. We define � :=∑iδ
i=1 gi(W̃l−1, λ

′)−∑iδ
i=1 gi(Wl−1, λ) to be the total

increase of w1, . . . , wiδ and
∑l−1
i=iδ+1 gi(Wl−1, λ)−∑l−1

i=iδ+1 gi(W̃l−1, λ
′)= −�

follows from the fact that both the new and original weights add up to Wl−1. We
then plug the new weights into Equation (25) to find the ES µ′ corresponding to
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(W̃l−1, λ
′) by p(µ′ + V[l])=∑l−1

i=1 gi(W̃l−1, λ
′)(V[l] − V[i]). Note that:

p(µ′ + V[l])− p(µ+ V[l])

=
k∑
i=1

[gi(W̃l−1, λ
′)− gi(Wl−1, λ)](V[l] − V[i])

=
iδ∑
i=1

[gi(W̃l−1, λ
′)− gi(Wl−1, λ)](V[l] − V[i])

+
k∑

i=iδ+1

[gi(W̃l−1, λ
′)− gi(Wl−1, λ)](V[l] − V[i])

≥
iδ∑
i=1

[gi(W̃l−1, λ
′)− gi(Wl−1, λ)](V[l] − V[iδ ]) (B.7)

+
k∑

i=iδ+1

[gi(W̃l−1, λ
′)− gi(Wl−1, λ)](V[l] − V[iδ+1])

=�(V[l] − V[iδ ])−�(V[l] − V[iδ+1])
=�(V[iδ+1] − V[iδ])≥ 0

which implies µ′ ≥ µ. Inequality (B.7) follows since:

(V[l] − V[iδ])≤ (V[l] − V[i]) and gi(W̃l−1, λ
′)− gi(Wl−1, λ)≥ 0, ∀i ≤ iδ

and:

(V[l] − V[iδ+1])≥ (V[l] − V[i]) and gi(W̃l−1, λ
′)− gi(Wl−1, λ)≤ 0, ∀i ≥ iδ + 1

Equation (24) for W̃l−1 becomes
∑l−1
i=1 gi(W̃l−1, λ̃)= W̃l−1 >Wl−1, which can

be satisfied only for a unique λ̃ < λ′. Due to monotonicity, gi(W̃l−1, λ̃) >

gi(W̃l−1, λ
′), ∀i = 1, . . . , l − 1 and this implies for the ES µ̃ corresponding to

(W̃l−1, λ̃) that:

p(µ̃+ V[l])=
l−1∑
i=1

gi(W̃l−1, λ̃)(V[l] − V[i])

>

l−1∑
i=1

gi(W̃l−1, λ
′)(V[l] − V[i])

= p(µ′ + V[l])
≥ p(µ+ V[l])

Hence, we have shown that if (Wl−1, λ) and (W̃l−1, λ̃) satisfy the first-order
conditions (24) and (25) forµ and µ̃, respectively, while W̃l−1 >Wl−1, then µ̃ > µ.
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We complete the proof of the lemma by showing that there exist W0 ∈
(Wlb, Wub), λ0, and µ0 such that Equations (24) and (25) are solved with
(Wl−1, λ)= (W0, λ0) and µ= µ0; this proves that M int

l is non-empty. Define

f (Wl−1, λ) :=Wl−1 −∑l−1
i=1 gi(Wl−1, λ), which is increasing in λ by Lemma B.1.

For any W0 ∈ (Wlb, Wub), limλ→∞ f (W0, λ)=W0. Let λlb be the solution of
g1(W0, λlb)=W0. Then 0< gi(W0, λlb)≤W0, ∀i > 1 because the absolute value
of the derivative of gi(W0, λ)with respect to λ given in Equation (B.6) is decreasing
in i. Consequently, f (W0, λlb)=W0 −W0 −∑l−1

i=2 gi(W0, λ) < 0. Because f is
continuous in its second argument over the range [λlb,∞), there exists λ0 such
that f (W0, λ0)= 0, ie, Equation (24) holds forWl−1 =W0 and λ= λ0. Then µ0 is
chosen to satisfy Equation (25).

The following lemma justifies the way in which root-finding is used to determine
the endpoints of confidence intervals and the rectangles that make up confidence
regions.

LEMMA B.3 If

• l ≤ kp: Rint
l is decreasing on (mlo

l , m
hi
l ) and the supremum of Rint

l on
(mlo

l , m
hi
l ) is Rint

l (m
lo
l ), where the first-order conditions with µ=mlo

l are
solved atW ∗

l−1 =Wlb = p − (1 − p)/(k − l) and λ∗ < 0.

• kp< l < kp + 1: Rint
l is increasing on (mlo

l , T (Fk)) and decreasing on
(T (Fk), m

hi
l ) and the supremum of Rint

l on (mlo
l , m

hi
l ) is Rint

l (T (Fk))= 1,
where the first-order conditions with µ= T (Fk) are solved at W ∗

l−1 =
(l − 1)/k and λ∗ = 0.

• l ≥ kp + 1: Rint
l is increasing on (mlo

l , m
hi
l ) and the supremum of Rint

l on
(mlo

l , m
hi
l ) is Rint

l (m
hi
l ), where the first-order conditions with µ=mhi

l are
solved atW ∗

l−1 =Wub = p and λ∗ > 0.

PROOF Consider the set F∗
l of all points (W ∗

l−1, λ
∗, µ) such that the first-

order conditions of Maximization Problem II are satisfied for W ∗
l−1 ∈ (0, 1).

This includes the point ((l − 1)/k, 0, T (Fk)), corresponding to equal weights
w∗

1 , . . . , w
∗
k = 1/k.

This point is feasible if and only if (l − 1)/k ∈ (Wlb, Wub), that is, kp< l < kp +
1, and in this case Rint

l (T (Fk))= 1, the largest possible empirical likelihood ratio.
It follows from Lemma B.2 that if (Wl−1, λ, µ) and (W̃l−1, λ̃, µ̃) are in F∗

l while
µ < µ̃ < T (Fk), then Wl−1 < W̃l−1 < (l − 1)/k and λ > λ̃ > 0. Because Wl−1 <

W̃l−1 < (l − 1)/k, the average weight in the tail (ie, wi for i = 1, . . . , l − 1) is
“too small”, that is, less than 1/k, in the solution to Maximization Problem II with
µ̃ and it is even less in the solution with µ. Because λ > λ̃ > 0, the weights in the
tail are unequal to each other in the solutions to Maximization Problem II with µ
or with µ̃, and they are more distorted in the solution with µ. Both of these effects
cause Rint

l (µ) < R
int
l (µ̃). Thus Rint

l is increasing on (−V[k], T (Fk)]. By similar
reasoning, it is decreasing on [T (Fk),−V[1]).

Next consider the case l ≥ kp + 1. In this case, ((l − 1)/k, 0, T (Fk)) is infea-
sible because (l − 1)/k ≥ p =Wub. By Lemma B.2, (mlo

l , m
hi
l )⊂ (−V[k], T (Fk)]

and the conclusion follows.
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Finally, consider the case l ≤ kp, where ((l − 1)/k, 0, T (Fk)) is infeasible
because (l − 1)/k ≤Wlb. The conclusion follows in a similar manner from
(mlo

l , m
hi
l )⊂ (T (Fk),−V[1]).

REFERENCES

Acerbi, C. (2002). Spectral measures of risk: a coherent representation of subjective risk
aversion. Journal of Banking and Finance 26, 1505–1518.

Acerbi, C., and Tasche, D. (2002). On the coherence of expected shortfall. Journal of
Banking and Finance 26, 1487–1503.

Agresti, A., and Coull, B. A. (1998). Approximate is better than exact for interval estimation
of binomial proportions. The American Statistician 52(2), 119–126.

Artzner, P., Delbaen, F., Eber, J., and Heath, D. (1999). Coherent measures of risk.
Mathematical Finance 9, 203–228.

Chang, Y. P., Hung, M. C., and Wu, Y. F. (2003). Nonparametric estimation for risk in
value-at-risk estimator. Communications in Statistics: Simulation and Computation 3,
1041–1064.

Chen, S. X., and Hall, P. (1993). Smoothed empirical likelihood confidence intervals for
quantiles. Annals of Statistics 21(3), 1166–1181.

Chernick, M. R. (1999). Bootstrap Methods: A Practitioner’s Guide. John Wiley & Sons.

Clopper, C. J., and Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated
in the case of the binomial. Biometrika 26(4), 404–413.

Dagpunar, J. (1988). Principles of Random Variate Generation. Clarendon Press, Oxford.

Davison, A. C., and Hinkley, D. V. (1997). Bootstrap Methods and their Application.
Cambridge University Press.

Dowd, K. (2005). Estimating risk measures. Financial Engineering News 43, 13.

Durrett, R. (1996). Probability: Theory and Examples. Duxbury Press.

Hardy, M. (2006). Simulating VaR and CTE. Financial Engineering News 47, 17.

Hesterberg, T. C., and Nelson, B. L. (1998). Control variates for probability and quantile
estimation. Management Science 44(9), 1295–1312.

Hong, L. J. (2006). Estimating value and sensitivities of conditional value-at-risk. Unpub-
lished manuscript, Department of Industrial Engineering and Logistics Management,
Hong Kong University of Science and Technology.

Lan, H., Nelson B. L., and Staum, J. (2007). Two-level simulations for risk management.
Proceedings of the 2007 INFORMS Simulation Society Research Workshop, 102–107.

Manistre, B. J., and Hancock, G. H. (2005). Variance of the CTE estimator. North American
Actuarial Journal 9, 129–154.

Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional.
Biometrika 75, 237–249.

Owen, A. B. (1990). Empirical likelihood ratio confidence regions. The Annals of Statistics
18, 90–120.

Owen, A. B. (2001). Empirical Likelihood. Chapman & Hall/CRC.

Research Paper www.thejournalofrisk.com



32 R. E. Baysal and J. Staum

Peng, L., and Qi, Y. (2006). Confidence regions for high quantiles of a heavy tailed
distribution. Annals of Statistics 34, 1964–1986.

Rockafellar, R. T., and Uryasev, S. (2000). Optimization of conditional value-at-risk. The
Journal of Risk 2(3), 21–41.

Rockafellar, R. T., and Uryasev, S. (2002). Conditional value-at-risk for general loss distribu-
tions. Journal of Banking and Finance 26, 1443–1471.

Shao, J., and Tu, D. (1995). The Jackknife and Bootstrap. Springer.

Sheather, S. J., and Marron, J. S. (1990). Kernel quantile estimators. Journal of the American
Statistical Association 85, 410–416.

Silverman, B. W. (1978). Weak and uniform consistency of the kernel estimate of a density
function and its derivatives. The Annals of Statistics 6, 177–184.

Staudte, R. G., and Sheather, S. J. (1990). Robust Estimation and Testing. John Wiley &
Sons.

Yamai, Y., and Yoshiba, T. (2002). Comparative analyses of expected shortfall and value-at-
risk: Their estimation error, decomposition, and optimization. Monetary and Economic
Studies 20(1), 87–121.

Zhou, W., and Jing, B.-Y. (2003). Adjusted empirical likelihood method for quantiles. Annals
of the Institute of Statistical Mathematics 55(4), 689–703.

The Journal of Risk Volume 11/Number 1, Fall 2008


