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Abstract

This paper considers a variation of the Elementary Constrained Shortest Path Problem in

which nodes are separated into subsets and a feasible path through the network may visit at

most one node from each subset. We refer to this problem as the Multiple Choice Elementary

Constrained Shortest Path Problem (MC-ECSPP). The MC-ECSPP arises as a subproblem in

branch-and-price approaches for variations of the vehicle routing problem in which the nodes

to be visited are chosen among subsets. We present methods to obtain bounds and feasible

solutions for the MC-ECSPP. Further, we incorporate these methods into a branch-and-price

approach to solve a variation of the vehicle routing problem.

This paper introduces a variation of the Elementary Constrained Shortest Path Problem (EC-

SPP), also known as the Elementary Shortest Path Problem with Resource Constraints or Time

Windows. The ECSPP ¯nds a path of minimum cost between a source node and a sink node,

visiting each node in the network at most once. The path may be constrained by the travel time

of the path and time windows on the nodes. We consider a variation of the ECSPP in which nodes

are separated into subsets and a feasible path through the network may visit at most one node from

each subset. We refer to this problem as the Multiple Choice Elementary Constrained Shortest

Path Problem (MC-ECSPP). The MC-ECSPP is de¯ned on a directed network of nodes and arcs,

with a cost and a non-negative travel time associated with each arc. The set of nodes is divided

into subsets. The MC-ECSPP ¯nds a path with the minimum total cost that visits at most one

node from each subset, constrained by the travel time of the path and time windows on nodes.

In this paper, we analyze the MC-ECSPP and develop methods to obtain bounds and feasible

solutions, making use of recent advances in solution methods for the ECSPP. As shown in this paper,

the MC-ECSPP is important because it arises as a subproblem in a branch-and-price method for a

variation of the vehicle routing problem, known as the Multi-Resource Routing Problem (MRRP).

Therefore, the second part of the paper incorporates the solution and bounding methods for the

MC-ECSPP in a branch-and-price approach for the MRRP. We show that these methods can

improve the implementation of a branch-and-price method for the MRRP.
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Section 1 discusses the motivation for the MC-ECSPP and reviews work on related shortest path

problems. Section 2 presents the formulation of the MC-ECSPP. Section 3 introduces bounding

and solution methods for the MC-ECSPP, and Section 4 incorporates these methods within a

branch-and-price approach for the MRRP. Section 5 summarizes the paper.

1 Background

The ECSPP arises frequently as a pricing problem in branch-and-price approaches to solve the

Vehicle Routing Problem (VRP) and variations of the VRP, including the Pickup and Delivery

Problem; see, for example, Dumas et al. (1991); Desrochers et al. (1992) and Savelsbergh and

Sol (1998). When the number of vehicle routes is excessively large, column generation reduces

the computational e®ort required to solve the linear relaxation of the VRP at the nodes of the

branch-and-price tree by considering a reduced subset of routes. New routes are added to this

subset according to a pricing problem which searches for routes with negative reduced costs. The

pricing problem is often solved as an ECSPP, starting and ending at the depot, with costs that are

determined by the dual values from the linear relaxation of the master problem.
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S2

(a) MRRP example: original graph

depot

(b) Node-based transformed graph
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Execution arc
Repositioning arc

Node 3:  
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Node 1:  
Y1→ S1

Figure 1: An example of a multi-resource routing problem with °exible tasks

We consider a variation of VRP in which the nodes to be visited are chosen among options

within subsets. Such problems occur in drayage operations (i.e., loaded and empty tractor and

trailer trips between rail yards, shippers, and consignees). Vehicle routes serve tasks that can

be satis¯ed by several possible executions. A task is °exible if it involves a choice of origin or

destination. For example, supplying a shipper with an empty trailer is a °exible task if the origin

2



of the trailer is chosen among several locations, such as equipment yards or consignees with empty

trailers to reposition. A task is ¯xed if only one execution is possible. We refer to this problem as

the Multi-Resource Routing Problem (MRRP), see Smilowitz (2006). An example is provided in

Figure 1. In Figure 1(a), there are two tasks to be performed by tractors from a depot: a trailer

supply from equipment yard Y1 to shipper S1 and a trailer supply to shipper S2 from yard Y2 or

consignee C1. Dotted lines represent tractor movements between tasks; solid lines represent task

executions.

In Figure 1(b), the MRRP graph is transformed to model the problem as an asymmetric VRP.

The nodes (representing executions) are partitioned into subsets (representing tasks). For ¯xed

tasks, such as Y1 to S1, subsets contain only one node; for °exible tasks, such as the trailer supply

to S2, subsets contain a node for each feasible execution. The VRP solution must visit exactly one

node in each subset. The VRP can be solved with a branch-and-price method, with modi¯cations

in the pricing problem for °exible tasks. The pricing problem can be modeled as an MC-ECSPP

to ¯nd the shortest path in terms of cost, beginning and ending at the depot, visiting at most one

node from each subset.

1.1 The Multi-Resource Routing Problem

The MRRP designs routes to serve tasks which may have a choice in executions. The tasks are

represented by the set T ; each task k 2 T is satis¯ed by an execution chosen from the set Ek. Let R

denote the set of feasible routes, with cost cr for r 2 R. For task k 2 T , let ±re equal 1 if execution

e 2 Ek is on route r 2 R and 0 otherwise. The decision variable yr indicates whether or not route

r 2 R is chosen. The set partitioning formulation of the MRRP is:

min
X
r2R

cryr (1a)

subject toX
r2R

X
e2Ek

±reyr ¸ 1 8k 2 T (1b)

yr 2 f0; 1g 8r 2 R (1c)

The objective function (1a) minimizes the cost of all routes chosen. We de¯ne cr to minimize

°eet size as the primary objective and travel cost as the secondary objective. Equations (1b)

ensure that one execution of each tasks is chosen. With the triangle inequality in route costs, these

constraints hold at equality. Equations (1c) de¯ne the binary decision variables for each route.
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Smilowitz (2006) proposes a branch-and-price algorithm to solve formulation (1). At each node

of the branch-and-price tree, column generation is used to solve the linear relaxation of formulation

(1) with a restricted route set R0, rather than enumerating all routes in R. The pricing problem to

generate candidate routes is solved to optimality for small problem instances with an exact method

based on k-cycle elimination from Irnich and Villeneuve (2004) adapted to allow for the multiple

choice subsets. Larger instances are solved with a trip insertion heuristic.

1.2 Related shortest path problems

E±cient solution methods for the ECSPP, shown in Dror (1994) to be NP-hard, are critical for

implementing branch and price for the VRP. Desrosiers et al. (1995) and Irnich and Desaulniers

(2004) review solution methods for the ECSPP. One approach is to relax the elementary path con-

straints and use label correcting or label setting methods for the constrained shortest path problem

(CSPP). However, this approach can produce weak lower bounds for cyclic graphs with negative arc

costs, see Feillet et al. (2004). Irnich and Villeneuve (2004) and Feillet et al. (2004) develop e±cient

methods of eliminating cycles, building on the 2-cycle elimination method by Kolen et al. (1987).

Feillet et al. (2004) show how data requirements increase signi¯cantly when using a label-correcting

approach to the ECSPP. These di±culties are compounded with the existence of node subsets in

the MC-ECSPP. The number of non-dominated paths that must be maintained throughout the

labeling algorithm grows prohibitively large in the MC-ECSPP; see Smilowitz (2006).

Constraints on the nodes visited along a path, similar to those in the MC-ECSPP, appear

in variations of the CSPP on acyclic graphs. Villeneuve and Desaulniers (2005) introduce the

CSPP with forbidden paths, where a set of pre-speci¯ed sub-paths are explicitly prohibited from

feasible solutions. Although the MC-ECSPP can be formulated as an extension of this problem,

the elementary path and multiple-choice constraints become too large to enumerate even for small

problem instances. Crainic and Florian (2005) consider a problem similar to the MC-ECSPP on an

acyclic graph which ¯nds the shortest path through a \logistics chain" which chooses tasks within

node subsets. The solution methods are di±cult to apply to the MC-ECSPP when the graph has

negative cost cycles.

The MC-ECSPP combines the elementary constraints of the ECSPP and the multiple choice

constraints of the CSPP variations discussed above. Algorithms for the ECSPP do not adapt well

to the complications of the MC-ECSPP, as shown in Smilowitz (2006). In this paper, we show how

this can be resolved with modi¯cations to the MC-ECSPP.
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2 The multiple choice elementary constrained shortest path prob-

lem

The MC-ECSPP is solved on a directed graph G = fN;Ag of nodes N and arcs A. Let node i = 0

denote the source node and i = n denote the sink node. The node set Nnf0; ng is partitioned

into K subsets, fN1; N2; :::NKg. Each arc (i; j) 2 A has a travel time, tij , which is nonnegative

and a cost, cij , which is unrestricted in sign. When the MC-ECSPP occurs as a subproblem in

branch-and-price methods for the MRRP, arc costs may be negative due to dual values; i.e., ¼i for

node i 2 Nk, related to constraints (1b) for task k: cij = ¼i + tij . Note that there are no arcs

between nodes within the same subset. The duration of an execution represented by node i can be

included in the calculation of tij . The time window for visiting node i is [ai; bi]. The total length

of any path cannot exceed L, which may represent a driver work shift.
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Figure 2: Example of a multiple choice elementary constrained shortest path problem

Figure 2 presents an example of an MC-ECSPP instance. There are three subsets (N1; N2;N3)

that can be visited between the source node 0 and the sink node 5. Subsets N1 and N2 each consist

of a single node, and subset N3 consists of two nodes (3 and 4). The ¯gure shows the time window

for each node, and travel time and cost of each arc. Only feasible arcs are shown, which do not

violate time window constraints or path length constraints. Since an arc of zero cost from the

source to the sink always exists, there will always be a feasible solution to the MC-ECSPP.

Let xij = 1 if arc (ij) 2 A is in the shortest path and 0 otherwise. Let Ti denote the time at

which node i 2 N is visited on the path. The MC-ECSPP is formulated as follows.
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min
X
(i;j)2A

cijxij (2a)

subject to

X
j2N :(i;j)2A

xij ¡
X

j2N :(j;i)2A
xji =

8>>>>><>>>>>:
1 i = 0

0 8i 2 N n f0; ng

¡1 i = n

(2b)

X
i2Nk

X
j2N :(i;j)2A

xij · 1 8k = 1::K (2c)

xij (Ti + tij ¡ Tj) · 0 8(i; j) 2 A (2d)

ai · Ti · bi 8i 2 N (2e)

Tn ¡ T0 · L (2f)

xij 2 f0; 1g 8(i; j) 2 A (2g)

The objective function (2a) minimizes the path cost. Constraints (2b) force the path to begin at

the source node and end at the sink node and maintain °ow balance at the other nodes. Constraints

(2c) ensure that at most one node in each subset appears on the path. Constraints (2d) and (2e)

enforce time windows at the nodes. Constraint (2f) limits the resources consumed by the path.

Constraints (2g) de¯ne arc variables as binary decisions.

Dror (1994) shows that the ECSPP is NP-Hard. The MC-ECSPP is NP-Hard since an ECSPP

instance can be transformed in polynomial time to an MC-ECSPP instance in which each subset

consists of a single node. It is critical to reduce problem size when possible. Removing dominated

nodes can reduce the size of an MC-ECSPP instance. We de¯ne a dominated node as follows.

De¯nition 1 Node i 2 Nk is dominated by node j 2 Nk if

1. tli ¸ tlj and til ¸ tjl 8l 2 NnNk

2. cli ¸ clj and cil ¸ cjl 8l 2 NnNk

3. ai ¸ aj and bi · bj

According to De¯nition 1, node i 2 Nk is dominated by node j 2 Nk if node i has (1) equal or

longer travel times to and from all nodes not in Nk, (2) equal or higher costs to and from all nodes
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not in Nk, and (3) an equal or smaller time window. Node i can be removed from Nk because of

node dominance. If, for all subsets, the nodes in the subset are dominated by one node, then each

subset can be reduced to a single node, and the MC-ECSPP becomes an ECSPP.

3 Solution method

This section presents solution and bounding methods for the MC-ECSPP. The di±culties in solving

the MC-ECSPP arise from the combination of multiple choice and elementary path constraints,

see Table 1. Smilowitz (2006) considers both constraints with an exact k-cycle method. Memory

requirements for labels limit the use of this method to small instances. We develop a two-phase

method to decompose the problem into an aggregated bounding subproblem involving only elemen-

tary path constraints and an expansion subproblem involving only multiple choice constraints.

Multiple choice 
constraints

Elementary 
constraints

MC-ECSPP
• Adapted K-cycle: Smilowitz (2006)

Two-phase method
• Aggregated bounding subproblem

- Lower bound: §3.1.1
- Conservative upper bound: § 3.1.2
- One-node upper bound: § 3.1.3

• Expansion subproblem §3.2

Table 1: Overview of solution and bounding methods for the MC-ECSPP

Section 3.1 presents the aggregated bounding subproblems for lower and upper bounds, in which

nodes in each subset are aggregated into a single node and an ECSPP is solved on the aggregated

network. Section 3.2 presents the expansion subproblems for feasible solutions to the MC-ECSPP,

in which the aggregated solution path is expanded by choosing one original node from each subset

along the path. Initially, all node subsets are disjoint. In Section 3.3, the two-phase method is

generalized to include non-disjoint node subsets.

3.1 Aggregated bounding subproblem: disjoint subsets

We present aggregated subproblems that result in bounds for the MC-ECSPP. Approaches to de-

termine the properties of the aggregated nodes (cost, travel time, and time windows) are introduced

for lower bounds in Section 3.1.1, and for upper bounds in Sections 3.1.2 and 3.1.3.
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3.1.1 Lower bounds: disjoint subsets

We obtain lower bounds on the MC-ECSPP solution by aggregating nodes within each subset into

a single node with the best (possibly infeasible) combination of subset parameters. The aggregated

graph G+LB = fN+
LB; A

+
LBg is de¯ned as follows. The node set N+

LB consists of K + 2 nodes,

with one node representing each subset, and the source and sink nodes. The time windows of

the aggregated nodes are de¯ned by the widest limits of the original subset. For k 2 f1 : : :Kg,

a+k = mini2Nk ai and b+k = maxi2Nk bi. The arc set A+LB consists of all feasible arcs connecting

the nodes of N+
LB. The travel time for an arc between the aggregated nodes for subsets k and l is

de¯ned as: t+kl = mini2Nk;j2Nl tij and the cost is: c+kl = mini2Nk;j2Nl cij . Arcs to/from the depot are

de¯ned in the same manner. An ECSPP is solved on the aggregated graph using a label correcting

method that incorporates the k-cycle elimination method of Irnich and Villeneuve (2004).

Theorem 1 The optimal solution to the aggregated problem as de¯ned above is a lower bound on

the shortest path through the original MC-ECSPP network.

Proof: Let Z(G) denote the cost of the shortest path for the original graph, G = fN;Ag, and let

Z(G+LB) denote the cost of the shortest path for the aggregated graph, G+LB = fN+
LB; A

+
LBg. Let

G0 = G [ G+LB , whose optimal solution has a cost Z(G0). Since G µ G0, then Z(G) ¸ Z(G0). In

G0, nodes from G+LB dominate nodes from G according to De¯nition 1; thus nodes from G can be

eliminated from G0 and Z(G0) = Z(G+LB). As a result, Z(G) ¸ Z(G+LB). 2

(a) Lower bound graph
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(b) Lower bound solution path
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Figure 3: Node aggregation for lower bounds

Figure 3 illustrates how a lower bound is created for the original example from Figure 2. We

focus on the aggregation of subset N3, since N1 and N2 each contain one node. The time window

for the aggregated node is [1; 3], which is large enough to encompass both nodes in N3. The arc
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lengths and costs in to and out of the aggregated node for N3 assume their lowest values. Solving

an ECSPP over the aggregated network yields the following solution: 0¡ 3¡ 1¡ 5 with a length of

3 units and a cost of -3 units, which is a lower bound on the optimal solution to the MC-ECSPP.

3.1.2 Conservative upper bounds: disjoint subsets

While the lower bound aggregation assumes the best parameter values, the conservative upper

bound aggregation is obtained by taking the most restrictive values to form G+UBc = fN+
UBc

; A+UBcg.

The time windows of the aggregated nodes are de¯ned by the narrowest limits. For k 2 f1 : : :Kg,

a+k = maxi2Nk ai and b+k = mini2Nk bi. If ak > bk, the aggregated node for subset k is removed.

Between subsets k and l, t+kl = maxi2Nk;j2Nl tij and c+kl = maxi2Nk;j2Nl cij . If at least one arc

between subsets is infeasible, no arc is created between the aggregated nodes. Arcs to/from the

depot are de¯ned in the same manner. An ECSPP is solved on the aggregated graph.

Theorem 2 The optimal solution to the aggregated problem as de¯ned above produces an upper

bound on the shortest path through the original MC-ECSPP network.

Proof: Let Z(G) denote the cost of the shortest path for the original graph, G = fN;Ag, and let

Z(G+UBc) denote the cost of the shortest path for the aggregated graph, G+UBc = fN+
UBc

; A+UBcg. Let

G0 = G[G+UBc , whose optimal solution has a cost Z(G0). Since G+UBc µ G
0, then Z(G+UBc) ¸ Z(G0).

In G0, nodes from G dominate nodes from G+UBc according to De¯nition 1; thus nodes from G+UBc

can be eliminated from G0 and Z(G0) = Z(G); thus, Z(G+UBc) ¸ Z(G). 2

(a) Conservative upper bound graph
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(b) Conservative upper bound solution paths
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Figure 4: Node aggregation for upper bounds

In Figure 4, the MC-ECSPP graph from Figure 2 is aggregated to obtain an upper bound.

The time window for the aggregated node for subset N3 is [2; 2]. The arc lengths and costs in to
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and out of the aggregated node for N3 assume their highest values. There are two optimal paths:

0¡ 3¡ 2¡ 5 and 0¡ 1¡ 5, each with a cost of -2 units.

Some connections between subsets may become infeasible as a result of the conservative aggre-

gation. In the original MC-ECSPP graph in Figure 2, it is possible to move from subset N3 to

subset N1 via arc (1; 3), yet it is not possible to do so in the aggregated graph since arc (2; 3) in

the original graph is not feasible. As a result, the upper bound graph is often substantially smaller

than the original MC-ECSPP graph. This can lead to quick solution times, but poor upper bounds.

3.1.3 One-node upper bounds: disjoint subsets

We can improve the conservative upper bound by choosing one node within each subset to represent

the aggregated node rather than creating an arti¯cial node. Unlike the previous aggregation meth-

ods, the one-node upper bound always represents a feasible solution to the original MC-ECSPP.

Two criteria are considered when selecting the representative node: time window length and

average travel times. A node with a wide time window and low connecting distances to other subsets

is preferred. We evaluate nodes based on their distances to the p closest subsets to eliminate the

impact of outliers which will not likely appear in the optimal solution. Let ¯1i denote the length of

the time window of node i (¯1i = bi¡ai; 8i 2 N) and ¯2i (p) denote the average minimum distance

from node i to the p closest subsets. We obtain ¯2i (p) as follows.

For all k 2 f1::Kg and i 2 Nk:

(i) til = (minj2Nl tij + minj2Nl tji)=2 8l 2 f1::K : l6= kg.

if arc (i; j) is not feasible, tij = L

(ii) Sort the til values in ascending order

(iii) ¯2i (p) is the average of the p minimum til values

Let ® be a parameter to weight the relative importance of the two criteria. Subset k is rep-

resented by node j 2 Nk such that j = arg maxi2Nk
¡
¯1i ¡ ®¯2i (p)

¢
. All other nodes are removed

from the graph. Based on computational results, we use p = K=2 and ® =

P
i2Nk ¯

1
iP

i2Nk (¯
1
i+¯

2
i (p))

.

Theorem 3 The optimal solution to the aggregated problem as de¯ned by the one-node upper bound

produces a tighter upper bound on the shortest path through the original MC-ECSPP network than

the conservative upper bound.

Proof: Let Z(G) denote the cost of the shortest path for the original graph, G = fN;Ag, and

let Z(G+UB1) denote the cost of the shortest path for the one-node aggregated graph, G+UB1 =
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fN+
UB1

; A+UB1g. Since G+UB1 µ G, Z(G+UB1) ¸ Z(G). Let Z(G+UBc) denote the cost of the

shortest path for the conservative upper bound aggregated graph, G+UBc = fN+
UBc

; A+UBcg. Let

G0 = G+UB1 [ G
+
UBc

, whose optimal solution has a cost Z(G0). In G0, nodes from G+UB1 dominate

nodes from G+UBc according to De¯nition 1 and nodes from G+UBc can be eliminated from G0, so

that Z(G0) = Z(G+UB1). Since Z(G+UBc) ¸ Z(G0), then Z(G+UB1) · Z(GUBc)
+. 2

3.2 Expansion subproblem: disjoint subsets

The expansion subproblem transforms the solution path from the aggregated bounding subproblem

(lower or upper bound) into a feasible solution to the original MC-ECSPP. With a few modi¯cations

noted below, the expansion subproblem is the same for lower and upper bounds. The one-node

upper bounds are feasible, yet solutions can be improved by performing an expansion subproblem.

The aggregated graph is expanded to include all nodes within each subset along the shortest

path in the aggregated solution. We de¯ne the shortest path P+ for the aggregated problem by the

nodes N(P+) and arcs A(P+) along the path. The expansion graph G¡ = fN¡; A¡g is de¯ned as

follows. The node set N¡ consists of the nodes in the subsets along the solution path: i 2 Nk for

all k 2 N(P+), and the source and sink nodes. The original time windows are restored for nodes

in N¡. The arcs along the shortest path are expanded to connect individual nodes in the subsets

with the original travel times and costs. The set A¡ consists of arcs (i; j) 2 A for all i 2 Nk; j 2 Nl
such that (k; l) 2 A(P+). When expanding a lower bound solution, additional arcs are included to

bypass node subsets along the path if no node within the subset is feasible. Since arcs are directed

along the direction of P+ and there are no arcs between nodes within a subset, the expanded graph

is acyclic. The choice of nodes visited within the subsets is solved as a CSPP on an acyclic graph.

(b) Feasible solution path
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Figure 5: Expansion subproblem example: expanding the lower bound from Figure 3
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In Figure 5, the aggregated lower bound solution from Figure 3 (0¡ [N3]¡ [N1]¡5) is expanded

to obtain a feasible solution to the MC-ECSPP. Nodes from the subset N2 do not appear since the

aggregated node for N2 is not part of the solution path. The solution to the expansion subproblem

is 0¡ 3¡ 1¡n with a length of 3 units and a cost of -3 units. Since this path represents a feasible

solution and the cost is equal to the lower bound, the solution is optimal.

3.3 Non-disjoint node subsets

In this section, the aggregated and expansion subproblems are generalized to allow for non-disjoint

node subsets in which a node may appear in one or two subsets. Such non-disjoint subsets often

arise when modeling drayage operations. Consider the example in Figure 6(a) with three °exible

tasks: (i) Consignee (C) needs to reposition an empty trailer; (ii) Shipper (S1) needs an empty

trailer; and (iii) Shipper (S2) also needs an empty trailer. The equipment yard which can receive

and supply empty trailers. Additionally, the empty trailer from the consignee can be moved directly

to one of the shippers, thus eliminating one trailer movement.

(a) Original graph

C

S1 S2

Consignee

E
Equipment yard

Shipper 1 Shipper 2

(b) MC-ESCPP graph

N1

N2 N3

1 2

3

4 5

execution 2execution 1

execution 5execution 4

execution 3

Figure 6: Non-disjoint node subsets

In Figure 6(b), the original graph is transformed into an MC-ECSPP graph with non-disjoint

subsets. Execution 1 from C to S1 appears in the subset for the task from the consignee (N1),

since this execution satis¯es the need to move an empty trailer, and the subset for shipper 1 (N2),

since this execution also satis¯es the need for an empty trailer. Likewise, execution 2 from C to

S2 appears in subsets N1 and N3. Executions involving the equipment yard and the consignee and

shippers (3,4, and 5) appear in their respective subsets. An execution can satisfy at most two tasks.

Section 3.3.1 presents lower bound subproblems and associated expansion subproblems for non-

disjoint node subsets. Section 3.3.2 present upper bound methods.
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3.3.1 Lower bounds: non-disjoint subsets

We present two options for incorporating non-disjoint subsets into the lower bound and expansion

subproblems by relaxing certain constraints for non-disjoint sets. Recall that the cost of an arc

includes the travel time and the bene¯t of visiting a node: cij = tij + ¼i.

Lower bound 1 (LB1): The ¯rst option relaxes the constraint that one execution can satisfy at

most two tasks. All intersecting subsets are collapsed into a single node with the bene¯ts (dual

values) of all tasks. The same aggregation algorithm for the disjoint case is used; however, instead

of one subset, a collection of subsets is collapsed into a single node. Let Ár represent the set of

subsets aggregated in a single node r and let Nr represent the set of nodes in r. The time window

for r is [ar; br] where a+r = mini2Nr ai and b+r = maxi2Nr bi. The travel time on arc (r; s) from

node r to node s (which may itself be a collection of subsets) is t+rs = mini2Nr;j2Nstij . The cost

of arc (r; s) is c+rs = mini2Nr;j2Nstij +
P
k2Ár mini2Nk¼i(k), where ¼i(k) is the portion of the

bene¯t associated with subset Nk from visiting node i. The resulting solution is a lower bound to

the original problem since the maximum bene¯t,
P
k2Ár mini2Nk¼i(k), can be achieved with the

minimum resource consumption. The maximum bene¯t may be infeasible; for example, in Figure

6, if executions 4 and 5 did not exist, it would not be possible to serve all three tasks.

Expanding solution paths from LB1 can be performed in several ways. In one method, at most

one node within each combined subset is chosen. Arcs are created from nodes in a subset to nodes

in other subsets along the solution path, but no paths exist to connect nodes within the subset.

Therefore, only one node may be selected from each aggregation of subsets even if it is possible to

serve additional tasks. This may result in a poor feasible solution if multiple subsets are collapsed

into a single subset. In the example in Figure 6, it is possible to serve all three tasks by selecting

nodes 4 and 2 or nodes 1 and 5, yet this version of the expansion subproblem would not allow such

a solution. Alternatively, more than one node can be chosen as long as the nodes do not satisfy

the same original task in the MC-ECSPP. This can be achieved by allowing arcs between nodes

within a subset which do not serve the same task. In Figure 6, allowable arcs may be (4,3), (4,2)

and (3,4). However, the expansion graph is likely to be cyclic and the problem begins to resemble

the original MC-ECSPP in terms of complexity. A compromise between these methods allows arcs

between nodes, as long as no cycles are created. The following algorithm creates acyclic graphs.

Let U denote the set of unassigned nodes and A the set of assigned nodes. To maintain an acyclic

graph, arcs are only created between an assigned node and an unassigned node.
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For each aggregated node r visited on the solution path:

Step 0: Initialization: U = Nr and A = ;

Step 1: Order nodes i 2 U by ai in ascending order (using bi ¡ ai as the tie-breaker)

Step 2: Select node i at the top of the list in U :

(i) A = A[ fig

(ii) U = Unfig

(iii) for all j 2 U , add arc (i; j) to A¡ if feasible

Step 3: Repeat step 2 while U 6= ;

Clearly, the sequence for this algorithm will impact the solution. In Section 3.4, we test LB1

(a) without arcs between nodes within a subset and (b) with acyclic connections within subsets.

Lower bound 2: (LB2) The second option relaxes the constraint that connects tasks served by

the same execution (an execution from a consignee to a shipper satis¯es the task at the shipper

and the task at the consignee). Each execution that serves two tasks is duplicated and the copies

are placed in disjoint subsets. For the Figure 6 example, execution 1 is copied to form 10, and

execution 2 is copied to form 20. Subset N1 contains nodes 1, 2, and 3; N2 contains nodes 10 and

4; and N3 contains nodes 20 and 5. The problem is solved as a disjoint lower bound problem.

In the expansion subproblem, the constraints linking tasks are reintroduced in the labeling

procedure. An additional label records the tasks served for each candidate path: if a node is visited

that serves two tasks, both tasks are recorded in the label when the ¯rst node is visited.

3.3.2 Upper bounds: non-disjoint subsets

Non-disjoint subsets can be incorporated easily into the conservative upper bound by removing

nodes that appear in multiple subsets. For the one-node upper bound, the node selection problem

described in Section 3.1.3 no longer separates by subsets. We introduce the following node selection

procedure. Let wi equal 1 if node i is chosen as a representative node, and 0 otherwise.

max
X
i2N

¡
¯1i ¡ ®¯2i (p)

¢
wi (3a)

subject toX
i2Nk

wi = 1 8k = 1; ;K (3b)

wi 2 f0; 1g 8i 2 N (3c)
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The objective function (3a) ¯nds the combination of representative nodes that maximizes the

time window and average distance function. Constraints (3b) ensure that a representative node is

chosen for each subset. Constraints (3c) de¯ne the binary selection variables.

The one-node expansion subproblem combines the expansion methods for LB1 and LB2, since

issues related to both relaxations must be considered. If a representative node that appears in two

subsets is chosen for the aggregated problem, then the expansion graph is constructed such that

graph is acyclic, as in LB1. The expansion subproblem also must include the possibility of choosing

a node that appears in two subsets. In this case, the expansion paths must include additional labels

to record the tasks served.

3.4 Computational results

The algorithms are implemented using C with the CPLEX Callable Library Interface and the

CPLEX 8.1 solver, running on a Sun Fire v250 1.28-GHz UltraSPARC IIIi computer with two

processors. Section 3.4.1 describes the test cases. Section 3.4.2 presents the performance of the

solution methods for disjoint test cases and Section 3.4.3 presents results for non-disjoint test cases.

3.4.1 Test cases

The algorithms are tested with a set of test cases on a network de¯ned within a 5 by 5 square area.

The test cases are grouped by problem characteristics (number of nodes, number of subsets, disjoint

or non-disjoint subsets). The number of nodes (executions) and subsets (tasks) for the test cases

range from 25 to 150 and 5 to 25, respectively. The characteristics for the test cases are shown in

Table 2. Ten randomly generated instances are created for each group of characteristics. Travel

times between nodes, tij , are based on Euclidean distances in the network. The total travel time

on a path is limited to 10 units. The values of ¼i, the bene¯t of visiting node i 2 N , are generated

randomly from a uniform distribution between 0 and 10 to calculate cij = tij + ¼i. Time windows

at the nodes are chosen randomly for a set distribution of time windows.

3.4.2 Performance of MC-ECSPP solution methods: disjoint test cases

The solution methods for the MC-ECSPP are evaluated relative to exact solutions obtained with

the method from Smilowitz (2006), which can obtain optimal solutions for the smaller test cases.

Figure 7 plots the average optimality gaps for the bounding and solution methods with disjoint

subsets: lower bound, LB, and expansion, e(LB); conservative upper bound, UBc, and expansion,
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Disjoint test cases Non-disjoint test cases

Group Nodes Subsets Group Nodes Subsets

1 25 5 16 25 5

2 25 10 17 25 10

3 50 5 18 50 5

4 50 10 19 50 10

5 50 15 20 50 15

6 100 5 21 100 5

7 100 10 22 100 10

8 100 15 23 100 15

9 100 20 24 100 20

10 100 25 25 100 25

11 150 5 26 150 5

12 150 10 27 150 10

13 150 15 28 150 15

14 150 20 29 150 20

15 150 25 30 150 25

Table 2: Characteristics for randomly generated test cases

e(UBc); one-node upper bound, UB1, and expansion, e(UB1). Hollow symbols represent aggregated

subproblem solutions and solid symbols represent expansion subproblem solutions. Each symbol

represents the average over the ten test cases in the group. The vertical lines separate the groups

by the number of nodes in the test cases. Table 11 in Appendix A lists these averages and the

standard deviation of the ten test cases in each group. Table 3 presents the solution speed and the

ability to solve test cases completely for these methods. For each group, the average solution time

(over all ten test cases) is shown in CPU seconds. The percent of test cases solved completely is

shown as well. The ¯rst method, MC, is the exact method for the MC-ECSPP from Smilowitz

(2006). As the numbers of nodes and subsets increase, solving to optimality is often not possible.

Optimal solutions are found for 90% of the instances from group 8, 40% from group 9, 60% from

group 10, 80% from group 12, and 20% from group 13. Optimal solutions cannot be obtained for

test cases in groups 14 and 15; no gaps are presented for groups 14 and 15 in Figure 7.

Across all groups, the conservative upper bound and related expansion method are signi¯cantly

outperformed by the one-node upper bound and related expansion methods. Expanding the so-

lutions from UB1 with e(UB1) improves the objective by an average of 12% across all test cases

without a signi¯cant increase in solution time. All UB1 and e(UB1) solutions are obtained in less

than one CPU second. While the solution times for LB are less than the solution times of the full

16



25 50 100 150
-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 groupO
pt

im
ali

ty
 g

ap

LB
e(LB)
UBc

e(UBc)
UB1

e(UB1)

5 10 5 10 15 5 10 15 20 25 5 10 15 20 25 subsets

nodes

Figure 7: Average optimality gaps for bounds and feasible solutions: disjoint test cases

MC method, several test cases in groups with many nodes and subsets cannot be solved completely

due to memory limits. In cases in which the lower bound is not completed, it is still possible to

obtain feasible solutions for the best paths obtained (which may not be optimal) using e(LB).

The ¯gure shows a slight trend of increased optimality gaps for UB1 and e(UB1) as the number

of nodes increase. More noticeable is the improvement in optimality gaps for UB1 as the number

of nodes per subset decreases. Fewer nodes per subset often translates to less diversity in node

characteristics (time windows, cost and travel times); therefore, choosing one node to represent the

subset is less costly. As the number of nodes per subset increases, the diversity in characteristics

increases and it becomes more di±cult for one node to adequately represent the subset. The gaps

for e(UB1) are less e®ected by the number of nodes per subset. For LB and e(LB), optimality

gaps increase as the number of nodes per subset decreases.

These trends are studied more in Table 4, which presents a comparison of the solutions obtained

with e(LB) and e(UB1) for test cases grouped by the ratio of nodes to subsets. For each ratio, the

table lists the number of nodes per subset and the groups and number of instances represented in

that category. For e(LB) and e(UB1), respectively, the average optimality gap over all instances

and the standard deviation are shown. For each ratio, the preferred solution method (either e(LB),

e(UB1), or same) is calculated as the percent of instances in which the respective solution method

outperforms the other method. For a ratio of 4, only two instances are solved to optimality and

for ratios of 6 and 8, no optimal solutions are found.
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MC LB e(LB) UB1 e(UB1) UBc e(UBc)

Group time solved time solved time solved time solved time solved time solved time solved

1 0 100% 0 100% 0 100% 0 100% 0 100% 0 100% 0 100%

2 0 100% 0 100% 0 100% 0 100% 0 100% 0 100% 0 100%

3 0 100% 0 100% 0 100% 0 100% 0 100% 0 100% 0 100%

4 0 100% 0 100% 0 100% 0 100% 0 100% 0 100% 0 100%

5 4 100% 0.1 100% 0 100% 0 100% 0 100% 0 100% 0 100%

6 0 100% 0 100% 0 100% 0 100% 0 100% 0 100% 0 100%

7 9 100% 0 100% 0 100% 0 100% 0 100% 0 100% 0 100%

8 338 90% 2 100% 0 100% 0 100% 0 100% 0 100% 0 100%

9 1,762 60% 77 60% 0 100% 0 100% 0 100% 0 100% 0 100%

10 4,683 40% 886 10% 0.1 100% 0.3 100% 0 100% 0 100% 0 100%

11 1 100% 0 100% 0 100% 0 100% 0 100% 0 100% 0 100%

12 329 80% 0 100% 0.3 100% 0 100% 0 100% 0 100% 0 100%

13 1,728 20% 9 90% 0 100% 0 100% 0 100% 0 100% 0 100%

14 10,354 0% 633 10% 0 100% 0.1 100% 0 100% 0 100% 0 100%

15 6,664 0% 4,871 0% 0 100% 3 100% 0 100% 0 100% 0 100%

Table 3: Solution times for disjoint problem instances

The results in Table 4 suggest that with fewer nodes per subset (8 or less), e(UB1) outperforms

e(LB), as evidenced by the optimality gaps and the preferred method calculations. With more

nodes per subset, e(LB) becomes the preferred method. As the number of nodes per subset

increases, e(LB) bene¯ts from additional diversity in characteristics since the aggregated node

assumes the best combination of parameters. This results in greater °exibility for the expansion

subproblem, which improves the optimality gap of resulting feasible solutions, but also increases

the computational e®ort. For example, the time windows are likely to be wider. As a result, the

lower bound solution paths include more nodes with wider time windows.

The above trends are true of randomized cases in which nodes within a subset can be quite

heterogenous in terms of time windows, costs and travel distances. In reality, nodes within subsets

may have similar attributes (time windows, dual values). In these cases, the number of nodes in a

set may be less important.

3.4.3 Performance of solution method for MC-ECSPP: non-disjoint test cases

Figure 8 presents the average optimality gaps with non-disjoint subsets: lower bound 1, LB1 and

expansion options a and b, e(LB1; a) and e(LB1; b); lower bound 2, LB2, and expansion, e(LB2);

one-node upper bound, UB1 and expansion e(UB1). Expansion options for LB1 include no arcs
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Nodes/ e(LB) e(UB1) Preferred method

subset groups instances average st dev average st dev e(LB) e(UB1) same

3 2,5 20 28% 19% 14% 10% 15% 80% 5%

4 10 10 60% 15% 32% 8% 20% 80% 0%

5 1,4,9 30 28% 26% 18% 16% 17% 67% 16%

6 15 10 10% 90% 0%

7 8 10 52% 17% 28% 5% 10% 90% 0%

8 14 10 30% 70% 0%

10 3,7,13 30 15% 14% 19% 14% 50% 40% 10%

15 12 10 10% 11% 28% 10% 100% 0% 0%

20 6 10 1% 2% 27% 21% 80% 0% 20%

30 11 10 4% 8% 19% 20% 80% 10% 10%

Table 4: Quality of feasible solutions by node per subset ratio: disjoint test cases

within subsets (e(LB1; a)) and acyclic arcs within subsets (e(LB1; b)). The conservative upper

bound and its expansion are not shown; as with the disjoint case, the results are signi¯cantly worse

than those for other methods. Table 12 in Appendix A lists the averages and standard deviations.

Table 5 presents the solution times for the non-disjoint test cases. Optimal solutions are found for

90% of the instances from group 23, 60% from group 24, 20% from group 25, 80% from group 27,

and 30% from group 28. Optimal solutions can not be obtained for test cases in groups 29 and 30.
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Figure 8: Average optimality gaps for bounds and feasible solutions: non-disjoint test cases

Trends similar to those for disjoint test cases are observed in the optimality gaps and solution

times for UB1 and e(UB1). The expansion subproblem improves UB1 solutions by 13% on aver-
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MC LB1 e(LB1; a) e(LB1; b) LB2 e(LB2)

Group Time Solved Time Solved Time Solved Time Solved Time Solved Time Solved

16 0 100% 0 100% 0 100% 0 100% 0 100% 0 100%

17 0 100% 0 100% 0 100% 0 100% 0 100% 0 100%

18 0 100% 0 100% 0 100% 0 100% 0 100% 0 100%

19 0.3 100% 0 100% 0 100% 0 100% 0.1 100% 0 100%

20 1.1 100% 0 100% 0 100% 0 100% 0.9 100% 0 100%

21 0.1 100% 0 100% 0 100% 0 100% 0 100% 0 100%

22 27 100% 0 100% 0 100% 0.1 100% 0 100% 0 100%

23 423 90% 0 100% 0.1 100% 0.3 100% 33 80% 0 100%

24 204 60% 0 100% 0 100% 8.3 100% 266 30% 0.1 100%

25 4805 20% 0.6 100% 0 100% 0 100% 1410 10% 0 100%

26 0.5 100% 0 100% 0 100% 0 100% 0 100% 0 100%

27 552 80% 0 100% 0.1 100% 1 100% 0 100% 0.2 100%

28 2725 30% 0 100% 0.1 100% 282 100% 12 90% 0.1 100%

29 3907 0% 0 100% 0.7 100% 438 100% 91 10% 0 100%

30 9743 0% 0 100% 0.1 100% 183 100% 1664 0% 0 100%

Table 5: Solution time (in seconds) and unsolved instances: non-disjoint test cases

age. The two lower bounds methods yield comparable results, yet the solution times for LB2 are

signi¯cantly higher. Further, LB2 is solved to completion for 80% of the instances from group 23,

30% from group 24, 10% from group 25, 90% from group 28, and 10% from group 29. No solutions

are completed for test cases in group 30. All instances are solved with LB1. The inclusion of

acyclic arcs between nodes within subsets in e(LB1; b) leads to a 14% improvement, on average,

over e(LB1; a). However, the solution times for option b are signi¯cantly higher than those for

option a.

Nodes/ e(LB1; b) e(UB1) Preferred method

subset groups instances average st dev average st dev e(LB1; b) e(UB1) same

3 17,20 20 13% 20% 13% 10% 55% 40% 5%

4 25 10 63% 2% 17% 3% 0% 100% 0%

5 16,19,24 30 14% 17% 16% 13% 47% 43% 10%

6 30 10 50% 50% 0%

7 23 10 24% 12% 19% 11% 50% 50% 0%

8 29 10 70% 30% 0%

10 18,23,28 30 7% 8% 12% 12% 53% 40% 7%

15 27 10 6% 10% 17% 12% 80% 20% 0%

20 21 10 0% 0% 13% 12% 70% 0% 30%

30 26 10 1% 2% 7% 10% 50% 0% 50%

Table 6: Quality of feasible solutions by node per subset ratio: non-disjoint test cases
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We compare e(LB1; b) and e(UB1) in Table 6 as a function of the number of nodes per subset.

The trends from the disjoint test cases are less strong in the non-disjoint test cases. With less than

8 nodes/subset, e(UB1) slightly outperforms e(LB1; b); with more than 8 nodes/subset, e(LB1; b)

outperforms e(UB1). As in the disjoint cases, the e(UB1) solutions are less impacted by the number

of nodes per subset.

3.4.4 Observations

Based on the computational study, we make the following observations about the solution methods.

² For both disjoint and non-disjoint test cases, the one-node upper bound and its expansion

are good options for quick solutions. While UB1 itself is a feasible solution, using e(UB1) to

expand solutions from UB1 leads to improved solutions while not increasing solution times

signi¯cantly.

² For both disjoint and non-disjoint test cases, the lower bounds perform well with many nodes

per subset. The optimality gaps increase for larger instances with fewer nodes per subset.

² For non-disjoint test cases, lower bound 1 is signi¯cantly faster than lower bound 2 and

can solve larger instances. Optimality gaps for these methods are not signi¯cantly di®erent.

Increasing the arc set in the expansion subproblem for LB2 improves the optimality gap, but

increases the solution time.

4 Implementing the MC-ECSPP in branch and price for the MRRP

We incorporate the bounding and solution methods for the MC-ECSPP from the previous section

in a branch-and-price solution method for the MRRP. Section 4.1 describes the solution approach

and Section 4.2 presents the computational results and analysis.

4.1 Solution method

We use branch and price to obtain integer solutions for the MRRP, originally proposed in Smilowitz

(2006). The linear relaxation of (1) is solved at each node of the branch-and-price tree. If the

solution to (1) is integer at a node, the upper bound may be updated. Otherwise, if the solution

is greater than or equal to the upper bound, the node is truncated; if not, we branch on the route

variable closest to 1.
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4.1.1 Pricing problem: exact solution method

At each node, the linear relation of (1) is solved with column generation to add routes to the

restricted route set R0. The current dual values associated with constraints (1b) are used in the

pricing problem (which is an MC-ECSPP) to generate routes for R0. In what follows, we describe

how the methods from Section 3 are used to solve the MC-ECSPP in stages, beginning with the

fastest solution method, and calling more intensive methods as needed, as shown in Figure 9.

Step 5. Check for routes:
Solve full MC-ECSPP

Update bounds; 
branch or fathom

Step 4. Expand routes
Solve e(LB1,b)

Step 1. Solve master problem
Solve relaxation of (1) with R’

Step 3. Check lower bound 
Solve LB1

Step 2. Check for new routes
Solve UB1 & e(UB1)

RF: negative-cost routes 
found
NRF: no negative-cost routes

RF

NRF

NRF (exact)

RF

NRF (exact)

NRF

Add new routes 
to R’

RF

RF

NRF (heuristic)

NRF 
(heuristic)

Figure 9: Solution method at a node of the branch-and-price tree for MRRP

In Step 1, the initial route set, R0, is found at the root node as follows. Each task is assigned

to its own route. For °exible tasks, a default execution is chosen by picking the closest equipment

yard. In Step 2, the ¯rst check for new routes is performed with UB1 and e(UB1). The UB1

method may produce several negative reduced cost paths as a result of the label correcting solution

method. Since e(UB1) is quick, we expand many of these routes. If routes with negative reduced

costs are found with e(UB1), they are added to R0 and the linear relaxation of (1) is resolved in

Step 1. Otherwise, the search for routes continues in Step 3 with LB1. If the optimal solution to

LB1 is not negative, then the current solution to the linear relaxation of (1) is optimal since the

MC-ECSPP contains no negative reduced cost routes. If the optimal solution to LB1 is negative,

this route is expanded in Step 4 with e(LB1; b). If the expanded path has a negative reduced cost,
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it is added to R0 and the linear relaxation of (1) is resolved in Step 1. If the expanded path does not

have a negative reduced cost, we cannot conclude that the current solution to the linear relaxation

of (1) is optimal since the expansion subproblem is a heuristic. The full MC-ECSPP is then solved

without node aggregation in Step 5 to determine if negative cost routes exist. This method may

produce several negative reduced cost paths which may be added to R0.

As noted, the MC-ECSPP solution methods may produce multiple routes with negative reduced

costs. Rather than adding only the route with the lowest cost, experimental results suggest that

adding a maximum of 100 routes e®ectively balances the number of column generation iterations

required with the total number of columns added.

4.1.2 Pricing problem: heuristic variations

We propose two heuristic variations of the exact approach. The variations involve removing or

limiting the most time-consuming steps of the exact solution approach, shown in dashed lines in

Figure 9. The ¯rst option skips Step 5 in which the full MC-ECSPP is solved; in Step 4 if no

negative reduced cost routes are obtained, we continue to traverse the branch-and-price tree. The

second option removes Steps 3, 4 and 5, and generate routes only with UB1 and e(UB1).

We also apply stopping criteria: maximum iteration limit, acceptable solution gap, and limited

solution improvement. First, the column generation procedure is terminated at a branch-and-price

node if the number of iterations exceeds 25 or if the objective value does not improve by more

than 10¡5 after 10 iterations. Further, the number of route possibilities for instances with many

°exible tasks may lead to an exorbitant number of nodes to explore. We iteratively relax the

truncation criteria within the branch-and-price approach as the solution time and the number of

nodes explored increase. Typically, a node i is truncated if zi, the solution to linear relaxation

of (1), is greater than or equal to zUB , the upper bound. As in Smilowitz (2006), we introduce

²i such that a node is truncated if zi ¸ (1 ¡ ²i)zUB . At the root node, we set ²0 = 0. At each

subsequent node i, ²i slowly increases with the number of nodes and solution time. As a result, the

branch-and-price algorithm runs to completion for small instances, but not for larger instances.

4.2 Computational results

Section 4.2.1 describes the test cases. Sections 4.2.2, 4.2.3, and 4.2.4 analyzes the performance of

the exact method and heuristic variations 1 and 2, respectively.
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4.2.1 Test cases

The test cases are based on data from drayage and third party logistics companies (Dahnke (2003);

Corinescu (2003); Grosz (2003)) for dray operations over a region including greater Chicagoland and

parts of central Illinois, southern Wisconsin and western Indiana. We use an aggregated data set

based on the properties of the original proprietary customer data from several drayage companies.

The distance matrices for the aggregated data sets maintain the same geographical characteristics

as the initial industry data. Table 7(a) presents the number of total tasks, °exible tasks and ¯xed

tasks for the test cases.

Test case Tasks Flexible Fixed Parameter Value

1 25 13 12 Loaded trailer pick-up time 30 minutes

2 25 10 15 Loaded trailer drop-o® time 30 minutes

3 25 10 15 Empty trailer pick-up time 15 minutes

4 25 10 15 Empty trailer drop-o® time 15 minutes

5 25 19 6 Trailer loading time 1 hour

6 50 27 23 Trailer unloading time 1 hour

7 50 23 27 Driver work shift 10 hours (continuous)

8 50 31 19

9 50 24 26

10 50 25 25

11 75 43 32

12 75 43 32

13 75 42 33

14 75 37 38

15 75 34 41

Table 7: (a) Test cases of computational study of MRRP; (b) Operating parameters

The operating parameters are detailed in Table 7(b). The model captures one day of operation,

assuming the loads are known when decisions are made. It is assumed that all tractor routes begin

and end at one central depot, and that drivers work a continuous ten-hour work shift.

4.2.2 Exact method results

The exact solution method can solve only test cases 1, 3, 4, and 5 to optimality. Table 8 shows the

numerical results for these test cases. We present the two objective functions (°eet size and travel

distance), along with the solution time in CPU seconds. The table also shows the total number

of branch-and-price nodes generated in the tree (B&P nodes), and the average number of column

generation iterations performed at each node (Iterations per node). Additionally, we present the
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average number of times that Step 5 is performed at each node (Step 5 per node). The ¯nal four

columns present the total number of columns generated and the percentage of columns generated

at each step of the column generation approach.

Solution B&P Iterations Step 5 Columns generated

Test case Fleet Distance time nodes per node per node Total Step 2 Steps 3,4 Step 5

1 12 114 25 103 4.0 1.0 780 77% 23% 1%

3 17 148 6 111 3.7 1.0 533 79% 21% 0%

4 16 153 13 107 4.2 1.1 740 58% 27% 15%

5 18 163 2 13 7.1 1.7 582 72% 25% 3%

Table 8: Exact solution method results for small test cases

While the solution times in Table 8 are small, the times grow prohibitively large for the other

test cases, particularly the time required for Step 5. As the table indicates, Step 5 is called between

1-2 times per node, making these test cases easier to solve. The contribution to the total number of

columns from Step 5 is minimal in all cases, except test case 4. The majority of columns is generated

in Step 2 (71% on average) and Steps 3 and 4 (24% on average), suggesting that removing Step 5

in the heuristic will not have a large impact on the objective function.

4.2.3 Heuristic variation 1 results

The ¯rst heuristic variation removes Step 5 from the solution approach. Additionally, when the

solution time for LB1 exceeds 1,000 CPU seconds, we impose a limit on the size of the problem,

restricting the number of subsets to 50 (those with the most negative dual values). This limit is

relaxed in subsequent iterations if the solution time is less than 1,000 CPU seconds. Note that this

restriction is needed only for test case 6.

Table 9 shows the results for the ¯rst heuristic variation. The results are compared with the

optimal solutions from Table 8, when possible. As the table shows, four additional test cases can

be solved with the heuristic.

The heuristic produces optimal or near-optimal solutions for the ¯rst four test cases. Note that

the heuristic yields the optimal solution for test case 4, which has the highest percentage of columns

generated in Step 5 in Table 8. The solution times and branch-and-price nodes are similar to those

with the exact method. Solution times increase signi¯cantly for the larger test cases. Steps 3 and

4 contribute a large percentage of the total columns in most cases; however, solving LB1 in Step 3

is far more time consuming than solving UB1 in Step 2.
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Exact solution Heuristic 1 Solution B&P Iterations Column generation

Test case Fleet Distance Fleet Distance time nodes per node Total Step 2 Steps 3,4

1 12 114 12 114 28 107 3.6 1,351 62% 38%

3 17 148 17 148 8 113 2.6 561 76% 24%

4 16 153 16 153 18 107 3.4 829 60% 40%

5 18 163 18 164 2 3 8 574 82% 18%

6 - - 23 226 49,002 115 4.2 2,333 97% 3%

7 - - 27 261 502 117 4.6 2,900 65% 35%

9 - - 24 237 642 115 3.8 2,220 73% 27%

10 - - 25 243 475 11 7.4 1,293 70% 30%

Table 9: Heuristic variation 1 results

4.2.4 Heuristic variation 2 results

The second heuristic variation omits Step 3, 4 and Step 5, and only UB1 and e(UB1) are applied

to generate routes. The stopping criteria described in Section 4.1.2 are also applied. Table 10

presents the results for the second heuristic, compared with the results from the ¯rst heuristic. All

test cases can be solved with the second heuristic.

Test Heuristic 1 Heuristic 2 Solution B&P Iterations

case Fleet Distance Fleet Distance time nodes per node Total columns

1 12 114 13 122 19 255 1.2 1,248

2 - - 13 118 106 2,103 1.1 1,379

3 17 148 17 152 7 159 1.3 486

4 16 153 17 160 9 105 1.6 766

5 18 164 18 171 1 3 4 471

6 23 226 26 241 116 7 3.1 793

7 27 261 28 265 101 117 1.8 1,573

8 - - 28 281 1,211 109 1.9 1,959

9 24 237 25 240 120 115 1.9 1,970

10 25 243 27 257 10 1 12 777

11 - - 39 383 2,381 129 1.9 2,333

12 - - 44 433 1,135 123 1.9 2,900

13 - - 48 449 5,714 119 1.9 8,302

14 - - 38 379 590 123 1.9 2,220

15 - - 40 379 7,603 125 1.8 2,221

Table 10: Heuristic variation 2 results

On average, the second heuristic yields solutions that are less than 5% higher than the solutions

with heuristic 1, in terms of both °eet size and travel distance. The solution times are signi¯cantly

lower for those test cases solved with both heuristic variations, resulting in an average decrease of
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64%. Note that instances requiring fewer branch-and-price nodes have more iterations per node,

since more iterations are typically needed at higher levels of the tree.

5 Conclusions

In this paper, we present a new variation of the elementary constrained shortest path problem,

referred to as the Multiple Choice Elementary Constrained Shortest Path Problem (MC-ECSPP).

We develop bounding and solution methods for the MC-ECSPP and incorporate these methods

into a branch-and-price algorithm for the Multi-Resource Routing Problems. As this is the ¯rst

step in the study of the MC-ECSPP, we envision several directions of future work. In particular,

future work may consider additional solution methods for the MC-ECSPP, with a focus on those

methods which are better suited for branch-and-price methods.
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A MC-ECSPP tests

Group LB e(LB) UBc e(UBc) UB1 e(UB1)

1 -14% (22%) 2% (3%) 73% (16%) 44% (27%) 30% (19%) 12% (20%)

2 -18% (11%) 17% (11%) 57% (12%) 47% (15%) 11% (5%) 8% (7%)

3 -24% (18%) 6% (7%) 81% (11%) 60% (17%) 42% (19%) 20% (17%)

4 -24% (7%) 41% (22%) 82% (5%) 67% (11%) 26% (13%) 20% (13%)

5 -24% (9%) 39% (20%) 72% (9%) 61% (8%) 22% (11%) 20% (10%)

6 -13% (11%) 1% (2%) 89% (5%) 63% (22%) 53% (15%) 27% (21%)

7 -13% (4%) 25% (14%) 88% (6%) 76% (8%) 27% (9%) 18% (8%)

8 -21% (9%) 52% (17%) 87% (4%) 77% (8%) 34% (4%) 28% (5%)

9 -42% (13%) 49% (15%) 82% (5%) 73% (4%) 26% (9%) 23% (8%)

10 -29% (0%) 60% (15%) 71% (8%) 66% (7%) 34% (7%) 32% (8%)

11 -14% (12%) 4% (8%) 87% (7%) 64% (16%) 42% (20%) 19% (20%)

12 -16% (8%) 10% (11%) 89% (3%) 73% (13%) 38% (11%) 28% (10%)

13 -24% (10%) 13% (11%) 90% (0%) 77% (4%) 33% (16%) 21% (17%)

Table 11: Average optimality gaps for bounds and feasible solutions: disjoint test cases. Standard

deviations shown in parentheses.
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Group LB1 e(LB1a) e(LB1; b) LB2 e(LB2) UBc e(UBc) UB1 e(UB1)

16 -12% (16%) 8% (13%) 7% (12%) -17% (25%) 5% (11%) 75% (15%) 47% (27%) 43% (18%) 22% (17%)

17 -29% (15%) 16% (13%) 3% (4%) -27% (13%) 31% (24%) 67% (16%) 45% (19%) 15% (9%) 8% (7%)

18 -10% (8%) 5% (7%) 3% (6%) -12% (7%) 2% (4%) 83% (9%) 54% (20%) 32% (28%) 11% (16%)

19 -20% (10%) 24% (19%) 14% (18%) -22% (12%) 29% (24%) 80% (7%) 66% (11%) 23% (14%) 9% (10%)

20 -32% (11%) 35% (23%) 23% (25%) -29% (15%) 48% (20%) 70% (8%) 54% (7%) 20% (10%) 18% (10%)

21 -13% (15%) 2% (5%) 0% (0%) -13% (14%) 1% (2%) 86% (9%) 59% (12%) 39% (16%) 13% (12%)

22 -21% (19%) 17% (11%) 7% (7%) -13% (6%) 13% (11%) 89% (5%) 65% (19%) 26% (11%) 11% (9%)

23 -28% (11%) 34% (8%) 24% (12%) -23% (11%) 43% (17%) 85% (3%) 67% (12%) 30% (8%) 19% (11%)

24 -37% (14%) 36% (15%) 24% (14%) -30% (6%) 58% (19%) 86% (5%) 73% (6%) 22% (4%) 18% (4%)

25 -52% (12%) 65% (1%) 63% (2%) -62% (0%) 58% (7%) 79% (3%) 67% (8%) 17% (3%) 17% (3%)

26 -12% (17%) 1% (2%) 1% (2%) -15% (14%) 8% (14%) 87% (6%) 58% (15%) 34% (8%) 7% (10%)

27 -16% (10%) 21% (12%) 6% (10%) -18% (10%) 7% (9%) 91% (2%) 72% (10%) 37% (11%) 17% (12%)

28 -22% (13%) 32% (4%) 19% (5%) -23% (14%) 17% (5%) 91% (2%) 77% (6%) 23% (9%) 14% (5%)

Table 12: Average optimality gaps for bounds and feasible solutions: non-disjoint test cases. Stan-

dard deviations shown in parentheses.
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