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Abstract

Observation of a 4-mile long, inhomogeneous, congested traffic stream revealed

that vehicle accumulations between detectors vary with flow in a predictable way,

and that a macroscopic kinematic wave with a reproducible speed exists in queues

despite unusual traffic behavior. As a result, time-dependent vehicle trip times and

accumulations inside long queues (and the queue length itself) can be predicted from

readily available data without using any ”degrees of freedom” to fit the parameters of

a model. Experimental vehicle counts were within 20 vehicles of the predictions for

over 2 hours.
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Scientists and engineers have known for a long time that congested traffic streams exhibit

unstable ”stop-and-go” behavior [1], and that this behavior is inconsistent with the simplest

and earliest theories of traffic flow, such as the car-following (microscopic) theories in [2] and

the kinematic wave (KW) continuum theory of [3] and [4]. As a result, more complicated

theories that allow for traffic instabilities were soon proposed (e.g., [5], [6], and [7]), but these

theories had limited success in explaining driver behavior in detail. This led to a proliferation

of new theories, which has accelerated in recent years (e.g., [8] and [9]). Today the number of

theories exceeds the number of experiments and the former usually have to be adjusted to fit

the data. The inability of traffic scientists to find a satisfactory description of driver behavior

should not be surprising because drivers are different and idiosyncratic, and because highway

inhomogeneities can affect drivers in site-specific ways.1 This suggests complimentary efforts

directed at finding macroscopic and site-dependent properties of the traffic stream on a scale

of measurement where statistical fluctuations can be ignored. This paper reports on early

successes in this direction; it shows, among other things, that the time series of vehicular

accumulations between detectors in queued traffic is quite predictable, strongly suggesting

that there is order within the complexity of traffic phenomena. The findings in this paper

will allow engineers to improve traffic control methods so as to avoid backups and spillovers.

1The only theories that have been developed for inhomogeneous highways seem to be continuum models

in the KW family (e.g., [3], [10], and [11]).
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1 Background

Recent evidence from observations on two continents ([12], [13], and [14]) suggests that

large disturbances in average flow propagate through space quite steadily and predictably.

This has been confirmed quantitatively at other locations where researchers have been able

to replicate the time series of average flows over a detector reasonably well with the KW

model from knowledge of the time series at a neighboring detector [15], [16]. These limited

successes do not indicate, however, what happens when the separation between observation

points is large enough for small disturbances to grow large and/or when small highway

inhomogeneities disrupt the traffic stream. This paper examines the character of the traffic

stream under these conditions with data in [17], stressing aspects of practical importance

such as the time series for vehicular accumulation, trip times, and cumulative counts.2

The site in question is a long southbound lane with slight grade changes that feeds

a congested traffic signal; see Fig. 1(a). The vertical arrows in the figure indicate the

observation points. Observations were made on two separate days for 2+ hour periods

including the morning rush. The site is good for an experiment because the flow through the

Wildcat Canyon intersection varies substantially within and across days, and because the

queue often grows beyond 2 miles from the intersection, with a growth pattern that changes

considerably from day to day.

As reported in [17], oscillations in traffic flow directly upstream of the traffic signal at

location 8 traveled upstream toward detectors 7 and 6 as waves, but were quickly damped.

2These data have been posted at “http://www.ce.berkeley.edu/∼ daganzo/spdr.html”.
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This can be seen from the 2-minute pulses in the curve of cumulative vehicle count versus

time observed at 8, curve N(8,t) of Fig. 1(b), which are largely absent in the curves for

observers 7 and 6, N(7,t) and N(6,t). Reference [17] also noted that oscillations with longer

amplitudes were observed further upstream within the queue, as exemplified by the wavy

pattern of curves 2, 3, 4 and 5.3

The cumulative counts of Fig. 1(b) were started with the passage of a reference vehicle

across all observers; thus a horizontal line representing a particular vehicle intercepts the

curves at the times when the vehicle in question passes the various observers. As a result,

horizontal separations between two lines are trip times between observers, and vertical sep-

arations between lines are vehicle accumulations between observers.4 Visualizing traffic flow

in this way, one can determine at a glance when and where queues start and dissipate, and

whether traffic is queued at any given time. This is important for the purposes of this paper

which focuses on queued traffic. Fig. 1(c) illustrates this idea with the curves for the early

part of the day. The onset of queuing at a particular location (e.g., at observers 6 and 7 as

denoted by the arrows) is marked by the divergence of the corresponding N-curve from its

companion to the left. When traffic is not queued between two observers their N-curves are

nearly parallel and separated horizontally by a minimum trip time, as occurs with curves

3Both effects could be due to inhomogenieties [18]. The dissipation of pulses could be caused by drivers’

ability to see the signal, and the longer period oscillations by changes in grade and the occasional drivers of

heavy vehicles who allowed long gaps in front of them.
4For problems involving 1-dimensional flow, cumulative curves such as those in Fig. 1(b)–called N-curves

here– are often preferred by engineers to time series of average flow because the latter conceal information

about trip times and vehicle accumulations.
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1-5 [12]. (The wider separation between curves 1-2 is simply due to the fact that segment 1-2

was longer.) These diagnostics were used to determine the queued intervals at each location

because our final objective was to see what could be said about the queued portion of the

N(j,t) curves from knowledge of downstream data, N(8,t).

2 KW Theory revisited

The KW theory was applied directly to the cumulative curves for queued traffic, as suggested

in [19], with a method proposed in [20]. This method, which must be applied to piecewise

linear approximations of the input N-curves, allowed us to determine the best fitting “flow-

density” relation from a wide family of relations.5

The KW theory consists of three basic postulates, but only two play a role here. In the

context of cumulative curves, the first postulate states that vehicle accumulations between

two detectors (“U”-upstream and “D”-downstream) should be replicable within a queue

for any (long) time interval in which the average flow, q, for the interval is the same; this

accumulation-flow relationship is denoted, mUD(q). The postulate holds approximately if

curves N(U,t) and N(D,t) fluctuate within reasonable bounds about two parallel straight

lines, A(U,t) and A(D,t), with slope q that are mUD(q) vehicles apart, and if this separation

5One is justified in using piecewise linear approximations because the KW model is a contraction mapping

in the space of N-curves; i.e., if the KW procedure is applied to two input N-curves, then the maximum

separation between the two predicted N-curves will be at most equal to the maximum separation between

the two input curves. [20]
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only depends on q. Note that the postulate can be satisfied approximately even if there are

stop-and-go oscillations. Further, this postulate applies to inhomogeneous road sections and

does not require one to define a “density” for every point on the road. Vehicle accumulation

(an observable number with no ambiguity) becomes the fundamental variable to be predicted.

Here, the relationship mUD(q), shown in Fig. 2(a), replaces the conventional “flow-density”

curve of KW theory. If one believes that the accumulation mUD(q) between any points U

and D on a road depends only on these points through the distance that separates them and

that the dependence is proportional (i.e., the road is homogeneous) then one can normalize

the accumulation-flow relation by distance between points.

The second postulate states that the transition between two queued stationary states

“q1” and “q2” propagates as a wave from D to U; i.e., that the actual N-curves are close

to idealized curves such as A(D,t) and A(U,t) of Fig. 2(b) during the transition.6 Note

from the geometry of this figure that the wave trip time, w12, is uniquely determined by the

separations, mUD(q1) and mUD(q2), arising from postulate 1. In fact, the wave trip time is

simply equal to the negative slope of the line passing through the two states in Fig. 2(a).

These postulates suggest that upstream curves A(U,t) can be obtained easily by shifting the

piecewise linear segments of A(D,t) as per mUD(q) and connecting the points where they

intersect.

6This statement is only strictly true for transitions that can be characterized as “shocks”. A third

(stability) postulate is needed to fully describe all possible transitions, and to complete the theory [20], but

this refinement plays no significant role when the linear segments of A(D,t) are long compared with wave

trip times, as is the case in this paper.
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3 Estimation of mUD(q)

A separate piecewise linear approximation A(D,t) of the downstream-most observer data (for

D=8) was used for each day. On both days, N(8,t) was approximated to within 20 vehicles

using linear segments of many minutes (long relative to the wave trip time). To control the

statistical degrees of freedom, data from the first day of observation were used to estimate

mUD(q) when predictions were made for the second day, and vice versa. By controlling the

degrees of freedom in this way, the tests would indicate unambiguously whether the gross

variations in N-curves propagate as kinematic waves, and whether vehicle counts can be

usefully predicted as a result.

Ideally, the mUD(q) should be estimated separately for each observer pair, (D,U) = (8,j)

for j=7,6,..., by plotting each queued stationary state observed at “j” as a point on an

accumulation versus flow diagram, such as that in Fig. 2(a). (Flow would be the slope of

one of the linear segments of A(8,t), and accumulation the vertical separation between said

segment and a best-fit parallel line passing through the corresponding queued portion of

N(j,t); see [18] for more details.) Although seven episodes of stationary traffic were observed

at D = 8 on day 1, many of these occurred when the queue was short, reaching only the

closest observers. Thus, the study site was initially treated as a homogeneous highway;

accumulation could then be normalized by distance and pooled for all observer pairs. The

pooled data for day 1 are included in Fig. 3. Part (a) of the figure displays the fit obtained

with a straight line, and part (b) with a piecewise linear curve; the two curves have been

extrapolated to the flow levels observed on day 2. The average kinematic wave speed implied
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by Fig. 3(a) is 10.7 mph. The best-fit lines for day 2 were very similar to those in Fig. 3

even though traffic evolved differently on that day (see Fig. 8 of [18]). The kinematic wave

speed was 11.7 mph. The best-fit piecewise linear curve did not bend in the same way,

however. Therefore, although the data suggest that there is a reproducible relation between

accumulation and flow, they do not suggest that the relation is significantly curved in the

range of flows observed.

4 Prediction

The day-1 curve of Fig. 3(a) was then used to construct the A(j,t) curves (j < 8) for day

2 with the KW procedure of Fig. 2, using the A(8,t) curve of day 2 as an input.7 Fig. 4

displays the result. The light wiggly lines in this figure are raw data, and the piecewise linear

curves predictions. The latter are only shown for those detectors (7, 6, 5 and 4) within the

first mile from detector 8, and only during times when traffic was queued at these locations.8

Qualitatively similar results are obtained when the process is repeated for day 1 with the

accumulation-flow curve of day 2; see [18].

As shown in Fig. 4, the true N-curves track the predicted N-curves closely; discrepancies

between predicted and observed N-curves were not, in general, greater than the input devi-

ations between A(D,t) and N(D,t). For the most part, the predicted and observed curves

7Recall that the vertical shifts, mj8(q), applied to A(8,t) are in our case the product of normalized

accumulation and distance.
8The predictions obtained with the curve in Fig. 3(b) differ from those in Fig. 4 only by a few vehicles

in a few places; the discrepancies would be indistinguishable to the eye on the scale of Fig. 4.
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remained within 10 vehicles of each other, even for the most distant of the four observers,

and the accuracy did not deteriorate significantly with distance. Note in particular that the

change in trend between states (positive or negative) seems to propagate cleanly and sharply

from observer to observer; i.e., the theory seems to work similarly well during the transitions

between states as it does during periods of stationary flow.

Predictions for the third observation point at 1.5 miles (not shown in Fig. 4) exceeded

N(3,t) and this also occurred on day 2. That is, for any given flow, drivers spaced themselves

more widely (and traveled faster) upstream of observer “4” than downstream on both days.

This can be due to a number of location-specific reasons, such as a change of grade in the

road, better pavement or prettier scenery as speculated in [18], which suggests that the road

should be treated as an inhomogeneous facility upstream of observer 4.

In view of this, the A(3,t) curve for day 1 was reconstructed with a separate m38(q)

relationship determined with day-2 data from detector 3, as explained in [18]. A similar but

reversed process was used to obtain the A(3,t) curve for day 2. The new predictions, which

can be found in Fig. 10 of [18], remained within similar error bands as the curves of Fig.

4.9 This suggests that the effects of inhomogeneity are reproducible and that traffic counts

and their subsidiary measures can be estimated with the KW theory despite location-specific

traffic behavior.

9Predictions for observation point j=2 could not be tested in a similar way because the queue only reached

that point on one of the days.
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5 Summary

The overall results suggest that it is possible to predict N-curves in queued traffic quite ac-

curately over distances comparable with one mile and for time periods encompassing several

hours without the need for calibrating a model on the day of the predictions.10 While it

appears that the finer details of the N-curves do not propagate as a simple KW wave at

this site, their gross behavior does. Fortunately, it is this gross behavior that is the most

important determinant of traffic backups and the necessary control responses.

Because the test site was a single lane road with no passing, the results do not necessarily

extend to multi-lane freeways. However, given that individual drivers can have quite a

significant impact on the following stream on a no-passing road, it is not unreasonable to

expect similar (or perhaps even better) results on multi-lane facilities.
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Figure Captions

FIG. 1. Queue evolution along single lane road. (a) Segment of San Pablo Dam Road, California,

USA. (b) Cumulative curves from 7:30-8:30 a.m., day 1. (c) Cumulative curves from 6:45-7:05

a.m., day 1.

FIG. 2. (a)  Flow - accumulation relationship.  (b) Transition between states.

FIG. 3. Normalized accumulation-flow relationship. Data from day 1. (a) Linear approximation.

(b) Piecewise linear approximation. Circle sizes represent duration of episode corresponding to

data point.

FIG. 4. Predicted N-curves, day 2. (a) Vehicles 200-1300. (b) Vehicles 1300-2400. Light lines

represent true N-curves, Dark lines represent predicted A-curves.  Missing portions of some

N(j,t) correspond to instances of experimental glitches, see [17].
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