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Abstract

This paper introduces an application of a Multi-Resource Routing Problem (MRRP) in

drayage operations. Drayage involves the movement of loaded and empty equipment between

rail yards, shippers, consignees and equipment yards. The problem of routing and scheduling

drayage movements is modeled as an MRRP with flexible tasks, since the origins and destinations

of some movements can be chosen from a set of possible nodes. The complexities added by

routing choice are studied, along with the impact of these complexities on problem formulation.

The solution approach developed to solve this problem includes column generation embedded

in a branch and bound framework. Using this approach, efficient operating plans are designed

to coordinate independent drayage operations in Chicago.

1 Introduction

This paper studies routing and scheduling for intermodal (rail/truck/maritime) drayage operations.

Drayage refers to the regional movement of loaded and empty equipment (trailers and containers) by
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tractors between rail yards, shippers, consignees and equipment yards. Although drayage represents

a small fraction of the total distance of an intermodal shipment, it accounts for a substantial share

of shipping costs. Forty percent of a 900 mile movement cost is incurred in the drayage portions,

typically less than 50 miles, see Morlok and Spasovic (1994). These costs are exacerbated by the

lack of coordination among parties, including shippers, consignees, railroads, trucking companies,

and intermodal marketing companies. This research considers coordination of drayage movements

to increase efficiency by pooling resources.

equipment 
yard

shipper

intermodal
yard

consignee

bypass equipment 
yard

empty trailer
loaded trailer
tractor

Figure 1: Illustration of drayage operations

Figure 1 illustrates the movement of trailers in intermodal drayage operations. For outbound

operations, a tractor bobtails (i.e., a tractor movement without trailer) to an equipment yard to

retrieve an empty trailer. The empty trailer is then transported by a tractor to the shipper for

loading. Once the trailer is loaded, it is moved, again by a tractor, to an intermodal yard for a train

departure. For inbound operations, a tractor bobtails to an intermodal yard to retrieve a loaded

trailer that has arrived by rail. The loaded trailer is then delivered by a tractor to the consignee.

After the trailer has been unloaded, the empty trailer is repositioned by a tractor to an equipment

yard. In addition, cross-town movements reposition loaded trailers between intermodal yards.
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If the movements involving the shipper and consignee are controlled by separate entities, there

may be no possibility to pool equipment. However, if some degree of coordination is assumed

in Figure 1, the empty trailer from the consignee can be redirected to the shipper, bypassing

the equipment yard and reducing the empty movements. The choice appears obvious: select the

option that reduces inefficiencies. Yet, as shown in this paper, due to the size of the problem,

the existence of time windows and the need to model multiple resources, simply identifying these

options for savings is challenging and finding a good solution is extremely difficult. This paper

develops routing and scheduling models for intermodal drayage operations by solving a generalized

version of the problem: the Multi-Resource Routing Problem (MRRP).

This paper presents a new approach to drayage operations. Section 2 generalizes the drayage

problem as an MRRP with flexible tasks and highlights the novelty of our approach relative to

existing work in this area. Section 3 presents modeling issues, including a new formulation for

the MRRP. Section 4 describes the solution methodology for the MRRP. Section 5 applies this

methodology to a series of test cases in Chicago. Section 6 summarizes the results and describes

future work.

2 Multi-resource routing with flexible tasks

The drayage problem can be modeled as a multi-resource routing problem. Many distribution

systems involve the routing of multiple resources (tractors, trailers, railcars, drivers, aircraft, crews)

to perform a series of tasks (transporting goods, repositioning empty equipment). Resources are

classified by the jobs they perform. For example, trailers are used for storage of items, but do

not include a mechanism for locomotion. Tractors, on the other hand, provide locomotion but not

storage and require another resource (a driver) to operate. Tasks are classified either as well-defined

[meaning the origin, destination and time window for the movement are set] or flexible [either the
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origin or destination of the movement is unspecified]. Tasks are further classified by the resources

which are required and the processing time for each resource.
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(a) Tasks requiring 3 resources (b) Execution 1: combined resources (c) Execution 2: separated resources
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(driver)
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Figure 2: Interaction of tasks and resources

Figure 2(a) shows two well-defined tasks that each require three resources for completion. For

example, resource 1 is a tractor; resource 2 is a trailer and resource 3 is a driver. If the processing

time at node B is the same for all three resources, it is possible for the same tractor, trailer and driver

combination to travel together to complete the second task, as shown in Figure 2(b). However, if

the processing times are different, there is an incentive to separate the resources to avoid idle time.

In Figure 2(c), the driver and tractor continue to node E to pickup a different trailer to complete

the second task while the original trailer is still engaged at B. Due to this incentive, multi-resource

routing problems consider various resources as separate, but related, entities. In our modeling

of the MRRP, we consider the tractor and driver to be a single resource. The resulting model

coordinates the activities of two resources: tractors (and drivers) and trailers.

The MRRP with flexible tasks is defined as:

Given: a set of tasks (both well-defined and flexible) with required resources, processing

times for resources and time windows; a fleet of each resource type; operating hours

at all locations; and a network with travel times.
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Find: a set of routes by resource type that satisfy all tasks while meeting a chosen

objective function (minimizing fleet size, travel time) and observing operating rules

for the tasks and resources.

Developing efficient operational plans is difficult even when all tasks are well-defined. In fact, it is

often hard to find a feasible solution (i.e., satisfying all requests in the stated time windows with the

available resources). In this case, penalties are introduced to allow service requests to be violated.

The MRRP becomes further complicated when some tasks are flexible, as in drayage operations.

Multi-resource routing problems with well-defined tasks have typically been modeled in two

ways: (1) as arc-based network flow problems and (2) as node-based vehicle routing problems.

Ball et al. (1983) develop a network flow formulation for the distribution of trailers for a chemical

company. They also transform the problem into a vehicle routing problem (VRP). The origin and

destination of a movement are aggregated into a single node that represents the entire movement

with all the characteristics of the movement (duration, origin, destination, time windows), see

Figure 3(a). The transformed VRP creates tractor tours to serve requested trailer movements.

Solution methods for the standard VRP can be applied. Subsequent work on related problems

has focused on node-based VRP solution approaches, rather than the computationally intensive

arc-based network flow formulations; see, for example, De Meulemeester et al. (1997) and Bodin

et al. (2000). Ioannou et al. (2002) model the routing and scheduling of trucks to serve loaded

container movements as a multi-Traveling Salesman Problem with Time Windows, a special case

of the VRP with time windows.

Multi-resource routing problems with well-defined tasks can also be modeled as pickup and

delivery problems with a vehicle capacity of 1 and restrictions on route lengths. A comprehensive

review of the general pickup and delivery problem is presented in Savelsbergh and Sol (1995).

Of particular interest is the use of set partitioning and column generation techniques for routing
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Figure 3: Node-based representations for multi-resource problems

problems (for examples of applications, see Cullen et al. (1981), Dumas et al. (1991), Desrochers

et al. (1992), Savelsbergh and Sol (1998), and Xu et al. (2003)). These formulations partition items

(tasks to be performed) into disjoint sets (vehicle routes). One reason this approach is attractive

for these types of problems is that it transfers the difficult routing constraints on various resources,

such as time windows and driver shift constraints, to subproblems.

Applying these approaches to the MRRP with flexible tasks on a large-scale is problematic.

Node-based vehicle routing methods are difficult for problems with flexible tasks since tasks which

involve a choice of either origin or destination cannot be collapsed into a single node, see Figure

3(b). The task from node C has a flexible destination: a resource must be repositioned, but the

destination of the resource can be either node D or node E (referred to as two potential executions

of flexible task C). With an uncertain destination, this task cannot be collapsed into a single node

with specific characteristics.

The MRRP with flexible tasks is further complicated by the presence of time windows. Consider

again the flexible task from node C in Figure 3(b). Note that potential destinations D and E have

different cut-off times for delivery of the resource. The timing of earlier tasks (for simplicity of
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illustration, assume only task AB) will determine which destinations are feasible. If task AB is

performed at the earliest time (8 am), the resource will be available at node C at 10 am, assuming

1 hour to perform AB and 1 hour to move from B to C. Given a travel time of 1 hour from C to

E, the resource can be delivered exactly at 11 am. However, if task AB is performed later, node E

is no longer a feasible destination for the flexible task from C. This is a case that arises frequently

in drayage operations. An empty trailer may be requested by a shipper by a certain time, without

regard for its origin which may be chosen from a set of locations dependent on the completion of

previous tasks. When tasks are well-defined, this issue is irrelevant since origins and destinations

are specified.

Network flow formulations are well-suited for handling the dependency between tasks, see Powell

(2002). However, network flow formulations can be challenging due to problem size. Such a

formulation is studied in Morlok and Spasovic (1994) for drayage operations for a single rail carrier.

Time is discretized over the planning horizon, resulting in a significant number of variables and

constraints, which hinders the application of such a formulation to larger problem instances. The

approach in this paper is novel in its use of node-based VRP formulations for the MRRP with

flexible tasks.

3 Modeling approach

The MRRP is transformed into a modified Asymmetric Vehicle Routing Problem (AVRP) similar

to the way in which Bodin et al. (2000) transform the Rollon-Rolloff Vehicle Routing Problem into

an AVRP. We introduce a graph G = (N,A) like the transformed graph in Figure 3(b). Nodes

i ∈ N represent all movements (tasks and all possible executions of flexible tasks) and the depot,

i = 0. Let di be the duration of movement i ∈ N . An arc (i, j) between nodes i, j ∈ N is included

in the arc set A if movement j can be performed immediately after movement i. The length of an
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arc tij equals the travel time between the destination of movement i and the origin of movement

j. Vehicle tours are constructed such that the length of a tour, including movement duration,

travel time between movements, and waiting time due to time windows, does not exceed the driver

shift. The objective of the AVRP is to minimize the number of tours and the duration of the tours

required to visit all nodes in the graph. In the modified AVRP for the MRRP, not all nodes must

be visited; only one execution of each flexible task is chosen. We show next how this is incorporated

within a set partitioning formulation.

The time dependency between the set of possible executions of a flexible task and other tasks is

addressed by placing conservative time windows on all tasks. Recall the simple example in Figure

3(b) with only two tasks. Node E is only a feasible destination for the resource at node C if task

AB begins at 8 am. To remove this dependency and to guarantee that all potential executions of

a flexible task are feasible, it is assumed that resources are unavailable throughout the entire time

window, even if the duration of a task is shorter than its time window. In this case, the resources

are considered occupied by task AB from 8 am to 10 am, and the trip from C to E is no longer a

feasible execution. While these conservative time windows limit the available choices, they create

a disjoint set of executions and a set partitioning formulation can be used to solve the MRRP.

In the MRRP, requested tasks (here, trailer movements) are partitioned into resource (tractor)

routes. The tractor routes must comply with the operating rules and tasks must be performed

within time windows with the required resources. These difficult constraints on tractor routing

and task completion (work hours, time windows on requests) are moved to subproblems. Route

generation is discussed in Section 4.4. It is assumed that all requests are known at the time of

routing. We assume two resources: one for locomotion (tractor) and one for storage (trailer). Since

the tractor and the driver have similar processing times, the driver is linked to the tractor. The

following notation is used.
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Sets

T : Set of tasks (T = Tw ∪ Tf ) where Tw = well-defined tasks; Tf = flexible tasks

Ei : Set of possible executions of flexible task i ∈ Tf

M : Set of movements [all tasks in T and all possible executions of flexible tasks]

R : Set of feasible routes

Parameters

cr : Cost of route r ∈ R

ari : Covering parameter: =


1 if movement i ∈M is on route r ∈ R

0 otherwise

Decision variables

xr =


1 if route r ∈ R is chosen

0 otherwise

The set partitioning formulation of the MRRP with well-defined tasks is formulated as follows.

min
X
r∈R

crxr (1a)

subject to

X
r∈R

arixr = 1 ∀i ∈ Tw (1b)

X
r∈R

X
e∈Ei

arexr = 1 ∀i ∈ Tf (1c)

xr ∈ {0, 1} ∀r ∈ R (1d)

The objective function (1a) minimizes the fleet size and the travel time of all routes. Therefore,

cr is defined as cr = C + τr where C is a constant large enough to first minimize vehicles and then
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travel time, τr. Equations (1b) are the partitioning constraints that ensure that all well-defined

tasks are executed exactly once. Equations (1c) are the partitioning constraints for all flexible tasks.

These constraints are similar to those found in the Multi-dimension, Multiple-Choice Knapsack

Problem, see Sinha and Zoltners (1979), and similar solution methods can be applied. Finally,

equations (1d) define the binary decision variables for each route.

To generate the set Ei, we define a region of geographic feasibility for executions of a flexible

task. A set of potential empty trailer movements that are feasible by time and geographic location

for a flexible task from a consignee is shown in Figure 4. The set includes a default equipment yard

to ensure problem feasibility. The shaded circle depicts the region of geographic feasibility for the

empty trailer available at the consignee. The executions must also be time-feasible. In Figure 4,

although shipper S3 is within the radius of the consignee, it is not a time-feasible option since the

resource is not available until after the cut-off time at S3. The feasible execution from the consignee

to shipper S1 will appear both in the set Ei where i represents the flexible task requested by the

consignee and in the set Ej where j represents the flexible task requested by the shipper.

CY2

CY1

C

S1

S2

S4

CY3

Default 

S6

CY4

CY5

S3

S7

S5

empty container 
needed at 8 pm

empty container 
needed at 3 pm

empty container 
needed at 11 am

empty container 
available at 3 pm

Figure 4: Possible empty movements for a drop and pick consignee

Francis et al. (2004) propose an alternative approach to generating the set Ei which defines a
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node-specific area of geographic feasibility rather than setting a single region size for all nodes. The

application of their approach to the test cases in this paper suggests that due to the node density

in Chicago, a fixed radius does not impact solution quality significantly. Allowing for node-specific

regions of feasibility can manage problem size efficiently.

4 Solution approach

In this section, we present a branch and bound framework to solve the MRRP which uses column

generation to solve the linear relaxation of formulation (1) at the nodes. Section 4.1 describes the

general branch and bound approach. Sections 4.2 and 4.3 introduce the upper and lower bounds

used within the solution method, respectively. Section 4.4 presents the column generation method

used to solve the linear relaxation at each node of the branch and bound tree.

4.1 Branch and bound framework

We use branch and bound to obtain an integer solution to the set partitioning formulation of the

MRRP. The solution to the MRRP is obtained by solving the linear relaxation of (1) at each node

of the branch and bound tree and then branching on the route variables. At each node, if the

solution to (1) is integer, we check for a new upper bound. Otherwise, if the current solution is

greater than or equal to the upper bound, then the node is truncated; if not, we branch on the route

variable closest to 1. The initial upper bound is obtained with the method described in Section

4.2.

The number of route possibilities for problem instances with many flexible tasks may lead to

an exorbitant number of nodes to explore. Therefore, we iteratively relax the truncation criteria

within the branch and bound procedure as the number of nodes explored increases. Typically, a

node i is truncated if zi, the solution to linear relaxation of (1), is greater than or equal to zUB,
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the upper bound. However, we introduce ²i such that a node is truncated if zi ≥ (1 − ²i)zUB. At

the root node, we set ²0 = 0. At each subsequent node i, ²i slowly increases with the number of

nodes and the solution time. As a result, the branch and bound algorithm is run to optimality for

small problem instances, but not for larger problem instances.

4.2 Upper bound

Approaches for the VRP with time windows (VRPTW) are used to obtain upper bounds on the

MRRP with special consideration for flexible tasks. The method described below is a modified trip

insertion heuristic based on a method for the VRPTW with worker shift constraints, see Campbell

and Savelsbergh (2004). Let U be the set of movements not yet assigned to a route, and let R be

the set of routes constructed. An algorithmic representation of the method is shown below:

Step 0:

U =M all movements unassigned

R = ∅ empty set of routes

Step 1: ∀j ∈ U :

(1) ∀r ∈ R: find least-cost, feasible insertion of j into r

(2) ∀k ∈ U : find least-cost, feasible merger of j and k

Step 2: select best (least-cost) option from Step 1

If selection comes from (1) in Step 1

(a) update r by inserting j: U = U \ j

(b) if j ∈ Ei for some i ∈ Tf then U = U \m ∀m ∈ Ei

If selection comes from (2) in Step 1

(a) create r̂: merger of j & k: R = R ∪ r̂ and U = U \ j, k

(b) if j or k ∈ Ei for some i ∈ Tf then U = U \m ∀m ∈ Ei
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or if j ∈ Ei and k ∈ El for i, l ∈ Tf then U = U \m ∀m ∈ Ei ∪ El

Step 3: Repeat steps 1 and 2 while U 6= ∅

In step 0, the set of unassigned movements U is equal to the set of all movements, M. The

route set R is empty. Steps 1 and 2 are repeated while there are still unassigned movements. In

Step 1, all options are considered for both inserting unassigned movements into existing routes

and merging two unassigned movements to form a new route. Insertions must meet time window

requirements and the duration of the resulting route must not exceed the driver work shift L. In

Step 2, the best option from Step 1 is executed. In this step, an additional search is needed for the

MRRP with flexible tasks to eliminate multiple executions of the same flexible task. As a result,

the complexity increases from O(n3) in Campbell and Savelsbergh (2004) to O(n4) where n is the

number of tasks. The method terminates with a set of feasible routes to complete all tasks.

4.3 Lower bound

A lower bound on solutions to the MRRP is obtained by modifying the minimum trip scheduling

approach in Bodin et al. (2000) to allow for the existence of time windows and the choice of

task executions. This approach first determines Z(d), a lower bound on travel distances for all

movements performed, and V , a lower bound on the number of vehicles required. Recall that di is

the duration of task i. Let d̂i equal the duration of the shortest (least-time) execution for flexible

task i ∈ Tf . A lower bound on total travel distance is:

Z(d) =
X
i∈Tw

di +
X
i∈Tf

d̂i

Since each well-defined task, and one execution of each flexible task, must be executed, then sum-

ming the minimum durations of these movements is clearly a lower bound on total travel distance.

The distance lower bound is divided by the length of the work day, L, to obtain the following lower
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bound on the number of vehicles:

V =

»
Z(d)

L

¼

The above lower bounds do not account for repositioning between movements; they are simply

bounds on the execution of tasks. Recall the network G = (N,A) described in Section 3. Further

recall that the node set N is comprised of the task sets Tw and Tf , as well as the set of executions for

each flexible task, Ei, ∀i ∈ Tf . Each node i ∈ N has an associated subset of nodes, N+(i), that can

be visited after i and a subset N−(i), that can be visited before i. These subsets are determined by

time windows of the movements and the restriction on route length. Note that all subsets include

the depot. Let t̂ij be a modified travel time on arc (i, j) ∈ A that includes the waiting time due to

time windows (i.e., the earliest start time at j if the beginning of the time window for movement

j ∈M is later than the latest arrival to j from i).

From Bodin et al. (2000), we introduce a partial graph Ḡ = (N̄ , Ā) of G which corresponds to

any feasible solution to the MRRP. The set Ā must have at least (|T | + V ) arcs, and V arcs must

start at the depot and V arcs must end at the depot. One arc must start and another must end

at each well-defined task and at one execution for each flexible task. The set N̄ will consist of |T |

nodes plus the depot.

The problem of determining a set of minimum cost paths on Ḡ yields a lower bound on the cost

of repositioning between movements. Let yij = 1 if arc (i, j) ∈ A is included in Ā (and consequently

nodes i, j are included in N̄), and 0 otherwise. We introduce pi to penalize an execution of a flexible

task that is not of minimum duration: pi = di − d̂k if i ∈ Ek for some k ∈ Tf ; pi = 0 otherwise.

An execution that is not of minimum duration will be chosen if the reduction in repositioning cost

offsets the penalty. The problem formulation is as follows.
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Z(Ḡ) = min
X
(i,j)∈A

(t̂ij + pi)yij (2a)

subject to

X
j∈N+(i)

yij = 1 ∀i ∈ Tw (2b)

X
j∈N−(i)

yji = 1 ∀i ∈ Tw (2c)

X
e∈Ei

X
j∈N+(e)

yej = 1 ∀i ∈ Tf (2d)

X
e∈Ei

X
j∈N−(e)

yje = 1 ∀i ∈ Tf (2e)

X
j∈M

y0j ≥ V (2f)

X
j∈M

yj0 ≥ V (2g)

yij ∈ {0, 1} ∀i, j ∈ N (2h)

The objective function minimizes the cost of connecting movements and additional penalties.

Constraints (2b) and (2c) ensure that each well-defined task is assigned to a route. Constraints (2d)

and (2e) ensure that one execution in Ei for each flexible task i is assigned to a route. Constraints

(2f) and (2g) ensure that at least V total routes begin and end at the depot.

Let ZLB be a lower bound on the solution to the MRRP: ZLB = Z(d)+Z(Ḡ). The lower bound

on vehicles is updated as follows:

V =

»
ZLB
L

¼
Formulation (2) is solved again with the updated value of V in constraints (2f) and (2g). The lower

bounds ZLB and V are updated, and formulation (2) is resolved until V does not change from one

iteration to the next.
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Formulation (2) is a lower bound on the MRRP as formulated in (1) because, like the MRRP,

all tasks must be visited during time windows and exactly one execution of each flexible task is

chosen. However, the MRRP ensures that the length of each route does not exceed the shift limit;

formulation (2) ensures that on average each route does not exceed the shift limit.

4.4 Column generation

At each node of the branch and bound tree, column generation is used to solve the linear relaxation

of (1). At the root node, we begin with a feasible subset of routes R0. This subset can be found

as follows. Each task is assigned to its own route. For flexible tasks, a default execution is chosen.

For example, in the drayage operation, the default equipment yard is used. Penalties are added

if resulting routes are longer than driver work shifts. The penalties are designated such that the

model always finds feasible solutions if they exist. However, some test cases in Section 5 include

fixed tasks with durations greater than L or flexible tasks for which all executions (including the

default yard) exceed the time limit. In these cases, the final solution includes a route that exceeds

the driver work shift.1 Alternatively, one could begin with a set of routes generated with the upper

bound method introduced in Section 4.2, after adapting the method to allow for well-defined tasks

with duration greater than L. Given a route subset R0, the following is solved.

min
X
r∈R0

crxr (3a)

subject to

X
r∈R0

arixr = 1 ∀i ∈ Tw (3b)

X
r∈R0

X
e∈Ei

arexr = 1 ∀i ∈ Tf (3c)

0 · xr · 1 ∀r ∈ R0 (3d)

1Results in Section 5 present the true cost without penalties.

16



New routes are added iteratively to R0 if the addition of such routes could improve the objective

function. A modified route cost is defined by the dual variable πi of the covering constraint for

task i; (3b) for well-defined tasks and (3c) for flexible tasks. This cost corresponds to the reduced

cost of the candidate routes:

c̄r = cr −
X
i∈M

ariπi.

At each iteration, routes are generated using methods described below. A candidate route r is

added to R0 only if c̄r is negative and if its duration does not exceed L. We control the number of

routes added to the master problem at each iteration using the following column dominance rule.

A route with a negative reduced cost is added only if no other candidate route at that iteration

satisfies the same fixed and flexible tasks (non-zero elements in the column) and has a lower actual

cost. If new columns exist, problem (3) is resolved and the dual variables are updated, otherwise

we conclude that the linear relaxation has been solved at that node.

Formulation (3) can be strengthened with the lower bound on vehicles determined in Section

4.3.

X
r∈R0

xr ≥ V (3e)

Constraint (3e) requires at least V vehicles in the relaxed solution.

The pricing problem to generate new columns can be solved as an elementary shortest path

problems with resource constraints (ESPPRC) which is NP-Hard, see Dror (1994). Desrochers

et al. (1992) introduce a label-correcting dynamic programming algorithm to solve the constrained

shortest path. The label-correcting dynamic programming algorithm for the MRRP creates paths

beginning and ending at the depot that visit each fixed task at most once and visit at most one

execution of each flexible task. Further, the duration of each path can not exceed L and time

windows must be observed.
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Irnich and Villeneuve (2003) and Feillet et al. (2004) highlight the difficulties encountered when

attempting to find only elementary path in cases such as the MRRP when nodes may only be

visited once on a route. These difficulties are compounded with flexible tasks since a vehicle may

not visit more than one execution of the same flexible task on a route. As noted in Feillet et al.

(2004), while many applications of the ESPPRC simply relax the elementary path constraints and

employ standard label correcting methods, there are some cases in which this approach yields poor

solutions. The MRRP is such a case since a node cannot be visited more than once on a route,

and nodes that serve the same flexible task cannot be on the same route. Feillet et al. (2004)

show how data requirements increase significantly when using a label-correcting approach to the

ESPPRC. The sets of non-dominated paths that must be maintained throughout the algorithm

can grow prohibitively large in the case of the MRRP with flexible tasks. As discussed in the next

section, these data requirements limit the use of the label-correcting method to small instances of

the MRRP with flexible tasks.

Alternatively we propose the use of the greedy trip insertion heuristic from Section 4.2 to

generate new routes. Further, since each solution obtained with the greedy trip insertion is feasible,

we can also search for improved upper bounds throughout column generation. As with the label-

correcting method, only routes with negative reduced costs are added to the master problem.

In the computational tests presented in Section 5 we compare the following two methods. As

shown in Savelsbergh and Sol (1998), approximation methods may be combined with exact methods

to significantly reduce the time required to obtain optimal solutions to routing problems. This leads

to the first method for the MRRP: the heuristic method is employed first to check for new columns.

If no new columns are found, the label-correcting method is run. Alternatively, in the second

method, only the heuristic method is used to generate new columns. In this second case, the

parameter ²i is employed to reduce the number of branch and bound nodes explored.
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5 Computational study

The solution approaches for the MRRP with flexible tasks are applied to drayage operations in

Chicago. Section 5.1 presents the test cases. Section 5.2 discusses the performance of the solution

methods in terms of solution quality and computational effort. Section 5.3 discusses the operational

savings from coordination of drayage operations.

5.1 Test cases

Data are provided by local Chicago drayage companies and third party logistics companies, (Dahnke

(2003); Corinescu (2003); Grosz (2003)). The region under consideration, shown in Figure 5, covers

greater Chicagoland and parts of central Illinois, southern Wisconsin and western Indiana. The

figure identifies the intermodal yards, but the individual consignees and shippers remain anonymous.

It is assumed that equipment yards are located at intermodal yards. It is further assumed that

all tractor routes begin and end at the same depot. The model captures one day of operation,

assuming the loads for the day are known when decisions must be made. It is assumed that drivers

work a continuous ten hour work shift. Table 1 indicates the operating parameters used with all

test cases.

Table 2 presents two groups of test cases from industry. For groups A and B, the instances

labeled by numbers represent independent drayage companies and the coordinated instances (ACrd

and BCrd) represent the same system with the independent drayage companies operating under a

single dispatcher. The columns list the number of well-defined tasks; the number of flexible tasks;

and the number of possible executions generated for flexible tasks, given the full 95 nodes in the

network shown in Figure 5, and a reduced set of 35 nodes. The reduced set is used in Section 5.2 to

demonstrate the ability of the label-correcting method to solve small instances of the MRRP with

flexible tasks. The test cases are small compared with the total number of movements in Chicago

19



AMTRA

ATSF/43

BLUEIS

BNSF/WS

CSX/47

CSX/59D

CSX/BP
CSX63

UP/Glo2

UP25
SPIMX

HARVY

STLOU
CNW1

MOPAC

NS/79
NS/Lndrs

UP/Glo1

CALYD

CRWTH

YARDC

Wisconsin

Illinois

Indiana

Lake Michigan

Chicago close-up

Figure 5: Pick up and delivery locations in the Chicago region. Intermodal yards are labeled by rail

carrier; shippers and consignees are shown as diamonds

performed each day; however, they represent the largest in our current test bed from industry.

Therefore, a second set of test cases, randomly generated based on the nodes in Figure 5 and the

operating parameters in Table 1, is used to study the application of the solution methodology to

larger problems instances. These test cases are shown in Table 3.

5.2 Solution method performance

All solution methods are implemented using C with the CPLEX Callable Library Interface and

a CPLEX 8.1 solver, running on a Sun Fire v250 1.28-GHz UltraSPARC IIIi computer with two

processors.

Use of the label-correcting method to solve the MRRP is limited to the small test cases due

to the computational requirements described in Section 4.4. The label-correcting method found

optimal solutions for 15 test cases of 50 total test cases in under ten hours. For the other test cases,
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the solution approach reached the 10-hour time limit while solving the pricing problem for the first

time at the root node.

Table 4 presents the statistics on computational effort for the test cases solved to optimality

with the label-correcting method. The first column lists the rows in the master problem and the

second column lists the final column count in the master problem. The third and fourth columns

list the solution time for the entire algorithm and the number of branch and bound nodes explored,

respectively. Optimal solutions for many of the smaller instances are found at the root node. The

numbers of nodes for most remaining instances are relatively low.

Table 5 presents the optimal solutions for these test cases. Table 5 presents (i) the number of

tractors (“fleet”) and the total travel time (“Travel time”) in the optimal solution, (ii) the lower

bounds on fleet and travel time with optimality gaps in parenthesis, and (iii) the fleet and travel

time obtained with the heuristic approach, again with optimality gaps in parenthesis.

The optimal solutions are used to assess the strength of the lower bounds and the quality of

heuristic solutions. The results in Table 5 suggest that the heuristic gaps are tighter than those for

the lower bound. The heuristic performs well for all test cases, obtaining optimal fleet sizes in 9

of the test cases. Optimal travel times are found with the heuristic method for 6 of the test cases,

and the gap is within 22% for the remaining test cases.

Tables 6 and 7 present the lower bounds and heuristic solutions, and the gap between the two,

for the remaining industry test cases and the randomly generated test cases, respectively. These

problem instances cannot be solved with the label-correcting method; in fact, in all cases the time

limit is reached in the first iteration. The gaps between the lower bounds and heuristic solutions

range from 0% to 28% for the randomly generated problems with average gaps of 20% for fleet size

and 13% for travel time. However, the results in Table 5 suggest that the heuristic solutions may

be closer to the optimal solutions than the lower bounds. Further, these results improve on earlier
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results obtained with a simple heuristic in Neuman and Smilowitz (2002) based on the well-known

savings algorithm (Clarke and Wright (1964)).

Tables 8 and 9 report statistics on the computational effort required for the heuristic and lower

bounds. Columns 1-3 list the problem sizes (numbers of rows and columns) and solution times for

the lower bounds. The number of rows is equal to 2|T | + 2. The number of columns is equal to

the number of feasible arcs between tasks (the set A), which can grow significantly large as the

number of tasks increase. Despite the large number of columns, the lower bounds can be obtained

quickly (under a minute for all but one test case). The remaining columns in Tables 8 and 9 report

statistics for the heuristic method, including the master problem rows and columns, solution times,

branch and bound nodes, and the final value of ². In the master problem, the number of rows is

equal to the total number of tasks in T plus 1 when constraint (3e) is added. Initially, the number

of columns is equal to number of tasks since the original feasible solution assigns each task to its

own route. The number of columns added at each iteration is at most equal to the total number

of tasks; however, this number is significantly lower in practice. Solutions are found at the root

node in 5 of the industry test cases and 1 of the randomly generated test cases. The addition of

the parameter ² is useful in controlling solution times. In most test cases, the final ² = 0; however,

increases in ² are observed for a few problems with high solution times, which can be reduced by

increasing ² more rapidly.

5.3 Case study: Chicago drayage operations

Individual operations of multiple entities are compared with a hypothetical system in which all

entities are controlled by a single dispatcher to test the benefits of coordination. Such coordinated

systems have the potential to address many issues raised by the recently created Intermodal Advi-
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sory Task Force (IATF) in Chicago.2 This task force is considering means to measure and alleviate

problems caused by the large number of drayage movements in Chicago. A model that can quantify

the benefits of coordination is a critical tool in the process of gaining support for a coordinated

system.

As shown in the previous section, the only test group in which all instances could be solved to

optimality is Group A with 35 nodes. For Group A with 95 nodes and Group B with 35 nodes, all

instances are solved with the heuristic. The results in Figure 6 represent solutions obtained with

the best solution method possible for that test group. Although we cannot guarantee optimality

for the solutions found with the heuristic method, we can obtain good feasible solutions. These

solutions can then be used to measure the efficiencies possible with coordination. Efficiency is

measured by reduced deadhead travel which can lead to higher productivity rates for drivers and

decreased congestion on city streets, which are key goals of the IATF.

Recall that test cases ACrd and BCrd represent coordination of dray companies A1-A6 and

B1-B8, respectively. The results in Section 5.2 show that coordination reduces the fleet size: from

33 total vehicles to 30 vehicles in ACrd35; from 13 to 9 in ACrd95; and from 374 to 345 in BCrd35.

The total travel time decreases as well: from 284 total hours to 269 total hours in ACrd35; from

94 to 76 total hours in ACrd95; and 3,367 to 3,343 in BCrd35. Figure 6 depicts other measures

of improved efficiency: movements per vehicle run (“moves/run”) and travel time per vehicle run

(“time/run”). In the figure, the statistics for individual dray companies (diamonds and squares)

are compared with statistics for coordinated operations (lines) for all groups. By reducing the

number of tractors needed in the coordinated systems, the number of movements per run is higher

in coordinated systems.

2See United States Department of Transportation - Federal Highway Administration (1996) for details.
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Figure 6: The impact of coordination on efficiency measures.

6 Conclusions

It is shown in this paper that coordinating drayage activities of multiple parties can lead to increased

overall system productivity. These results are valuable for congested urban areas with significant

drayage activities such as Chicago. At the same time, this paper demonstrates the challenges of

identifying opportunities from coordination and solving large problem instances. Advances are

made in both areas. Intermodal drayage operations with empty repositioning choice are modeled

as a multi-resource routing problem (MRRP) with flexible tasks. A new formulation and solution

method are developed for the MRRP with flexible tasks. The heuristic solution method performs

well relative to the label-correcting method that yields optimal solutions.

Future work in modeling should include the consideration of additional resources (most impor-

tantly, container and chassis). Further, relaxing the assumption of static requests is an important

extension to this work. According to discussions with industry, sixty percent of drayage requests

are known before the day of operation and the remaining forty percent become known over the day.
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Parameter Value

Maximum radius for empty trailer movements 2 miles

Time to pick up loaded trailer 30 minutes

Time to drop off loaded trailer 30 minutes

Time to pick up empty trailer 15 minutes

Time to drop off empty trailer 15 minutes

Time to load trailer 1 hour

Time to unload trailer 1 hour

Driver work shift 10 hours (continuous)

Table 1: Operating parameters.
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Test Well-defined Flexible Potential Potential

case tasks tasks executions (95) executions (35)

Group A

A1 5 5 85 16

A2 3 2 34 7

A3 16 10 164 26

A4 4 2 32 4

A5 7 5 83 17

ACrd 35 24 406 74

Group B

B1 35 28 491 66

B2 88 67 1,089 139

B3 23 19 293 27

B4 42 29 495 83

B5 37 26 435 59

B6 31 26 391 45

B7 52 41 717 104

B8 44 33 536 81

BCrd 351 270 5,083 705

Table 2: Test cases from industry
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Test Well-defined Flexible Potential

case tasks tasks executions

1 100 65 923

2 100 57 819

3 100 48 660

4 100 51 768

5 125 75 1147

6 125 64 908

7 125 66 897

8 125 70 1014

9 150 81 1159

10 150 76 1090

11 150 78 1124

12 150 79 1258

13 175 94 1378

14 175 92 1362

15 175 88 1199

16 175 80 1188

17 200 96 1316

18 200 107 1678

19 200 90 1310

20 200 107 1331

Table 3: Test cases: randomly generated cases
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Case Rows Columns Solution time B&B nodes

A135 11 45 0.0 1

A235 6 5 0.0 1

A335 30 73 0.0 3

A435 7 8 0.0 1

A535 13 207 0.5 3603

ACrd35 63 677 0.0 1

B135 66 5675 0.5 1

B335 43 59 0.0 1

B435 74 27739 13.2 19

B535 63 672 0.0 3

B635 58 123 0.0 1

B835 78 2288 0.1 1

A195 11 205 2.1 1

A295 6 16 0.0 1

A495 7 18 0.0 1

Table 4: Label-correcting method computational statistics; solution times in minutes
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Optimal solution Lower bound Heuristic solution

test case fleet travel time fleet travel time fleet travel time

A135 5 38.7 4 (20%) 36.2 (6%) 5 (0%) 45.6 (18%)

A235 3 31.6 3 (0%) 30.2 (4%) 3 (0%) 31.6 (0%)

A335 16 135.6 11 (31%) 108.3 (20%) 18 (13%) 147.5 (9%)

A435 4 35.2 4 (0%) 30.6 (13%) 4 (0%) 36.4 (3%)

A535 5 42.8 4 (20%) 31.5 (26%) 5 (0%) 46.6 (9%)

ACrd35 30 269.2 21 (30%) 208.8 (22%) 34 (13%) 295.7 (10%)

Average gap (17%) (15%) (4%) (8%)

B135 23 214.3 17 (26%) 160.6 (25%) 31 (35%) 262.1 (22%)

B335 37 317.9 27 (27%) 263.9 (17%) 37 (0%) 317.9 (0%)

B435 25 237.8 18 (28%) 174.6 (27%) 31 (24%) 278.8 (17%)

B535 39 356.3 27 (31%) 269.3 (24%) 43 (10%) 380.3 (7%)

B635 41 383.1 30 (27%) 294.5 (23%) 41 (0%) 383.2 (0%)

B835 41 381.2 30 (27%) 292.9 (23%) 41 (0%) 383.1 (0%)

Average gap (28%) (23%) (12%) (8%)

A195 2 13.8 1 (50%) 7.1 (49%) 3 (50%) 14.1 (2%)

A295 1 9.3 1 (0%) 8.3 (11%) 1 (0%) 9.3 (0%)

A495 2 12.2 2 (0%) 11 (10%) 2 (0%) 12.2 (0%)

Average gap (17%) (23%) (17%) (1%)

Table 5: Comparison of solution method performance: Gap from optimal listed in parentheses
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Lower bound Heuristic solution

test case fleet travel time fleet travel time

A195 1 7.1 3 (67%) 14.1 (50%)

A295 1 8.3 1 (0%) 9.3 (11%)

A395 4 37.8 5 (20%) 46.2 (18%)

A495 2 11 2 (0%) 12.2 (10%)

A595 2 11.6 2 (0%) 11.9 (3%)

ACrd95 8 71 9 (11%) 75.6 (6%)

Average gap (16%) (16%)

B195 6 57.2 8 (25%) 65.5 (13%)

B295 22 217.1 25 (12%) 236.5 (8%)

B395 7 66 9 (22%) 79.7 (17%)

B495 10 95.2 12 (17%) 104.2 (9%)

B595 8 70.5 9 (11%) 83.1 (15%)

B695 9 87.6 12 (25%) 118.1 (26%)

B795 10 93.4 12 (17%) 110.9 (16%)

B895 11 108.3 13 (15%) 130 (17%)

BCrd95 76 759.7

Average gap (18%) (15%)

Table 6: Solution method performance: Gap between bounds listed in parentheses
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Lower bound Heuristic solution

Case fleet travel time fleet travel time

1 21 204 25 (19%) 205 (0%)

2 19 182.8 24 (26%) 192.5 (5%)

3 22 212.2 22 (0%) 216.2 (2%)

4 18 176.2 23 (28%) 199.5 (13%)

5 23 226.5 28 (22%) 257.7 (14%)

6 25 247.9 32 (28%) 293 (18%)

7 29 280.6 32 (10%) 326.3 (16%)

8 30 294.7 33 (10%) 338.7 (15%)

9 33 326.5 38 (15%) 364.5 (12%)

10 30 298.3 37 (23%) 341.4 (14%)

11 30 296.7 37 (23%) 350.2 (18%)

12 25 249.2 30 (20%) 282.8 (13%)

13 38 375.6 43 (13%) 401.4 (7%)

14 31 307.6 37 (19%) 334.6 (9%)

15 39 385.8 47 (21%) 440.8 (14%)

16 33 327.7 40 (21%) 367.9 (12%)

17 45 444 57 (27%) 547.5 (23%)

18 37 368.6 46 (24%) 417.5 (13%)

19 38 378 47 (24%) 454.4 (20%)

20 39 389.4 48 (23%) 455.7 (17%)

Average gap (20%) (13%)

Table 7: Solution method performance: Gap between bounds listed in parentheses
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Lower bound Heuristic solution

Test Solution Solution B&B

case Rows Columns time Rows Columns time nodes Final ²

A195 22 7,484 0 11 13 0.0 1 0

A295 12 1,299 0 6 8 0.0 1 0

A395 54 25,195 0 27 31 0.0 1 0

A495 14 1,192 0 7 6 0.0 1 0

A595 26 6,052 0 13 266 0.3 1413 0

ACrd95 120 141,460 0 60 5,931 226.6 31,143 0.07

B195 128 199,868 0 64 9,002 273.9 28,900 0.08

B295 312 1,014,837 0 156 1,083 34.2 131 0

B395 86 79,753 0 43 1,168 136.9 23,700 0.04

B495 144 208,087 0 72 603 2.9 161 0

B595 128 163,974 0 64 2,412 197.3 21,300 0.06

B695 116 134,356 0 58 58 0.0 1 0

B795 188 451,753 0 94 9,141 274.2 10,841 0.08

B895 156 237,223 0 78 413 2.4 117 0

BCrd95 1240 19,126,798 38 620

Table 8: Solution method performance: computational effort; solution times in minutes
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Lower bound Heuristic solution

Test Solution Solution B&B

case Rows Columns time Rows Columns time nodes Final ²

1 332 695,867 0 166 676 12.1 119 0

2 316 564,859 0 158 169 0.2 1 0

3 298 411,912 0 149 918 8.6 113 0

4 304 516,273 0 152 1,923 888.8 14,165 0.27

5 402 1,125,417 0 201 1,078 28.5 121 0

6 380 718,763 0 190 1,045 21.2 123 0

7 384 712,820 0 192 921 21.1 123 0

8 392 874,183 0 196 1,059 23.2 123 0

9 464 1,175,534 0 232 1,230 41.7 129 0

10 454 1,034,771 0 227 1,236 42.2 129 0

11 458 1,106,768 0 229 1,324 37.1 127 0

12 460 1,353,662 0 230 1,267 54.4 127 0

13 540 1,656,916 0 270 1,460 80.9 133 0.01

14 536 1,630,583 0 268 1,535 128.7 133 0.01

15 528 1,286,917 0 264 1,331 55.4 131 0

16 512 1,320,903 0 256 1,676 72.2 133 0.01

17 594 1,553,397 0 297 1,810 105.6 141 0.01

18 616 2,361,260 0 308 1,690 91.1 131 0.01

19 582 1,554,966 0 291 1,800 143.1 137 0.01

20 586 1,649,184 0 293 1,972 146.7 131 0.01

Table 9: Solution method performance: computational effort; solution times in minutes
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