
E±cient and Robust Design for Transshipment Networks

Transshipment, the sharing of inventory among parties at the same echelon level, can be used
to reduce costs in a supply chain. The e®ectiveness of transshipment is in part determined
by the con¯guration of the transshipment network. We introduce chain con¯gurations in
transshipment settings and show their superiority over grouping con¯gurations that are
suggested in the literature. Further, we extend our research to general con¯gurations and
develop properties of low cost and robust transshipment networks. In addition, we provide
managerial insights regarding preferred con¯gurations based on problem parameters.

1. Introduction

According to the 15th Annual State of Logistics Report [22], logistic costs in the United

States are rising, from $910 billion in 2002 to $936 billion in 2003. Inventory costs account

for a third of this total. The report identi¯es \the ability to respond faster to changing

customer needs" and \the °exibility to adjust manufacturing and delivery cycles" as keys

to success in this competitive environment. Uncertainty in customer demand and operating

costs can lead to major supply chain ine±ciencies, causing lost revenue, poor customer

service, high inventory levels and unrealized pro¯ts.
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Figure 1: Supply Chain With Transshipments

Inventory transshipment is a promising strategy to provide operational °exibility to mit-

igate the e®ect of demand uncertainty. Transshipment is the sharing of inventory among

locations at the same echelon level of a supply chain. In Figure 1, four retailers are supplied

from one warehouse. Rather than relying solely on their own inventory or costly emergency

replenishment from the warehouse, retailers can collaborate to address demand uncertainty.
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Transshipment achieves the bene¯ts of risk pooling to meet uncertain demand while main-

taining low inventory levels at individual locations. The use of transshipment has been

facilitated by advances in information technology and information sharing. Companies us-

ing transshipments include Footlocker, Macy's, and a group of chip manufacturers (NEC,

Toshiba) sharing a common supplier, ASML.

Recent papers in transshipment models have considered restrictions on transshipment

network connectivity since it is not always possible to transship directly among all locations;

see [18] and [6]. Establishing a link between locations requires investments in bidirectional

communication channels that enable information sharing, physical distribution systems and

¯nancial and administrative arrangements. Alternatively, transshipment networks without

direct links between all locations tend to consolidate transshipment °ows on a few routes,

which can reduce the demand for communication channels and transportation (vehicles and

drivers) and lower the overall complexity of a system. This is important in the case of

outsourced transportation between locations that is negotiated in advance or in the case of

multiple products which share common transshipment methods.

This paper considers the e±ciency and robustness of a range of transshipment network

con¯gurations. E±cient networks achieve low expected inventory and transshipment costs.

Robust networks maintain e±ciency even with changes to cost or demand parameters. We

present analytical results to show that the chain con¯guration is more e±cient than the

group con¯guration that appears in the literature. Using a numerical study, we analyze the

characteristics of con¯gurations under a range of cost and demand parameters, and provide

insights on the parameters that a®ect the con¯guration choice. Section 2 reviews related

literature. Section 3 describes operational and strategic transshipment problems. Section 4

presents comparisons of basic con¯gurations. Section 5 discusses research extensions.

2. Literature review

The transshipment literature has focused on operational decisions for a ¯xed network design,

such as the transshipment amount between locations and the order amount at each location.

Most work considers two locations ([16], [18] and [19]), or locations that are identical in cost

parameters ([13] and [18]). [14] and [7] consider locations that are non-identical in demand

and cost parameters. [17] and [19] allow replenishment lead times larger than one; in the

others, transshipment lead times are negligible and replenishment lead times are one period.
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The literature on transshipment network design is more recent. In addition to the com-

plete pooling network in which any location may transship to any other location, [18] and [6]

consider group con¯gurations, in which locations are divided into groups and transshipment

is allowed only within groups. It is shown that while group con¯gurations cannot achieve

all of the savings of complete pooling, the savings are considerable, and the number of links

is smaller. [7] compare ¯ve transshipment con¯gurations, di®ering in the number and cost

of links. The paper quanti¯es the value of transshipments, but does not analyze network

con¯gurations. [21] consider a transshipment network with one supplier and three retailers

with six network design options which they refer to as operational °exibility levels. They

¯nd the retailers' optimal order quantities for any given °exibility level with the newsvendor

network model of [20] and analyze the interaction between optimizing order quantities and

increasing operational °exibility. In this paper we consider con¯gurations with one supplier

and N retailers, determining optimal order quantities with the method of [7].

While the transshipment literature considers only a limited number of network con¯gu-

rations, other network con¯gurations have been considered in the manufacturing and service

operations literature. The chain con¯guration has been shown to be an e±cient structure

in supply chains and labor cross-training. [12] and [3] study the chain structure in supply

chains. They show that by assigning the capacity of factories to products according to a

chain structure in which each factory only produces two types of products, as in Figure 2,

one can achieve most of the potential bene¯t of complete pooling in which all factories are

able to produce all products. [8], [15], [4], [9], [10], [11] and [2] highlight the properties of

the chain structure in di®erent production and repair/maintenance environments.
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Figure 2: (left) Chaining in a manufacturing setting; (right) Chaining in a transshipment setting

Our research addresses the gap between the transshipment literature and network design
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by studying a wide range of network con¯gurations, including the chain con¯guration. Like

[1], we investigate the chain analytically.

3. Transshipment problems

Section 3.1 reviews the operational transshipment problem from the literature and Section

3.2 introduces the strategic transshipment network design problem studied in this paper.

3.1 Existing work on operational transshipment problems

The objective of the operational transshipment problem is to minimize inventory and trans-

shipment costs per period for a given network design with known demand and cost param-

eters. Given N retailers, facing independent, stationary demand, events occur as follows:

1. Replenishment from the warehouse arrives from orders made in the previous period;

backlogged demand is satis¯ed. The inventory level is equal to the base-stock level.

2. Demand is observed.

3. Transshipment decisions are made and occur immediately. Transshipment costs are

incurred.

4. Demand is satis¯ed or backlogged. Holding and shortage costs are incurred.

5. Inventory level is updated.

6. Replenishment orders are made.

The replenishment lead time from the warehouse is one time period, and it is assumed

that the warehouse has su±cient capacity to respond to all orders. Transshipments serve as a

quicker source of supply if demand exceeds available inventory. Retailers follow a base-stock

policy which [7] prove minimizes costs in a transshipment setting. At each location, base-

stock level and periodic transshipment decisions are made to minimize the total long-run

expected costs, which is the sum of inventory holding, shortage and transshipment costs of

all locations. With a base-stock policy, the system regenerates itself every period; minimizing

the expected cost for one period is equivalent to minimizing the long-run expected costs.

In the literature, locations are often assumed to be identical, as in this paper. Identical

locations incur the same costs and observe demand from an identical distribution, as in cases

of retailers serving near-homogenous populations over moderately sized geographic regions.

Further, analysis of nonidentical locations is case-dependent and does not provide general
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insights, see Section 5 . Since variable replenishment costs are the same across locations and

unmet demands are backlogged and eventually satis¯ed, these costs are ignored. Similar to

[16], [18], [7] and other works, ¯xed costs of orders and transshipments are assumed to be

incurred every period or negligible when compared with other costs.

The operational transshipment problem uses the following parameters:

N set of retail locations (also called \nodes"), i 2 f1::Ng
K set of directed transshipment links (i; j) 2 K, de¯ned by con¯guration, K µ (N £N )
di observed demand at location i 2 N per period
ct cost of transshipping one unit along one link
cs cost of one unit of shortage for one period
ch cost of holding one unit in inventory for one period.

We de¯ne decision variables Si and Xij, and auxiliary variables I
+
i and I

¡
i as follows:

Si base-stock level at location i 2 N
Xij number of items transshipped on link (i; j) 2 K
I+i net surplus at end of time period (after transshipment) at location i 2 N
I¡i net shortage at end of time period (after transshipment) at location i 2 N .
Given a base-stock level vector S, the following linear program presented by [7] is solved

to determine transshipment °ows for each period of observed demand.

min z(K;S) = ct
X
(i;j)2K

Xij + cs
X
i2N

I¡i + ch
X
i2N

I+i (1a)

subject toX
j:(i;j)2K

Xij ¡
X

j:(j;i)2K
Xji + I

+
i ¡ I¡i = Si ¡ di 8i 2 N (1b)

X
j:(i;j)2K

Xij · Si 8i 2 N (1c)

Xij ¸ 0 8(i; j) 2 K (1d)

I+i ; I
¡
i ¸ 0 8i 2 N (1e)

The objective function (1a) minimizes z(K;S), the sum of transshipment costs, shortage
costs and holding costs, given K, S and the demand realization. Constraints (1b) state that
demand must be satis¯ed by inventory and/or transshipments, or backlogged. Constraints

(1c) state that retailers cannot transship more than the base-stock level. Node i 2 N may

both receive units from location j1 and transship units to location j2 for some j1; j2 such

that (j1; i) 2 K and (i; j2) 2 K, up to its base-stock level; i.e., if j1 has a surplus and j2 has a
shortage. Constraints (1d) and (1e) are non-negativity constraints. We use the in¯nitesimal
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perturbation analysis (IPA) procedure from [7] to ¯nd optimal base-stock levels and the

optimal expected cost for a given con¯guration.

The objective (1a) is linear in holding, shortage and transshipment costs. A transship-

ment involving one or more links deducts one unit of surplus at a node to ful¯ll one unit

of shortage at another. This action incurs transshipment costs to avoid one unit of holding

cost and one unit of shortage cost. We de¯ne a shift to be a transshipment along a single

link. The number of pro¯table shifts is the number of links along which units are transferred

to meet shortage and still reduce costs. The number of pro¯table shifts, J , is the °oor of the

ratio between the sum of holding and shortage costs and transshipment cost; J = b ch+cs
ct
c.

Our modeling allows for multiple shifts, yet unless the transshipment cost is low and demand

uncertainty is high, results indicate that more than two shifts are rare. In such cases, con¯g-

urations which depend on multiple shifts to balance shortages and surpluses are less e±cient

than those in which locations are directly linked to one node that acts as a warehouse.

Formulation (1) with cs = 1 and ch = ct = 0 is similar to the manufacturing model in [12].

Retailers satisfy demand at other retailers by shifting capacity (i.e., inventory) along multiple

links with no penalty. Transshipment and inventory costs in the transshipment setting limit

this °exibility. Capacity in manufacturing models in [12] is independent of network design;

in transshipment, retailers adjust base-stock levels to minimize system costs.

3.2 The strategic transshipment network design problem

The strategic transshipment network design problem determines the optimal network con-

¯guration (i.e., the link set K) given a limit, P , on the number of transshipment links. To
compare the e±ciency of transshipment networks, we introduce Z(K;S) to denote the op-
timal expected cost (over demand realizations) of a network with transshipment link set K
and base-stock level vector S. The transshipment network design problem is formulated as:

minZ(K;S) (2a)

subject to

jKj · P (2b)

K µ (N £N ) (2c)

The objective function (2a) minimizes the expected cost. Constraint (2b) limits the size of

the link set, and constraint (2c) de¯nes the possible choices of links between nodes. E±cient
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networks are those that have low values of Z(K;S) when compared to other networks. Robust
networks are those that, after being selected over other networks under one set of cost and

demand parameters, still perform better given deviations from the initial parameters.

4. Network con¯gurations

Figure 3 shows the group con¯gurations from the literature (3(a) and 3(b)) and chain con¯g-

urations (3(c) and 3(d)). Let group(l) denote a group con¯guration of M groups of l nodes

and l(l ¡ 1) directed links each, for any positive integer M such that lM = N . Group(2) in

Figure 3(a) and the unidirectional chain in Figure 3(c) have 6 links while group(3) in Figure

3(b) and the bidirectional chain in Figure 3(d) have 12 links or 6 bidirectional links.

(b) Group(3)

1

2

3

4

5

6

(a) Group(2)

1

2

3

4

5

6

1

2

3

4

5

6

(c) Unidirectional 
chain

1

2

3

4

5

6

(d) Bidirectional 
chain

Figure 3: Basic network con¯gurations with N = 6 locations

Section 4.1 presents analytical comparisons of chain and group con¯gurations, and Section

4.2 presents numerical comparisons of the chain con¯guration with a range of con¯gurations.

4.1 Analytical results for chain and group con¯gurations

We show that the group con¯guration incurs higher expected costs than the chain con¯gura-

tion under the identical location assumption. The unidirectional chain outperforms group(2),

both with N = 2M directed links, and the bidirectional chain outperforms group(3), both

with N = 3M bidirectional links. Proofs for the lemmas (needed to prove the theorems)

and Theorems 1 and 3 are provided in the online appendix.

Lemma 1 Given a network with identical nodes, a vector of base-stock levels, S, cost param-

eters that allow for only one pro¯table shift, and a ¯xed con¯guration, then: minimizing the

expected number of units in inventory, minimizing the expected number of units in shortage

or maximizing the number of units transshipped will yield the minimum total expected cost.
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Lemma 2 Given an identical node network with nodes facing independent demand, linked

for transshipments either as a chain or in a group(l) con¯guration, the optimal base-stock

levels are identical across locations in a con¯guration.

Lemma 3 Consider three identical nodes linked in the following manner:

2

31

2

31

2

31

2

31

where the nodes face independent demand, their base-stock levels are identical, and where

cost parameters allow for only one pro¯table shift. The expected ending inventory/shortage

after transshipments at nodes 1 and 3 are positively correlated.

Theorem 1 Given an identical node network with N = 2M locations (M = 1; 2; ¢ ¢ ¢ ), the
optimal expected cost in a unidirectional chain con¯guration is lower than or equal to the

optimal expected cost in a group(2) con¯guration.

Theorem 2 states that the bidirectional chain outperforms group(3) in expectation for

networks with six nodes. Theorem 3 extends the result to networks with multiples of three

nodes.

Theorem 2 Given a network with six identical locations facing independent demand, the

optimal expected cost in a bidirectional chain con¯guration is lower than or equal to the

optimal expected cost in a group(3) con¯guration.

Proof: From Lemma 2, the optimal base-stock levels at all locations within each con-

¯guration are identical. We prove that for the same base-stock level at each location, S,

the bidirectional chain outperforms group(3) for one pro¯table shift. With more than one

pro¯table shift, the chain con¯guration can only improve while the group(3) con¯guration

sees no bene¯t. Recall that K is the set of transshipment links in formulation (1). Let Z(Kc)
and Z(Kg) denote the optimal expected inventory, shortage and transshipment costs for a
network with chain links, Kc, and group(3) links, Kg, respectively. The argument S is omit-
ted from Z(K;S) since the base-stock levels are the same. We prove that Z(Kc) · Z(Kg),
according to the outline in Figure 4.

8



Step 1: Optimize flow on 
dark links; no flow on 
dashed links

Step 2: Optimize flow on 
dark links; fixed flow on gray 
links obtained from Step 1

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Step 3: Compare solution 
with optimal flow on all arcs

Step 1: Optimize flow on 
dark links; no flow on 
dashed links

Step 2: Optimize flow on 
dark links; fixed flow on gray 
links obtained from Step 1

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Step 3: Compare solution 
with optimal flow on all arcs

Figure 4: Outline of proof of Theorem 2

Step 1: Remove two links from each network, such that the same links remain in

both networks. Let K0 = f(1; 2); (2; 3); (4; 5); (5; 6)g be the set of remaining links. Given a
demand instance, the transshipment quantities are found with formulation (1). The solutions

for both networks are the same since the link set is K0 for both. The optimal °ows on these
networks, assuming no °ow on the removed links, is denoted X0 with cost Z(K0).
Step 2: Add back the removed links. The resulting link sets are Kc = f(1; 2); (2; 3);

(3; 4); (4; 5); (5; 6); (6; 1)g and Kg = f(1; 2); (2; 3); (3; 1); (4; 5); (5; 6); (6; 4)g, for chain and
group(3), respectively. Fix the °ows on the links in K0 at the levels of X0, allow °ows on the

reintroduced links to lower costs. Denote the costs after Step 2 as Z(KcjX0) and Z(KgjX0).

From Lemma 3, the expected net inventory at the corner nodes (i.e., nodes 1 and 3, and

nodes 4 and 6) are positively correlated. The expected net inventory at the endpoints of

connecting links in the chain network (i.e., nodes 3 and 4, and nodes 1 and 6) are independent.

There will be less transshipment °ow on the new links in the group(3) network than on the

new links in the chain network. Since only one shift is allowed, maximizing transshipments

will minimize cost, from Lemma 1. Hence, Z(KcjX0) · Z(KgjX0).

Step 3: Attempt to improve the solution of each con¯guration by changing the link

°ows. We show that the solution of group(3) cannot be improved while the solution to the

chain may be improved. Consider six exhaustive cases for nodes 1, 2, and 3 in group(3).

1. All nodes are short. No transshipments are possible.

2. No nodes are short. No transshipments are needed.

3. Only one corner node (e.g. node 1) is short. In Step 1, the middle node ships to node

1. If node 1 is still short, then node 3 ships in Step 2. Since holding and transshipment

costs are identical at each node, redistributing °ows cannot lower the total cost.
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4. Only the middle node is short. Corner nodes do not ship to each other; the °ows after

Step 2 are optimal.

5. Corner node (e.g. node 1) is not short and other nodes are short. In Step 1, node

1 ships to the middle node, and, if possible, ships to node 3 in Step 2. Again since

shortage and transshipment costs are identical, the °ows after Step 2 are optimal.

6. Middle node is not short and all other nodes are short. Since both corner nodes are

short, the °ows after Step 2 are optimal.

In all six cases, changing transshipment °ows among nodes 1, 2 and 3 after Step 2 cannot

lower the total cost. The same holds for nodes 4, 5, and 6, thus Z(KgjX0) = Z(Kg).
For the chain, we show by example that Z(Kc) · Z(KcjX0). Consider inventory before

transshipment= (-10, 5,-5, 0, 0, 10). An optimal solution in Step 1 is x21 = 5 and 0 otherwise.

In Step 2, x61 = 5 and 0 otherwise. The total inventory of this solution is 5, the shortage

is 5, and the number of transshipments is 10. However, the optimal solution, x23 = 5 and

x61 = 10, results in no inventory or shortage with 15 transshipments. From Steps 2 and 3,

Z(Kc) · Z(KcjX0) · Z(KgjX0) = Z(Kg). As a result, Z(Kc) · Z(Kg) for one pro¯table
shift. With more than one pro¯table shift, the chain con¯guration bene¯ts while the group

con¯guration does not. Therefore, Z(Kc) · Z(Kg).2

Theorem 3 Given a network with N = 3M identical locations (M = 1; 2; ¢ ¢ ¢ ) facing in-
dependent demand, the optimal expected cost in a bidirectional chain con¯guration is lower

than or equal to the optimal expected cost in a group(3) con¯guration.

4.2 Numerical results for chain and general con¯gurations

We extend the previous results by comparing the bidirectional chain con¯guration with con-

¯gurations with the same number of bidirectional links, using network con¯gurations with

N nodes and N transshipment links, where N = 6; 12, and 18. The numerical tests incorpo-

rate a range of parametric values. We ¯x the sum of holding and shortage costs at 13 with

three cases for holding and shortage costs, denoted by ¿ = (ch; cs) 2 f(2; 11); (4; 9); (6; 7)g,
and consider six transshipment costs: ct = 2; 4; 6; 8; 10; 12, resulting in four pro¯table shifts:

J = 1; 2; 3; 6. Demand at each node follows a Gamma distribution with mean of 100 and

¯ve coe±cients of variation: ° = 0:25; 0:5; 1; 1:5; 2. For each scenario, we perform pairwise

comparisons of the chain with the other con¯gurations.
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Consider a pairwise comparison of the chain con¯guration with con¯guration f . The

optimal expected cost for each con¯guration is obtained with the IPA method using its

optimal base-stock level vector. Let Z(KcjSc) be the optimal expected cost of the chain
and Z(Kf jSf) be the optimal expected cost of con¯guration f . Let ¤(°; ct; ¿) denote the
percent of pairwise comparisons in which the chain has a lower expected cost than the other

con¯guration with scenario values °, ct, and ¿ . Let ¢(°; ct; ¿) denote the deviation of the

expected cost of the chain from the expected cost of the lower cost con¯guration in pairwise

comparisons in which the chain is not the lower cost con¯guration:

¢(°; ct; ¿) =
Z(KcjSc)¡ Z(Kf jSf )

Z(Kf jSf ) £ 100%:

Let ¹¢(°; ct; ¿) be the average deviation of all pairwise comparisons in which the chain does

not yield the lower cost and ¢¤(°; ct; ¿) be the maximum deviation of these comparisons.

We compare the relative magnitude of ¢(°; ct; ¿) with £(°; ct; ¿), the di®erence between

the highest and lowest optimal expected costs for all con¯gurations for scenario values °,

ct, and ¿ . We denote the set of all con¯gurations, including the chain, as F , and calculate

£(°; ct; ¿) as follows:

£(°; ct; ¿) =

µ
maxf2FfZ(Kf jSf )g ¡minf2FfZ(Kf jSf )

minf2FfZ(Kf jSf )g
¶
£ 100%:

For networks with N = 6, there are 20 possible con¯gurations (other than chain), shown

in the Appendix. Table 1 presents the results as a function of coe±cient of variation, the

factor that was observed to have the most signi¯cant impact on the results. The table

presents the number of total comparisons(#) at each value of ° and the value of the e±ciency

metrics for a ¯xed °: ¤(°; ¢; ¢), ¹¢(°; ¢; ¢), ¢¤(°; ¢; ¢), and £(°; ¢; ¢). We use ¤, ¹¢, ¢¤, and £

when the values of °, ct, and ¿ are constant, or when these values are unambiguous.

° # ¤(°; ¢; ¢) ¹¢(°; ¢; ¢) ¢¤(°; ¢; ¢) £(°; ¢; ¢)
0.25 360 100% - - 38.2%
0.5 360 100% - - 38.3%

1 360 100% - - 35.3%
1.5 360 98.3% 1.2% 2.6% 27.2%

2 360 90.0% 1.6% 7.5% 20.1%

Total 1800 97.7% 1.4 % 7.5% 38.3%

Table 1: E±ciency of the chain network for N = 6 as a function of °

The chain is more e±cient in 97.7% of all comparisons. The chain is the most e±cient

con¯guration for values of ° · 1, implying that chain remains e±cient regardless of the cost
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parameters for low to moderate levels of demand uncertainty. The chain is still highly e±cient

at ° = 1.5 (high value of ¤ and low values of ¹¢ and ¢¤). At ° = 2, other con¯gurations

may be more e±cient than the chain, although the chain is more e±cient in 90% of the

comparisons. The maximum deviation between the chain and more e±cient con¯gurations

is 7.5%, which is small relative to the maximum cost spread of 20%. Values of £ decrease

as ° increases, suggesting that when demand is highly uncertain, the con¯guration is less

important since the high costs to accommodate this uncertainty are unavoidable.

In Tables 2 and 3, we explore the e±ciency of the chain with respect to cost parameters

for °=2 (i.e., the ¯fth row of Table 1). Table 2 presents results as a function of holding and

shortage costs, and Table 3 presents results as a function of transshipment costs.

ch cs # ¤(2; ¢; ¿) ¹¢(2; ¢; ¿) ¢¤(2; ¢; ¿) £(2; ¢; ¿)

2 11 120 95.0% 1.2% 4.8% 20.1%
4 9 120 90.0% 1.9% 7.5% 13.9%
6 7 120 85.0% 1.5% 7.0% 8.7%

Total 360 90.0% 1.6% 7.5% 20.1%

Table 2: E±ciency of the chain network for N = 6 for °= 2 as a function of ch and cs

Table 2 suggests that while the e±ciency of the chain con¯guration in terms of ¤ de-

creases with higher holding costs and lower shortage costs, the deviation between the chain

and other con¯gurations does not change signi¯cantly. The maximum deviation among all

con¯gurations decreases with higher holding costs and lower shortage costs.

ct # ¤(2; ct; ¢) ¹¢(2; ct; ¢) ¢¤(2; ct; ¢) £(2; ct; ¢)
12 60 100% - - 0.8%
10 60 100% - - 2.4%
8 60 100% - - 4.4%
6 60 98.3% 0.01% 0.01% 7.2 %
4 60 78.3% 0.7% 2.1% 12.6 %
2 60 63.3% 2.3% 7.5% 20.1 %

Total 360 90.00% 1.6% 7.5% 20.1%

Table 3: E±ciency of the chain network for N = 6 and °= 2 as a function of ct

Table 3 suggests that the cases in which the chain is less e±cient correspond to scenarios

with high demand variability and low transshipment costs (i.e., ° = 2 and ct = 2 and 4).

When demand variability is high and transshipment costs are low relative to holding and

shortage costs, con¯gurations that centralize inventory to maximize pooling are desirable.
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In these cases, the most e±cient con¯guration is Con¯guration 4 in the Appendix, which

we refer to as the star network (an extra link exists compared to a typical star since all

con¯gurations must include 6 links). The star network stores additional inventory at one

centralized node and transships items to other nodes as needed. This results in a lower cost

than the chain since centralized inventory pooling reduces the relatively high holding costs

with highly variable demand. We make the following observations.

Observation 1 When demand uncertainty is low or transshipment costs are high relative to

holding and shortage costs, multiple shifts are not signi¯cantly bene¯cial in all con¯gurations.

Under these conditions, balanced base-stock levels among all locations are desirable and the

chain is likely to be the most e±cient con¯guration for N=6.

Observation 2 When demand uncertainty is high and transshipment costs are low relative

to holding and shortage costs, con¯gurations that utilize multiple shifts are not the most

e±cient. Rather, these conditions promote centralized risk pooling and the star con¯guration

is likely to be the most e±cient con¯guration for N=6.

We con¯rm Observations 1 and 2 in networks with N = 12 and 18. Since the number

of possible unique con¯gurations for 12 and 18 location/link scenarios are much greater,

we consider 25 randomly generated unique networks in the pairwise comparisons with the

chain and star con¯gurations. The networks and result tables are presented in the Online

Appendix. The chain is more e±cient in over 97% of the comparisons with the randomly

generated con¯gurations. For ° · 1, the chain is most e±cient when compared to the 25

randomly generated con¯gurations. When the chain is inferior, the average value of ¹¢ is less

than 2% with a maximum deviation below 7%. When compared to the star con¯guration,

the chain is more e±cient in all cases with ° · 0:5. Consistent with Observation 2, the star
performs signi¯cantly better than the chain when ° ¸ 1:5 and ct is small relative to cs+ch. In
pairwise comparisons of the star with the randomly generated networks at ° ¸ 1:5 and ct · 4,
the star con¯guration is the most e±cient. In conclusion there are many scenarios in which

the chain is the most e±cient con¯guration; however, in cases in which centralized inventory

is desirable (high demand uncertainty and low transshipment cost relative to shortage and

holding costs), the star con¯guration is more e±cient.

Based on the above analysis, the chain is a robust, e±cient con¯guration. We present

the three key desirable properties for an e±cient and robust transshipment network. While

we have identi¯ed other desirable properties, they are all related to those mentioned below.
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² Appropriate pool size. To achieve the bene¯ts of risk pooling, nodes should have access
to the inventory of other nodes. The number of nodes that should be accessible (i.e.,

the pool size) is impacted by demand variation. As variation increases, the pool size

should increase.

² Short Transshipment Paths. As expected, reducing the path length (number of shifts)
between locations in a transshipment pool can lower transshipment costs. Note that

only paths of length less than the number of pro¯table shifts are included in the pool.

² Balanced Node Degree. The degree of a node is equal the number of incident links. Net-
works with balanced node degrees have well-distributed transshipment links through-

out the network in identical networks. Balancing links among all nodes leads to low

inventory levels at all nodes.

5. Discussion

Our work is a ¯rst step in transshipment network design research. Several of the initial

assumptions may be relaxed in future research. In particular, it is important to investigate

the transshipment network design problem in which the unit transshipment cost between

di®erent locations depends on the speci¯c pair of locations (non-homogeneous transshipment

costs). Such transshipment cost structure can represent the distance between the locations,

or other location-pair characteristics.

Unfortunately, the above extension complicates the analysis quite considerably. A chain

con¯guration with non-homogeneous transshipment costs must be further de¯ned by the

sequence in which the locations are ordered within the chain, and there are (n-1)! possible

sequences. Each sequence is characterized by di®erent total transshipment costs along the

chain, and ¯nding the sequence with minimal total transshipment costs is equivalent to the

well known TSP problem. However, ordering the locations according to the optimal TSP

sequence does not necessarily minimize total inventory and transshipment costs, and there-

fore, may not provide the best chain sequence. The locations will di®er in their accessibility

due to di®erent (transshipment) costs of connected links and varying base stock levels.

With the grouping con¯guration and non-homogeneous transshipment costs, similar and

additional issues arise. While equal group sizes are preferable for the case of homogeneous

costs, this may not necessarily be the case with non-homogeneous costs. In the latter case,

the group size may be signi¯cantly a®ected by the closeness of a group of locations to other
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locations, as expressed in terms of the transshipment costs. Thus, the group size is yet

another factor to be determined.

It appears that with non-homogeneous transshipment costs the best con¯guration de-

pends heavily on the speci¯c cost parameters. Thus we believe that our analytical results

cannot be extended to this more general case. Another important and interesting case is

when the demand parameters di®er among locations. This again will lead to unequal base

stock levels a®ecting the required or available stock going into or out of each location, thus

complicating again the desired con¯guration problem. Future research can build on the

framework and basic fundamental analysis in this paper to study particular cases of these

more general settings.
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Appendix

Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5 Configuration 6

Configuration 7 Configuration 8 Configuration 9 Configuration 10 Configuration 11 Configuration 12

Configuration 13 Configuration 14 Configuration 15 Configuration 16 Configuration 17 Configuration 18

Configuration 19 Configuration 20 Configuration 21

Figure A.1: All 6 node - 6 link network con¯gurations
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