
Improved modeling and solution methods for the multi-resource

routing problem

Peter Francis, Guangming Zhang and Karen Smilowitz

Department of Industrial Engineering and Management Sciences

Northwestern University

April 21, 2006

Abstract

This paper presents modeling and solution method improvements for the Multi-Resource

Routing Problem (MRRP) with °exible tasks. The MRRP with °exible tasks is used to model

routing and scheduling problems for intermodal drayage operations in which two resources (trac-

tors and trailers) perform tasks to transport loaded and empty equipment. Tasks may be either

well-de¯ned, in which both the origin and the destination of a movement are given, or °exible,

in which the origin or the destination is chosen by the model. This paper proposes methods

to e®ectively manage the number of options considered for °exible tasks (either feasible origins

for a known destination or feasible destinations for a known origin). This modeling change

generates su±cient options to allow for low-cost solutions while maintaining reasonable compu-

tational e®ort. We also propose a new solution method that uses randomized route generation.

Computational results from test cases show that these changes improve the quality of solutions

by at least 5% in the test cases as compared to methods from previous studies.

Keywords: Transportation; routing; heuristics; large-scale optimization; logistics

1 Introduction

This paper presents modeling and solution improvements for the Multi-Resource Routing Problem

(MRRP) with °exible tasks. Smilowitz (2006) introduces the MRRP with °exible tasks as a method

for solving routing and scheduling problems arising in intermodal drayage operations. Drayage

involves the routing of two resources (tractors and trailers) to complete a set of tasks to transport

1

loaded and empty equipment. The set of tasks consists of both well-de¯ned tasks and °exible

tasks, as illustrated in Figure 1. For well-de¯ned tasks, the origin, destination, time window, and

resources required (tractor and trailer) are known. For °exible tasks, only one location (either

origin or destination), time window, and resources required are known. The well-de¯ned task in

Figure 1(a) requires the movement of a tractor and a trailer from the equipment yard to the shipper.

The °exible task in Figure 1(b) requires that the tractor and trailer be moved to the shipper, but

no origin is speci¯ed.

shipper

consignee

empty trailer

loaded trailer

tractor

equipment
yard

equipment
yard

shipper

(a) Well-defined task

(b) Flexible task with 2
possible executions

Figure 1: Illustration of drayage operations

The MRRP with °exible tasks is de¯ned as:

Given: a set of tasks (well-de¯ned and °exible) with required resources, processing

times for resources and time windows; a °eet of each resource type; operating hours

at all locations; and a network with travel times.

Find: a set of routes by resource type that satisfy all tasks while meeting a chosen

objective function (minimizing °eet size, travel time) and observing operating rules

for the tasks and resources.

For each °exible task, the MRRP ¯nds an appropriate execution of that task. For a task with a

°exible origin, an appropriate origin is found; for a task with a °exible destination, an appropriate

destination is found. In the example in Figure 1(b), both the equipment yard and the consignee

are possible executions of the °exible task of moving an empty trailer to the shipper. Potential

executions must comply with time windows for the °exible task. In Smilowitz (2006), the number

of feasible executions for a °exible task is limited by the distance between nodes; an execution is

2

considered geographically-feasible if the deadhead distance associated with the execution is within

a radius ½, which is constant across all nodes (origins/destinations for °exible tasks).

This paper introduces a method of de¯ning node-speci¯c radii for feasible executions rather

than setting a single value for all nodes. The proposed Variable Radius (VR) method limits choices

for nodes in dense areas (e.g. urban locations) and expands choices for nodes in isolated regions. As

a result, we can limit the set of feasible executions for °exible tasks in a way that better re°ects the

geographic distribution of the nodes. Further, we present a randomized solution method, called the

Greedy Randomized Procedure (GRP), to solve the resulting MRRP. The computational results

demonstrate measurable improvement when applied to test cases from Smilowitz (2006).

The paper is organized as follows. Section 2 formally de¯nes the MRRP and introduces issues

related to de¯ning the set of feasible executions and solving the MRRP. Section 3 introduces the

VR method to choose feasible executions and the GRP method to generate vehicle routes. Section

4 describes the implementation of the combined GRP/VR method and presents numerical studies

on large-scale instances of the MRRP. Section 5 presents a summary of the research.

2 Problem description

The MRRP is a special case of the redistribution problem, as de¯ned in Dror et al. (2000, 2001). The

redistribution problem designs vehicle routes to redistribute items from supply nodes to demand

nodes at minimum cost or minimum required vehicle °eet, while observing vehicle capacity limits

and driver work shifts. Unlike traditional pickup and delivery problems (see Savelsbergh and

Sol (1995)), origins/destinations for °exible tasks are not given as inputs, but rather are left as

decisions, further complicating the problem.

2.1 Formulation

Multi-resource routing problems with well-de¯ned tasks can be modeled in two ways: (1) as arc-

based network °ow problems, or (2) as node-based vehicle routing problems (VRP). In arc-based

formulations, the physical network is transformed into a time-space network. Time is discretized

over the planning horizon. Each node represents both a physical location and an instant in time.

The network arcs represent the movements of tractors and trailers between nodes. Alternatively,

in node-based formulations, the origin and destination of a movement are aggregated into a single

node that represents the entire movement with all the characteristics of the movement (duration,

3

origin, destination, time windows). The resulting problem is an asymmetric VRP in which tractors

must visit each node, thereby completing all tasks to move trailers.

Applying these approaches to the MRRP with °exible tasks on a large scale is challenging. While

the °exible origin/destination choice can easily be incorporated in the arc-based network, it is more

di±cult in the node-based network. Tasks which involve a choice of either origin or destination

cannot be collapsed into a single node. The MRRP with °exible tasks is further complicated

by the presence of time windows. Network °ow formulations are well-suited for handling the time

dependency between tasks. Such a formulation is studied in Morlok and Spasovic (1994) for drayage

operations for a single rail carrier. However, the size of network °ow formulations quickly becomes

problematic. Ball et al. (1983) develop a network °ow formulation for the distribution of trailers

for a chemical company. They also transform the problem into a VRP which creates tractor tours

to serve requested trailer movements and apply VRP solution methods.

Subsequent work on related problems with well-de¯ned tasks has focused on node-based VRP

approaches, rather than computationally intensive arc-based network °ow formulations; see, for

example, De Meulemeester et al. (1997) and Bodin et al. (2000). Smilowitz (2006) employs a

node-based formulation for the MRRP with °exible tasks. Multiple executions for °exible tasks

are generated. Each execution is represented as a node in the asymmetric VRP, and one of these

nodes must be visited for each °exible task. Given a disjoint set of movements, a set partitioning

formulation of the MRRP is used. Similar formulations have been e®ective at solving related routing

problems; see Cullen et al. (1981), Dumas et al. (1991), Desrochers et al. (1992), Savelsbergh and Sol

(1998), and Xu et al. (2003). These formulations partition items (here, tasks to be performed) into

disjoint sets (which correspond to vehicle routes). Tractor routes must comply with the operating

rules and tasks must be performed within time windows with the required tractors and trailers.

The following notation is used to formulate the MRRP:

T : Set of tasks (T = Tw [Tf) where Tw = well-de¯ned tasks; Tf = °exible tasks

Ei : Set of possible executions of °exible task i 2 Tf
M : Set of movements [all tasks in T and all possible executions of °exible tasks]

R : Set of feasible routes

cr : Cost of route r 2 R

ari : Covering parameter: =

8><>:1 if movement i 2M is on route r 2 R

0 otherwise

4

xr =

8><>:1 if route r 2 R is chosen

0 otherwise

The set partitioning formulation of the MRRP from Smilowitz (2006) is:

min
X
r2R

crxr (1a)

subject toX
r2R

arixr = 1 8i 2 Tw (1b)

X
r2R

X
e2Ei

arexr = 1 8i 2 Tf (1c)

xr 2 f0; 1g 8r 2 R (1d)

The objective function (1a) minimizes the cost of routes where cr is a weighted function of ¯xed

vehicle cost and variable distance cost, such that minimizing °eet size is the primary objective.

Equations (1b) are the partitioning constraints that ensure that all well-de¯ned tasks are served

by exactly one route. The partitioning constraints (1c) ensure that exactly one execution is added

to the routes for each °exible task. These constraints are written as multiple-choice knapsack

constraints (see Sinha and Zoltners (1979)). Finally, equations (1d) de¯ne the binary decision

variables for each route.

2.2 De¯ning feasible executions

The ability to obtain good solutions for the MRRP with reasonable computational e®ort depends

on the composition of sets Ei and R. The size of the route set R increases with the possible choices

for executions; i.e., the size of Ei for each °exible task i 2 Tf . As the number of choices increases,

the solution quality may improve, but the problem becomes more di±cult to solve. Smilowitz

(2006) limits the set Ei by a ¯xed distance limit ½ for all nodes. Figure 2 shows an example with

two °exible tasks, each associated with a shipper (nodes SA and SB) that requires a trailer. The

trailers can be transported from nearby equipment yards or consignees, given that time windows

are satis¯ed. When ½ = 1, as shown in the ¯gure, shipper SB in a sparse region has only a single

option. However, increasing ½ to 2 to expand the options for shipper SB results in many options

for shipper SA in a dense region, which may signi¯cantly increase the execution set Ei for i = SA,

and, in turn, increase the route set R.

5

SB

SA

shipper

consignee

equipment yard

Fixed radius

ρ = 1 ρ = 2

Depot

Figure 2: Illustration of the ¯xed radius region for feasible executions for two shipper nodes

Many practical instances of the MRRP involve nodes that are not distributed uniformly in

geographic space. When using a ¯xed radius for every node, a node in a dense region may have a

signi¯cantly larger set Ei, compared with a node in a sparse region. The VR method, proposed in

Section 3.1, introduces node-speci¯c radii to balance the size of execution sets among nodes.

2.3 Solution methods

Even with limitations on the number of feasible executions, the number of feasible routes in a typical

MRRP instance is prohibitively large and complete enumeration of the routes is not practical.

Therefore, rather than enumerating all feasible routes for the set R, a column generation approach

is used with the linear relaxation of (1) to iteratively add routes. At each iteration, new routes

are generated with a pricing problem using modi¯ed route costs de¯ned by the dual variables for

constraints (1b). The linear relaxation of (1) is solved again and the dual variables are updated.

This process is repeated until a preset stopping criterion is reached (no new routes, maximum

iterations, acceptable solution gap, or limited solution improvement). Next, an integer solution is

obtained using a branch-and-bound technique. One can either continue to generate routes at all

nodes of the branch-and-bound tree or employ a heuristic that uses only the ¯nal subset of routes

from the initial column generation at the root node. Computational tests suggest that, for the test

cases in this study, the route set generated at the root node are su±ciently diverse to yield good

integer solutions without generating additional routes throughout the branch-and-bound tree.

6

The pricing problems employed to generate new routes within column generation are elementary

shortest path problems with time windows and driver work shift constraints. These shortest path

problems have been shown to be NP-hard; see Dror (1994). Two possible approaches to solve

these problems are label-correcting dynamic programming and trip insertion heuristics. While

dynamic programming methods yield optimal solutions for small problem instances of the MRRP

with °exible tasks, the method cannot be used for larger instances; see Smilowitz (2006). Therefore,

we use a trip insertion heuristic, which is based on a method for the VRP with time windows and

worker shift constraints from Campbell and Savelsbergh (2004).

Let U be the set of movements not yet assigned to a route, and let R be the set of routes

constructed. An algorithmic representation of the method is shown below:

Step 0:

U =M all movements unassigned

R = ; empty set of routes

Step 1: 8j 2 U :

(1) 8r 2 R: ¯nd least-cost, feasible insertion of j into r

(2) 8k 2 U : ¯nd least-cost, feasible merger of j and k

Step 2: select best (least-cost) option from Step 1

If selection comes from (1) in Step 1

(a) update r by inserting j: U = U n j

(b) if j 2 Ei for some i 2 Tf then U = U nm 8m 2 Ei
If selection comes from (2) in Step 1

(a) create r̂: merger of j & k: R = R[r̂ and U = U n j; k

(b) if j or k 2 Ei for some i 2 Tf then U = U nm 8m 2 Ei
Step 3: Repeat steps 1 and 2 while U 6= ;

The method terminates with a set of feasible routes R. Note that in Step 2(b), if j 2 Ei is

selected as the best feasible insertion (or if j or k 2 Ei is selected as the best merger in the set

of movements), all other executions for the °exible task i are removed from consideration. In the

example in Figure 2, once a yard or consignee is selected to send a trailer to Shipper SA, no other

movements of trailers to SA can be considered; there may be other consignees that would like to

reposition an empty trailer to SA, but such executions would be removed from consideration.

7

The VR method, presented in Section 3.1, a®ects the construction of set Ei, and the GRP

method, presented in Section 3.2, a®ects the selection of the merge in Step 2. While this paper

focuses on the insertion heuristic to solve the routing subproblem, limiting execution choices with

the VR method is desirable for the label-correcting dynamic programming method as well. The

motivation behind these modeling and solution method changes is explored in the next section.

3 Modeling and solution techniques

This section introduces modeling and solution technique improvements for the MRRP with °exible

tasks. Section 3.1 presents the VR method for de¯ning feasible executions for °exible tasks based

on node density. Section 3.2 presents the GRP method of solving the resulting MRRP.

3.1 Variable Radius method

The Variable Radius (VR) method considers the spatial distribution of nodes when de¯ning the

set of executions for a °exible task. The objective is to build a neighborhood around each node to

balance the number of possible executions among all °exible tasks. If a °exible task is to originate

(or terminate) from a given node, we consider possible executions only within the neighborhood of

the node. Let Q denote the neighborhood size, in terms of number of nodes.

SB

SA

C4

shipper

consignee

equipment yard

Neighborhood size

Q = 2 Q = 4

Y1

Y2

C2

C3

C5
C1

SB

Y3

Depot

Figure 3: Illustration of Variable Radius algorithm for two shipper nodes

Figure 3 shows how feasible executions are created using the VR method for shippers SA and

SB . With the VR method, the radius varies with the spatial density surrounding a node and the

8

desired neighborhood size. In Figure 3, two neighborhood sizes are shown, Q = 2 nodes and Q = 4

nodes.

The VR method is implemented as follows. Let the neighborhood Ni of node i 2 N be the

set of nodes within a distance ½i. The algorithm iteratively increases the value of ½i until the

neighborhood reaches a minimum size, jNij = Q. For every node i 2 N , the following algorithm

aggregates its nearest Q nodes into Ni:

Step 0:

dij = distance(i; j);8i; j 2 N

Step 1: 8i 2 N :

(1) Let bNi = fj : j 2 N ; order ascending dijg
(2) Ni = fjl : j 2 bNi; l = 1; :::; Qg
(3) ½i = maxfdhi : h 2 Nig

For each node i 2 N , the algorithm constructs an ordered list bNi of nodes, sorted by increasing
distance from i. The neighborhood Ni consists of the ¯rst Q nodes in the list bNi and ½i is the
distance between i and the Qth node in the list bNi.

In the example in Figure 3, for Q = 2 the value of ½i for i = SA would be the distance between

SA and Y1 and for i = SB , the distance between SB and C3. Likewise, for Q = 4 the value of ½i

for i = SA would be the distance between SA and C2 and for i = SB, the distance between SB and

C5. With this method, we can control the size of the execution set. Assuming time windows are

not violated, for Q = 2, Ei for the task i associated with SA would be fC1; Y1g and Ei for the task

i associated with SB would be fC3; Y3g. Alternatively, with a ¯xed value of ½ for both shippers,

the set of options would either be too small for SB or too large for SA.

3.2 Greedy Randomized Procedure

Intuitively, as the number of execution options increases, the solution should improve. However, a

pure greedy insertion heuristic does not guarantee improvements in solution quality with increases

in neighborhood size Q in the VR method. Figure 4 shows the relationship between neighborhood

size Q and the two objectives, °eet size and travel time, for two typical problem instances from the

data set described in Section 4.1. Note that cr is de¯ned in formulation (1) such that °eet size is

minimized ¯rst, and then travel time. Instance 1 in Figure 4(a) exhibits the expected decrease in

°eet size, but Instance 2 in Figure 4(b) does not show a monotonic decrease in °eet size. This is the

9

result of greedily choosing executions to serve the °exible tasks. Since a pure greedy method cannot

guarantee a monotonic decrease in objective function value, we propose the use of randomization

to increase the diversity of the routes generated.

(a) Instance 1

62

63

64

65

66

67

4 5 6 7 8 9 10 11 12 13

Neighborhood Size, Q

Fl
ee

t s
iz

e

610

615

620

625

630

635

Tr
av

el
 ti

m
e

65

66

67

68

69

70

71

72

73

74

Fl
ee

t s
iz

e

630

635

640

645

650

655

660

665

670

Tr
av

el
 ti

m
e

Fleet size
Travel time (b) Instance 2

4 5 6 7 8 9 10 11 12 13

Neighborhood Size, Q

Figure 4: Inconsistent results with pure greedy method

The Greedy Randomized Procedure (GRP) solution technique is similar to Greedy Randomized

Adaptive Search Procedure (GRASP) heuristics; see Feo and Resende (1989). GRASP uses a

randomized greedy heuristic in a sequential adaptive procedure to ¯rst construct a feasible solution,

followed by a local search procedure for improvement. A summary of the general GRASP procedure

is presented in the appendix. The GRASP metaheuristic has been used to solve many combinatorial

optimization problems, including machine scheduling by Feo et al. (1991) and set covering by Feo

and Resende (1989). Carreto and Baker (1999) present a GRASP interactive approach to the

VRP with backhauls. Kontoravdis and Bard (1995) use GRASP for the VRP with time windows

providing two types of service, by calculating a greedy function of the insertion cost and the

penalty cost. They observe that the key di®erence in philosophy between GRASP and other

metaheuristics, such as Tabu Search and simulated annealing, is that GRASP focuses more on

the initial construction of solutions than the subsequent local search procedure. For a review of

metaheuristics for VRP's with time windows, see BrÄaysy and Gendreau (2000). Nanry and Barnes

(2000) develop a reactive tabu search for similar pickup and delivery problems with ¯xed origins

and destinations.

The GRP method introduces randomization in the route generation phase to produce a richer

set of routes. Rather than accepting the best insertion in Step 2 of the insertion method as described

in Section 2.3, an insertion must ¯rst pass a random test of acceptance. The insertion is accepted

10

with a probability: P (accepting best insertion) = ®. A random number X » U(0; 1) is generated

and the best insertion is accepted if X · ® and rejected if X > ®. Repeated many times, this

random insertion method can be used to generate many di®erent routes.

The master problem for the MRRP is solved with the routes generated using the GRP method.

These routes correspond to the columns of formulation (1). It is essential to manage the number of

columns in the master problem since computational results reveal an exponential growth in solution

time with the number of columns. Allowing column generation to iterate until no routes with

negative reduced costs exist may improve the solution to the linear relaxation of formulation (1), yet

this is often not possible due to computational limits. The GRP method maintains a manageable

number of columns by imposing a limit M on the number of column-generation iterations. To

improve the solution quality, the entire solution method is repeated until either a maximum of K

replications is reached or until the solution reaches the lower bounds from Smilowitz (2006), in

which case the solution is optimal. Let z be the best known feasible solution, let zk be the solution

to (1) after M column-generation iterations at the kth run of the solution method, and let zLB be

the lower bound obtained with the lower bound method in Smilowitz (2006) adapted for VR. The

resulting solution approach consists of an iterative greedy heuristic with randomization, as follows.

Step 0:

Let z =1 and calculate zLB with neighborhood size Q

Step 1:

(1) Solve zk = ColGen(Q;®;M)

(2) If zk < z then z = zk

Step 2:

While k · K and zk > zLB, repeat Step 1

In the initial step, a lower bound on the objective zLB is obtained with the method from

Smilowitz (2006), given a neighborhood size Q. The column generation method with GRP param-

eters Q, ®, and M is repeated K times. At each replication, the best feasible solution is updated

if zk < z. If zk = zLB, we have found the optimal solution and the algorithm terminates.

The proposed improvements to the MRRP can be summarized as follows. The VR method

more e±ciently generates the set of executions for °exible tasks. In the column generation step,

the GRP method introduces randomness in the assignment of movements to routes, rather than

using a pure greedy assignment. The following section describes how the algorithm parameters

11

Q;®;M; and K are determined to implement this solution approach.

4 Computational study

Section 4.1 describes the drayage data sets used for the computational studies. Section 4.2 intro-

duces the method of determining Q for the VR method, and Section 4.3 details the parameter

setting techniques for the GRP method. Section 4.4 presents the numerical results.

4.1 Test cases for MRRP with °exible tasks

The test cases are based on data from drayage and third party logistics companies (Dahnke (2003);

Corinescu (2003); Grosz (2003)) for dray movements over a region including greater Chicagoland

and parts of central Illinois, southern Wisconsin and western Indiana. Since the customer data

are proprietary, we create aggregated data sets from several drayage companies within close areas

(i.e. the same zip code) that mask individual customer information.1 The distance matrices for the

aggregated data sets maintain the same geographical characteristics as the initial industry data.

One set of aggregated test cases is used for parameter setting and a second set of aggregated test

cases is used for evaluation of the GRP/VR approach. Further, we test the GRP/VR approach

with a set of disaggregated industry test cases, which are not publicly available. Table 1(a) lists the

test cases for parameter setting, and Tables 1(b) and 1(c) present the aggregated and disaggregated

test cases for evaluation, respectively. Flexible tasks account for 50% of the total tasks on average.

(a) Aggregated data: parameter setting (b) Aggregated data: evaluation (c) Disaggregated data: evaluation

Test Total Flexible Fixed
case tasks tasks tasks

1 25 13 12
2 25 10 15
3 25 10 15
4 25 10 15
5 25 19 6
6 50 27 23
7 50 23 27
8 50 31 19
9 50 24 26

10 50 25 25
11 75 43 32
12 75 43 32
13 75 42 33
14 75 37 38
15 75 34 41
16 100 60 40
17 100 51 49
18 100 55 45
19 100 40 60
20 100 55 45

Test Total Flexible Fixed
case tasks tasks tasks

1 100 49 51
2 100 48 52
3 100 49 51
4 100 46 54
5 125 60 65
6 125 62 63
7 125 63 62
8 125 69 56
9 150 85 65

10 150 76 74
11 150 75 75
12 150 82 68
13 175 103 72
14 175 100 75
15 175 88 87
16 175 99 76
17 200 114 86
18 200 92 108
19 200 95 105
20 200 100 100

Test Total Flexible Fixed
case tasks tasks tasks

1 25 16 9
2 25 16 9
3 25 9 16
4 25 12 13
5 25 7 18
6 50 24 26
7 50 25 25
8 50 26 24
9 50 31 19

10 50 19 31
11 75 41 34
12 75 32 43
13 75 44 31
14 75 35 40
15 75 42 33
16 100 62 38
17 100 44 56
18 100 52 48
19 100 49 51
20 100 42 58

Table 1: Test cases of computational study of MRRP

1The data sets are available from the authors.

12

The operating parameters are detailed in Table 2. The model captures one day of operation,

assuming the loads for the day are known when decisions are made. It is assumed that all tractor

routes begin and end at one central depot, and that drivers work a continuous ten-hour work shift.

Parameter Value

Time to pick up loaded trailer 30 minutes
Time to drop off loaded trailer 30 minutes
Time to pick up empty trailer 15 minutes
Time to drop off empty trailer 15 minutes
Time to load trailer 1 hour
Time to unload trailer 1 hour
Driver work shift 10 hours (continuous)

Table 2: Operating parameters

4.2 Variable Radius parameter setting

The VR method determines the members of the set Ei for each °exible task i 2 Tf based on the

density surrounding the known (¯xed) location for the task. The neighborhood size is chosen to

balance solution quality and solution speed. Let FQ be a weighted combination of solution time

and quality (measured by the primary objective, °eet size), which is used as a metric to guide the

search for the neighborhood size Q.

We develop a nested partitioning method similar to the one proposed by Shi and ¶Olafsson

(1997) to search among all values of Q. The method searches for the best value of FQ by iteratively

partitioning the feasible region of values for the parameter Q. The \best" value of Q is the one

in which the optimal combination of minimum °eet size and minimum solution time occurs most

frequently. In practice, the best solutions are typically obtained in regions characterized by better

average performance; therefore, we focus on best average performance.

First, the process randomly samples the feasible region of Q. The current region is divided into

m partitions according to a chosen scheme. We use a binary partitioning scheme to guide the search

and limit Q to integer values between 1 and m, where m is some number less than the maximum

number of nodes in the problem instance. While we could set m to the maximum number of nodes

to maintain greatest °exibility; in practice, we observe that small values of m can be used since the

objective tends to be insensitive for larger m. Since no changes in objective values are observed for

m > 20 in our test cases, we set m = 20.

In each replication k of the search, ranking-and-selection procedures and multiple-comparison

13

procedures (see Matejcik and Nelson (1995)) are used to determine the amount of sampling needed

from each region. If a certain subset is found to be the best, it becomes the most promising region

in the next replication. Otherwise, if the surrounding region outweighs the current subset, the

method backtracks to the region of the previous replication. See ¶Olafsson and Kim (2002) for more

details of the search method.

Moves from the current partition to the most promising subset of that partition are made with

a probability of 95%, which is the level of con¯dence that a su±ciently good value of Q has been

found. Eventually, the subset of the potential values Q converges to a single value.

While binary partitioning is standard, we note that if m is small, then we prefer to partition

the entire range into m partitions such that each partition corresponds to exactly one value of Q.

This method saves time when m is small and no repeated samples are needed with successively

smaller partitions over the same region.

Q=2 Q=3 Q=4 Q=5 Q=6 Q=7 Q=8 Q=9 Q=10 Q=11 Q=12 Q=13 Q=14 Q=15

Expected objective 67.95 67.53 67.04 67.13 66.87 67.13 67.14 67.32 67.21 67.38 67.67 67.81 67.70 67.80

Multiple comparison LB 0 0 -0.13 -0.04 -0.55 -0.05 -0.03 0 0 0 0 0 0 0

Multiple comparison UB 1.38 0.96 0.47 0.56 0.05 0.55 0.57 0.75 0.64 0.81 1.10 1.23 1.13 1.23

Table 3: Nested partitioning results to determine the neighborhood size, Q

Table 3 shows an illustrative example to set the value of Q with the method described above,

given an indi®erence zone of ± = 0:3, i.e. di®erences of less than ± are not considered statistically

signi¯cant, and each integer value of Q = 2; 3; :::; 15 is a subset. According to Table 3, values from

Q = 4 to Q = 8 are suggested for the given test cases with 210 replications at each value of Q.

These results remain consistent when applied for longer replications. Figure 5 shows the solution

quality and time for tests of 500 replications for each value of Q = 2; 3; :::; 15. In Figure 5(a) all

values of Q in the regions from Q = 6 to Q = 15 ¯nd solutions with minimal °eet size of 63. In

Figure 5(b) the average solution time for each replication increases with the neighborhood size Q.

Since the objective considers both solution time and quality, these results suggest that Q = 8 and

Q = 9 are the best regions. In these two cases, solutions with the minimum °eet size of 63 are

obtained with a frequency of 14 and 17 out of 500 runs, which is high relative to the smaller values

of Q. The result is consistent with the Q values obtained in Table 3. Additional tests on aggregated

and disaggregated data sets yield the same conclusions.

14

(a) Fleet size versus neighborhood size

61

62

63

64

65

66

67

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Neighborhood size: Q

Fl
ee

t s
iz

e

Average fleet size
Minimum fleet size

(b) Solution time versus neighborhood size

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Neighborhood size: Q

So
lu

tio
n

tim
e

(s
ec

on
ds

)

Average solution time
Minimum solution time

Figure 5: Solution quality and time as a function of neighborhood size, Q

4.3 GRP parameters

In this section, we evaluate how the selection of the GRP parameters, ®;M; and K, impacts the

e®ectiveness and e±ciency of the combined GRP/VR method.

4.3.1 Degree of randomness

The value of ® directly a®ects the composition of the routes generated with the GRP algorithm.

A value of ® = 1 corresponds to a pure greedy algorithm, while lower ® values allow more diver-

si¯cation in the routes generated. Empirical tests suggest that cost-minimizing solutions can be

obtained with reasonable computational e®ort for ® in the range from 80% to 90%.

(b) Solutions hitting minimum fleet size in 300 runs(a) Range of corresponding solution objectives

Maximum:
Fleet: 50
Travel time:452

Average:
Fleet: 45.8
Travel time:424

Minimum:
Fleet: 44
Travel time:407

Minimum:
Fleet: 44
Travel time:410

Average:
Fleet: 45.7
Travel time:424

Maximum:
Fleet: 51
Travel time:459

Minimum:
Fleet: 44
Travel time:411

Average:
Fleet: 45.9
Travel time:426

Maximum:
Fleet: 51
Travel time:450

18500

19000

19500

20000

20500

21000

21500

22000

22500

80% 85% 90%

Accepting probability,

So
lu

tio
n

ob
je

ct
iv

e

0

2

4

6

8

10

12

14

80% 85% 90%

Fr
eq

ue
nc

y
of

 o
bt

ai
ni

ng
 m

in
im

um

Accepting probability, αα

Figure 6: Solution quality as a function of acceptance probability, ®

To illustrate the e®ect of varying ®, we present empirical results for a typical test case with 100-

15

tasks and K = 300 replications, and ® set at 80%, 85%, and 90% in Figure 6. Figure 6(a) compares

the objective function to formulation (1) as a function of ®. We convert the objective function

values to °eet size and travel time in the ¯gure. The ¯gure plots the range of solutions (maximum,

minimum and average) obtained in 300 replications of the GRP method with ® = 80%; 85%; 90%.

Note the lower variance in solution objective that occurs at ® = 80%.

Figure 6(b) plots the frequency with which the minimum °eet size is found as a function of

®. The frequency decreases with increases in ®. As expected, the minimum °eet is more likely

to be found with greater diversi¯cation. While this suggests that lower values of ® are favorable,

the greedy characteristic associated with higher values of ® is more likely to result in reasonably

good solutions in the ¯rst few replications. Hence, if the user chooses to perform fewer replications,

higher ® values should be used. In the following computational studies, we use ® = 80%.

4.3.2 Number of columns generated

The total number of columns added can be controlled by the number of column-generation iterations

allowed. The number of iterations is based on the computational resources available and the desired

solution time limit.

(a) Solutions time as a function of columns generated (b) Solution objective as a function of iteration count

26,500

27,000

27,500

28,000

28,500

29,000

29,500

0 10 20 30 40 50

Maximum iteration, M

So
lu

tio
n

ob
je

ct
iv

e

Minimum solution value
Average solution value

0

6

12

18

24

30

36

42

0 100 200 300 400 500 600 700 800

Columns generated

So
lu

tio
n

tim
e

(m
in

ut
es

)

Figure 7: Solution quality as a function of number of iterations in column generation, M

Figure 7 shows the result of empirical tests on a typical 100-task case. Figure 7(a) plots solution

time for one replication of the GRP method as a function of number of columns generated and

Figure 7(b) plots the solution objective as a function of the maximum number of iterations, M . As

Figure 7(a) shows, the solution time grows exponentially with the number of columns generated. As

Figure 7(b) shows, solving the problem with more columns (by increasing the number of iterations)

16

does not correspond to an improved objective value after M reaches some threshold value. Similar

trends are observed in other test cases for both aggregated and disaggregated data. We conclude

that smaller values ofM may be used without a®ecting the chances of ¯nding an improved solution

and we use M = 25 as a reasonable tradeo® between quality and solution time. In practice, some

instances are more sensitive to M , but the solution quality appears fairly stable for the instances

tested.

4.3.3 Number of replications

The maximum number of replications, K, is determined by available computational time assuming

that each replication is limited by a known time budget. For the purpose of parameter estimation,

we use K = 500 for the aggregated tests cases. When solving the test cases, we perform as many

replications as are possible in 1 hour for the aggregated test case, and 6 hours for the disaggregated

test cases; each replication is limited to a budget of 300 CPU seconds for the smaller test cases of

size less than 175 tasks and 1000 CPU seconds for the larger test cases.

Number of total tasks

Fr
eq

ue
nc

y
of

 s
ol

ut
io

ns
 w

ith
 m

in
im

um
 fl

ee
t

397
395
198

1

9

2

19

32

1

24

2
4

34

7

14

39

1 (x2)

20

15

0

5

10

15

20

25

30

35

0 25 50 75 100

Label indicates frequency

Figure 8: Frequency of ¯nding the minimum °eet size

The ¯xed parameters are tested on the ¯rst set of test cases to estimate the probability of ¯nding

the best known solution with a given time budget. Figure 8 shows the frequency with which the

best °eet size is found for the test cases. Empirical results for the larger disaggregated test cases (·

175 tasks) indicate that the GRP method ¯nds the best solution less often since fewer runs (300)

are performed for these test cases as each replication consumes more of the 6-hour budget. We can

estimate the probability of ¯nding the minimum solution in a single run of the GRP method with

the frequencies in Figure 8. Since each run is independent, we use a binomial model to approximate

17

the probability of ¯nding at least one minimum solution with K replications of the GRP method.

For instances with 100 tasks, a success frequency of 15 out of 500 runs corresponds approximately

to a 95% probability of ¯nding the best solution given only 100 replications (i.e., a time limit of

one hour), and a success frequency of 2 out of 500 runs corresponds to a 33% probability in the

same amount number of replications.

4.4 Numerical results

In this section, we apply the GRP/VR approach to two additional sets of test cases described in

Tables 1(b) and 1(c) with the parameters as calibrated in Section 4.3. We show that the combined

GRP/VR methods improves solution quality for the MRRP.

We evaluate the GRP/VR approach against a ¯xed radius, purely greedy method. Figures 9(a)

and (b) present the improvement in °eet size and travel time for the aggregated and disaggregated

test cases, respectively. Each data point refers to a single test case. In all aggregated test cases,

improvements of 6%{24% are obtained in both °eet size and travel time. In all disaggregated test

cases, improvements of 5%{20% are obtained. These results show that the combined GRP/VR

method produces measurable improvements over results obtained with a ¯xed radius and pure

greedy insertion method.

(a) Improvement in fleet size and travel time: aggregated data

0%

5%

10%

15%

20%

25%

0 25 50 75 100
Number of total tasks

Im
pr

ov
em

en
t w

ith
 G

R
P/

V
R

(b) Improvement in fleet size and travel time: disaggregated data

0%

5%

10%

15%

20%

25%

100 125 150 175 200

Im
pr

ov
em

en
t w

ith
 G

R
P/

V
R

Fleet size
Travel time

Number of total tasks

Fleet size
Travel time

Figure 9: Solution quality improvement with GRP/VR method

Table 4 presents detailed results for the aggregated test cases. The ¯rst four columns list

the test cases and the number of tasks, the lower bound on °eet size obtained with the method

from Smilowitz (2006) adapted for the VR method, and the minimum °eet size with the improved

18

GRP/VR method. The ¯fth column presents the solution time in minutes. The ¯nal two columns

list the frequency with which the GRP/VR method ¯nds the best known °eet-size and the frequency

with which it ¯nds a slightly inferior solution (best °eet-size + 1).

Total solution time
for 500 runs (mins.)

GRP/VR
fleet size

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

25
25
25
25
25
50
50
50
50
50
75
75
75
75
75

100
100
100
100
100

11
10
13
14
14
20
24
24
21
22
32
37
36
33
34
43
39
39
46
42

12
13
17
16
18
24
28
29
25
28
41
44
47
39
40
54
47
49
54
51

2.7
2.6
2.2
2.1
3.9

28.8
24.5
41.1
28.9
25.9
98.1
93.8

108.0
60.5
77.5

223.2
195.4
228.0
159.7
210.8

1
2

316
231
14
2
1

25
107
43
36
13
2

16
2
3
1

19
49
25

401
373
138
242
273
260
155
218
256
259
96

116
61

233
90
83
95

182
233
219

Solutions with
best fleet size

Solutions with best
fleet size+1

Lower bound
on fleet sizeTasksTest case

Table 4: Computational results for test cases: aggregated data

Table 5 presents similar results for the disaggregated test cases. For these instances, we impose

a 6-hour time limit for the GRP/VR method. The ¯fth column in Table 5 lists the number of

replications completed within 6 hours. As the table indicates, the number of replications depends

on the number of tasks. For instance, roughly 300 replications of the GRP method are completed

for the 100-task instances, and roughly 30 replications are completed for the 200-task instances.

As shown in Table 5, we obtain the best known °eet-size with greater frequency in the smaller

test cases. This is most likely due to limitations in computational resources: fewer replications

are performed for the larger instances. Further, replications are interrupted by the solution time

limit more often with larger instances. Although the solution time limit increases from 300 to

1000 seconds for larger instances, the limit still is not su±cient for some instances as the number

of tasks grows. Despite these limitations, there are still signi¯cant improvements in the solution

results from the GRP/VR method.

5 Conclusions

In this paper, we propose modeling and solution method improvements for the MRRP with °exible

tasks. The VR method generates more e®ective and e±cient execution choices for °exible tasks.

The GRP method overcomes solution method de¯ciencies caused by a pure greedy heuristic in

19

Replications in
6-hour runs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

100
100
100
100
125
125
125
125
150
150
150
150
175*
175*
175*
175*
200*
200*
200*
200*

* Solution for each replication is limited to 1000 seconds; otherwise solution time limit is set to 300 seconds.

125

20
18
20
23
29
24
26
23
29
26
31
29
34
32
33
33
39
38
39
35

23
21
23
28
36
26
29
26
34
32
35
34
44
37
39
41
45
48
46
43

295
387
513
287
102
106
158
226
96
64
89
88
37
72
44
57
37
22
27
21

7
42
6
6

14
1
1
2
8
2
1
4
3
1
1
7
2
3
8
1

105
328
29

155
31
6

33
15
23
12
18
34
8
9
6

24
16
1
3
1

GRP/VR
fleet size

Solutions with
best fleet size

Solutions with best
fleet size+1

Lower bound
on fleet sizeTasksTest case

Table 5: Computational results for test cases: disaggregated data

column generation. These improvements combined improve the °eet size and travel time for test

cases from industry.

We develop a nested partitioning algorithm to select the parameterQ for the VR method, as well

as procedures to determine parameters for GRP method. Several techniques have been incorporated

to make the method suitable for users with limited computational resources or a limitation on the

amount of time that can be spent in searching for solutions. By intelligently limiting the set of

°exible options through the VR method and utilizing this saved time to explore other possibilities,

we obtain high quality solutions in a limited number of replications. The combination of these two

techniques { imposing an intelligent limit on the set of choices, and using a randomized heuristic {

results in improved solution quality and greater °exibility to solve the MRRP.

Extensions of the work will explore heuristics to solve formulation (1). The solution method

could also be extended to a GRASP-like mechanism by implementing a local search mechanism

to improve routing. Further extensions could include more complex control of the search with

diversi¯cation and intensi¯cation phases, in a manner similar to Tabu Search mechanisms which

are employed in Nanry and Barnes (2000); Combs and Moore (2004).

Acknowledgment:

This research has been supported by the National Science Foundation, grant DMI{0348622.

20

Appendix

The Greedy Randomized Adaptive Search Procedure (GRASP) is a metaheuristic introduced by

Feo and Resende (1989). We refer the reader to Feo and Resende (1989) for details on the general

GRASP metaheuristic and to Kontoravdis and Bard (1995) for details on GRASP as it relates to

vehicle routing problems. The general GRASP algorithm consists of two main phases: construction

in which an initial solution is created using randomization and local search in which the current

solution is updated from candidates within a neighborhood of solutions. The algorithm is replicated

until a maximum number of replications is reached. The algorithm is summarized as follows.

Step 0: Initialization

(1) Determine the maximum replication number K

(2) Initialize the seed for randomization

(3) Set current count k = 1

Step 1: Construction Phase

(1) Let Solution = ;

(2) Build a candidate list of components for the solution

(3) Update Solution by:

(a) randomly select one component from the candidate list to become part of the

solution

(b) use greedy criteria to insert current component into Solution

(c) update the candidate list

(4) If candidate list is empty, go to Step 2

Else, return to (3)

Step 2: Local Search Phase

(1) Build a complete neighborhood list of current Solution

(2) Calculate the objective value for every candidate solution within the neighborhood

(3) Update Solution as the one with the best objective, which is local optimal

Step 3: Replicate

(1) If Solution is better than BestSolution, update BestSolution = Solution

(2) Increase current replication count k by one

(3) If stopping criteria are reached, STOP

Else, go to Step 1

21

References

Ball, M., Golden, B., Assad, A., and Bodin, L. (1983). Planning for truck °eet size in the presence

of common-carrier options. Decision Sciences, 14(1), 103{120.

Bodin, L., Mingozzi, A., Baldacci, R., and Ball, M. (2000). The roll-on, roll-o® vehicle routing

problem. Transportation Science, 34(3), 271{288.

BrÄaysy, O. and Gendreau, M. (2000). Vehicle routing problem with time windows, Part ii: Meta-

heuristics. Transportation Science, 39(1), 119{139.

Campbell, A. and Savelsbergh, M. (2004). E±ciently handling practical complexities in insertion

heuristics. Transportation Science, 38(3), 369{378.

Carreto, C. and Baker, B. (1999). A grasp interactive approach to the vehicle routing problem with

backhauls. In Proc. of the Third Metaheuristics International Conference, pages 125{128.

Combs, T. and Moore, J. (2004). A hybrid tabu search/ set partitioning approach to tanker crew

scheduling. Military Operations, 9(1), 43{56.

Corinescu, E. (2003). Drayage data ¯les from 2002. Hub City Terminals, Inc.

Cullen, F., Jarvis, J., and Ratli®, H. (1981). Set partitioning based heuristics for interactive routing.

Networks, 11, 125{143.

Dahnke, B. (2003). Drayage data ¯les from 1998. Laser Trucking, personal communication.

De Meulemeester, L., Laporte, G., Louveaux, F., and Semet, F. (1997). Optimal sequencing of skip

collections. Journal of Operational Research Society, 48, 57{64.

Desrochers, M., Desrosiers, J., and Solomon, M. (1992). A new optimization algorithm for the

vehicle routing problem with time windows. Operations Research, 40(2), 342{354.

Dror, M. (1994). Note on the complexity of the shortest path problem with resource constraints

for column generation in VRPTW. Operations Research, 42, 977{978.

Dror, M., Fortin, D., and Roucairol, C. (2000). Complexity issues for a redistribution problem. In

D. Gardy and A. Mokkadem, editors, Mathematics and Computer Science: Algorithms, Trees,

Combinatorics, and Probabilities, pages 165{176. Birkhauser.

22

Dror, M., Fortin, D., Parent, M., and Roucairol, C. (2001). Split pickup and delivery: the man-

agement of a °eet of free usage electric cars. Preprint submitted to Elsevier Preprint.

Dumas, Y., Desrosiers, J., and Soumis, F. (1991). The pickup and delivery problem with time

windows. European Journal of Operational Research, 54, 7{22.

Feo, T. and Resende, M. (1989). A probabilistic heuristic for a computationally di±cult set covering

problem. Operations Research Letters, 8, 67{71.

Feo, T., Venkatraman, K., and Bard, J. (1991). A GRASP for a di±cult single machine scheduling

problem. Computers and Operations Research, 18, 635{643.

Grosz, J. (2003). Personal communications. Cushing Transportation , Inc.

Kontoravdis, G. and Bard, J. (1995). A GRASP for the vehicle routing problem with time windows.

ORSA J. on Computing, 7, 10{23.

Matejcik, F. and Nelson, B. (1995). Two-stage multiple comparisons with the best for computer

simulation. Operations Research, 43, 633{640.

Morlok, E. K. and Spasovic, L. N. (1994). Approaches for improving drayage in rail-truck intermodal

service. Research Report, University of Pennsylvania.

Nanry, W. and Barnes, J. (2000). Solving the pickup and delivery problem with time windows

using reactive tabu search. Transportation Research B, 34, 107{121.

¶Olafsson, S. and Kim, J. (2002). Simulation optimization. In Proceedings of the 2002 Winter

Simulation Conference, pages 79{84.

Savelsbergh, M. and Sol, M. (1995). The general pickup and delivery problem. Transportation

Science, 29, 17{29.

Savelsbergh, M. and Sol, M. (1998). DRIVE: Dynamic routing of independent vehicles. Operations

Research, 46, 474{490.

Shi, L. and ¶Olafsson, S. (1997). An integrated framework for deterministic and stochastic opti-

mization. In Proceedings of the 1997 Winter Simulation Conference, pages 358{365.

Sinha, P. and Zoltners, A. (1979). The multiple choice knapsack problem. Operations Research,

27, 503{515.

23

Smilowitz, K. (2006). Multi-resource routing with °exible tasks: an application in drayage opera-

tions. IIE Transactions. Forthcoming.

Xu, H., Chen, Z.-L., Rajagopal, S., and Arunapuram, S. (2003). Solving a practical pickup and

delivery problem. Transportation Science, 37(3), 347{ 364.

24

