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Abstract

This paper presents a continuous approximation model for the Period Vehicle Routing Prob-

lem with Service Choice (PVRP-SC). The PVRP-SC is a variant of the Period Vehicle Routing

Problem in which the visit frequency to nodes is a decision of the model. This variation can

result in more e±cient vehicle tours and/or greater service bene¯t to customers. The continu-

ous approximation model can facilitate strategic and tactical planning of periodic distribution

systems and evaluate the value of service choice. Further, results from the continuous model

can provide guidelines for constructing solutions to the discrete PVRP-SC.

Keywords: Vehicle routing; continuous approximation models; vehicle routing models

1 Introduction

This paper develops continuous approximation techniques to study periodic vehicle routing prob-

lems with service choice where service is de¯ned by the frequency of visits to nodes. Applications

arise in courier services, elevator maintenance and repair (Blakely et al., 2003), the collection of

waste (Russell and Igo, 1979) and the delivery of interlibrary loan material (Francis et al., 2006).

This problem is a variant of the Period Vehicle Routing Problem (PVRP) in which routes are

designed for a ¯xed °eet of capacitated vehicles each day of a t¡day period to visit customers exactly
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a pre-set number of times; see (Beltrami and Bodin, 1974; Christo¯des and Beasley, 1984; Russell

and Igo, 1979). However, Francis et al. (2006) note that operational e±ciencies and increased

service bene¯t may be gained by allowing customers to be visited more often than their minimum

required frequencies as illustrated in the example in Figure 1. In the example, nodes are assigned

a preset visit frequency from the following options: daily, Mon-Wed-Fri or Tue-Thr. If Node 2

(visited twice a week) is close to Node 1 (visited three times a week), then serving Node 2 on the

same schedule as Node 1 may result in considerable routing cost savings. This gain in operational

e±ciency is possible only when nodes may be served with greater frequency than required.

depot

visit daily

visit Mon., Wed., Fri.

visit Tues., Thurs.

Mon., Wed., Fri. tour

Tues., Thurs. tour

Node 1

Node 2

Vehicle 1

Vehicle 2

Figure 1: E±ciency improvements possible with service choice (Francis et al., 2006)

Francis et al. (2006) introduce the Period Vehicle Routing Problem with Service Choice (PVRP-

SC) which allows service levels to be determined endogenously. The PVRP-SC is de¯ned as follows:

Given: A set of nodes with known demand and minimum visit frequency requiring

service over the planning period; a °eet of capacitated vehicles; a set of service

schedules with headways and service bene¯ts; and a network with travel times.

Find: An assignment of nodes to service schedules and a set of vehicle routes for each

day of the planning period that minimizes the total routing cost incurred net of the

service bene¯t accrued.

Francis et al. (2006) develop an integer programming formulation of the PVRP-SC with exact

and heuristic solution methods. Due to the computational complexity of the problem, solutions
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to the discrete PVRP-SC are limited by instance size. Alternatively, approximate solutions for

such instances may be obtained with continuous approximation models, yet the use of continuous

approximation models for periodic routing problems has been limited. Daganzo (1987) presents

continuous approximation modeling techniques for single period distribution problems with vary-

ing ¯xed service requirements. Smilowitz and Daganzo (2004) develop continuous approximation

models for integrated distribution network design with two service levels. These references suggest

that continuous approximations can be powerful tools for strategic and tactical decisions when ser-

vice choice exists. In continuous approximation models, aggregated data are used in place of more

detailed inputs. Aggregating data in this manner smooths minor dynamic and stochastic variations

in input parameters which are less critical in strategic planning. Continuous approximation models

can produce results for large problem instances in less time compared with discrete models. This

is particularly useful if the system designer would like to experiment with multiple settings of the

input parameters such as demand node distribution and service characteristics. Further, the sim-

plicity of continuous approximation models can facilitate the development of managerial insights

for system planning.

This paper presents the ¯rst continuous approximation model for the PVRP-SC, which can also

be used for the PVRP as a special case. The model is used in the strategic analysis of the bene¯ts

of service choice and the sensitivity of these bene¯ts to various parameters. Results obtained with

the model also answer tactical questions relating to the service mix of customers and vehicle °eet

planning. This research provides practitioners with a tool to analyze e±ciencies in distribution

operations arising from service choice, without requiring extensive computations and detailed data

collection typical of discrete models for periodic vehicle routing problems.

Section 2 reviews the discrete formulation of the PVRP-SC from Francis et al. (2006) and

introduces the continuous approximation model. Section 3 describes the solution method for the

continuous approximation model. Section 4 discusses numerical studies, and Section 5 concludes

with key insights and areas of future research.
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2 Models of the PVRP-SC

We present the discrete formulations of the PVRP-SC from Francis et al. (2006) in Section 2.1 and

the continuous formulation in Section 2.2.

In the PVRP-SC, customers are visited a preset number of times over the period with a schedule

that is chosen from a menu of schedule options. Let S denote this menu of schedules, and D denote

the set of days in the period. The parameter asd links schedules to days, where asd = 1 if day d 2 D
is in schedule s 2 S and asd = 0 otherwise. Each schedule s 2 S has an associated visit frequency °s

measured by the number of days in the schedule: °s =
P
d2D asd. For a given schedule option s, the

headway between visits is de¯ned in terms of the visit frequency as Hs = 1=°s. Each schedule has

an associated bene¯t ®s related to the monetary bene¯t of more frequent service which is assumed

to be stationary over the time period.

2.1 Discrete formulation of the operational/tactical PVRP-SC

The discrete formulation of the PVRP-SC is de¯ned for a set of nodes, N0, which consists of

customers nodes, N , and a depot, l = 0, and a set of arcs connecting nodes, A = f(l;m) : l;m 2 N0g.
Each customer node l 2 N has a known daily demand, Wl, and a minimum service frequency, Fl,

measured in days per period. The demand accumulated between visits, wsl , is a function of the

schedule s 2 S and the daily demand of the node. The stopping time at a node, ¿ sl , is a function of

the frequency of the schedule since more items accumulate with less frequent service and, therefore,

require more time to load/unload. Associated with each arc (l;m) 2 A is a known travel cost, clm.

There is a set K of vehicles, each with capacity C.

The following allocation and routing variables de¯ne the solution to the discrete formulation.

yslk =

8>><>>:
1 if node l 2 N is visited by vehicle k 2 K on schedule s 2 S

0 otherwise

xdlmk =

8>><>>:
1 if vehicle k 2 K traverses arc (l;m) 2 A on day d 2 D

0 otherwise
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The discrete formulation for PVRP-SC developed in Francis et al. (2006) is:

minZ =
X
k2K

24X
d2D

X
(l;m)2A

clmx
d
lmk +

X
s2S

X
l2N

(°s¿ sl ¡Wl®
s) yslk

35 (1a)

subject to

X
s2S

X
k2K

°syslk ¸ Fl 8l 2 N; (1b)

X
s2S

X
k2K

yslk · 1 8l 2 N (1c)

X
s2S

X
l2N

wsl asdy
s
lk · C 8k 2 K; d 2 D (1d)

X
m2N0

xdlmk =
X
s2S

asdy
s
lk 8l 2 N ; k 2 K; d 2 D (1e)

X
m2N0

xdlmk =
X
m2N0

xdmlk 8l 2 N0; k 2 K; d 2 D (1f)

X
l;m2Q

xdlmk · jQj ¡ 1 8Q µ N ; k 2 K; d 2 D (1g)

yslk 2 f0; 1g 8l 2 N ; k 2 K; s 2 S (1h)

xdlmk 2 f0; 1g 8(l;m) 2 A; k 2 K; d 2 D (1i)

The objective function (1a) balances arc travel times, stopping times and demand-weighted

service bene¯t. Constraints (1b) enforce the minimum frequency of visits for each node. Constraints

(1c) ensure that one schedule and one vehicle are chosen for each demand node. Constraints (1d)

represent vehicle capacity constraints. Constraints (1e) link the x and y variables for the demand

nodes. Constraints (1f) ensure °ow conservation at each node. Constraints (1g) are the subtour

elimination constraints and ensure that all tours contain a visit to the depot. Constraints (1h) and

(1i) de¯ne the binary variables for allocation and routing, respectively.

2.2 Continuous approximation of the strategic PVRP-SC

In this section, we develop a continuous approximation model for the strategic PVRP-SC.
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2.2.1 Continuous decision and data functions

In the continuous model, we approximate discrete variables and parameters with continuous func-

tions. It is assumed that these approximating functions are smooth, continuous and vary slowly

over the service region R.

First, approximations replace exact data for node locations and demand volumes. Let ±i(x)

denote the spatial density of nodes with minimum service schedule i 2 S about a point x, measured

in nodes per unit area. For a subregion A of R, the number of nodes in the region, N (A), is:

N (A) =
P
i2S
¡R
x2A ±

i(x)dx
¢
. Demand density rates replace the exact demand volumes associated

with customer nodes. Let ¸i(x) denote the demand density rate about a point x of nodes with

minimum service schedule i 2 S, measured in items per unit time-area.

Continuous functions are introduced to describe service allocations and vehicle routes. Let

f is(x) denote the fraction of nodes about a point x with minimum schedule i being served by

service schedule s. Nodes cannot be served with a frequency lower than the minimum speci¯ed. The

vehicle routes to serve the selected schedules are determined with two auxiliary decision functions.

Let ¢d(x) denote the spatial density of nodes about a point x to be visited on day d, measured in

nodes per unit area, and ¤d(x) denote the demand density on day d, measured in demand per unit

area. The e®ective density of nodes visited per unit area on day d is:

¢d(x) =
X
s2S

asd
X
i2S

±i(x)f is(x) (2)

The e®ective demand density collected per unit area on day d is:

¤d(x) =
X
s2S

asdH
s
X
i2S

¸i(x)f is(x) (3)

The routing solutions are described further by two additional decision functions. Let nd(x) denote

the number of stops on a route on day d and vd(x) denote the shipment size collected at a node.

2.2.2 Continuous cost model

Routing costs are based on VRP approximations in Daganzo (1999). Routing costs are divided

into a linehaul cost from the depot to the vicinity of the nodes on the route and a detour cost
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to visit individual nodes.1 Let the parameter r(x) denote the distance from the depot to a point

x 2 R. The average distance between nodes is approximated by the inverse of the square root

of node density, (¢d(x))¡1=2, and a metric-dependent constant, k̂. The average cost per distance,

¹c, is the average of clm divided by the distance between nodes l and m over all (l;m) 2 A. The

stopping cost ¿ sl is decomposed into a ¯xed stopping cost, _¿ , and a variable cost, Ä¿ , that increases

with the demand accumulated at node l. The expression for routing cost per item on day d 2 D is

as follows:

zd(x) =
2r(x)¹c

nd(x)vd(x)
+

¹ck̂(¢d(x))¡1=2 + _¿ + Ä¿vd(x)

vd(x)
(4)

The ¯rst term represents the linehaul travel between the depot and nodes, 2r(x)¹c. This cost is

prorated to all items in the vehicle, nd(x)vd(x). The second term represents the cost of visiting

demand nodes: the detour distance cost to reach the nodes, ¹ck̂(¢d(x))¡1=2, and the stopping cost

at the nodes, _¿ + Ä¿vd(x). This cost is prorated by items per stop, vd(x).

The routing costs per item are summed over all days and integrated over all demand to obtain

the total cost over the planning period.

1In cases where the routes are adjacent to the depot, the linehaul component may be ignored.
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minZR =

Z
x2R

µX
d2D

¤d(x)zd(x)¡
X
s2S

®s
X
i2S

¸i(x)f is(x)

¶
dx (5a)

subject to

nd(x)vd(x) · C 8d 2 D;x 2 R (5b)

vd(x) =
¤d(x)

¢d(x)
8d 2 D;x 2 R (5c)

¢d(x) =
X
s2S

asd
X
i2S

±i(x)f is(x) 8d 2 D;x 2 R (5d)

¤d(x) =
X
s2S

asdH
s
X
i2S

¸i(x)f is(x) 8d 2 D;x 2 R (5e)

X
s2S

f is(x) = 1 8i 2 S;x 2 R (5f)

0 · f is(x) · 1 8i; s 2 S : °i · °s;x 2 R (5g)

f is(x) = 0 8i; s 2 S : °i > °s;x 2 R (5h)

nd(x) ¸ 0 8d 2 D;x 2 R (5i)

The objective function (5a) sums the routing cost over all days and the service bene¯t over all

schedules. Constraints (5b) ensure that vehicle routes do not exceed capacity. Constraints (5c)

de¯ne the items collected per stop as the demand density about a point divided by node density

about a point. Since all accumulated demand between visits is collected, we have vd(x) = ¤d(x)
¢d(x)

.

Constraints (5d)-(5e) de¯ne the auxiliary decision functions according to equations (2) and (3).

Constraints (5f) ensure that all nodes are assigned to a schedule. Constraints (5g) and (5h) ensure

that no node is served with a lower frequency than the minimum speci¯ed. Constraints (5i) are

non-negativity constraints on the decision function nd(x).

2.3 Discussion of models

Francis et al. (2006) develop exact and heuristic solution methods for the discrete formulation for

the tactical/operational PVRP-SC. These methods are limited to problem instances of moderate

size (50 nodes, 3 service choices, and 5 days). The number of decision variables and constraints
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expand exponentially as the number of nodes, service choices and days increase. As a result, it is

di±cult to conduct comprehensive strategic analysis on large instances. Hence, the method is well-

suited for operational and tactical problems when detailed solutions are necessary. Alternatively,

the continuous model shown in Section 2.2 is an approximation of the discrete formulation. In

Section 4, we show that the continuous approximation is quite accurate in estimating the objective

value for a test case in the literature. A comparison of the two formulations is shown in Appendix A

for the PVRP without service choice. Ouyang and Daganzo (2006) present an analytical discussion

of the accuracy of continuous approximation models.

In the next section we show that the continuous approximation model can be solved easily with

a few modi¯cations. The modi¯ed continuous approximation model can yield solutions for large

instances which may arise in the strategic planning phases of periodic distribution systems. Thus,

the continuous model is not suggested as a replacement for the discrete modeling approach; rather,

it is as a complimentary model that can be used to estimate costs and develop design guidelines.

Hall (1986) presents examples illustrating the complementary nature of discrete and continuous

models.

This paper focuses on the use of the continuous approximation method for strategic decision

making, estimation, and the selection of parameters. After parameters have been chosen, the

operational/tactical decisions can be made using the discrete method. Ouyang and Daganzo (2006)

and Ouyang (2006) propose methods to discretize solutions from continuous models.

3 Solution method for the continuous approximation models

This section describes the solution method for the continuous approximation of the PVRP-SC.

We use geographic decomposition and variable substitution to reduce formulation (5) to a simple

problem that can be solved easily.
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3.1 Geographic decomposition

We propose a solution approach for formulation (5) based on geographic decomposition. Since

parameters are assumed to vary slowly, we can decompose the problem geographically into a set of

subregions. In designing the decomposition, the following trade-o® must be considered. A subregion

A of R should be small enough such that ±i(x) and ¸i(x) are nearly constant over the subregion,

as well as any other parameters that vary by location. It can then be assumed that the values for

all data functions for points x 2 A are equal to the average over the region. On the other hand, the

subregion should be large enough to contain at least one route; therefore, the objective function

and constraints for each subregion can be treated as independent of the other subregions. As a

result, the problem decomposes by subregion. Let ³A denote the cost in subregion A of R:

³A =
X
d2D

¤dzd ¡
X
s2S

®s
X
i2S

¸if is (6)

Note that we drop the point coordinates x for parameters and decision functions since averages

across all points in the subregion are used. For simplicity of notation, we include the index A only

for the cost ³A, and not on subregion-speci¯c parameters and decision functions. We minimize ³A

for each subregion, multiply ³A by the area of the subregion, and sum over all subregions to obtain

the total cost.

3.2 Modi¯ed cost model

We simplify formulation (5) such that the entire model can be expressed as the function of a single

decision function. Consider the routing component of ³A:

X
d2D

¤dzd =
X
d2D

¤d

"
2r¹c

ndvd
+

¹ck̂(¢d)¡1=2 + _¿ + Ä¿vd

vd

#

Since there are no limits on the number of vehicles or the distance traveled by a vehicle, an optimal

solution will choose to transport full vehicle loads: ndvd = C. As a result, within each subregion

the capacity constraints (5b) are always binding. Additionally, we can replace vd with auxiliary

variables ¢d and ¤d using de¯nitional constraints (5c). Further, since the sum over all days of ¤d

is equal to the total demand over the planning period and all demand must be served, we obtain
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the following constant: ¯0 =
¡
2r¹c
C + Ä¿

¢P
i2S ¸

i. The modi¯ed routing component of ³A becomes:X
d2D

¤dzd = ¯0 + _¿
X
d2D

¢d + ck̂
X
d2D

p
¢d

The node densities ¢d can be expressed in terms of f is using de¯nitional constraints (5d).

Recall that
P
d2D asd = °s by de¯nition. Incorporating the service bene¯t term, which is already

a function of only f is, we can write ³A as:

³A = ¯0 +
X
i2S

X
s2S

¯is1 f
is +

X
d2D

sX
i2S

X
s2S

¯isd2 f is

where:

¯is1 = _¿±i°s ¡ ®s¸i

¯isd2 = (¹ck̂)2asd±
i

In this form, the optimization problem to be solved for each subregion is:

min ³A = ¯0 +
X
i2S

X
s2S

¯is1 f
is +

X
d2D

sX
i2S

X
s2S

¯isd2 f is (7a)

subject to X
s2S

f is = 1 8i 2 S (7b)

f is = 0 8i; s 2 S : °i > °s (7c)

0 · f is · 1 8i; s 2 S : °i · °s (7d)

The problem is a generalized assignment problem with a non-linear objective function, and can

be solved using commercially available non-linear solvers. The continuous approximation solution

method is implemented using AMPL (Fourer et al., 2003) with the KNITRO solver (Waltz, 2004)

on a Sun workstation with two UltraSparc III processors and 2 GB of memory. As the KNITRO

solver only guarantees a locally-optimal solution, we iteratively call AMPL to solve the problem

within a multi-start algorithm. The starting points correspond to a sample of the extreme points

of the solution hull. Computational studies on a series of test cases for which the global optimal

solution can be found through enumeration suggest that the multistart algorithm obtains the op-

timal solution. As a result, no special numerical methods are required for the test cases in this

paper.
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Figure 2: Distribution of nodes in the 100b dataset

4 Computational study

In this section, we present numerical studies to validate the continuous approximation model and

demonstrate its use in the strategic and tactical analysis of the PVRP-SC. The experiments are

conducted with the 100b PVRP dataset from Christo¯des and Beasley (1984). This data set is

commonly used in the PVRP literature; therefore, we can compare the best known discrete solution

with the solution obtained with the continuous approximation model (without service choice) and

explore the bene¯ts when service choice is introduced.

The 100b dataset contains 100 nodes randomly distributed across the region as shown in Figure

2. The nodes are visited over the ¯ve-day period in the PVRP according to demand levels. Nodes

with daily demand less than 10 units are visited once; nodes with daily demand between 11 and

25 units are visited twice; and nodes with daily demand of more than 25 units are visited daily.

Vehicle capacity C is 1100 units.
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Subregion i 2 S ±i ¸i

1 0:0064 0:0406

Subregion 1 2 0:0058 0:0864

3 0:0026 0:0774

1 0:0110 0:0634

Subregion 2 2 0:0101 0:1754

3 0:0055 0:1680

1 0:0061 0:0409

Subregion 3 2 0:0088 0:1537

3 0:0014 0:0462

Table 1: Parameters for 100b dataset

To solve this problem instance with continuous approximation, the entire region is divided into

three subregions such that the node densities and demand rates are approximately uniform within

each region. These parameters are listed in Table 1 by service level assignment and subregion. The

subregions are large enough to contain at least one vehicle tour. The illustrations of 100b solutions

in the literature suggest that all tours fan out from the depot. As a result, the linehaul component

is not considered. To account for the travel distance to/from the depot, the depot is added in the

calculation of node density for daily service. Although previous studies of instance 100b in the

literature have considered other schedule options, we consider three service schedules: one-day per

week (s = 1; °1 = 1); two-days per week (s = 2; °2 = 2); and daily service (s = 3; °3 = 5). Since

instance 100b does not contain stopping costs, both _¿ and Ä¿ are set to zero.

4.1 Model validation

The continuous approximation model is applied to instance 100b without service choice to evaluate

the routing cost results from the model relative to discrete results for the PVRP that appear in

the literature. The best known solutions for 100b are due to Chao et al. (1995) and Cordeau

et al. (1997). Chao et al. (1995) obtain a routing cost of 2,075 in 13 CPU minutes (a cost of

2,042 is obtained, but no solution time is provided). Cordeau et al. (1997) obtain a routing cost

of 2,055 in 10 CPU minutes (a cost of 2,042 is obtained, but no solution time is provided). The

continuous approximation model yields a solution of 2,164 in under 1 CPU second which represents
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roughly a 5% deviation from the best known solutions. One reason for the discrepancy may be that

the continuous model considers fewer schedule options. Additionally, solving the three subregions

independently in the continuous model can increase the objective function.

As discussed in Francis et al. (2006), the complexity of the discrete PVRP increases signi¯cantly

when service choice is introduced. As a result, instance 100b cannot be solved with existing solution

methods as a discrete PVRP-SC. Although current research is underway on solution methods

for larger instances of the discrete PVRP-SC, it is important to assess whether the operational

improvements due to service choice warrant the increased complexity. Fortunately, the continuous

approximation model allows us to answer this question for a problem instance without solving

the discrete formulation. In the next section, we demonstrate how the continuous approximation

model can address this and other strategic and tactical questions regarding service choice in periodic

distribution operations.

4.2 Value of service choice

We examine the value of introducing service choice in the PVRP using three basic scenarios.

Scenario I is the traditional PVRP in which nodes must be served at their initially assigned service

level. Scenario II allows service choice, but only considers the impact of this choice on routing

e±ciency; the objective function does not include the service bene¯t term. Scenario III allows

service choice and considers both routing cost and service bene¯t in the objective function. The

following default service bene¯t parameters are used: ®1 = $1, ®2 = $2, and ®3 = $5.

Table 2 presents the results for the three subregions and the total service area. For each scenario,

the routing cost is displayed for each subregion. In addition, the service bene¯t is presented even

when this term is not explicitly considered in the model. In these cases, the optimal f is values are

used to calculate service bene¯t with the default parameter values. Finally, we present the total

objective value of routing cost net service bene¯t.

The results in Table 2 for Scenario I represent the routing costs discussed in model validation,

with the service bene¯t of the initial assignments calculated with the default values of ®s for all
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Subregion 1 Subregion 2 Subregion 3 Total region

I. No service choice

Routing 559 530 1075 2164

Bene¯t -931 -703 -1715 -3349

Total -372 -173 -640 -1185

II. Service choice; bene¯t not considered in optimization

Routing 559 530 1041 2130

Bene¯t -931 -703 -1836 -3470

Total -372 -173 -795 -1340

III. Service choice; bene¯t considered in optimization

Routing 722 677 1430 2829

Bene¯t -1585 -1552 -3564 -6701

Total -863 -875 -2134 -3872

Table 2: Impact of service choice on objective function

s 2 S. Introducing service choice in Scenario II does not a®ect subregions 1 and 2, suggesting that

the initial assignments yield highly e±cient routing solutions. In these subregions, all demand is

served at its initial level: f11 = 1, f22 = 1, and f33 = 1. However, in subregion 3, the routing

solution improves with service choice, and demand from level i = 1 is served at level s = 2: f12 = 1.

Consequently, the service bene¯t improves as well. These e®ects are consistent with those observed

for other data sets tested with the discrete model in Francis et al. (2006). The relative densities of

the initial service levels can explain why these changes are observed in subregion 3 and not in the

other subregions. This e®ect is studied empirically in Section 4.2.1 and analytically in Appendix

B.

In Scenario III in which service bene¯t is implicitly considered in the optimization, we observe

signi¯cant changes in service allocation. With the default service parameter values, it is optimal

to serve all the demand at the daily level. A moderate increase in routing costs is observed which

is more than o®set by a large improvement in service bene¯t. We explore the impact of service

parameter values in Section 4.2.2.
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4.2.1 Impact of node density

In the above analysis, we observe that the value of service choice is sensitive to the relative node

densities. In Scenario II, the allocation of demand from initial level i = 1 to a higher level i = 2

in subregion 3 is due to the relative densities of all three initial service levels. We explore this

further with the following experiment. We incrementally change the relative densities of ±2 and ±3,

while keeping ±1 constant, and monitor the changes in the allocation of nodes initially assigned to

i = 1. Figure 3 plots the decision threshold between serving nodes at their initial level (f11 = 1)

and raising the service level (f12 = 1). As ±2 increases, it becomes optimal to set f12 = 1; the

increase in the second term of the objective function of problem (7) is o®set by a decrease in the

third term (routing cost) due to the resulting economies of scale. As the density of level 3 nodes,

±3, increases, the critical density ±2 also increases (greater savings are required to balance increases

in the non-separable third term).
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Figure 3: Sensitivity of allocation of nodes at initial level to the densities of higher service schedules
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4.2.2 Impact of service bene¯t parameters

It is intuitive that at high values of the service bene¯t parameters relative to routing costs, nodes

will be visited more frequently than required. To examine the sensitivity of the solution to di®erent

values of service bene¯t, we test instance 100b at various levels of service bene¯ts. We maintain

the ratios of the ®s values: ®1 = 1
5®

3 and ®2 = 2
5®

3, and gradually raise the value of ®3 from 0

to the default value of 5. Figure 4 plots the routing costs, service bene¯t and total objective of

instance 100b for the di®erent service bene¯ts. From this plot, we can determine the breakpoints

where changes in service bene¯t cause nodes to be served at higher service levels.

Routing cost

Service benefit

Total objective

S
o
lu

ti
o
n
 v

a
lu

e

-5,000

-4,000

-3,000
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-1,000
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2,000
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4,000

0 1 2 3 4 5
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Figure 4: Sensitivity of solution to service bene¯t term

Note that it is possible to have f12 = 1, even if none of the demand initially allocated to level

2 is being served by level 2. This property can be generally stated as follows. For some schedules

i; s 2 S, such that °i < °s, it is possible to have f is = 1 and fss = 0; that is, service to a region at

a particular schedule s need not include any of the demand initially allocated to s.
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5 Conclusions

This paper presents a continuous approximation model for the PVRP-SC and demonstrates the

validity and usefulness of the model with numerical studies using a test instance from the literature.

The results of the continuous approximation model can help distribution service providers design

valuable service options. The results can also be used to guide discrete solutions to determine exact

vehicle routes.

Due to the general nature of the model, it is easy to extend the model for speci¯c conditions.

For instance, if customers in schedule i are willing to be served at schedule s, but unwilling to pay

for higher level of service, we merely correct the bene¯t term in the ¯is1 coe±cient to ®i rather than

®s. As the model can be solved quickly, one can do a parametric analysis of future conditions. It

may be useful to test the sensitivity of solutions to future \what if" scenarios before committing

to higher service levels for some demand nodes.
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Appendix A

This appendix compares the cost models for the discrete and continuous approaches for the PVRP.

Recall that the objective function for the discrete model is:

Z =
X
k∈K

X
d∈D

X
(l,m)∈A

clmx
d
lmk +

X
s∈S

X
l∈N

γsτ sl y
s
lk −

X
s∈S

X
l∈N

Wlα
syslk


The objective function for the continuous model is:

ZR =
Z
x∈R

"µ
2r(x)c̄

nd(x)vd(x)
+ck

X
d∈D

q
∆d(x)

¶
+

µ
τ̈
X
i∈S

λi(x)+τ̇
X
d∈D

∆d(x)

¶
−
X
s∈S

αs
X
i∈S

λi(x)f is(x)

#
dx

We examine the case when service choice is not allowed, i.e. f ii(x) = 1, ∀i ∈ S. First we consider

the two service benefit terms:

X
k∈K

X
s∈S

X
l∈N

Wlα
syslk ⇐⇒

Z
x∈R

X
s∈S

αs
X
i∈S

λi(x)f is(x)dx

We note that the service benefit terms is simply the total service benefit, and it is the same in the

discrete and continuous case. In the discrete case, the service benefit is
P
k∈K

P
l∈N Wlα

il , where
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il 2 S is the minimum schedule to which node l 2 N is allocated. In the continuous case, the

service bene¯t is
R
x2R

£P
i2S ®

i¸i(x)
¤
dx.

We consider the stopping time terms:

X
k2K

X
s2S

X
l2N

°s¿ sl y
s
lk ()

Z
x2R

µ
Ä¿
X
i2S

¸i(x) + _¿
X
d2D

¢d(x)

¶
dx

When service choice is not allowed, we can use the de¯nition of ¢d(x) to rewrite the above as:

X
k2K

X
s2S

X
l2N

°s¿ sl y
s
lk ()

Z
x2R

µ
Ä¿
X
i2S

¸i(x) + _¿
X
d2D

X
i2S

aid±
i(x)

¶
dx

From the above comparison, we can see that the accuracy of the approximation depends largely on

the accuracy of the approximation of the stopping time parameters, _¿ and Ä¿ , which can be derived

from empirical analysis of discrete stopping times. Similarly, we can compare the travel times:

X
k2K

X
d2D

X
(l;m)2A

clmx
d
lmk ()

Z
x2R

µ
2r(x)¹c

nd(x)vd(x)
+ ck

X
d2D

q
¢d(x)

¶
dx

Again, the accuracy of the approximation depends on the quality of the approximating functions

for distance. See Hall (1986) for a discussion of continuous approximations for discrete data. The

vehicle routing cost expressions have been validated by Erera (2000) and Robuste et al. (1990) who

show a gap of less than 5% between continuous approximations and costs from discrete simulations

for their problem sets.

Appendix B

The following appendix develops analytic expressions to determine changes in service levels based

on node densities when only routing e±cency is considered in the objective function of the PVRP-

SC. For the 100b test case, we have no stopping costs (Ä¿ = 0, _¿ = 0) and no service bene¯t

(®s = 0; 8s 2 S). Three service levels are o®ered with asd vectors given by:

a1d = [ 10000 ] ; a2d = [ 01010 ] ; a3d = [ 11111 ]

Recall that the objective function in the PVRP-SC is:

³A = ¯0 +
X
i2S

X
s2S

¯is1 f
is +

X
d2D

sX
i2S

X
s2S

¯isd2 f is
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where ¯0 is a constant and can be ignored, ¯is1 = _¿±i°s ¡ ®s¸i = 0 since _¿ = 0 and ®s = 0, and

¯isd2 = (ck̂)2asd±
i. Since days 2 and 4 are equal (and days 3 and 5), the terms can be combined in

instance 100b. Dividing by the constants ¹c and k̂, the cost model becomes:

Ä³A
ck̂

=

sX
i2S

±i(f i1 + f i3) + 2

sX
s2S

±i(f i2 + f i3) + 2

sX
i2S

±if i3

According to the asd vectors above, the ¯rst term represents costs for day 1, the second for days 2

and 4, and the third for days 3 and 5. For the 100b case, the full optimization problem is :

min
p
±1 (f11 + f13) + ±2f23 + ±3f33

+2
p
±1 (f12 + f13) + ±2 (f22 + f23) + ±3f33

+2
p
±1f13 + ±2f23 + ±3f33

subject to: P
s2S f

is = 1 8i 2 S
f is = 0 8i 2 S; s 2 S : °i > °s

f is ¸ 0 8i 2 S; s 2 S : °i · °s

Note from the constraints that f33 = 1 and f22 + f23 = 1. Hence:

Ä³A
ck̂

=
p
±1 (f11 + f13) + ±2f23 + ±3

+2
p
±1 (f12 + f13) + ±2 + ±3

+2
p
±1f13 + ±2f23 + ±3

It is intuitive that setting f22 = 1 and f23 = 0 minimizes the cost by not incurring the additional

costs ±2 in the ¯rst and third terms in the objective function. For similar reasons, setting f13 = 1

is clearly suboptimal, as the resulting cost is always greater than f12 = 1. Thus, demand at i = 1

will be served either at s = 1 or s = 2 in the optimal solution. For the nodes initially assigned to

i = 1 to be served at the higher level s = 2 (f12 = 1) the following condition must be true:

p
±1 + ±3 + 2

p
±2 + ±3 + 2

p
±3 > 2

p
±1 + ±2 + ±3 + 3

p
±3

)
p
±1 + ±3 + 2

p
±2 + ±3 > 2

p
±1 + ±2 + ±3 +

p
±3
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If the density of daily nodes in the region, ±3, is very large compared to ±1 and ±2, then serving

nodes at higher levels does not result in any signi¯cant improvement in routing costs. Alternatively,

if the density of daily nodes is relatively small, and ±2 >> ±1, then the level 1 nodes, i = 1, should

be merged into the level 2 routes, s = 2, for greater e±ciency. However, if ±1 >> ±2, a diseconomy

of scale results as many more nodes must now be served at the higher level s = 2, which is relatively

ine±cient.
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