
A note on asymptotic formulae for one-dimensional network flow problems 

Carlos F. Daganzo∗ and Karen R. Smilowitz• 

 

(to  appear in Annals of Operations Research) 

Abstract 

This note develops asymptotic formulae for single-commodity network flow problems 

with random inputs. The transportation linear programming problem (TLP) where N 

points lie in a region of R1 is one example. It is found that the average distance traveled 

by an item in the TLP increases with N1/2; i.e., the unit cost is unbounded when N and the 

length of the region are increased in a fixed ratio.  Further, the optimum distance does not 

converge in probability to the average value.    These one-dimensional results are a useful 

stepping stone toward a network theory for two and higher dimensions. 
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1. Introduction 

Asymptotic formulae exist for the traveling salesman problem, “TSP”, (Eilon et al., 1971, Karp, 1977, 

Daganzo, 1984a), and the vehicle routing problem, “VRP”, (Eilon et al., 1971, Daganzo, 1984b, 

Haimovich et al., 1985, Newell and Daganzo, 1986 and 1986a).  The results apply to problems where N 

points are randomly and uniformly distributed on a region of a metric plane with area A, and density 

AN=δ .  In all cases the distance traveled per point for the TSP, or the detour distance per point for the 

VRP, tends to a fixed multiple of 21−δ  as N and A are increased in a fixed ratio. This limiting result holds 

for problems in K-dimensional regions.  This note presents related but qualitatively different results for 

single-commodity network flow problems with random inputs on undirected paths.  The transportation 

linear programming problem, “TLP”, with points in a region of R1 is an example of this class of problems. 

One dimensional TLP’s arise in connection with the earthwork minimization problem of highway design.    

 

2. Background 
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Here the TLP is defined as follows.  Given are N points, inter-point distances, {dij, ∀i,j=1..N; i≠j}, 

satisfying the triangle inequality, and net supplies, vi , at each point.  Positive vi are interpreted as supplies 

and negative vi as demands.  The goal is to find shipments, {vij, ∀i,j=1..N; i≠j}, that minimize the total 

distance traveled while satisfying flow balance constraints.   

(TLP)   min              
,
∑
∈

=
Nji

ijijvdz        (1a) 

  s. t.: iji
Nj

ij vvv ≤−∑
∈

)(   Ni∈∀      (1b) 

   0≥ijv       Nji ∈∀ , .     (1c) 

Equations (1b) specify flow-conservation at each point, ensuring that the net flow from a point i never 

exceeds the net supply at i.  Because distances satisfy the triangle inequality, in an optimum solution origin 

nodes only emit flow and destination nodes only receive flow.  A TLP is feasible only if 0≥∑
∈Ni

iv , as can 

be seen by summing (1b) across i.  For balanced problems constraints (1b) are individually satisfied as 

pure equalities; for unbalanced problems, they are not.  We define an always-feasible problem, ATLP, that 

includes a fictitious source, i = 0, with the least positive net supply to make the problem feasible, and 

distances, )sup(, 00 ijji dMdd >>= .  This net supply is ∑
=

−=
N

i
ivv

1
0 , if the problem is infeasible, and 

00 =v , otherwise. The fictitious distances impose a penalty for items not shipped.  Since M is large, the 

distances satisfy the triangle inequality, and the ATLP is a TLP.  If the original TLP is infeasible then the 

ATLP is a balanced TLP, and the outflow from the fictitious source is v0.  The penalty component of an 

optimum solution is v0M, and the distance component is Mvzd 0−= ∗∗ , with 
+

=









−= ∑

N

i
ivv

1
0 .  If the TLP 

is feasible, then d* = z*; otherwise we take the distance component of the ATLP as its solution. 

In the TLP/ATLP it is assumed that excess supplies are left at the origins. We consider a variant, 

called “depot-TLP”, or DTLP, where excess supplies are carried to the extra point, or “depot”.  In the 

DTLP the depot distances do not have to be fixed or large but must be non-negative, 0),( 00 ≥ij dd , ji,∀ , 

and satisfy the triangle inequality.  The minimum of the DTLP objective function, Dz , is denoted ∗
Dd .  

Due to the penalty depot distances, it should be clear that the following is true (a formal proof can be 

found in Daganzo and Smilowitz, 2002). 

 

Proposition 1: (DTLP as an upper bound to TLP). For any TLP and any associated DTLP, ∗∗ ≤ Ddd .  

Furthermore, if the TLP is balanced then ∗∗ = Ddd .  



 3

 

3. Formulae 

This section develops formulae for the averages of ∗d  and ∗
Dd over a set of solutions when conditions 

vary.  Points are embedded in the normed linear space R1 and identified by a single coordinate, xi.  

Distance is jiij xxd −= .  We examine balanced and unbalanced versions of the TLP and DTLP.  We 

also consider grid problems where the net supplies change as random variables, but points are fixed on a 1-

D grid, and random problems where points are located randomly.  The modifiers “G” or “R” for “grid” or 

“random”, and “U” or “B” for “unbalanced” or “balanced”, identify problem characteristics.  

 

3.1 Balanced TLP problems 

Fig. 1a presents cumulative supply vs. position, ∑
≤

=
xx

i
i

vxv )(  for a TLP(B) with random point locations. 

 Figure 1. Graphical solutions of 1-D problems (a) TLP(B); (b) DTLP(U) 

 

Result 1. (Formula for TLP(B)).  The minimum cost for TLP(B) is the absolute area between v(x) and 

the x-axis; i.e., 

ii

N

i
i xxxvdxxvd −== +

−

=

+∞

∞−
∑∫ 1

1

1

* )()( .      (2) 

 

Proof:  It suffices to show that (2) is both an upper bound and a lower bound for d*.  For any point, xp, 

such as the one in Fig. 1a, the net flow across xp in any feasible solution is v(xp) because the aggregate 

supply and demand on both sides of xp must be satisfied. Thus, dxxv p )(  is a lower bound to the optimal 

distance traveled in any small interval, (xp, xp +dx) where v(x) is constant.  Therefore, the sum on the right 
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side of (2) is a lower bound for d*. Conversely, a feasible solution can be constructed by considering 

horizontal slices of dv items and transporting the items from points where the slice intersects a rising 

portion of curve v(x) to adjoining points where it intersects a falling portion. In the figure, dv items would 

be carried from A to B and from C to D. Thus, the summation of the slices for small dv (still given by (2)) 

is the distance of a feasible solution and an upper bound to d*.    

 

3.1.1 Grid problems 

If points are on a grid with lattice spacing l, then (2) reduces to d* ∑
−

=

=
1

1
)(

N

i
ixvl .  We examine the 

expected value of d* for TLP(B,G) with random net supplies. For any homogeneous, balanced problem 

the net supplies must have zero mean, 0=〉〈 iv , the same absolute mean µ=〉〈 iv , and the same variance, 

2σ〈=〉 iv .  The (equal) covariances must be )1/(2 −−=〉〈 Nvv ii σ  since this covariance ensures that the 

variance of the sum of all the net supplies is zero. The general formulae for the mean, absolute mean, and 

variance of the sum of the first i net supplies, v(xi), are then: 

0)( =〉〈 ixv , µixv i =〉〈 )( , and 





−
−

−=〈〉
1

11  )(
N
ii    xv 2

i σ   (3) 

Assume now that the vi have a joint multinormal distribution, and recall that if X is a normal random 

variable with zero-mean, [ ] 2
1

/)(2      π〈〉=〉〈 XX .  Thus, in the multinormal case, we have:  

〉〈 )( ixv  ( ) 2
1

2
1

1
112 














−
−

−=
N
iiσπ .      (4) 

 

 Result 2. (Expected optimal cost of TLP(B,G)).  For the homogeneous, zero-mean TLP(B,G) with 

normal demand in R1,  

( ) 2
1

1

1

2
1

*

1
112 ∑

−

=














−
−

−=〉〈
N

i
BG N

iild σπ .      (5a) 

Furthermore, the limit of this expression for ∞→N  is 

 2
3

2
1

*

32
lNd BG σπ







→〉〈  .           (5b) 
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Equation (5b) is true because the right hand side of (5a) is a Riemann sum that becomes a definite integral 

for ∞→N , and such integral reduces to (5b). The details are as follows: 

( ) dx
N
xxl

N 2
1

0

2
1

12 ∫ 













 −σπ ( ) 






















 −





= ∫ N

xd
N
x

N
xlN

2
1

1

0

2
3

2
1

12 σπ
2
3

2
1

32
lNσπ







= . (6) 

In terms of the point density, δ  = 1/l, the average distance per point, Ndp BGBG /** 〉〈=〉〈 , is: 

NpBG
1*

32
−→ σδπ .        (7) 

This function increases without limit with the number of points, unlike in the TSP, where the average 

distance per point tends to a limit.  The dependence with N  is caused by the long-range interactions 

arising from the flow balancing requirements.  

 

3.1.2 Extensions: random problems and non-normal demands 

Equations (5b) and (7) are general and hold if the vi are not normal, but satisfy the regularity conditions of 

Cramér’s version of the central limit theorem for large deviations.  Let Fv(x) be the c.d.f. of v(x) for a given 

N and let ∞→N  with a fixed interval length, L.  Then, v(x) is the sum of xN/L ∞→  net supplies, and the 

central limit theorem applies.  Recall dxxvd
L

∫=
0

* )( .  Let Φ be the c.d.f. of the normal approximation to 

v(x). Note that dzzdzzxv xv ∫∫
∞

∞−

−+=
0

v(x)

0

)( )](F1[)(F)( dzz∫
∞−

Φ≈
0

)( + dzz∫
∞

Φ−
0

)](1[ . The central limit theorem 

for large deviations (see corollary on p.553 of Feller, 1971) guarantees that the error in 〉〈 )(xv  can be 

made smaller than any 0>ε  for all )(xv .  Thus, the error in *d  is bounded by Lε . QED 

 

Equations (5b) and (7) also hold if point locations vary in a segment of length L as a homogeneous Poisson 

process with rate δ and an average of N points (N = δ L).  Since v(x) is a compound Poisson random 

variable, the central limit theorem applies and [ ] 2
1

/))((2)( π〈〉→〉〈 xv     xv .  It suffices to show 















 −〈→〉

L
x

L
xNxv 1)( 2σ  because then the expectation of (2), dxxvd ∫

+∞

∞−

〉〈=〉〈 )(* , is (6).  Let i(x) be 

the number of points in [0, x], and note the conditional random variable ( ))(|)( xixv  has zero mean and 

variance ( )
( ) 






−
−

−=〈〉
1
1)(12)(  )(|)(

N
xixixixv σ .  For zero mean, the unconditional variance is the expectation of 
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the conditional variance; i.e. 












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
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

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







−+

−
−

−
=

−

〉〈
−

−

〉〈
=〈〉

L

x

L

x
N

L

Nx

NNL

xN

N

xi

N

Nxi
     xv 1

2

1

1

)1(

2
2

1

2)(

1

)(2)( σσ 














−→

L
x

L
x

N 12σ . QED 

 

3.2 Unbalanced TLP problems (grid and random point locations) 

An exact expression for TLP(U) is more difficult to obtain, yet it is shown in Daganzo and Smilowitz 

(2001) that 〉〈−〉〈 **
UGBG pp = O(N1/2), implying that 〉〈 *

UGp  is also O(N1/2) for unbalanced problems.  

Equation (7) holds for DTLP(B) since DTLP(B) ≡ TLP(B). The expression for DTLP(U) is different, but 

qualitatively similar. To derive it, first define the cumulative demand for the depot )(' xv  as shown in Fig. 

1b; i.e., )()(' 00 xxHvxv −−= , where H is the Heaviside unit step function and x0 is the depot location. 

Since the DTLP(U) is a balanced TLP with cumulative demand )(')( xvxv − , Result 1 applies with 

)(')( xvxv −  substituted for v(x), and we have: 

 

Result 3. (Deterministic DTLP).  For both grid and random problems,  

dxxvxvdD ∫
+∞

∞−

−= )(')(*  .         (8) 

 

For the DTLP(U), the expectation of the integrand of (8) is symmetric with respect to the location of the 

depot.  Thus, for an integration region [0, L] it can be simplified as follows:                                                   

dxxvdxxvxvdxxvxvd
LLL

UD 〉〈=〉−〈=〉−〈=〉〈 ∫∫∫
2/

0

2/

00

* )(2)(')(2)(')( , which from (4) is 

[ ] dxLNxdxxvd
LL

UD ∫∫ →〉〈=〉〈
2/

0

2/12
2/

0

* )/()/2(2)(2 σπ = 2/1

9
4 LN σ
π

, i.e., we have 

 

Result 4. (Expected optimal cost of DTLP(U)). 

2
3

*

9
4 lN dUD σ
π

→ ,  and 2
1

*

9
4 lN pUD σ
π

→   .     (9) 

 

Note that in all cases, 〉〈 *d  = O(N3/2) when one holds l constant as N is increased.  However, 〉〈 *d = 

O(N1/2) if one holds the total region size, L = lN,  constant. 
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3.2.1 Convergence for unbalanced TLP cost approximations 

The form of convergence of d* is examined next.  Unlike the TSP *
UDd  does not converge in probability to 

(9) because its coefficient of variation tends to a positive constant as N→∞. 

 

Result 5. (Asymptotic coefficient of variation of the optimal distance for DTLP(U))  The asymptotic 

coefficient of variation tends to a positive constant as N increases; i.e., →〉〈〈〉 *2/1*
UDUD dd constant > 0.  

  

Proof:  Recall *
UDd  is a Riemann sum of the distance in small intervals of [0, L], with a second moment, 

〉〈
2*

UDd = 〉−−〈∫ ∫ dxdyyvyvxvxv
L L

0 0

)(')()(')( = dxdyyvyvxvxv
L L

〉−−〈∫ ∫
0 0

)(')()(')( .  By symmetry, 

〉〈
2*

UDd =2 dxdyyvxv 
L L

〉〈∫ ∫
2/

0

2/

0

)()( + 2 dxdyyvyvxv
L L

L
∫ ∫ 













−

2/

0 2/

)](')([ )(( .  For large N, curve v(x) has 

independent increments.  Thus, the integrand of the second integral involves the product of independent 

quantities since the absolute net supplies being multiplied correspond to non-overlapping regions of [0, L]. 

The expression can be rewritten using the product of the expectations as: 

〉〈
2*

UDd  = 2 dxdyyvxv 
L L

〉〈∫ ∫
2/

0

2/

0

)()(  + 2 dxdyyvyvxv
L L

L

 )](')([ )((
2/

0 2/
∫ ∫ 













−      

= 2 dxdyyvxv 
L L

〉〈∫ ∫
2/

0

2/

0

)()(  + 2 dxdyyv xv
L L

〉〈〉〈∫ ∫ )()((
2/

0

2/

0

. 

The second inequality follows from symmetry. Note now that the first integrand satisfies: 

〉〈 )()( yvxv  = 〉〈 )( xv 〉〈 )( yv  + },)(cov{ v(y) xv .  Thus,  

〉〈
2*

UDd  =  4 dxdyyv xv
L L

〉〈〉〈∫ ∫ )()((
2/

0

2/

0

+ 2 dxdyyvxv
L L

∫ ∫
2/

0

2/

0

))(,)(cov(  

The covariance integrand is strictly positive for all x and y not equal to 0, because v(x) and v(y) share the 

net supplies from 0 to min(x, y). An expression for ))(,)(cov( yvxv  is of the form N2σ ρ(x/L, y/L), 

and ρ is positive if both its arguments are positive.  The second moment is then: 

 〉〈
2*

UDd  =  4 dxdyyv xv
L L

〉〈〉〈∫ ∫ )()((
2/

0

2/

0

+ 2 N2σ dxdyLyLx
L L

∫ ∫
2/

0

2/

0

)/,/(ρ  

=  4 dxdyyv xv
L L

〉〈〉〈∫ ∫ )()((
2/

0

2/

0

+ 2 N2σ L2 '')','(
2/1

0

2/1

0

dydxyx∫ ∫ ρ  
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Note the second double integral is a positive constant; the second term is a positive multiple of N2σ L2 

and the first term is 2* 〉〈 UDd .  The second moment becomes 〉〈
2*

UDd  = 2* 〉〈 UDd  + ρoσ2NL2, for some ρo > 0, 

and the variance is 〈〉 *
UDd = ρoσ2NL2 = ρoσ2l2N3.  Since 2

3

 
9
4* lNdUD σ
π

→ , the coefficient of variation 

is independent of σ, l and N, and it tends to a positive constant as stated.   

 

4. Conclusions and comparison with other TLP problems 

It is interesting to compare these results with those for other TLP versions (see Smilowitz and Daganzo, 

2002).  The result, )(/** 2
1

NONdp ==〉〈  when one holds δ constant, does not extend to planar 

problems or problems in higher dimensions.  The dependence on N is damped in higher dimensions.  In 2-

D, the dependence is only of order log(N).  In 3-D, 〉〈 *p  is bounded and the standard deviation of the 

optimum distance per point declines with N.  This implies that in 2-D the optimum distance converges in 

probability to the expected value. 

It is also possible to show that the asymptotic 1-D formulae depend on region shape, even for a 

constant region size. If one considers a region consisting of two intervals of equal length, L/2, separated by 

a greater distance, D, with the depot in the middle, then 〉〈 *
UDp  depends on D asymptotically.  To see that 

this is true, note that in the optimal solution the total distance traveled by the depot flow increases linearly 

with DN1/2, since this flow is proportional to N1/2. This quantity cannot be neglected because it is shown in 

Section 3 that the internal distances within each sub-zone are O(N1/2) when region size is held constant. 

Fortunately for practical applications, shape does not have an asymptotic effect in 2-D.  Thus, the 2-D TLP 

is quite similar to the TSP in that the optimum distance per point is shape-independent and appears to 

converge in probability to the asymptotic mean.  Although the 2-D TLP distance per point is unbounded 

when one holds density constant (unlike in the case of the TSP), said distance increases with N so slowly 

that it may be treated as a constant for problems where N only varies by a factor of 10. 
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