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ABSTRACT 

Bounds and approximate formulae are developed for the average optimum distance of the 

transportation linear programming problem with homogeneously but randomly distributed points and 

demands in a region of arbitrary shape. It is shown that if the region size grows with a fixed density of points 

then the cost per item is bounded from above in 3+ dimensions (3+-D), but not in 1-D and 2-D.  Lower 

bounds are also developed, based on a mild monotonicity conjecture. Computer simulations confirm the 

conjecture and yield approximate formulae.  These formulae turn out to have the same functional form as the 

upper bounds. Curiously, the monotonicity conjecture implies that the cost per item does not depend on zone 

shape asymptotically, as problem size increases, for 2+-D problems but it does in 1-D.  Therefore, the 2-D 

case can be viewed as a transition case that shares some of the properties of 1-D (unbounded cost) and some 

of the properties of 3-D (shape-independence).  

The results are then extended to more general network models with subadditive link costs. It is found 

that if the cost functions have economies of scale, then the cost per item is bounded in 2-D. This explains the 

prevalence of the “last mile” effect in many logistics applications.  The paper also discusses how the results 

were used to estimate costs under uncertainty for a vehicle-repositioning problem. 



 1

INTRODUCTION 

This paper develops bounds and approximations for the average optimum distance of the transportation 

linear programming problem (TLP) with random supplies and demands.  The goal of the paper is not to 

develop better algorithms, since efficient algorithms for the TLP exist, but to develop simple formulae that 

can be used to predict system performance. Such formulae are helpful in the planning stages of complex 

logistics systems involving back-hauls and empty-vehicle repositioning because planning decisions are 

lasting and must be optimized over time periods when conditions vary in an uncertain way.  The 

approximations developed in this paper have been used to find optimal designs for package delivery systems, 

recognizing the effects of demand variability (Smilowitz and Daganzo, 2002).   

 Similar formulae have been developed for the traveling salesman problem, or “TSP” (Beardwood et 

al, 1959, Eilon et al., 1971, Karp, 1977, Daganzo, 1984a), and for the vehicle routing problem, or “VRP” 

(Eilon et al., 1971, Daganzo, 1984b, Haimovich et al., 1985, Newell and Daganzo, 1986a and 1986b, and 

Newell, 1986).  The results apply in particular to problems where N points are randomly and uniformly 

distributed on a region of a metric plane with area A, and density AN=δ .  In all cases the distance 

traveled per point for the TSP, or the “detour” distance per point for the VRP, tends to a fixed multiple of 

21−δ  as N and A are increased in a fixed ratio; i.e., the average detour distance per point is bounded.  The 

detour distance of the VRP is the distance traveled in excess of the lower bound formed by the product of the 

average round trip distance between the depot and a point, and the fraction of a vehicle’s capacity consumed 

by each point.  Systematic design methodologies for complex “many-to-one” and “one-to-many” logistics 

problems based on these formulae have been developed; see for example Daganzo (1991) and the references 

therein. Other work has focused more on the performance of heuristics for such logistics problems; see for 

example Bramel and Simchi-Levi (1997). 

Similar asymptotic results have been obtained for other minimization problems--less central to the 

field of logistics, but still based on the distribution of random points in a region of space. Examples are 

matching (Papadimitriou, 1978), triangulation (Steele, 1982) and spanning tree problems (Steele, 1988).  
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Additional information on this subject can be found in Steele (1997) and Yukich (1998).  It is known in this 

field (probability theory of geometric optimization problems) that the distance per point in K-dimensional 

space tends to δ−1/K for any problem satisfying certain “geometric subadditivity” properties--shared by all the 

problems mentioned so far. Thus, if for any of these problems one holds δ constant while increasing N (i.e., 

one enlarges the region) the distance per point tends to a constant; i.e., it is bounded, independent of K. 

Unfortunately, this result is not universal. Logistics problems involving random point distributions and 

random flows, such as the TLP, turn out to be quite different.  

This paper examines TLP’s where points lie on a region of a linear normed space. It is found that the 

average optimum distance per item (or distance per point) is not always bounded because TLP solutions must 

include some long trips to balance interregional flows. Interestingly, as occurs in some applied probability 

problems (e.g., the Ising model of statistical mechanics and the first passage of time of a random walk), the 

nature of the solution depends on the dimensionality of the space. We find that if one holds δ  constant while 

increasing N and the size of the region in a constant ratio, then the average distance traveled per item is 

bounded in three or more dimensions (3+-D), but it is of order log(N)  in 2-D and of order  N1/2 in 1-D.  

One-dimensional problems arise in connection with highway construction projects and the minimization of 

earthwork haul.  Asymptotic formulae with N → ∞ are provided for problems with homogeneous demand.  

Unlike in 1-D, the upper bounds developed for two or more dimensions are independent of region-shape. 

Approximate TLP formulae that can be used for large-scale network design problems are also given. The 

paper also examines a more general family of network problems with subadditive link costs. We find that 2+-

D problems of this type are bounded if the costs exhibit economies of scale.  

The paper provides theoretical results in terms of the abovementioned formulae and related insights, 

as well as practical results in terms of cost approximations for large-scale network design problems.  Section 

1 provides background on the TLP and summarizes earlier 1-D results. Section 2 develops upper and lower 

bounds for 2+-D cubes. Section 3 generalizes the bounds to regions of arbitrary shape, develops an 

approximate formula, and shows how it can be applied to a vehicle-repositioning problem.  Section 4 extends 

results to non-linear network problems. Section 5 summarizes the key findings and discusses future work. 
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1. BACKGROUND 

1.1 Definitions 

In this paper the TLP is defined as follows.  Given are N points, a set of inter-point distances, {dij, ∀i,j = 

1,...N with i≠j}, satisfying the triangle inequality, and a set of net supplies, vi , at each point.  Positive vi are 

interpreted as supplies and negative vi as demands.  The goal is to find a set of shipments, {vij, ∀i,j = 1,...N 

with i≠j }, that minimizes the total distance traveled while satisfying flow balance constraints.   

(TLP)   min              
,
∑
∈

=
Nji

ijijvdz        (1a) 

  s. t.: iji
Nj

ij vvv ≤−∑
∈

)(  ; Ni∈∀      (1b) 

   0≥ijv      ; Nji ∈∀ , .     (1c) 

Equations (1b) specify flow-conservation at each point, ensuring that the net flow emanating from a point i 

never exceeds the net supply at i.  Because distances satisfy the triangle inequality, in an optimum solution 

origin nodes can only emit flow and destination nodes only receive flow.  Otherwise it would be possible to 

re-route some flow and reduce cost. 

Recall that TLP’s are feasible only if 0≥∑
∈Ni

iv , as can be seen by summing (1b) across i, and that for 

balanced problems (where this sum is null) constraints (1b) are individually satisfied as pure equalities.  To 

address infeasible problem instances, we define an always-feasible, auxiliary problem, ATLP, that includes a 

fictitious source, i = 0, with the least positive net supply that makes the problem feasible, and distances, 

)sup(, 00 ijji dMdd >>= .  This net supply is ∑
=

−=
N

i
ivv

1
0 , if the problem is infeasible, and 00 =v , 

otherwise. The fictitious distances represent a penalty for failing to ship an item. Because M is large, the 

ATLP distances satisfy the triangle inequality, and the ATLP is still a TLP.  If the original TLP is infeasible 

then the ATLP is a balanced TLP, and the outflow from the fictitious source must be v0.  The penalty 

component of an optimum solution is v0M, and the distance component, d*, can be expressed in all cases as  
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Mvzd 0−= ∗∗  ,   with 
+

=









−= ∑

N

i
ivv

1
0 .     (2) 

Recall that if the TLP is feasible, then d* = z*.  When it is infeasible we will take as its solution the distance 

component of the ATLP.  

In the TLP/ATLP it is assumed that if supply exceeds demand, the excess supply is left at the 

origins. We also consider a variant of the problem, where any excess supplies are carried to the extra point, 

or “depot”.  This version of the problem will be called “depot-TLP”, or DTLP.  The DTLP is an ordinary 

TLP, where the net supply at the depot precisely balances the problem.  In the DTLP the depot distances do 

not have to be fixed or large but they must be non-negative, 0),( 00 ≥ij dd , ji,∀ , and must satisfy the triangle 

inequality.  The minimum of the DTLP objective function, Dz , is denoted ∗
Dd . 

 

Proposition 1: (DTLP as an upper bound to TLP). For any TLP and any associated DTLP, ∗∗ ≤ Ddd .  

Furthermore, if the TLP is balanced then ∗∗ = Ddd .  

 

Proof: Recall that if a TLP is infeasible, a fictitious source is introduced to obtain z* and d*.  The ATLP has 

the same constraints as the DTLP.  Therefore, a set of optimal shipments for the DTLP, denoted ∗
Dv , is a 

feasible solution of the ATLP.  The associated ATLP distance, including penalties, is denoted ( )∗
Dvz . If the 

DTLP is now adjusted by adding M to all the depot distances, Mdd jj += 0
'
0 and Mdd ii += 0

'
0 , the objective 

function value corresponding to ∗
Dv  would become Mvd D 0+∗ , since 0v  is the total flow to/from the depot 

in the optimum solution of DTLP.  All the link distances in the ATLP are less than or equal to those of the 

adjusted DTLP, and ∗
Dv  is feasible in both cases.  Therefore, ( ) Mvdz D 0+≤ ∗∗

Dv . Since ( )*
Dvzz ≤∗ , it is 

also true that Mvdz D 0
* +≤ ∗ , and hence that ∗∗∗ =−≥ dMvzd D 0  for the infeasible case.  In the 

feasible case, the non-depot flows )0,0( ≠≠ ji  in ∗
Dv incur a cost ∗≤ Ddd0  for the DTLP. Furthermore, since 
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the depot outflows in ∗
Dv  are zero, the non-depot flows are a feasible solution of the original TLP.  To see 

this note that (1b) can be rewritten in terms of the non-depot flows as  00
0

) ( iiiji
j

ij vvvvv −+≤−∑
≠

  i∀ ≠ 0, 

which implies  iji
j

ij vvv ≤−∑
≠

) (
0

  i∀ ≠ 0 when voi = 0, as occurs with ∗
Dv .  Since the non-depot flows are 

feasible, ∗∗ =≥ dd z    0 , and it follows that ∗∗ ≤ Ddd . This completes the first part of the proof.  The second 

part is true because if the problem is balanced, then 00 =v  and the DTLP and TLP problems coincide.  

 

1.2 Different Versions of the TLP and DTLP 

In what follows, we look for the average of ∗d , denoted *d , over a set of solutions (e.g., over an infinite 

number of days) when conditions vary.  [The brackets 〉〈Y and 〈〉Y will be used for the mean and variance of 

a variable Y across problem instances.] It is assumed that points are embedded in a K-dimensional normed 

linear space where each point i is identified by a set of Cartesian coordinates, xi, and that distances, dij, are 

given by any norm of the Cartesian separation vector, ji xx  - . This includes the Lp norms, as well as 

norms derived from them by coordinate rotations and anisotropic scalings. 

Four versions of the problem are considered depending on which data are allowed to vary.  Points 

are either fixed on a K-dimensional cubic lattice (grid) with Cartesian spacing l, or randomly and uniformly 

distributed in space.  The net supplies, vi , are assumed to be identically distributed normal random variables 

with mean 0 and variance 2σ , with a covariance )1/(2 −−= Nvv ji σ  for balanced problems and 

independent for unbalanced problems.  The given covariance ensures that both the mean and variance of Σivi 

are zero for balanced problems.  The modifiers “G” or “R”, referring to “grid” or “random” point locations, 

and “B” or “U” referring to “balanced” or “unbalanced” demand, are used to identify problem versions; e.g., 

DTLP(B,R) and DTLP(U,R) designate the unbalanced and balanced versions of the DTLP with randomly 

distributed points. 
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Dimensional analysis yields the general functional form of *d  for any TLP version in terms of its 

input constants.  For additional information on dimensional analysis see Bridgman (1963) or Barenblatt 

(1996); the well-known result on which our assertion is based is customarily called the “π-theorem”, 

Buckingham (1914).  For problems with random point locations in a region of specific shape (e.g., a cube) 

these constants could be σ , δ (the expected spatial density of points), and A (the region volume).  The same 

parameters can be used to define grid problems, with the convention: δ = l−K. In general we look for 〉〈 *d , or 

alternatively for the average distance per point, defined as AdNdp δ// *** 〉〈=〉〈=〉〈 . 

For these problems, only two independent dimensionless parameters can be formed with the input 

constants and the solution value: Aδ  and σ
δ K

p
1*〉〈 .   According to the π-theorem, the exact solution for 

〉〈 *p must then be of the form: 

)(
1* Afp K δσδ

−
=〉〈 ,       (3) 

 

where “f ” is the only unknown left to be determined. This function generally depends on the type of 

problem, the norm, region shape and the dimensionality of the space. The subscripts “T” and “D” will be 

used with f when it refers specifically to a TLP or DTLP.  The subscripts “TU”, “DU” and “B” are used to 

specify the unbalanced and balanced versions of these problems.  Only one subscript is used for balanced 

problems because TLP(B) ≡ DTLP(B).  Used alone, the subscript “U” refers generically to both TLP(U) and 

DTLP(U).  If no subscript is used, then f denotes a generic problem. Since f is dimensionless it is called the 

“dimensionless distance per point”.  Up to a multiplicative constant, it is the average number of lattice 

spacings traveled by an item.  

 

1.3 One-dimensional results 

The 1-D case is special in that points can be ordered along a unique shortest path, which allows for a 

different solution approach.  Results are presented below, and derived in the appendix. The TLP(B,G) with 
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zero-mean, multinormal demand, defined in an interval of R1 ( jiij xxd −= ) satisfies: 

  ( )
32
π

→
N

Nf B   ,  as   ∞→N .     (4) 

The N -dependence of fB is caused by the long-range interactions arising from the flow balancing 

requirements. Equation (4) also holds if the vi are not normal, but satisfy the conditions of the central limit 

theorem, and also if the point locations vary across days as a homogeneous Poisson process with rate δ  

(where N = δA).   

The asymptotic expression for DTLP(U) in intervals of R1 with grid or random point locations and 

centrally located depots is:  

( )
π9
4

→
N

Nf DU  ,  as   ∞→N .     (5) 

It is easy to see from these formulae that the asymptotic distance depends on region shape. Simply, 

consider two intervals of equal length (L/2) separated by a much greater distance (W), with the depot in the 

middle. Then, the total distance traveled by the depot flows outside the intervals must be proportional to 

WN1/2, since the depot flow is itself proportional to N1/2. This external distance is always comparable with the 

distance predicted by (4) or (5) for the case with W = 0.  Hence, 〉〈 *
DUp  depends on W asymptotically.  

The following two sections show that the dependence of f with N is weaker in higher dimensions.  It 

is shown that these functions are f(N) = O(log(N)) in 2-D, and f(N) = O(N0) in 3+-D. Section 2 examines 

cubic zones and Sec.3 extends the results to regions of arbitrary shape. It is found that the asymptotic 

formulae do not depend on shape in 2+-D.  This is fortuitous because a single asymptotic formula can then be 

used for all zone shapes in the important 2-D case.  

 

2. BOUNDS FOR K-DIMENSIONAL CUBES 

This section develops lower bounds for f in Section 2.1 and upper bounds in Section 2.2.  We assume that 

points are homogeneously distributed in a cube with density δ , either as a Poisson process or on a grid, and 
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that net supplies are zero-mean, normal random variables with standard deviation σ .  Note that for any such 

random variable, σ≤iv . The random variables are assumed to be independent for unbalanced problems 

and correlated for balanced ones. The service region diameter is αA1/K, where α is a norm-specific and 

dimension-specific constant (α = K1/p for the Lp metric). 

 

2.1 A lower bound for all versions 

Every item transported must travel to a nearest neighbor, or farther.  Since every item is associated with one 

origin and one destination, the expected distance per point for balanced problems cannot be less than one half 

of the product of the expected distance between nearest neighbors ηδ −1/K and the expected absolute net 

supply per point σ≤iv . (Note that η = 1 for grid problems with an Lp metric.) Thus,  

σηδ K
Bp

1* ½ −≥ ,      (6) 

for balanced problems. This bound also applies to the DTLP(U) since this problem is a balanced TLP. The 

inequality holds asymptotically for the TLP(U), because the supply not shipped, 
+

∈








∑
Ni

iv , becomes a 

negligible fraction of the total as ∞→δ .  This is true because the expected total absolute net supply 








∑
∈

+

Ni
iv is of order δ, while 

+

∈








∑
Ni

iv  is of order δ1/2. 

 

2.2  Upper bounds 

The formulae of Sec. 1.3 showed that ( ) ( )NONf =  for several versions of the 1-D problem.  We now 

show that the following theorem is true for all versions. 

 

Theorem 1: (Upper bounds).  For DTLPs and TLPs defined on cubes ( )Nf  is ( )NO  in 1-D,  O(log(N)) 

in 2-D and O(N0)  in 3+-D.   
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Figure 1 provides a schematic of the proof, with arrows indicating logical connections between the 

six cases that can arise.  The two gray arrows indicate that the theorem holds for the second row if it holds 

for the first row—since Proposition 1 guarantees that an upper bound for DTLP(U) is also an upper bound 

for TLP(U).  The black arrows imply the same for the third row—this will be proven in Sec. 2.2.4. Thus, it 

suffices to prove the first row.  We begin by describing a bilevel decomposition method used in the proofs.  

 

2.2.1 Bilevel decomposition 

Assume that the service region has been partitioned into a finite number of subregions, CI, each with its own 

sub-depot, I, and that specific net supplies, vi(I) , from each point i have been allocated to each subdepot, I.  

[In what follows, the subscripts i and j are reserved for the original points, including the main depot in the 

case of the DTLP, and capital letters, I, J, are used for subdepots.] The allocated flows satisfy: 

ivv
I Iii ∀=∑ ,)( , and ∑= i IiI vv )( ,∀I, where vI is the cumulative net supply associated with sub-depot I. 

The following algorithm can now be defined for the DTLP. 

 

Bilevel algorithm.   

Step 1 (lower level):  For all I, solve a DTLP with the {vi(I)} as data and sub-depot I as the depot.  This 

transfers a flow vI to each sub-depot. 

Step 2 (upper level):  Route the vI net supplies from/to each subdepot as per a feasible DTLP solution 

with the main depot as the depot.  

 

Obviously, the net flow of every subdepot after both steps is zero; i.e., items just pass through these points.  

It is therefore possible to express the result of the algorithm in path form, by simply specifying the number of 

items vijk that share the kth path from origin i to destination j, including any intermediate subdepots.  The net 

flows at all points satisfy the conservation equations of the original DTLP.  The set of origin-destination 
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flows obtained by summing the path flows for every origin-destination pair, v = 








=∑ ∀
k

ijkij ji,vv , , 

including the main depot as an origin or a destination, is a feasible solution of the original DTLP with 

distance ( ) ∑=
ij

ijijD dvd v . Thus, ( ) *
DD dd ≥v . If we now let d(b) be the combined distance for both steps of 

the bilevel algorithm, it is possible to show the following. 

 

Proposition 2: (Bilevel upper bound to DTLP).     *)(
D

b dd ≥ .   

 

Proof:  We have seen that ( ) *
DD dd ≥v . Since the triangle inequality ensures that dij is a lower bound to the 

length of every path from i to j, we have: ( ) *)(
DDij

ij
ij

ijk ijk
ijijkijkijk

b d  ddvdvdvd ≥==≥= ∑∑ ∑ v .  

 

2.2.2. Proof of Theorem 1 for DTLP(U,R) 

Proposition 2 is now used to establish the following preliminary result. 

 

Lemma 1: (Recursive relation for the dimensionless distance of DTLP(U,R)).     

( ) ( )KK
DUR

KK
DUR mnfnmnf ≥+ − 211)-(½ α , for  0≥n , m = 1, 2, 3, …  (7) 

[We use nK instead of δA or N for the expected number of points because this simplifies future derivations.] 

 

Proof: Partition the region into mK identical cubes with sub-depots at their centers as in Figure 2(a), and 

apply the bilevel algorithm to the problem assuming that origins and destinations are exclusively associated 

with their nearest centroid. Then, the expected total cost for the lower level problem is an aggregation of the 

costs of mK scaled-down, random-location DTLP(U,R) problems of the same type as the original. Since (3) 

applies to each sub-problem with A replaced by A/mk, the expected total lower level cost is  
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( ) 





=

−

KDUR
K

L

b
UR m

AfAd δσδδ
1

 ,     (8a) 

since the expected total number of points at the lower level is δA.      

 The high level problem is an unbalanced grid problem with mK points and lattice spacing mA K /1 .  

The variance of the net supply at each point is that of the excess supply in one cube. Conditional on the 

number of points in the cube, P, the mean and variance of the excess supply are 0 and 2σP .  Therefore, the 

unconditional variance is the mean of the conditional variance; i.e., =Iv KmA /2σδ . Thus, 

KI m
Av δσ≤ .  A feasible solution to the high level problem is to send items directly to/from the depot.  

Since the distance traveled by any such item cannot exceed the radius of the convex hull for all subdepots, 

which is ( )mA K 11½ 1 −α , it follows that: 

( ) ( )[ ] k
KK

H

b
UR m

A
mA½md δσα 111 −≤ .     (8b) 

Recall now that the original DTLP problem satisfies: 

( ) ( )AfAd DUR
K

DUR δσδδ
1* −= .       (8c) 

Since Proposition 2 holds for each instance of the problem, it also holds for the expectation. Thus, 

*)()(
DURH

b
URL

b
UR ddd ≥+ .  Substituting (8a– 8c) for these terms, and dividing both sides of the resulting 

inequality by KA
1−σδδ , we find: 

( )
( )Af  

A
mm1/-(1½

m
Af DUR

K

K

KDUR δ
δ

αδ
≥+








− 1
2

1

2)
,    for 0≥Aδ , m = 1, 2, 3, …  (8d) 

This system of inequalities can be simplified with the change of variable KK mnA =δ (where n is real and 

non-negative). The result is (7).  

We are now ready to prove the theorem. 

 

Proposition 3: (Upper bounds for DTLP(U,R)).  The DTLP(U,R) satisfies Theorem 1.   
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Proof: For a fixed no, consider the subset of (7), corresponding to m = 2 and n = 2no , 4no, 8no …  

( ) ( ) ( )( )K
DUR

KK
DUR nfn ½    nf 221 ≥+ −α ,  n = no2j   (j = 1, 2, …),  (9a) 

and the related set of equalities, 

( ) ( ) ( )( )K
DUR

KK
DUR nfnnf 2 ½    21 =+ −α ,  n = no2j  (j = 1, 2, …).  (9b) 

We look for the highest possible function, DURf~ , with domain D(no) = { }  j nnn j
0

K ,...2,1,2: ==  that 

satisfies (9a) and matches fDUR when n = no.  Since ((9a) and (9b)) have a recursive structure, such a function 

can be constructed by iterating (9b) starting with the given initial value, nK = no
K.  The unique result, given 

below, is an upper bound for fDUR in D(no).   

 ( ) ( )
( ) ( )

( ) 







−

−
+= −

−−

12
 ½  ~

2/1

2/12/1

K

K
o

K
K
oDUR

K
DUR

nnnfnf α   if 2≠K ,  (10a) 

     ( ) )/(log ½  2 o
K
oDUR nnnf α+=     if 2=K .  (10b) 

A bound for all n ≥ ε, where ε is an arbitrary positive real number, is now derived. Since every real n 

≥ ε belongs to a D(no) with no∈ [ε/2 , ε], it suffices to find a common upper bound to all the instances of 

(10a) and (10b) with no∈ [ε/2 , ε].  It is first shown that, for no∈ [ε/2, ε], the first terms of (10) are bounded 

by ½αε.  Recall that the optimum total distance of a DTLP(U,R) instance, given by (8c), is bounded from 

above by the product of the total flow, which is itself bounded by ( )σδA  and ½ the diameter of the region, 

KA1½α . Therefore, ( ) ( ) ( ) K
DUR

K AAAfA 11 ½ σαδδσδδ ≤− , or equivalently, ( ) ( ) K
DUR AAf 1½ δαδ ≤ . Thus, 

( ) ( ) αεαα ½n½½ 0
/1

≤=≤
KK

o
K
oDUR nnf , as stated.  Note now that the second terms of (10) decrease with 

no. Therefore, they are bounded from above by their values at  ε/2.  With these bounds, we find: 

 ( )
( ) ( )

( )












−

−
+≤ −

−−

12
)2/(

 ½ ½ 2/1

2/12/1

K

KK
K

DUR

n
nf

ε
ααε      if 2≠K  and  n ≥ ε  (11a) 

    )/2(log ½    ½  2 εαεα n+≤      if 2=K  and  n ≥ ε..  (11b) 
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Upon changing N for Kn in (11) it becomes apparent that ( ) NfDUR  is ( )NO  if K=1, ( )( )NO log  if K = 2, 

and ( )0NO  if 3  K ≥ . This completes the proof.  

 

2.2.3 Proof of Theorem 1 for DTLP(U,G) 

We now turn our attention to the top right cell of Fig. 1. It is assumed for this case that N = nK  , where n is a 

natural number. The recursive arguments of Sec 2.2.2 are modified because the cells CI will in general 

include different numbers of points.  To deal with this issue, it is useful to imagine (without losing generality 

from the original assumptions) that supplies are continuously generated throughout the cube by a K-

dimensional, zero-mean, homogeneous Brownian process, V, and that each net supply, vi , is the amount 

generated by V  in the cubic cell, Ci , of point i. The variance per unit volume of process V is denoted γ 

(items2/distanceK).  For a cubic lattice of subdepots, Lm, with m points to a side (M = mK  subdepots), the 

lattice spacing is lm = A1/K/m and the variance of the net supplies in one of its cells, m
IC , is MAm /2 γσ = .   

Consider the lattices Ln and Lm
 , where n > m, and apply the bilevel algorithm to problem Ln, using 

Lm  as the set of sub-depots and allocating to I from i the cumulative net supply generated in the overlap 

region of the two cells: vi(I)  = V( n
iC ∩ m

IC ); see Figure 2(b). Because the overlap regions are a partition of the 

service region the allocated flows are both feasible and independent. Furthermore, vI = V( m
IC ).  This 

guarantees that the upper level problem is in the family of problems under consideration. This result will be 

used in conjunction with the following lemma, which bounds the distance of the lower level problem.  

[Note as an aside that a proper set of vi(I) can also be generated directly from the conditional 

distribution of {vi(I)vi} without using the auxiliary process V. This conditional distribution can be easily 

obtained from the joint distribution of {vi(I) , vi}, which is known from the overlap rules; the relevant 

formulae can be found for example in Johnson and Kotz (1972).] 

 

Lemma 2: (Upper bound for lower level distance of DTLP(U,G)).   If n/m ≤ 2 then the lower level distance 

for the bilevel algorithm with the overlap rule satisfies, 
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( ) ( ) ( )( )121212/1212 −++≤ KKKb
L nAd αγ .       (12) 

 

Proof: Since n/m ≤ 2, the lower level distance traveled by any item cannot exceed the diameter of the largest 

cell, m
IC , or twice the diameter of the smallest cell n

iC ; see Figure 2(b).  Hence,  

( ) ( ) ( ) ( ) ( ) 







≤








=≤ ∑∑∑

iI
iI

K

iI
Ii

K

iI
Ii

Kb
L AnAvnAvnAd 211

)(
1

)(
1 /2/2/2 γααα , 

where AiI denotes the volume of the overlap region n
iC ∩ m

IC .  The last factor in this expression can be 

expressed as ( )( )∑ ∑i I iIA 21γ .  Since ∑I iIA  is a constant, A/N, and the inner sum is a concave and 

symmetric function of the AiI , it is maximized by AiI  = (A/N) /(#) , where # is the number of non-zero terms 

in the sum. Thus, the inner sum cannot exceed (#γA/N)1/2 .  Since this sum can have at most 2K non-zero 

terms (see Figure 2(b)) it is bounded by (2KγA/N)1/2. It follows that ( ) ( )( )NANnAd KKb
L /2/2 1 γα≤ , 

which reduces to (12).  

It is now possible to establish the desired result. 

 

Proposition 4: (Upper bounds for DTLP(U,G)).  The DTLP(U,G) satisfies Theorem 1.   

 

Proof: Recall that ( ) ( )AfAd DUG
K

DUG δσδδ
1* −= ; see (8c). If we substitute nK/A for δ and (γAn−K)½ for σ in 

this expression we obtain: ( )K
DUG

K
K

DUG nfnAd 12
1

2
1

2
1* −+= γ .  Since the upper level problem on Lm is in 

the same family as the original problem (with m instead of n), and the lower level problem is bounded by 

Lemma 2, Proposition 2 now yields the following recursive inequality for fDUG :     

 

         ( )( ) ( ) ( )( ) ( ) ( ) ( )( )12121212112121211212121 2 −++−+−+ +≤ KKKK
DUG

KKK
DUG

KK nAmfmAnfnA αγγγ  . 

This inequality can be rewritten, after dividing by ( )( )1212121 −+ KK nAγ , as: 
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( ) ( ) ( ) ( )α2121
2 KK

DUG

KK
DUG mfm

nnf +−
+≤ ,    if  n/m ≤ 2, (13a) 

or alternatively, as: 

( ) ( ) ( ) ( ) ( )α2121
21 KK

DUG

KK
DUG

K
DUG mfm

nmfnf +−
+



 −≤− , if  n/m ≤ 2. (13b) 

If we now choose n/m = 2 in (13a) we obtain: 

( )( ) ( ) α2121 222 KK
DUG

KK
DUG mfmf +− +≤ .    (14) 

This recursion can be treated in the same way as (9a) (considering exponential sequences of the form mj = 

2jmo) with the same result.  It is found that, for any such sequence (with Nj = mj
K), ( ) jDUG Nf  is ( )jNO  if 

K=1, ( )( )jNO log  if K = 2, and O(Nj
0)  if 3  K ≥ . Note from (13b), however, that the difference between the 

value of fDUG for any m and the value for the closest mj from below (m/mj <2) is of the same order as 

fDUG(mj
K).  Hence, the bounds hold for all natural m; i.e., for all N that can be expressed as the Kth power of a 

natural number.   

 We have now established the validity of Theorem 1 for the top row of Fig. 1, and therefore of the 

second row too.  The third row (balanced problems) is examined next. 

 

2.2.4 Proof of Theorem 1 for DTLP(B,G) and DTLP(B,R) 

It is shown below the difference between the optimal costs per point for balanced and unbalanced problems 

is O(N1/K-1/2); i.e., of a lesser order than the upper bound. Therefore, Theorem 1 holds.   

The main complication for balanced problems is that the net supplies are not independent.  This is 

remedied by defining three sets of zero-mean, homogeneous net supplies for any fixed set of  N  

points: { }iuu = , { }ivv =  and { }iww = , with the following properties: 2σ=iu and  0=jiuu   if i ≠ j ; 

( )∑−= j ji Nuw ; and ii wuv +=i .  The four sets of net supplies are related by, 

wuv +=          (15a) 

)( wvu −+= .         (15b) 
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Note that {wi} always defines a balanced problem, since 0=∑i iw . We imagine that (15a) is used to generate 

one balanced problem instance for every unbalanced instance; i.e., the set of balanced instances so generated 

are in a 1:1 correspondence with the set of unbalanced instances. Note that the set of u’s defines an 

unbalanced problem with variance 2σ and the set of generated balanced instances, {v}, defines a balanced 

problem with variance ( )N112 −σ .  The set of w’s in the correspondence define a problem with identical net 

supplies at all points and variance N2σ . Obviously, a balanced problem with any desired variance, 2
Bσ , can 

be constructed from an unbalanced (independent) problem with larger variance, 2
Bσ /(1-1/N). The difference 

between the two optimal solutions depends on {w} and this is exploited below.  

Let the N points be arbitrarily located with a maximum distance from the depot, Dφ , and consider 

the optimum distance for the problems defined by the w alone.  Clearly,  

     0* =
identical

p    for TLP, and    (16a) 

       21−≤ NDσφ   for DTLP.    (16b) 

Equation (16b) is true because all flows must go to/from the depot, so that the average distance to the depot 

is bounded by Dφ  , and because the expected net supply per point is bounded in absolute value by its 

standard deviation, 21−Nσ .  If all the points (including the depot) are contained within a cube of volume A , 

then K
D A1αφ ≤ , and (16b) becomes: 

                               
K

K
identical N

ANp
1

211* 





≤ −ασ      for DTLP.    (16c) 

The results about to be derived use (16c) and the following well known property of problems with linear 

constraints, such as (1b).  

 

Superposition property of DTLP.  If u = { }iju  is a feasible solution of a DTLP with net supplies, u = { }iu , 

and w = { }ijw  is a feasible solution of the same problem when the net supplies are w ={ }iw , then wuv +=  

is a feasible solution of the same problem with net supplies wuv += .  
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The central result of this subsection can now be stated. 

 

Lemma 3: (Asymptotic equivalence of balanced and unbalanced DTLP’s in 2+-D).  For the DTLP (grid or 

random), ( ) ( )[ ] ( )( )211 −=− K
DUB AOAfAf δδδ .  

 

Proof: We continue to assume that the number of points, N, and their locations are fixed (either on a grid or 

randomly).  Equation (15a) and the superposition property imply that the sum of two optimal solutions with u 

and w as data is a feasible solution of the balanced problem with v as data. Thus, the sum of these two 

optimal costs bounds from above the optimal cost of the balanced problem.  Since this is true for every 

realization of the set of net supplies and point locations (v, u, w, x) it must be true of their expected values; 

i.e., the average cost per point must satisfy (for fixed N): 

( ) ( ) ( ) ( ) ( ) KK
DU

K

B

K

N
ANNfN

ANfN
A

N
12111111 −+≤− ασσσ .   

[For the most part of this proof, the random versions of f stand for the dimensionless distance per point with 

random locations but N fixed. These functions, fR
(fixed number) still obey (3). They are related to the conventional 

f’s with random N by < fR
 (fixed number)(N)> = fR

 (conventional)
 (δA). The superscript “(fixed number)” is omitted in 

this proof.] The first two terms in the above inequality are definitions and the third term is a result of (16c). 

The same logic applied to (15b) (with w replaced by −w) yields 

( ) ( )NfN
A

DU

K1 
σ  ≤ ( ) ( ) ( ) KK

B

K

N
ANNfN

A
N

12111 11 −+− ασσ ; 

i.e.,   

( ) ( ) ( ) ( ) ( ) KK
DU

K

B

K

N
ANNfN

ANfN
A

N
12111111 −−≥− ασσσ .   

After dividing these two inequalities by ( ) K

N
A

N
111−σ , they can be jointly written as: 

       ( ) ( )[ ] ( )
2/1

211
2/1

1
1

1








−
±












−








−
=− −

N
NN

N
NNfNfNf K

DUDUB α , or    
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( ) ( )[ ] ( ) ( ) ( )02111 NONNONfNfNf K
DUDUB

−− ±=− α .  (17) 

Since ( ) =Nf DU ( )211 +KNO  by virtue of Propositions 3 and 4, we see from (17) that the lemma holds for 

grid problems. When N is a Poisson random variable with mean Aδ , as occurs in the random location case,  

the difference ( ) ( )AfAf alconvention
DUR

alconvention
BR δδ )()( −  is the average of the difference for fixed numbers (17), 

which is also ( )( )211 −KAO δ .  

Note that Lemma 3 is consistent with (4) and (5) since it predicts that the difference between these 

two expressions is bounded by a constant.  Since Lemma 3 shows that the absolute difference between the 

asymptotic formula of an unbalanced problem and its balanced version is of an order equal or less than the 

order of the upper bound for unbalanced problems, a simple corollary is  

 

Proposition 5: (Upper bound for balanced problems). Theorem 1 also applies to balanced DTLP’s.  

 

3.  APPLICATIONS TO LOGISTICS PROBLEMS: SHAPE INDEPENDENCE 

The bounds developed in Section 2 are converted into practical approximate formulae. The work was 

motivated by an application—a vehicle-repositioning problem for a large package delivery carrier 

(Smilowitz and Daganzo, 2002)—that would have been impossible without a closed-form formula. The 

application and the formula are described in Section 3.2. First, Section 3.1 shows that any such formula 

should apply to regions of arbitrary shape. Thus, formulae of this type should be quite general. 

 

3.1 Shape effects 

This subsection extends the ideas in Section 2 to any region S formed by a non-overlapping assembly of Q 

cubes of volume A.  Both an upper bound and a lower bound are developed—the latter, based on a 

monotonicity conjecture.  If φ is the diameter of such a region, then the following upper bound holds:  

 

Theorem 2: (Shape-based upper bound for DTLP and TLP(B)). 
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        ( )AQfS δ   ≤  ( )   )( 211/1
D

−−+ KK AAAf δφδ .     (18a) 

 

Proof: We begin first with DTLP(U) and move to DTLP(B)≡TLP(B). Assume that the bilevel algorithm is 

applied to S with sub-depots at the centroid of each individual cube, and that the lower level flows are 

optimum DTLP(U) (grid or random) solutions within each cube. Clearly, the lower level distance is then 

( ) ( )( )AfAQ DU
K δδσδ 1− . The upper level distance is bounded above by the product of the maximum 

distance in S, the expected absolute value of the net supplies at a centroid, and the number of centroids.  This 

product is bounded above by ( )( )QA 21δσφ . From Proposition 2: 

( ) ( ) ( ) ( )[ ] ( )[ ]QAAfAQAQfAQ DU
K

DUS
K 2111

δσφδδσδδδσδ +≤ −−
.    

Hence, the inequality of the theorem applies to fDUS and fDU : 

       ( ) ( ) 211/1 )( −−+≤ KK
DUDUS AAAfAQf δφδδ   .    (18b) 

Since the last term of (18b) is of an equal or lesser order than ( )AfDU δ  (see Theorem 1), fDUS also satisfies 

Theorem 1. The steps of Lemma 3 can be repeated to show that ( ) ( )[ ] ( )( )211 −=− K
DUSBS AOAfAf δδδ .  Again, 

since this is of an equal or lesser order than the right side of (18b) the theorem also holds for balanced 

problems.  

For a lower bound, we conjecture the following:  

 

Conjecture 1:  (Monotonicity). Since f(δA) is monotonic in 1-D, it is reasonable to conjecture that it is also 

monotonic in 2+-D.  The 2-D simulation in Section 3.2 lends further support to the conjecture.  

 

        Let B be a cube with volume B and diameter φB that contains S and the depot. Let S’ be the 

complement of S in B, S’=B−S, and Q’ the number of elementary cubes forming S’.  If we now superpose an 

optimal DTLP solution in S with a bi-level solution in S’, where a DTLP is solved for each elementary cube 

and the elementary overflows are routed to the depot, we obtain a feasible DTLP solution for B.  Therefore, 
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the distance of the superposed solutions is an upper bound to the optimum DTLP distance in B, and we can 

write: 

( ) /1 BBfD
K δδσδ −  ≤  ( ) /1 AQAQfS

K δδσδ − + ( ) '/1 AfAQ D
K δδσδ − + φBσQ’(δA)1/2. 

The first term on the right side is the optimum DTLP distance in S, the second term is the distance of the 

(lower level) DTLP’s in S’, and the third term an upper bound to the (upper level) distance linking the 

elementary cubes and the depot—since σ(δA)1/2 is an upper bound to the expected flow to/from an 

elementary cube, φB  is an upper bound to the distance between a cube and the depot, and there are Q’ cubes.  

If we now substitute A(Q+Q’) for B in the left hand side of the above and divide both sides by 

AQKδσδ /1− we find that ( )AQfS δ   ≥  [(Q+Q’)/Q] ( ) Bf D δ  −  [Q’/Q] ( ) Af D δ − [Q’/Q]φBA-1/K(δA) 1/K-1/2. The 

conjecture allows us to substitute ( ) AfD δ for ( ) Bf D δ on the right side of this inequality, and this yields: 

( )AQfS δ  ≥  ( ) Af D δ − [Q’/Q]φBA-1/K(δA) 1/K-1/2.           (19) 

Equations (18a) and (19), combined, imply that ( )AQfS δ / ( )  Af D δ → (constant) as δ → ∞ for K ≥ 

2; i.e., as the density of points tends to infinity in a given region, the boundaries of the region do not 

influence the number of lattice spacings traveled per point for problems defined in 2+−D. It was shown in 

Sec. 1.3 that this is not true in 1-D. Therefore, the 2-D case can be viewed as a transition case that shares 

some of the properties of 1-D (unboundedness) and some of the properties of 3-D (shape-independence).  

 

3.2 Simulation of empty vehicle repositioning: The TLP(B,R) 

This subsection develops a closed-form approximate formula for the Euclidean TLP(B,R) in 2-D. Such a 

formula has been used to estimate the yearly cost of repositioning empty vehicles among the terminals of a 

package delivery carrier as a function of its number of terminals, while recognizing that demand varies from 

day to day randomly (Smilowitz and Daganzo, 2002). Although in an ideal deterministic world the number 

of long-haul vehicles arriving at each long-haul terminal would perfectly match the requests at the terminal 

for empty vehicles, obviating the need for repositioning, in reality fluctuations from the averages create 

demands and oversupplies that need to be managed. Smilowitz and Daganzo (2002) assumed that this was 
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done by solving a TLP with zero-mean net supplies each day, using buffers of empty trucks at each terminal 

to absorb the trip time effects. In this way the TLP(B,R) expression completed a module for repositioning 

costs that itself was part of a larger analytical expression for total logistic cost. This expression was 

eventually used to obtain efficient system designs. This application, of course, is only one of many where an 

expression for the average cost of a TLP(B,R) could be of use. The formula was developed by simulation. 

For simplicity, and in view of Lemma 3 and the shape-independence property, we simulated a 

battery of TLP(B,R) problems with fixed N in Euclidean 2-D squares. The formula is generic, however. 

Results are presented for twenty-five test cases, with various levels of A, N andσ .  In total, 769 simulations 

were completed with A ranging from 4,000 to 90,000 units;  N from 25 to 5,000; and σ from 4.9 to 12.6 

items.  A subset of runs was used for calibration and its complement for validation. Figure 3 displays the 

calibration results, plotting σδ /2
1*

BRp  vs. )(2 Nlog . Each point in the figure is the average of fifteen 

problem instances with identical properties.  The equation of the line is: 

     ( ) )(03.043.0 2 Nlog Nf BR += , for N ∈ [25, 5000].     (20) 

The deviations from the line are consistent with the standard errors estimated from the simulation. The figure 

clearly shows that the solution indeed has the functional form of the upper bound.  

Expression (20) was used with the validation test group to verify the errors.  Figure 4 shows the 

percentage error between costs approximated with (20) and the average costs for test cases with identical 

parameters as a function of )(2 Nlog .  The errors for lower bounds using expression (6) are also presented.   

 

3.3 Observations 

It is interesting to compare (20) with the results for the TSP. Since the average number of items supplied per 

point is ( ) πσ 2/ iv =
+  in the case of normal demands, we see that the average TLP distance traveled per 

item in the Euclidean case is ( ) 2
1

2 −δπNfB .   That is,  

))(078.01( 2
2

1
Nlog     item  per  distance +≈><

−δ .   
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As a point of reference, this distance is about twice as long as for the Euclidean TSP, for the values of N one 

is likely to encounter in actual logistics problems (N  ≈ 25 to 210).  

 

4. SCALABLE NETWORKS 

Many transportation network problems are complicated by the existence of non-linear edge costs.  For 

example, if vehicles incur fixed costs, independent of their loads, and they make single-edge trips, the edge 

costs should be modeled as a step function of the number of items flowing on the edge.  More generally, one 

can assume that edge costs are subadditive functions of flow; see Daganzo (1999) for background.  We 

extend our results here to these kinds of networks. It is also possible to extend the results to multi-commodity 

networks in which subadditive costs are associated with multi-link vehicle routes, but length restrictions 

prevent the development of this idea. 

Assume a directed graph characterized by sets, I(i) and O(i), that identify the edges pointing in and 

out of a node i.  We introduce a subadditive function 0)( ≥⋅ψ  and two constants, 00 >v  and 0≥p , to 

define edge costs.  This information, combined with the sets of edges and nodes, and a distance norm, is 

called a “network”.  For a given network and set of net supplies, we seek the edge flows v(e) that solve the 

following network problem (NP),  

 

(NP)   min             )/(   0)(
  

)(∑=
e

e
p

ee vvvdz ψ      (21a) 

  s. t.: i
iIe

e
iOe

e vvv ≤− ∑∑
∈∈ )(

)(
)(

)(  ,   i∀      (21b) 

   0)(   v e ≥   ,  e∀ .     (21c)  

Note that (21a) is subadditive in )(ev  if 1≤p .  Note too the similarity to (1). Again, one can define feasible, 

auxiliary (ANP) versions and DNP versions where one of the nodes is designated as a “depot”. 

The results in prior sections for fixed-point locations extend to problem NP if the network is 

“scalable”; i.e., the network belongs to a family whose members are fully characterized by a scale parameter 
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l and a size parameter N = mKnK, with the following properties. First, the graph can be partitioned into mK 

identical subgraphs that define sub-networks in the family with scale parameter l and size parameter nK.  

Second, paths can be extracted from the original graph to connect the sub-depots and form a graph that 

belongs to the original family with scale parameter nl and size parameter mK.  Depots are not required to be 

centrally located; see the 1-D example in Figure 5.  The networks in this figure belong to a family in which 

members have equally spaced nodes, connected from the left to the nearest neighbor and to the right from 

another neighbor.  Note that the sub-networks are tiles that can be joined to fill the space and make larger 

networks.  Scalable networks in 2 and 3 dimensions can also be formed by joining tiles. 

For these types of problems, dimensional analysis yields the following general solution: 

)(* Nflnmd N
pKK σ=〉〈 ,       (22) 

where the subscript “N” indicates that the dimensionless distance per point pertains to a network problem 

with a specific geometry and set of cost parameters ( )⋅ψ , p, and vo. The bilevel algorithm for the DNP yields 

flows vL and vH that satisfy (21) with the net supply data relevant for each level. Scalability implies that the 

resulting average total costs can be expressed as:  

( )K
N

pKK

L

b nflnmzd σ== )()(
Lv ,     (23a)

 ( ) ( )K
N

pKK

H

b mfnlnmzd 




== 2)( )( σHv .     (23b) 

If p ≤ 1, then (21a) is subadditive. Subadditivity guarantees that  z )( Lv + )( Hvz  ≥  z )( HL vv + , and 

since (vL + vH) is a feasible solution of the original problem,  z )( HL vv + ≥  z* .  Thus, if p ≤ 1, then the 

sum of (23a) and (23b) is an upper bound for (22), and the following inequality results: 

( ) ( ) ( )KK
N

K
N

pKK
N nmfmfnnf ≥+ −− ]/1(1[ )2  ;  m, n = 1, 2, 3 …  (24) 

If we put m = 2 in this expression the result is analogous to (9a) when NP is linear (p = 1).  Thus, the logic in 

the proof of Proposition 3 also applies to linear NPs when m = 2, and the bounds of the proposition (and 

Theorem 1) continue to hold.   
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An even stronger result holds in the non-linear case with diseconomies of scale, p < 1.  Recall from 

the proof of Proposition 3 that the solution is bounded from above by a constant when the second term on the 

left side of (9a) declined with n.  This is also true now. Thus, in the nonlinear case the solution is bounded by 

a constant if )2/1(1 pK −− < 0.  This implies that 2-D network problems with diseconomies are bounded. 

 

5. EXTENSIONS AND CONCLUSIONS  

This paper developed bounds and formulae for the optimum cost of spatially homogeneous transportation 

problems. This was done with dimensional analysis, using a bilevel algorithm. We found that the 2-D bounds 

share some properties with those for 1-D problems (unboundedness) and other properties (shape-

independence) with those in 3-D. Simulations showed that the 2-D solution has the functional form of the 

upper bounds. The results have been used elsewhere to estimate costs for a vehicle-repositioning problem 

arising in the package delivery industry. 

Results were also extended to more general single-commodity network problems with non-linear 

edge costs.  It was found that the costs per item for these types of networks are bounded with respect to 

network size if link costs have economies of scale.  For such networks, the negligible contribution of long 

distance travel to total cost explains the prevalence of the “last-mile” effect.  Future work should examine the 

asymptotic properties of multi-commodity networks with route-based costs.  

The results of this paper can also be used for inhomogeneous transportation problems if the mean 

and variance of the net supplies at each location are known. A feasible solution to these problems can always 

be formed by the superposition a deterministic solution to the TLP (with the mean net supplies as data) and a 

stochastic component (with the deviations as data).  It should be intuitive that the average TLP cost is 

bounded from below by the deterministic cost component and from above by the sum of the deterministic 

and stochastic costs—a proof of this statement is given in Daganzo and Smilowitz (2000). The formulae in 

this paper can be used to estimate the stochastic component.  When this component is inhomogeneous 

(different variances) it can itself be bounded from above by a homogeneous problem with larger variance.  

More discussion of these issues can be found in Daganzo and Smilowitz (2000).  
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APPENDIX: ASYMPTOTIC FORMULAE FOR ONE-DIMENSIONAL TLPs 

 

A.1.  Balanced TLP problems and derivation of Eq. (4) 

We define a curve of cumulative supply vs. position, ∑ ≤
=

xx ivxv
i

)( , as in Fig. A1a for a balanced TLP 

problem with random point locations. 

 

Result A1: (Formula for TLP(B)).  The minimum cost for TLP(B) is the absolute area between v(x) and the 

x-axis; i.e., 

ii

N

i
i xxxvdxxvd −== +

−

=

+∞

∞−
∑∫ 1

1

1

* )()( .      (A1) 

Proof: It suffices to show that (A1) is an upper bound and a lower bound for d*. For any point, xp, (see 

Fig.A1a) the net flow across xp in a feasible solution is v(xp) since the aggregate supply and demand on both 

sides of xp are satisfied. Thus, dxxv p )(  is a lower bound to the optimal distance traveled in any small 

interval, (xp, xp +dx) where v(x) is constant, and the sum on the right side of (A1) is a lower bound for d*.  

Conversely, a feasible solution can be constructed by considering horizontal slices of dv items (as in 

the figure) and transporting these quantities from points where the slice intersects a rising portion of curve 

v(x) to adjoining points where it intersects a falling portion. In the figure, dv items would be carried from A 

to B and from C to D. Thus, the summation of all slices for small dv (still given by (A1)) is the distance of a 

feasible solution and an upper bound to d*.   

For the TLP(B,G) with lattice spacing l, (A1) reduces to d* ∑
−

=

=
1

1
)(

N

i
ixvl .  For any homogeneous, 

balanced problem the net supplies must have zero mean, 0=〉〈 iv , the same absolute mean µ=〉〈 iv , and the 

same variance, 2σ〈=〉 iv .  The (equal) covariances are )1/(2 −−=〉〈 Nvv ii σ  since this covariance ensures that 

the variance of the sum of the net supplies is zero. The general formulae for the mean, absolute mean, and 

variance of the sum of the first i net supplies, v(xi), are then: 
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0)( =〉〈 ixv , µixv i =〉〈 )( , and 





−
−

−=〈〉
1

11  )(
N
ii    xv 2

i σ   (A2) 

If X is a normal random variable with zero-mean, 

[ ] 2
1

/)(2      π〈〉=〉〈 XX  .       (A3) 

Thus, if the vi have a joint multinormal distribution, we have:  

〉〈 )( ixv  ( ) 2
1

2
1

1
112 














−
−

−=
N
iiσπ ,       

and the following is true. 

 

Result A2: (Expected optimal cost of TLP(B,G)).  For the homogeneous, zero-mean TLP(B,G) with normal 

demand in R1,  
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1

1
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1

*

1
11 2)( ∑∑

−

=

−

=














−
−

−==〉〈
N

i

N

i
iBG N

iilxvld σπ .    (A4a) 

Furthermore, the limit of this expression for ∞→N  is 

 2
3

2
1

*

32
lNd BG σπ







→〉〈  .           (A4b) 

 

Equation (A4b) is true because the right hand side of (A4a) is a Riemann sum that becomes a 

definite integral for ∞→N , and such integral reduces to (A4b). The details are as follows: 
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= . (A5) 

In terms of the point density, δ  = 1/l, the average distance per point, Ndp BGBG /** 〉〈=〉〈 , is: 

NpBG
1*

32
−→ σδπ  ,       (A6) 

which reduces to (4). 
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A.2. Unbalanced TLP problems and derivation of Eq.(5) 

Equation (A6) holds for DTLP(B) since DTLP(B) ≡ TLP(B). The expression for DTLP(U) is different, but 

qualitatively similar. To derive it, first define the cumulative demand for the depot )(' xv  as shown in Fig. 

A1b; i.e., )()(' 00 xxHvxv −−= , where H is the Heaviside unit step function and x0 is the depot location. 

Then, the same arguments used with Result A1 establish the following: 

 

Result A3: (Deterministic DTLP).  For both grid and random problems,  

dxxvxvdD ∫
+∞

∞−

−= )(')(*  .         (A7) 

 

For the DTLP(U), the expectation of the integrand of (A7) is symmetric with respect to the location 

of the depot.  Thus, for an integration region [0, L] it can be simplified as follows:                                                   

dxxvdxxvxvdxxvxvd
LLL

UD 〉〈=〉−〈=〉−〈=〉〈 ∫∫∫
2/

0

2/

00

* )(2)(')(2)(')( , which from (A.3) is 

[ ] dxLNxdxxvd
LL

UD ∫∫ →〉〈=〉〈
2/

0

2/12
2/

0

* )/()/2(2)(2 σπ = 2/1

9
4 LN σ
π

, i.e., we have 

 

Result A4: (Expected optimal cost of DTLP(U)). 

2
3

*

9
4 lN dUD σ
π

→ , and  2
1

*

9
4 lN pUD σ
π

→ , and   ( )
π9
4

→
N

Nf DU .  (A8) 

 

This is Eq. (5) of the text. 

An exact expression for TLP(U) is more difficult to obtain. Yet, it is shown in Daganzo and 

Smilowitz (2000) that 〉〈−〉〈 **
UGBG pp = O(N1/2), implying that 〉〈 *

UGp  is also O(N1/2) for unbalanced 

problems.   
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Figure 2: Application of the bilevel algorithm to (a) DTLP(U,R)  and (b) DTLP(U,G) . 
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Figure 4: Error comparison 
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Figure A1: Graphical solutions of 1-D problems (a) TLP(B); (b) DTLP(U) 

 
 

 


