
Forthcoming in Operations Research
manuscript DOI: 10.1287/opre.1100.0882

Finite Disjunctive Programming Characterizations
for General Mixed-Integer Linear Programs

Binyuan Chen
Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ 85720, bychen@email.arizona.edu

Simge Küçükyavuz, Suvrajeet Sen
Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH 43210,

kucukyavuz.2@osu.edu, sen.22@osu.edu

In this paper, we give a finite disjunctive programming procedure to obtain the convex hull of general mixed-

integer linear programs (MILP) with bounded integer variables. We propose a finitely convergent convex

hull tree algorithm which constructs a linear program that has the same optimal solution as the associated

MILP. In addition, we combine the standard notion of sequential cutting planes with ideas underlying the

convex hull tree algorithm to help guide the choice of disjunctions to use within a cutting plane method.

This algorithm, which we refer to as the cutting plane tree algorithm, is shown to converge to an integral

optimal solution in finitely many iterations. Finally, we illustrate the proposed algorithm on three well-

known examples in the literature that require an infinite number of elementary or split disjunctions in a

rudimentary cutting plane algorithm.

Key words : Mixed-integer programming, disjunctive programming, convex hull, finite convergence.

1. Introduction

Mixed-integer linear programming (MILP) has come a long way. Advanced software (e.g. XPRESS,

CPLEX etc.) are routinely solving MILP problems with thousands of variables with very reasonable

computational demands. The area is now growing towards mixed-integer nonlinear programming,

as well as stochastic MILP. In both cases, impressive computational results have been reported by

Bonami et al. (2008) and Yuan and Sen (2009), respectively.

One of the more important lessons learned from MILP and related literature is that valid inequal-

ities are indispensable in robust MILP software. Thus, it is common for commercial software to

include both general purpose valid inequalities, such as Gomory cuts and mixed-integer rounding

cuts (see Cornuéjols (2008) for a recent survey), and special purpose valid inequalities, such as flow

1

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
2 Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882

cover inequalities (Padberg et al. 1985) and flow path inequalities (Van Roy and Wolsey 1985),

within branch-and-cut methods. As a result, the study of valid inequalities remains an important

part of the MILP literature, even though the performance of pure cutting plane methods leave a

lot to be desired.

Over the past several decades, the polyhedral study of binary MILP has progressed along several

avenues. Disjunctive and lift-and-project cuts (Balas 1979, Balas et al. 1993), semidefinite relax-

ations (Lovász and Schrijver 1991) and reformulation-linearization technique (RLT) (Sherali and

Adams 1990, 1994) have provided alternative approaches to generate cutting planes that define

the convex hull of feasible points of a binary MILP. The case for MILP with general integers has

not been as well understood, even when the integer variables are bounded. While pure integer pro-

gramming can be shown to have finite representation using Gomory cuts (Gomory 1963), the same

is not true for general MILP. Recently, Adams and Sherali (2005) provided a generalization of the

RLT methodology to the case of general MILP problems using Lagrange Interpolation Polynomials

to compute the bound factors in the RLT process. Thus, formation of the convex hull of integer

points in MILP problems using RLT has been resolved. However, the same cannot be said about

disjunctive programming methods.

While disjunctive cuts are natural to use for general MILP problems, a cutting plane procedure

using disjunctive cuts has not been proved to be finitely convergent. Indeed, the facial disjunctive

property (Balas 1979) was deemed critical for finite convergence and this property holds for binary

MILP, but not for general MILP. Unfortunately, as shown in Figure 2 of Sen and Sherali (1985),

the absence of the facial disjunctive property could lead to infinitely many iterations. Subsequently,

Owen and Mehrotra (2001) provided the proof that in the absence of the facial disjunctive property,

a one-variable-at-a-time method for convexifying disjunctive sets leads to an infinite convergent

process that ultimately does provide the convex hull of feasible points. Of course, one could write

a binary expansion of each general integer variable and the resulting formulation is a mixed 0-1

program which can be sequentially convexified. However, Owen and Mehrotra (2002) illustrate that

this approach is not practical.

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882 3

In this paper, assuming a nonempty feasible set and bounded general integer variables (or a

bounded optimal objective value), we address the following questions:

• Is it possible to use the disjunctive programming methodology to describe the convex hull of

MILP solutions in finitely many steps without introducing binary variables?

• Is there a constructive methodology to obtain an optimal solution to a general MILP using a

disjunctive programming characterization of its convex hull?

• If we are restricted to introduce only one cutting plane in any iteration, is there a finitely

convergent disjunctive programming algorithm that solves a general MILP?

We provide answers to the above questions in the affirmative. Moreover, we provide preliminary

evidence that our approach can be implemented in a manner that the convexification process is

guided by the objective function, so that fewer inequalities are generated. However, we caution

that it is best to incorporate these ideas within a more standard branch-and-cut methodology, and

work along these lines will be reported in subsequent papers.

2. Convex Hull of Bounded General Mixed-Integer Programs

Consider a mixed-integer linear program with n variables, of which the first n1 (n1 ≤ n) are integer,

and the remaining are continuous. Such a problem may be stated as

min
x∈X
{cTx|X = {Ax≤ b,x∈Zn1+ ×Rn−n1+ }}. (1)

The set obtained by relaxing the integrality requirements of X is denoted by XL. We assume that

all integer variables are bounded with xj ∈ [0, uj] for all j = 1, . . . , n1. Such problems will be referred

to as general MILP with bounded integer variables.

Suppose now that each interval [0, uj] is divided into tj sub-intervals [`1j := 0, u1j],

[`2j, u2j], . . . , [`tjj, utjj := uj], where `κjj ∈ Z+ and uκjj ∈ Z+, with `κjj ≤ uκjj, define the left and

right-hand sides of interval κj ∈ {1, . . . , tj} for j = 1, . . . , n1, and `κj+1j−uκjj ≤ 1 for κj ∈ {1, . . . , tj−

1} so that the sub-intervals span all integers in [0, uj]. Given a partition P, the collection of all

n1-tuples κ := (κ1, . . . , κn1), where κj ∈ {1, . . . , tj} for j = 1, . . . , n1, is denoted by K(P). Then a

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
4 Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882

unit partition, P∗, of all integer points is a partition for which uκjj − `κjj ≤ 1, for all κj = 1, . . . , tj,

and all j = 1, . . . , n1. For a given vector κ ∈K(P∗), an index j ∈ {1, . . . , n1}, and a polyhedron X̄,

we define two sets P−(κ, j, X̄) and P+(κ, j, X̄) as follows:

P−(κ, j, X̄) := {x∈ X̄|`κii ≤ xi ≤ uκii, i= 1, . . . , n1;xj ≤ `κjj},

P+(κ, j, X̄) := {x∈ X̄|`κii ≤ xi ≤ uκii, i= 1, . . . , n1;xj ≥ uκjj}.

We also define Hκ
j (X̄) := clconv(P−(κ, j, X̄) ∪ P+(κ, j, X̄) \ ∅), where empty sets are removed

from consideration, and clconv denotes the closure of the convex hull.

Theorem 1. Assume that the set X as defined in (1) is non-empty and has bounded integer

variables. Then for any unit partition P∗,

clconv(X) = clconv{∪κ∈K(P∗)[Hκ
n1

(Hκ
n1−1(· · · (H

κ
1 (XL)) · · ·)) \ ∅]}.

Proof. The set K(P∗) decomposes the problem into boxes of at most unit size each of which can

be sequentially convexified. To see this, note that for a given κ, the facial disjunctive description

of the set Hκ
n1

(Hκ
n1−1(· · · (H

κ
1 (XL)) · · ·)), where `κjj ≤ xj ≤ `κjj + 1, for all j = 1, . . . , n1, can be

obtained by sequential convexification of mixed 0-1 programs by letting x̄j = xj − `κjj, x̄j ∈ {0,1}

(Balas et al. 1993, Sherali and Adams 1994, Lovász and Schrijver 1991). As the extreme points of

these polyhedra have binary values for x̄j, and `κjj are integer, j = 1, . . . , n1, the polyhedron given

by the union of all such polyhedra have integer values for xj in its extreme points, and hence the

result follows. �

Note that the introduction of binary variables in the proof of Theorem 1 is done only for expo-

sitional clarity. If one does not introduce the binary variables, the proof follows from sequential

convexification of facial disjunctive programs.

Example 1. OM01. Owen and Mehrotra (2001) give an example illustrating that a rudimentary

cutting plane algorithm using elementary disjunctions may be infinitely convergent, where

X =

x∈Z2|
8x1 + 12x2 ≤ 27
8x1 + 3x2 ≤ 18
0≤ x1, x2 ≤ 3

, c= (−1,−1).

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882 5

The feasible region is illustrated in Figure 1. For this example, a unit partition P∗ is given by

xj ∈ {[0,1], [1,2], [2,3]} for j = 1,2. Thus tj = 3 and κj ∈ {1,2,3} for j = 1,2. Therefore,

K(P∗) = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)}.

x2

x1

Figure 1 OM01: Feasible set.

Consider each κ ∈ K(P∗). For κ = (1,1), H(1,1)
2 (H(1,1)

1 (XL)) gives the convex hull of the

points (0,0),(0,1), (1,0) and (1,1); for κ = (1,2), H(1,2)
2 (H(1,2)

1 (XL)) gives the convex hull of

the points (0,2), (0,1), (1,1); for κ = (2,1), H(2,1)
2 (H(2,1)

1 (XL)) gives the convex hull of the

points (1,0), (2,0), (1,1). For κ = (1,3), H(1,3)
2 (H(1,3)

1 (XL)) gives the point (0,2); for κ = (2,2),

H(2,2)
2 (H(2,2)

1 (XL)) gives the point (1,1); and for κ= (3,1), H(3,1)
2 (H(3,1)

1 (XL)) gives the point (2,0).

For all other κ ∈K(P∗), Hκ
2 (Hκ

1 (XL)) = ∅. Taking the union of the non-empty polytopes, we get

clconv(X).

In the next section, we address the question “Is there a constructive methodology to obtain an

optimal solution to a general MILP with bounded integer variables using a disjunctive programming

characterization of its convex hull?”

3. Convex Hull Tree Algorithm

The convex hull tree is a new concept in which we construct a polyhedron XZ such that the solution

to the problem

min
x∈XZ

cTx

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
6 Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882

yields an optimal solution to the original MILP. The construction of XZ relies on a tree that

guides the convexification process. We propose an algorithm to construct XZ , which we refer to

as the convex hull tree algorithm, because it is similar to a branch-and-bound tree, but instead of

searching the tree, we form partial convex hulls based on the tree. The pseudo-code of the proposed

algorithm is given in Algorithm 1.

At iteration k, an index i represents a distinct subset, Qi, in which a solution could fall. As

in branch-and-bound methods, each subset Qi is a cross product of n1 intervals corresponding to

the bounded integer variables, and n−n1 half lines corresponding to the non-negative continuous

variables. The collection of all such subsets forms a set Qk. If xk ∈ Qi and xkj 6∈ Z+ for some

j = 1, . . . , n1, then we replace Qi with two smaller non-overlapping subsets P−k and P+
k , the union

of which includes all integers in Qi (see line 4 of Algorithm 1). Whenever we encounter a subset Qi

for which uij− `ij ≤ 1 for j = 1, . . . , n1, we replace Qi with the closure of the convex hull of feasible

points of Qi ∩Xk ∩Zn1 , using sequential convexification of facial disjunctive programs, where for

ease of notation, Xk∩Zn1 refers to Xk∩(Zn1×Rn−n1), throughout the paper. At the end of iteration

k, the collection of subsets is updated as Qk+1. We form a new set Xk+1 := clconv{∪Qt∈Qk+1
(Qt ∩

Xk)}. We stop when we obtain an integral optimal solution to xk ∈ arg minx∈Xk c
Tx and let XZ =Xk

at termination. Even though there is an underlying tree in the convex hull tree algorithm, we do

not introduce a tree notation in this section to ease the exposition.

Proposition 1. Assume that the set X as defined in (1) is non-empty and has bounded integer

variables. Then the convex hull tree algorithm constructs XZ in finitely many iterations.

Proof. Since the MILP has bounded integers, the splitting invoked in line 4 will, in finite time,

yield a unit partition in the worst case, which will lead to the execution of line 7, in finite time.

From Theorem 1 it follows that the convex hull tree algorithm constructs XZ in finitely many

iterations. �

Example 1 OM01. (cont.) We illustrate each iteration of the convex hull tree algorithm.

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882 7

Algorithm 1 Convex hull tree algorithm

1: Initialization: k = 1, Qk := {Q1 = ×n1j=1[0, uj] × Rn−n1+ }. Let Xk = XL ∩ Q1, and xk ∈

arg minx∈Xk c
Tx. In case of multiple optima, let xk be a vertex of Xk.

2: while Xk 6= ∅ and xkj /∈Z+, j = 1, . . . , n1 do

3: Choose a variable xkj 6∈Z. Find the (unique) subset Q̄ in the list Qk such that xk ∈ Q̄. Remove

the set Q̄ from Qk and denote the revised list by Q̄k.

4: Form two subsets P−k = {x ∈ Q̄|xj ≤ bxkj c} and P+
k = {x ∈ Q̄|xj ≥ dxkj e}. Let P−k = ∅ (or

P+
k = ∅) if P−k ∩Xk = ∅ (or P+

k ∩Xk = ∅). Define the new list by Qk+1 = Q̄k ∪ P−k ∪ P+
k \ ∅

and denote all subsets in the updated list Qk+1 by {Qt}Tt=1.

5: for t= 1, . . . , T do

6: if uti− `ti ≤ 1 for i= 1, . . . , n1 then

7: Let Qt← clconv(Qt ∩Xk ∩Zn1).

8: end if

9: end for

10: Form the set Xk+1 := clconv{∪Tt=1(Qt ∩Xk)}.

11: Let k← k+ 1. Find xk ∈ arg minx∈Xk c
Tx such that xk is a vertex of Xk.

12: end while

13: Return XZ =Xk.

Iteration 1 Initially, Q1 := Q1 = [0,3] × [0,3], X1 = XL and x1 = (15/8,1). Because x1
1 /∈ Z and

x1 ∈Q1, we replace the set Q1 with the two sets P−1 = {x ∈Q1|x1 ≤ b 158 c} and P+
1 = {x ∈Q1|x1 ≥

d 15
8
e}. The updated list is Q2 := {Q1 = [0,1] × [0,3],Q2 = [2,3] × [0,3]}. Hence, we have X2 =

clconv[(X1 ∩ Q1) ∪ (X1 ∩ Q2)]. The facet of X2 generated in line 10 passes through the points

(1,19/12) and (2,2/3), which deletes x1. This is the same cut as that of Owen and Mehrotra (2001).

The next point obtained at the end of this iteration is x2 = (2,2/3).

Iteration 2 Because x2
2 /∈Z and x2 ∈Q2, we replace the set Q2 with the two sets P−2 = {x∈Q2|x2 ≤

b 2
3
c} and P+

2 = {x∈Q2|x2 ≥ d 23e}. The updated subsets are Q1 = [0,1]× [0,3],Q2 = [2,3]×{0},Q3 =

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
8 Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882

[2,3] × [1,3]. Note that X2 ∩Q3 is infeasible, so Q3 is removed from consideration. In line 7 of

Iteration 2, because 2 ≤ x1 ≤ 3, x2 = 0, we convexify the set {x ∈ X2 ∩ Q2 ∩ Z2}, which results

in a single feasible point (2,0), and we update the set Q2← {2} × {0}. Therefore, Q3 := {Q1 =

[0,1] × [0,3],Q2 = {2} × {0}}. Hence, we have X3 = clconv[(X2 ∩Q1) ∪ (X2 ∩Q2)]. The facet of

X3 generated in line 10 goes through (1,19/12) and (2,0), which deletes x2. As a result, we get a

deeper cut than that obtained from the procedure of Owen and Mehrotra (2001). The next point

obtained at the end of this iteration is x3 = (1,19/12).

Iteration 3 Because x3
2 /∈ Z and x3 ∈ Q1, we replace the set Q1 with the two sets P−3 = {x ∈

Q1|x2 ≤ b 1912c} and P+
3 = {x ∈ Q1|x2 ≥ d 1912e}. The updated list is Q4 := {Q1 = [0,1]× [0,1],Q2 =

{2}×{0},Q3 = [0,1]× [2,3]}. Similar to Iteration 2, we convexify the set {x∈X3∩Q3∩Z2}, which

results in a single feasible point (0,2), and we update the set Q3←{0}× {2}. We also convexify

the set {x ∈X3 ∩Q1 ∩ Z2}, which gives Q1 itself. Hence, we have X4 = clconv[(X3 ∩Q1) ∪ (X3 ∩

Q2)∪ (X3 ∩Q3)]. The facet of X4 generated in line 10 goes through (0,2) and (2,0) and thus gives

the convex hull of X, which deletes x3.

We illustrate these iterations in Figure 2.

x2

x1

x1

Cut 1

x3

x2

Cut 3Cut 2

Figure 2 OM01: Convex hull tree cuts.

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882 9

4. Cutting plane tree algorithm

In this section, we address the question: “If we are restricted to introduce only one cutting plane

in any iteration, is there a finitely convergent disjunctive programming algorithm that solves a

general MILP?” In other words, we consider a simplification of Algorithm 1, which we refer to as

the cutting plane tree algorithm.

In the cutting plane tree T , there is a single root node o. For each node σ ∈ T , an integer mσ

keeps track of the cutting planes that will be used to generate a disjunctive cut when this node

is revisited, an integer vσ ∈ {1,2, . . . , n1} stores the index of the integer variable that is split, an

integer qσ stores the (lower) level of the splitting. Let lσ, rσ and pσ denote links to the left child,

right child and parent nodes of node σ, respectively. Let S(σ) be all nodes on the subtree rooted at

node σ (not including node σ and the leaf nodes). Let N (σ) be the collection of the nodes on the

path from the root node to node σ (not including the root node), let N−(σ) be the collection of

nodes in N (σ) that were formed as the left child node of its parent, and let N+(σ) be the collection

of nodes in N (σ) that were formes as the right child node of its parent. Given σ ∈ T define

Cσ = {x|xj ∈ [0, uj], xvps ≤ qps ,∀s∈N
−(σ), xvps ≥ qps + 1,∀s∈N+(σ)}.

We let mσ store an iteration index, which gives the set Xmσ to be used in the cut generation LP

(CGLP) (Balas 1979, Sherali and Shetty 1980). The set Xmσ corresponds to XL together with the

first mσ − 1 cuts added to it. If Xmσ ∩ Clσ = ∅ (Xmσ ∩ Crσ = ∅), we say that the left (right) child

node of σ is “fathomed”, i.e., lσ = null (rσ = null).

Now that we have introduced the tree notation necessary in the description of the cutting plane

tree algorithm, we relate the notation in this section to the notation introduced in Sections 2 and

3. In Algorithm 2, Lk+1 denotes the collection of all leaf nodes of the cutting plane tree at the

end of iteration k. Note that, each feasible region given by Cσ for σ ∈ Lk+1 defines a subset Qi in

iteration k. The collection of these non-overlapping subsets Qi, for i= 1, . . . , |Lk+1| at iteration k,

denoted by Qk+1, gives a valid partition, P of ×n1j=1[0, uj]×Rn−n1+ .

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
10 Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882

The pseudo-code of the cutting plane tree algorithm is given in Algorithm 2. At iteration k, if

the current extreme point solution to minx∈Xk c
Tx, given by xk is integral, then we have found the

optimal solution to the MILP. Otherwise, we search the cutting plane tree, to find the last node σ

on the path from the root node such that xk ∈ Cσ. There are two cases: Case (1) σ is a leaf node

(σ ∈ Lk), Case (2) σ is not a leaf node (σ 6∈ Lk, xk ∈ Cσ, xk 6∈ Clσ and xk 6∈ Crσ). In Case (1), we

choose a fractional variable xj, j = 1, . . . , n1 with the smallest index, and let the split variable be

vσ = j. We create two new nodes: left (lσ) and right (rσ) children of σ at the split level qσ = bxjc.

We let Clσ = {x ∈ Cσ|xj ≤ bxkj c} and Crσ = {x ∈ Cσ|xj ≥ dxkj e}. In this case, we also let mσ = k, as

this is the first time the tree search for a fractional solution stops at node σ. In Case (2), the cutting

plane tree and mσ are unchanged. However, in this case, we update mt = k for all successors of

σ, t ∈ S(σ). We generate a valid inequality for the set clconv{∪t∈Lk+1
(Xmσ ∩ Ct)} that cuts off xk

(from an extreme point of the CGLP). The new inequality is included along with those defining

Xk, and the resulting set is denoted Xk+1. This process continues until one of the stopping criteria

is satisfied.

Proposition 2. Assume that the set X as defined in (1) is non-empty and has bounded integer

variables. Then the cutting plane tree algorithm converges to the optimal solution in finitely many

iterations.

Proof. Note that the cutting plane tree cannot expand infinitely. In the worst case, the leaf

nodes of the tree form a unit partition P∗. Therefore, the number of leaf nodes is no more than

Πn1
j=1(1 + uj), where uj is the integer upper bound of variable xj, j = 1, . . . , n1. Let σ be the node

found in line 3 of Algorithm 2 at iteration k. There are two cases: (1) σ ∈ Lk and xk ∈ Cσ, or (2)

σ 6∈ Lk, xk ∈ Cσ, xk 6∈ Clσ and xk 6∈ Crσ . In Case (1), the cutting plane tree is expanded by splitting

from node σ, and we update the collection of leaf nodes as Lk+1. As the number of possible leaf

nodes is finite, this case can happen only finitely many times. In Case (2), the tree remains constant

and we have Lk+1 = Lk. In either case, a new extreme point of the CGLP is generated. As there

are finitely many extreme points of the CGLP, and a subset of these corresponds to all facets of

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882 11

Algorithm 2 Cutting plane tree algorithm

1: Initialization: k = 1, create a node o, where po = null, mo = 1. Let T = {o}, Lk := {o}, Co =

{x|xj ∈ [0, uj], j = 1, . . . , n1}, Xk =XL and xk ∈ arg minx∈Xk c
Tx, where xk is a vertex of Xk.

2: while Xk 6= ∅ and xkj /∈Z+, j = 1, . . . , n1 do

3: Search for node σ ∈ T such that: either σ ∈ Lk and xk ∈ Cσ; or, node σ 6∈ Lk and xk ∈ Cσ,

xk 6∈ Clσ and xk 6∈ Crσ .

4: if σ ∈Lk then

5: Choose the smallest index j such that variable xkj 6∈Z. Let mσ = k. Let Lk+1←Lk \ {σ}.

6: Create a node l− with lσ = l−, pl− = σ and a node l+ with rσ = l+, pl+ = σ.

7: Let Cl− = {x∈ Cσ|xj ≤ bxkj c} and Cl+ = {x∈ Cσ|xj ≥ dxkj e}.

8: if Cl− ∩Xk 6= ∅ then

9: Let Lk+1←Lk+1 ∪{l−}. Let T ←T ∪{l−}.

10: else

11: Let l− = null (fathom).

12: end if

13: if Cl+ ∩Xk 6= ∅ then

14: Let Lk+1←Lk+1 ∪{l+}. Let T ←T ∪{l+}.

15: else

16: Let l+ = null (fathom).

17: end if

18: Let vσ = j, qσ = bxkj c.

19: else if σ 6∈ Lk and xk ∈ Cσ, xk 6∈ Clσ and xk 6∈ Crσ then

20: Let Lk+1←Lk, let mt← k,∀t∈ S(σ).

21: end if

22: Generate a valid inequality for the set clconv{∪t∈Lk+1
(Xmσ ∩Ct)} that cuts off xk (using an

extreme point of the CGLP). Call the set with the additional valid inequality Xk+1.

23: Let k← k+ 1 and xk ∈ arg minx∈Xk c
Tx, where xk is a vertex of Xk.

24: end while

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
12 Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882

clconv{∪t∈Lk+1
(Xmσ ∩Ct)} we will have either xvσ ≤ qσ or xvσ ≥ qσ + 1 in finitely many iterations.

In either case, the tree search in Line 3 stops at lσ, rσ or one of its successors. As a result, the

algorithm can visit node σ only finitely many times. Consequently, there exists a finite number,

N , such that either the algorithm stops before iteration N , or at iteration N , a unit partition P∗

is found.

If we reach a point where the leaf nodes correspond to a unit partition P∗, then each path from

the root node of T to a leaf node corresponds to a vector κ ∈K(P∗) as defined in Section 2. The

order in which the variables are split on this path defines a sequence. Note that the variable xj

can be split more than once, in which case we consider the last node it was split, denoted by

σj. Without loss of generality, assume that this sequence of variables is given by 1, . . . , n1 so that

σj ∈ S(σi) for i < j. As a result, when a node σi is visited and a cut is added at this node, we

update mσj to include this cut for all σj ∈ S(σi). Therefore, for a given κ, we sequentially convexify

Xmσ1
with respect to x1 first. We convexify the resulting set with respect to x2 next, and continue

until we reach variable xn1 . The union of the nonempty sets defined by each leaf node (or each

κ∈K(P∗)) gives us clconv(X) from Theorem 1. Therefore, Algorithm 2 converges to the optimal

solution in finitely many iterations. �

The reader might find it interesting to compare the concepts introduced in this paper with

another recent paper by Jörg (2007) who also addresses the finiteness of disjunctive programming

for general MILP. His approach proposes the use of cuts obtained from multiple split disjunctions

in the projected space of integer variables. The author proved that for bounded MILP, there exists

a conjunction of n1 + 1 split disjunctions that characterizes the mixed-integer hull of the MILP.

The author devises a two phase algorithm as follows: Phase 1) solve a relaxation, and ascertain

whether the optimal face includes any integer points. If an integer optimum is identified then the

method stops. Otherwise, the fractional optimum point is deleted using a Gomory cut. This phase

continues until the final fractional alternative optimum is identified as x∗. This point is deleted

in the projected space, which constitutes the second phase: Phase 2) find all extreme directions

of a polyhedral cone to reduce the inequalities to the space of the integer variables. Now using

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882 13

a conjunction of multiple split disjunctions one can delete the projection of x∗ in the projected

space of integer variables. The process then repeats from phase 1. The author proves that this

process is finite. However, the identification of all alternative optima (in phase 1), as well as the

identification of all extreme directions (in phase 2) suggest that the algorithmic map producing

the subsequence of polyhedra (observed after successive phase 2 iterations) involves the solution

of multiple NP-hard problems.

5. Examples from the Literature

In this section, we illustrate finite convergence of the cutting plane tree algorithm for three examples

from the literature (Cook et al. 1990, Owen and Mehrotra 2001, Sen and Sherali 1985). Each of

these examples illustrates specific properties of the cutting plane tree algorithm and to the best of

our knowledge, most of the examples have defied finite convergence for various approaches based

on linear disjunctions.

Example 1 OM01. (cont.) This example illustrates that finite convergence of the cutting plane

tree algorithm can be obtained even when the facial disjunctive property is absent. We observe

that using the cutting plane tree algorithm, OM01 is solved in 7 iterations. Table 1 illustrates each

iteration of Algorithm 2. Table 1 also provides the node σ that is visited and the value of mσ for

each iteration. Note that Case (1) of the proof of Proposition 2 applies at each iteration. Figure

3 depicts the first and the last polyhedra. We refer the reader to Figure 6 in Appendix 5 for an

illustration of the cutting plane tree at termination.

A similar example without previously known finite convergence of disjunctive cuts, appears in

Figure 2 of Sen and Sherali (1985). Since the behavior of the cutting plane tree algorithm for that

instance is similar to the above illustration, we omit it from the present discussion.

Example 2. CKS90. Unlike the pure integer linear program in Example 1, Cook et al. (1990)

provide an MILP example which illustrates that a cutting plane procedure based on split cuts could

take infinitely many iterations. In contrast to split or elementary disjunctions, Algorithm 2 works

on multi-term disjunctions, which when guided by the tree, leads to a finitely convergent algorithm

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
14 Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882

Table 1 OM01 example

k xk σ mσ Qk+1 cut

1 (15/8,1) 1 1
Q1 = [0,1]× [0,3]
Q2 = [2,3]× [0,3]

11/12x1 +x2 ≤ 5/2

2 (2,2/3) 3 2
Q1 = [0,1]× [0,3]
Q2 = [2,3]× [0,0]

x1 + 15/19x2 ≤ 9/4

3 (1,19/12) 2 3
Q1 = [2,3]× [0,0]
Q2 = [0,1]× [0,1]
Q3 = [0,1]× [2,3]

x1 + 15/16x2 ≤ 9/4

4 (3/8,2) 6 4
Q1 = [2,3]× [0,0]
Q2 = [0,1]× [0,1]
Q3 = [0,0]× [2,3]

x1 +x2 ≤ 9/4

5 (9/4,0) 4 5
Q1 = [0,1]× [0,1]
Q2 = [0,0]× [2,3]
Q3 = [2,2]× [0,0]

9x1 + 8x2 ≤ 18

6 (0,9/4) 7 6
Q1 = [0,1]× [0,1]
Q2 = [2,2]× [0,0]
Q3 = [0,0]× [2,2]

x1 +x2 ≤ 2

7 (2,0)

t

6

-

Q
Q

Q
Q
Q

Q
QQ

L
L
L
L0

1 2

1

2

2.5

2.5

t -

6

@
@

@
@
@

@
@
@

0
1 2

1

2

Figure 3 OM01: the first and last Xk.

that provides an integral solution. For this example, Andersen et al. (2007) use inequalities derived

from two rows of the simplex tableau and Li and Richard (2008) use inequalities derived from a

nonlinear (multiplicative) disjunction to get the optimal solution in finite steps. In this example:

X =

x∈Z2×R+|

x1−x3 ≥ 0
x2−x3 ≥ 0
x1 +x2 + 2x3 ≤ 2
0≤ x1, x2 ≤ 2

, c= (0,0,−1).

Table 2 provides a summary of each iteration of Algorithm 2. Figure 4 depicts the first and the

last polyhedra. Figure 7 in Appendix 5 provides a more detailed illustration of the cutting plane

tree at each iteration.

Example 3. SS85. This example appears as Figure 1 in Sen and Sherali (1985) where they show

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882 15

Table 2 CKS90 example

k xk σ mσ Qk+1 cut

1 (1/2,1/2,1/2) 1 1
Q1 = [0,0]× [0,2]×R+

Q2 = [1,2]× [0,2]×R+
x1− 3x3 ≥ 0

2 (1,1/3,1/3) 3 2
Q1 = [0,0]× [0,2]×R+

Q2 = [1,2]× [0,0]×R+

Q3 = [1,2]× [1,2]×R+

x3 ≤ 0

3 (0,0,0)

���
���

��:

A
A
A
A
A
A
A
A

@
@
@
@

2
1

0.5

1.5

0

t

XXXXXXXXz

���
���

��

6

0

0.5

2

1
0.5

1.5

t
6

XXXXXXXXz�
��
�*

XXXXXXXX

��
��

@
@
@
@

0

2
1

0
1

2

Figure 4 CKS90: the first and last Xk.

that sequential cutting plane algorithms can fail to converge when appropriate memory of cuts is

not maintained. The tree in Algorithm 2 provides a convenient mechanism to record such memory

(via mσ). In this example:

X =

x∈Z
3|

x1 + 2x2− 2x3 ≥ 0
2x1 + 2x2− 3x3 ≥ 0
2x1 +x2− 2x3 ≥ 0
2x1 + 2x2 ≤ 3
0≤ x1, x2, x3 ≤ 1

, c= (0,0,−1).

Table 3 illustrates each iteration of Algorithm 2. Note that in all previous examples, at each

iteration k, Case (1) in the proof of Proposition 2 applies, and so the set Xmσ used in CGLP is

equivalent to Xk. However, for SS85, in iteration 3, case (2) of the proof of Proposition 2 applies,

and Xmσ used in CGLP is different than Xk. Figure 5 depicts the first and the last polyhedra.

We refer the reader to Figure 8 in Appendix 5 for an illustration of the cutting plane tree at

termination.

In all previous examples, our algorithm obtains the convex hull of feasible solutions in the last

polyhedron, while in general this is not always true. Note that in all of the examples, the number

of nonempty subsets Qi in any iteration is modest. This observation provides preliminary evidence

that our approach can be implemented in a manner that the convexification process is guided by

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
16 Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882

Table 3 SS85 example

k xk σ mσ Qk+1 cut

1 (1,1/2,1) 1 1
Q1 = [0,1]× [0,0]× [0,1]
Q2 = [0,1]× [1,1]× [0,1]

x1 + 1/2x2 ≤ 1

2 (1/2,1,1) 3 2
Q1 = [0,1]× [0,0]× [0,1]
Q2 = [0,0]× [1,1]× [0,1]

x1 +x2− 2x3 ≥ 0

3 (1/2,1,3/4) 3 2
Q1 = [0,1]× [0,0]× [0,1]
Q2 = [0,0]× [1,1]× [0,1]

x1 +x2 ≤ 1

4 (1,0,1/2) 2 4
Q1 = [0,0]× [1,1]× [0,1]
Q2 = [0,1]× [0,0]× [0,0]

x2− 2x3 ≥ 0

5 (0,1,1/2) 4 5
Q1 = [0,1]× [0,0]× [0,0]
Q2 = [0,0]× [1,1]× [0,0]

x3 ≤ 0

6 (0,0,0)

t

��
���

���:
Q
Q
Q

Q
Q
QQ
�
�
�
�
�

1
0.5

XXXXXXXXz

6

��
��

�
�
�
�
�
#
#
#
#
#

��
���

���

�
�
�
�
�
�
�
�
�

0

0

0.5

1
0.5

1

t
6

XXXXXXXXz��
��*

XX
XXX

XXX

����

@
@

@
@

0

1 0

1

0.5

"
"
"
"
"
"
"
"
"
"
"
"

Figure 5 SS85: the first and last Xk.

the objective function, and consequently, fewer inequalities may be generated. However, for large

instances, it may become necessary to design more efficient ways to solve cut generation problems

using special purpose techniques in the spirit of Perregaard and Balas (2001), Balas and Perregaard

(2003). It is natural to incorporate the disjunctive cuts proposed in this paper within a standard

branch-and-cut methodology. Finally, our development suggests a Progressive RLT Process which

adapts to sequential optimization, instead of having to choose the RLT level in the hierarchy, a

priori. Work along these lines will be reported in subsequent papers.

Appendix. Cutting Plane Trees

Example 1 OM02. (cont.) Figure 6 depicts the cutting plane tree at termination. The blank nodes

(without a number) in Figure 6 indicate nodes for which Xk ∩Cσ = ∅.

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882 17

����

��������
�

�
�
�	

@
@
@
@R

7

9

x2 ≤ 2 x2 ≥ 3

����

����
�
�

�
�	

@
@
@
@R

6

x1 ≤ 0 x1 ≥ 1

����

����
�

�
�

�
�
�+

Q
Q
Q
Q
Q
Qs

2

5

x2 ≤ 1 x2 ≥ 2

���� ����
�

�
�
�	

@
@
@
@R

4

x2 ≤ 0 x2 ≥ 1

���� ����
�

�
�
�	

@
@
@
@R

8

x1 ≤ 2 x1 ≥ 3

����

����
������������)

PPPPPPPPPPPPq

1

3

x1 ≤ 1 x1 ≥ 2

Figure 6 OM01: The final cutting plane tree.

Example 2 CKS90. (cont.) Because it takes two iterations to solve this example, we illustrate the

cutting plane tree at each iteration in Figure 7.

����

���� ����
�

�
�
�	

@
@
@
@R

x1 ≤ 0 x1 ≥ 1

1

2 3

���� ����
�
�

�
�	

@
@
@
@R

4 5

x2 ≤ 0 x2 ≥ 1

����

���� ����
�
�

�
�	

@
@
@
@R

x1 ≤ 0 x1 ≥ 1

1

2 3

Figure 7 CKS90: The cutting plane tree of iterations 1 and 2.

Example 3 SS85. (cont.) Figure 8 depicts the cutting plane tree at termination.

Acknowledgments

We are grateful to the referees for their suggestions that improved the presentation. Binyuan Chen is

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
18 Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882

����

���� ����
�

�
�
�	

@
@
@
@R

2

5

x3 ≤ 0 x3 ≥ 1

����
����
�
���

�����

H
HHH

HHHHj

3

1

x2 ≤ 0 x2 ≥ 1

��������
�

�
�
�	

@
@
@
@R

x1 ≤ 0 x1 ≥ 1

4

���� ����
�

�
�
�	

@
@
@
@R

6

x3 ≤ 0 x3 ≥ 1

Figure 8 SS85: The final cutting plane tree.

supported, in part, by Air Force Office of Scientific Research (AFOSR) Grant F49620-03-1-0377; Simge

Küçükyavuz is supported, in part, by NSF-CMMI Grant 0917952; and Suvrajeet Sen is supported, in part,

by AFOSR Grants: FA9950-08-1-0154 and FA9550-08-1-0117.

References

Adams, W. P., H. D. Sherali. 2005. A hierarchy of relaxations leading to the convex hull representation for

general discrete optimization problems. Annals of Operations Research 140(1) 21–47.

Andersen, Kent, Quentin Louveaux, Robert Weismantel, Laurence A. Wolsey. 2007. Inequalities from two

rows of a simplex tableau. IPCO ’07: Proceedings of the 12th International Conference on Integer

Programming and Combinatorial Optimization. Springer-Verlag, Berlin, Heidelberg, 1–15. doi:http:

//dx.doi.org/10.1007/978-3-540-72792-7 1.

Balas, E. 1979. Disjunctive programming. Annals of Discrete Mathematics 5 3–51.

Balas, E., S. Ceria, G. Cornuéjols. 1993. A lift-and-project cutting plane algorithm for mixed 0-1 programs.

Mathematical Programming 58(1–3) 295–324.

Balas, E., M. Perregaard. 2003. A precise correspondence between lift-and-project cuts, simple disjunctive

cuts, and mixed integer Gomory cuts for 0-1 programming. Mathematical Programming 94(2–3) 221–

245.

Bonami, P., L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D. Laird, J. Lee, A. Lodi,

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882 19

F. Margot, N. Sawaya, A. Wachter. 2008. An algorithmic framework for convex mixed integer nonlinear

programs. Discrete Optimization 5(2) 186–204.

Cook, W., R. Kannan, A. Schrijver. 1990. Chvátal closures for mixed integer programming problems. Math-

ematical Programming 47(1–3) 155–174.

Cornuéjols, G. 2008. Valid inequalities for mixed integer linear programs. Mathematical Programming 112(1)

3–44.

Gomory, R. E. 1963. An algorithm for integer solutions to linear programs. P. Graves, P. Wolfe, eds., Recent

Advances in Mathematical Programming . McGraw-Hill, New York, 269–302.

Jörg, M. 2007. k-disjunctive cuts and a finite cutting plane algorithm for general mixed integer linear

programs. http://arxiv.org/PS cache/arxiv/pdf/0707/0707.3945v1.pdf.

Li, Y., J.-P.P Richard. 2008. Cook, Kannan and Schrijver’s example revisited. Discrete Optimization 5(4)

724–734.

Lovász, L., A. Schrijver. 1991. Cones of matrices and set-functions and 0-1 optimization. SIAM Journal of

Optimization 1(2) 166–190.

Owen, J. H., S. Mehrotra. 2001. A disjunctive cutting plane procedure for general mixed-integer linear

programs. Mathematical Programming 89(2) 437–448.

Owen, J. H., S. Mehrotra. 2002. On the value of binary expansions for general mixed-integer programs.

Operations Research 50(5) 810–819.

Padberg, M. W., T. J. van Roy, L. A. Wolsey. 1985. Valid linear inequalities for fixed charge problems.

Operations Research 33(4) 842–861.

Perregaard, Michael, Egon Balas. 2001. Generating cuts from multiple-term disjunctions. Proceedings of

the 8th International IPCO Conference on Integer Programming and Combinatorial Optimization.

Springer-Verlag, London, UK, 348–360.

Sen, S., H. D. Sherali. 1985. On the convergence of cutting plane algorithms for a class of nonconvex

mathematical programs. Mathematical Programming 31(1) 42–56.

Sherali, H. D., W. P. Adams. 1990. A hierarchy of relaxations between the continuous and convex hull

representations for zero-one programming problems. SIAM Journal of Discrete Mathematics 3(3)

411–430.

Chen, Küçükyavuz, and Sen: Finite Disjunctive Programming Characterizations for General MILP
20 Article forthcoming in Operations Research; manuscript no. DOI: 10.1287/opre.1100.0882

Sherali, H. D., W. P. Adams. 1994. A hierarchy of relaxations and convex hull representations for mixed-

integer zero-one programming problems. Discrete Applied Mathematics 52(1) 83–106.

Sherali, H. D., C. M. Shetty. 1980. Optimization with Disjunctive Constraints. Springer Verlag, Berlin.

Van Roy, T. J., L. A. Wolsey. 1985. Valid inequalities and separation for uncapacitated fixed charge networks.

Operations Research Letters 4(3) 105–112.

Yuan, Y., S. Sen. 2009. Enhanced cut generation methods for decomposition-based branch and cut for

two-stage stochastic mixed-integer programs. INFORMS Journal on Computing 21(3) 480–487.

