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Time travel
Before we talk about Mixed-Integer Convex Quadratic Programs,
let’s do an experiment to see how far we’ve come in Mixed-Integer
Linear Programming (MILP)
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Impact of cutting planes in Mixed-Integer Linear
Programming (MILP) software

Without cuts

With cuts

Extended formulation
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What’s the Secret Sauce?
Polyhedral Theory for MILP
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Original formulation
Stronger formulation

Ideal formulation (convex hull, facets)

▸ Structured cutting planes (Cover, flow cover, flow path, etc.)
▸ General-purpose cutting planes (Gomory, MIR, disjunctive, etc.)
▸ Presolve, heuristics, branching, ...

See, also, “Progress in Mathematical Programming Solvers from 2001 to 2020," Koch et al, 2021.
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MIQP with indicators

min
x ,z

a⊺x + b⊺z + 1
2
x⊺Qx (Q ⪰ 0)

s.t. xj(1 − zj) = 0, j ∈ [n] ∶= {1, . . . ,n} (x ○ (1 − z) = 0)
x ∈ Rn, z ∈ Z ⊆ {0,1}n

or equivalently, in its epigraph form,

min
x ,z,t

a⊺x + b⊺z + 1
2
t

s.t. t ≥ x⊺Qx , x ○ (1 − z) = 0, x ∈ Rn, z ∈ Z

Alternative formulation of non-convex complementarity constraint

−Mz ≤ x ≤Mz (Big-M constraint)

Weak continuous relaxation
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Motivating Example: Best Subset Selection

Given model matrix Am×n and
response vector y ∈ Rm

min
x ∶∥x∥0≤k

∥y −Ax∥22,

where ∥x∥0 = ∑n
i=1 1{xi≠0} is the “`0

norm," k ∈ Z is a given cardinality.

Here, Z = {z ∈ {0,1}n ∶ ∑n
i=1 zi ≤ k},Q = A⊺A, a = −y⊺A

NP-hard. (Chen et al, 2017)
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Other Applications

▸ Structured regression (e.g., Bertsimas et al, 2021; Hazimeh and
Mazumder, 2020)

▸ Probabilistic graphical models (e.g., Küçükyavuz et al., 2020)

▸ Portfolio optimization (e.g., Bienstock, 1996)

▸ Power systems (e.g., Bacci et al., 2019)

▸ Machine scheduling (e.g., Aktürk et al., 2009)
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Special Cases: n = 1 (or Q is diagonal)
R ≡ {(z , x , t) ∣ t ≥ Q11x2, x ○ (1 − z) = 0, z ∈ {0,1}}

cl conv(R) ≡ {(z , x , t) ∣ t ≥ Q11
x2

z , z ∈ [0,1]} (Big-M free, SOCP)

t

z

x
Convention: 0

0 = 0.
Perspective reformulation: Ceria and
Soares (1999), Frangioni and Gentile
(2006), Aktürk et al. (2008), Günlük and
Linderoth (2010)...
Why perspective? For convex function
f ∶ R→ R with f (0) = 0 its perspective
function φ(x , z) = zf ( x

z ) ∶ R×R+ → R is
also convex.
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Solution approaches leveraging perspective formulation

1. Find “good" diagonal matrix D,Dii ≥ 0 such that Q −D ⪰ 0
▸ Using minimum eigenvalue of Q (Frangioni, 2006)
▸ Using SDP heuristics (Frangioni, 2007)
▸ Using ridge regularization (Bertsimas and Van Parys, 2020)
▸ Maximizing relaxation quality (Zheng et al., 2014; Dong et al.,
2015)

2. Use branch-and-bound based on the perspective reformulation

min
x ,z

a⊺x + b⊺z + 1
2
x⊺(Q −D)x + 1

2

n
∑
i=1

Diix2i
zi

s.t. −Mz ≤ x ≤Mz (Big-M constraint)
x ∈ Rn, z ∈ Z ⊆ {0,1}n
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Research Questions

▸ Can we exploit matrix and constraint structure to obtain stronger
relaxations? (Part 1)

▸ What does strong mean for MIQP?
Can we leverage polyhedral theory for MIQP? (Part 2)
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Special Cases: Rank-one convex function f
X = {(z , x , t) ∈ {0,1}n ×Rn+1 ∣ t ≥ f (q⊺x), x ○ (1 − z) = 0, z ∈ Z}

Quadratic: f (q⊺x) = (q⊺x)2 for a given vector q ∈ Rn, i.e.,
Q = qq⊺ ⪰ 0.

Theorem (Wei, Gómez, Küçükyavuz, 2022)
If f is convex, f (0) = 0, and Z is ’connected’, then

cl conv(X) = {(z , x , t)∣z ∈ conv(Z), t ≥ f (q⊺x), t ≥ (π⊺z)f (
q⊺x
π⊺z

) ,∀π ∈ F} ,

where F is a family of strong separating inequalities for

conv(Z/{0}) = conv(Z)⋂{z ∈ Rn
∶ π⊺z ≥ 1, ∀π ∈ F}

▸ New perspectives
Subsumes all related convexifications to date; first convexification for a
logistic loss function.

How to characterize F? Can use ideas in Angulo et al, “Forbidden Vertices," 2015.
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Special Case: f (q⊺x) = (q⊺x)2,Z = {0,1}n

R ≡ {(z , x , t) ∈ {0,1}n
×Rn+1

∶ t ≥ (q⊺x)2, x ○ (1 − z) = 0}.

Theorem (Atamtürk and Gómez, 2019)

cl conv(R) = {(z , x , t) ∈ [0,1]n
×Rn+1

∣ t ≥ (q⊺x)2, t ≥ (q⊺x)2

∑i∈[n] zi
}

▸ ∑
n
i=1 zi ≥ 1 is a strong inequality separating 0 from the set Z

conv(Z/{0}) = {z ∈ [0,1]n ∶ ∑n
i=1 zi ≥ 1}
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Special Case: Diagonal Q, General Z ⊂ {0,1}n

R ≡ {(z , x , t) ∣ ti ≥ Qiix2i , i ∈ [n], x ○ (1 − z) = 0, z ∈ Z}

Corollary (Wei, Gómez, Küçükyavuz, 2022)

cl conv(R) = {(z , x , t)∣ti ≥
Qiix2i
zi

, i ∈ [n], z ∈ conv(Z)} .

Xie and Deng (2020) show this for Z = {z ∈ {0, 1}n ∶ ∑n
i=1 zi ≤ k}.
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Numerical Results
Least squares regression with strong hierarchy constraints on pairwise
interactions.

min
z,x

p
∑
`=1

⎛

⎝
y` −

n
∑
i=1

A`ixi −
n
∑
i=1

n
∑
j=i

A`iA`jxij
⎞

⎠

2

+ λ∥x∥22 + µ∥z∥1

s.t. xi(1 − zi) = 0 ∀i
xij(1 − zij) = 0 i ≤ j
zii ≤ zi ∀i
zij ≤ zi , zij ≤ zj i ≤ j

z ∈ {0,1}
n(n+3)

2

▸ zi + zj − zij ≥ 1 is a strong inequality separating 0 from the set Z
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Relaxation comparisons

▸ Perspective: Optimal perspective relaxation (Dong et al., 2015)

▸ Rank1: Rank-one relaxation (Atamtürk and Gómez, 2019)

▸ Hier: Hierarchical strengthening (the formulation we proposed)

▸ Rank1 + Hier: Combine these two methods
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Optimality Gaps: Varying λ
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▸ Hier (vs. Persp): Significant improvement in lower bound
▸ Rank1+Hier (vs. Rank1): Gives the best optimality gap
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Solution Time

Crime Housing

▸ Hier (vs. Persp): Only a slight increase in solution time
▸ Rank1+Hier (vs. Rank1): No increase in solution time
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Special Case: Tridiagonal Q

Q =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ ∗ 0 0 . . . 0
∗ ∗ ∗ 0 . . . 0
0 ∗ ∗ ∗ . . . 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 . . . ∗ ∗

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Support graph of Q: Arc (i , j) for i ≤ j with Qij ≠ 0
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Special Case: Tridiagonal Q

min
x ,z

a⊺x + b⊺z + 1
2
x⊺Qx (Q ≻ 0, tridiagonal)

s.t. x ○ (1 − z) = 0
x ∈ Rn, z ∈ {0,1}n

Suppose z = 1
▸ Optimality condition: Solve Qx = −a

▸ Thomas Algorithm for tridiagonal Q takes O(n) time
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Single indicator: zk ∈ {0,1}
Now suppose zj = 1 for j ∈ [n] ∖ {k}:

min
x ,zk

a⊺x + bkzk +
1
2 ∑i∈[n]

Qiix2i + ∑
i∈[n−1]

Qi ,i+1xixi+1

s.t. xk(1 − zk) = 0
x ∈ Rn, zk ∈ {0,1}
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All indicators: z ∈ {0,1}n

Proposition (Liu, Fattahi, Gómez, Küçükyavuz, 2022)
MIQP with tridiagonal matrices can be solved by solving a shortest
path problem.

Complexity:
▸ Direct: O(n2) arcs ×O(n) arc cost calculation = O(n3)
▸ Improved: O(n2)

Leads to a shortest path-based compact tight extended formulation.
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Experiments

Can we leverage this efficient algorithm to solve the problem for
non-tridiagonal Q ≻ 0?
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Sparse, Strictly Diagonally Dominant Matrix Q

Idea: Split Q into tridiagonal submatrices: T1, . . . ,T` and a remainder
R of off-tridiagonals

▸ Use convexification and Fenchel duality for off-tridiagonals

▸ Decomposes to path subproblems (O(n2) algorithm)
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Convexification and Fenchel duality

Rewriting the problem

min
x ,z,t

a⊺z + b⊺z + 1
2

`

∑
k=1

tk +
1
2

n
∑
i=1

n
∑

j=i+2
∣Qi ,j ∣(xi ± xj)

2

s.t. tk ≥ x⊺Tkx , k = 1, . . . , `, x ○ (1 − z) = 0, x ∈ Rn, z ∈ {0,1}n, t ∈ R`.
Convexify the rank-one terms to obtain relaxation objective

min
x ,z,t

a⊺x + b⊺z + 1
2

`

∑
k=1

tk +
1
2

n
∑
i=1

n
∑

j=i+2
∣Qi ,j ∣

(xi ± xj)2

min{1, zi + zj}

Relax complicating terms via Fenchel dual to obtain relaxation

ζp = min
x ,z,t

max
α,β

a⊺x + b⊺z + 1
2

`

∑
k=1

tk

+
1
2

n
∑
i=1

n
∑

j=i+2
∣Qij ∣(αij(xi ± xj) − βij,izi − βij,jzj − f ∗(αij , βij,i , βij,j))
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Fenchel Decomposition

Strong duality holds, so

ζp = max
α,β

−
1
2

n
∑
i=1

n
∑

j=i+2
∣Qij ∣f ∗(αij , βij,i , βij,j) +min

x ,z,t
{ψ(x , z , t, α, β)}

▸ Inner min Independent tridiagonal problems

▸ Outer max Subgradient ascent
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Computational Study

Inference with graphical models
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2
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2
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2
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2
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𝑦6
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2

𝑋7

𝑦7

𝜎7
2

𝑋8

𝑦8

𝜎8
2

𝑋9

𝑦9

𝜎9
2

𝑑14 𝑑25 𝑑36

𝑑47 𝑑58 𝑑69

𝑑56𝑑45

𝑑23𝑑12

𝑑78 𝑑89

▸ Given: noisy observations (orange)
▸ Goal: find true values (blue)
▸ Arc (i , j): connection between variables i , j with Qij ≠ 0
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Computational Results

n = 100

n = 1600

Gap=(Upper Bound- Lower Bound)/Upper Bound
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Decomposition Method

n = 1600, high noise
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Research Questions

▸ Can we exploit matrix and constraint structure to obtain stronger
relaxations? (Part 1) ✓

▸ What does strong mean for MIQP?
Can we leverage polyhedral theory for MIQP? (Part 2)
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General Q ≻ 0
A Combinatorial View

For a subset S ∈ Z , zi = 1 if i ∈ S and QS is the submatrix of Q
indexed by S (similarly aS ,bS , xS)

min
x

a⊺x + bS +
1
2
x⊺Qx = min

xS
a⊺SxS + bS +

1
2
x⊺SQSxS

s.t. xi = 0, ∀i ∉ S.

▸ x∗S = −Q−1
S aS .

▸ A combinatorial problem of selecting subset S

min
S⊆[n]

bS −
1
2
a⊺SQ

−1
S aS

Simge Küçükyavuz ISMP 2022 31/42



Notation

▸ Given S ⊆ {1, . . . ,n}:
▸ eS = n-dimensional indicator vector of S
▸ QS = ∣S ∣ × ∣S ∣ submatrix of Q induced by S
▸ Q̂−1

S = n × n matrix corresponding to Q−1
S in the rows/columns of

S, and 0 elsewhere

Example: Q = (
d1 1
1 d2

)

d1d2 > 1

S eS QS Q̂−1
S

∅ (0 0) ∅ (0 0
0 0)

{1} (1 0) (d1) (1/d1 0
0 0)

{2} (0 1) (d2) (0 0
0 1/d2

)

{1,2} (1 1) (d1 1
1 d2

) 1
d1d2−1

(d2 −1
−1 d1

)
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Structure of the convex hull (extended formulation)

X ≡ {(z , x , t) ∈ Z ×Rn+1 ∣ t ≥ x⊺Qx , x ○ (1 − z) = 0}.

P ≡ conv ({(eS , Q̂−1
S )S∈Z}) .

Theorem (Wei, Atamtürk, Gómez and Küçükyavuz, 2022)
If Q is positive definite, then

cl conv(X) = {(z , x , t) ∈ [0,1]n
×Rn+1

∣ ∃W ∈ Rn×n, (
W x
x⊺ t) ⪰ 0, (z ,W ) ∈ P}.

Can be extended to the psd/low rank case (a more compact extended
formulation)
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Preliminaries

Definition
Given a matrix W ∈ Rp×q, its pseudoinverse W † ∈ Rq×p is the unique
matrix satisfying: WW †W =W , W †WW † =W †, (WW †)⊺ =WW †,
(W †W )⊺ =W †W .

Examples
▸ if W is invertible then W † =W −1

▸ W = (
a 0
0 0) ,W † = (

1
a 0
0 0)

Lemma (Generalized Schur Complement)

U = (
U11 U12
U⊺
12 U22

) with U11 ∈ S
m×m and U22 ∈ S

n×n, and U12 ∈ Rm×n. Then

U ⪰ 0 if and only if U11 ⪰ 0, U11U†
11U12 = U12 and U22 −U⊺

12U
†
11U12 ⪰ 0.
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Recall

Theorem (Wei, Atamtürk, Gómez and Küçükyavuz, 2022)
If Q is positive definite, then

cl conv(X) = {(z , x , t) ∈ [0,1]n
×Rn+1

∣ ∃W ∈ Rn×n
(
W x
x⊺ t) ⪰ 0, (z ,W ) ∈ P}.

Proof idea: Optimizing over cl conv(X) is equivalent to optimizing the
original problem.
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Proof of the Theorem

Optimizing over cl conv(X)

min
x ,z,W

a⊺x + b⊺z + t

s.t. (
W x
x⊺ t) ⪰ 0

(z ,W ) ∈ P ≡ conv ({(eS , Q̂−1
S )S∈Z})

▸ z = eS for some S ∈ Z

▸ W = Q̂−1
S = (

Q−1
S 0
0 0) ⪰ 0 and W † = (

QS 0
0 0)

▸ WW †x = x ⇔ (
I 0
0 0)(

xS
x[n]/S

) = (
xS

x[n]/S
)⇔ x[n]/S = 0

▸ t ≥ x⊺W †x ⇔ t ≥ x⊺SQSxS
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Example: Quadratic with "Choose-one" constraint

XC1 = {(z , x , t) ∈ {0,1}n ×Rn+1 ∣ t ≥ x⊺Qx , x ○ (1 − z) = 0, ∑n
i=1 zi ≤ 1}

Corollary
cl conv(XC1) = {(z , x , t) ∈ Rn

+ ×Rn ×R ∣ t ≥ ∑n
i=1Qii

x2
i

zi
, ∑

n
i=1 zi ≤ 1} .

▸ P = conv ({(0,0), (e{i}, Q̂−1
{i})

n
i=1})

▸ P = {(z ,W ) ∣ Wij = 0, i ≠ j ,Wii =
zi
Qii
, i = 1, . . . ,n}

(
W x
x⊺ t) ⪰ 0, (z ,W ) ∈ P⇔

⎛
⎜
⎜
⎜
⎝

z1
Q11

. . . 0 x1
⋮ ⋱ ⋮ ⋮

0 . . . zn
Qnn

xn
x1 . . . xn t

⎞
⎟
⎟
⎟
⎠

⪰ 0⇔ t ≥
n
∑
i=1

Qii
x2i
zi
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Structure of the convex hull (original space)

Let

X = {(x , z , t) ∈ Rn
× Z ×R ∶ t ≥ x⊺Qx , x ○ (1 − z) = 0}

Suppose a minimal description of P is given by

⟨Γi ,W ⟩ − γ⊺i z ≤ βi , i = 1, . . . ,m1

⟨Γi ,W ⟩ − γ⊺i z = βi , i = m1 + 1, . . . ,m.

Theorem (Wei, Atamtürk, Gómez, Küçükyavuz, 2022)
(x , z , t) ∈ cl conv(X) iff z ∈ conv(Z), t ≥ 0 and

t ≥ x⊺ (∑m
i=1 Γisi) x

β⊺s + (∑
m
i=1 γisi)

⊺ z

for all s ∈ Rm1
+ ×Rm−m1 such that ∑m

i=1 Γisi ⪰ 0,∑m
i=1Tr(Γi)si ≤ 1.
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Observations

▸ Semi-infinite conic quadratic program, but “finitely" generated by
(Γi , γi , βi), i ∈ [m].

▸ The strongest conic quadratic inequality is given by

t ≥ max
s∈Rm1

+ ×Rm−m1

x⊺ (∑m
i=1 Γisi) x

β⊺s + (∑
m
i=1 γisi)

⊺ z

s.t.
m
∑
i=1

Γisi ⪰ 0,
m
∑
i=1

Tr(Γi)si ≤ 1.

▸ How to work with P = conv({(eS , Q̂−1
S )S∈Z}) in practice?

We give an MILP formulation for {(eS , Q̂−1
S )S∈Z}.

Preliminary tests show that this MILP is faster than perspective
for some instances.

Simge Küçükyavuz ISMP 2022 39/42



Research Questions

▸ Can we exploit matrix and constraint structure to obtain stronger
relaxations? (Part 1) ✓

▸ What does strong mean for MIQP?
Can we leverage polyhedral theory for MIQP? (Part 2) ✓
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Conclusions

▸ We characterize the convex hulls of MIQPs with indicators

▸ Convexification reduces to finding a facial description of a
polytope

▸ We can use any tools from MILP to do so

▸ We can use polyhedral theory to understand strength of
convexifications

▸ Offers insights into design of algorithms
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