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ABSTRACT

Heavy-Traffic Limits via an Averaging Principle
for Service Systems Responding to Unexpected Overloads

Ohad Perry

This dissertation considers how two networked large-scaleservice systems, such as call

centers, that normally operate separately, can help each other in face of an unexpected

overload, caused by a sudden shift in the arrival rates. We assume that the time of the shift

and the values of the new arrival rates are not known a-priori, and are hard to detect in real

time. We also assume that staffing cannot be increased immediately.

We propose thefixed-queue ratio with thresholds(FQR-T) control, and show that it

is optimal in a deterministic fluid approximation. The FQR-Tcontrol activates serving

some customers from the other system when a ratio of the two queue lengths (numbers of

waiting customers) exceeds a threshold. Two thresholds, one for each direction of sharing,

automatically detect the overload condition and prevent undesired sharing under normal

loads. After a threshold has been exceeded, the control aimsto keep the ratio of the two

queue lengths at a specified value.

To gain insight, we introduce an idealized X model, i.e., a stochastic model with two

customer classes, each with its own dedicated service pool,containing a large number of

agents. The agents in both pools are assumed to be crossed-trained, so that they are able

to serve the other class, even if somewhat inefficiently. To set the important queue-ratio

parameters, we consider an approximating deterministic fluid model. We determine queue-

ratio parameters that minimize convex costs for this fluid model. Simulations show that

the proposed queue-ratio control with thresholds, which uses no information about the new

arrival rates during the overload, outperforms the optimalfixed partition of the servers when

the new arrival rates are known.



We then consider the stochastic X model under our proposed FQR-T control, and prove

that the fluid approximation, developed heuristically for the optimality analysis, holds as a

many-server heavy-traffic fluid limit. In particular, underan appropriate fluid scaling, the

processes describing the X system, i.e., the queue-length and service processes, converge

to a deterministic fluid limit as the number of servers and arrival rates approach infinity.

This fluid limit is characterized by anordinary differential equation(ODE), coupled with

a fast-time-scale process(FTSP). In proving the fluid limit we also achieve astate-space

collapse(SSC) result, which allows us to develop diffusion refinements.

Proving convergence to the fluid limit is complicated because the limit involves a heavy-

traffic averaging principle(AP). The X model, operating under FQR-T, is driven by a

queue-difference stochastic process operating in a fastertime scale than the other processes

describing the system, thus achieving a time-dependent steady state instantaneously in the

limit. Hence, for the limiting ODE, the queue-difference process is replaced by the long-

run average behavior of the FTSP at each instant of time.

In addition to complicating the convergence proofs, the AP also makes standard ODE

and dynamical-systems theory difficult to apply. First, thedeterministic ODE is driven by a

stochastic process, whose distributional characteristics determine the evolution of the solu-

tion to the ODE. Moreover, due to the AP and its resulting SSC,the ODE is not continuous

in its full state space.

Nevertheless, we provide results about the existence and uniqueness of the solution

to the ODE, prove that there exists a unique stationary point; and give easily verifiable

conditions for the fluid limit to converge to its stationary point, which was used in our

optimization analysis. We also provide an efficient numerical algorithm, based on matrix-

geometric methods, for solving the ODE.
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Chapter 1

Introduction

The introduction consists of four parts: In§1.1, we quickly review the general motivation

for our problem. In§1.2 we briefly describe our modeling approach and our contribution

to the existing literature. In§1.3 we provide a short review of mathematical models that

commonly appear in the literature and are relevant to our work. Finally, in §1.4 we briefly

explain the mathematical methods employed in this dissertation, and our contribution to

the existing mathematical-modeling literature of large many-server systems.

1.1 Motivation

One of the characteristics of an advanced economy is its large service sector. For example,

in the United States, the service sector is responsible for about 80% of the nominal GDP

and over 80% of the work force.

An important part of the service sector is the call-center industry. In the United States

alone it employs more than 3.5 million agents (or 2.5% of the total workforce) [17, 70].

However, the importance of the call-center industry goes well beyond its size; It is esti-

mated that call centers handle more than 70% of all business interactions.

1



CHAPTER 1. INTRODUCTION 2

Since labor-related costs comprise 60-80% of the overall operating budget of modern

call centers [2], managers have to balance two conflicting objectives: on the one hand,

they seek to minimize operating costs by reducing the numberof agents to the possible

minimum. On the other hand, they are required to provide somepre-specified levels of

service (which can be measured in various ways, e.g., the proportion of customers that

abandon, the average waiting time, the probability of delayin queue, etc.). These two

objectives can be achieved in large call centers by staffing appropriately. However, this

means that the arrival rates of customers (i.e., number of calls per unit time), must be

known with a reasonable accuracy, where the forecasting andstaffing decisions are being

performed in advance. See§2 in [2], and§§3 and 6 in [26]. Since the call center operates in

a random environment, with the arrival rates possibly larger than expected, at least during

some time periods, it may become overloaded due to larger than expected arrival rates, so

that the desired service levels cannot be met.

1.1.1 The Basic Research Problem: Overload Control

This dissertation considers how two networked large-scaleservice systems, such as call

centers, that normally operate separately, can help each other in face of an unexpected

overload. We assume that occasionally, for various reasons, there may be unforeseen surges

in demand, going significantly beyond the usual stochastic fluctuations, and lasting for a

significant period of time. A demand surge might occur because of a catastrophic event in

emergency response, a system failure experienced by an alternative service provider, or an

unanticipated intense television advertising campaign inretail. Such unexpected demand

surges typically cause congestion that cannot be eliminated entirely. Since the demand

surge is sudden and unexpected, it may not be possible to immediately change the staffing

level.
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However, there may be an opportunity to alleviate the congestion caused by the over-

load by getting help from another service system, which ordinarily operates independently.

(For example, with the reduction of telecommunication costs, it is more and more common

to have networked call centers, often geographically dispersed, even on different conti-

nents.) Such sharing is typically possible among differenthospitals in a metropolitan area.

It is often desirable to operate these service systems separately, but their connection pro-

vides opportunities, in particular, to provide assistanceunder overloads.

An important consideration is that we typically do not want sharing under normal loads.

One reason is that it is easier to manage the different facilities separately, e.g., by main-

taining clear accountability. Another reason is that the agents in each service facility may

be less effective and/or less efficient serving the customers from the other system, because

each requires specialized skills not required for the other. We want to consider the case in

which serving the other class is possible, but that there arepenalties for doing so. We will

assume that the service rates are slower for non-designatedagents.

The proposed overload control applies directly to separateservice systems run by a

single organization, but could also be adopted by two different organizations by mutual

agreement. Our analysis provides useful information aboutthe likely consequences of any

agreement, which should facilitate making the agreement. Current practice for call centers

(that we are aware of) is limited to sharing within a single organization, and then only

manually or on a regular basis under normal loading. Load-balancing schemes used in

practice are described in§5.3 of [26].

Thus, our goal is to develop a control to automatically detects when an overload has

occurred (in either system, or in both) and then, before the staffing levels can be changed,

reduce the resulting congestion by activating appropriatesharing from agents in the other

system. We also want to prevent undesired sharing under normal loads. By focusing on this

overload problem, we aim to contribute new insight into the longstanding question about
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the costs and benefits of resource pooling; see§4.2 of [2] and references cited therein. Here

we focus on a situation where we want to turn on and off the pooling.

To gain insight, we introduce an idealized X model, i.e., a stochastic model with two

customer classes, each with its own dedicated service pool,containing a large number of

agents. See figure 1.1. The agents in both service pools are assumed to be crossed-trained,

so that they are able to serve customers from the other class,even if somewhat inefficiently.

The X Call-Center Model

customer class 1 customer class 2

1
2

11

arrivals

21

same

12 22

othersame

routing

service pool 1 service pool 2

queues

abandonment

1 2

m1

agents

other

m2

agents

abandonment

class-dependent

service rates

Figure 1.1: TheX model

1.1.2 The Proposed Control: FQR-T

We now explain our proposed control, which we callfixed-queue ratio with thresholds

(FQR-T). The purpose of FQR-T is to prevent sharing of customers as long as the two

classes are not overloaded, and detect overloads quickly when they occur. These two ob-

jectives are achieved by placing two thresholds,k1,2 andk2,1, one for each queue. If queue

i crosses its thresholdki,j, i, j = 1, 2, then classi is considered to be overloaded.
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In addition to the two positive thresholdsk1,2 andk2,1, we introduce two ratio parame-

tersr1,2 andr2,1. We then define two queue-difference stochastic processes

D1,2(t) ≡ Q1(t)− r1,2Q2(t) and D2,1(t) ≡ r2,1Q2(t)−Q1(t), (1.1.1)

whereQi(t) denotes the number of class-i customers waiting in queue at timet, i = 1, 2.

As long asD1,2(t) < k1,2 andD2,1(t) < k2,1, we do not allow any sharing, i.e., we only

let agents serve customers from their designated class. Thus, FQR-T is designed to permit

sharing only in the presence of unbalanced overloads.

However, available pool-2 agents are assigned to class-1 customers whenD1,2(t) ≥

k1,2, provided that no pool-1 agents are still serving a class-2 customer. As soon as the

first pool-2 agent is assigned to serve a class-1 customer, we drop the thresholdk1,2, but

keep the other thresholdk2,1. (We could elect to add another threshold for the sharing; see

§2.7.6.) Upon service completion, a newly available type-2 agent serves the customer at the

head of the class-1 queue (the class-1 customer who has waited the longest) ifD1,2(t) > 0;

otherwise the agent serves a customer from his own class. In this phase, pool-1 agents only

serve class-1 customers. Only one-way sharing in this direction will be allowed until either

the class-1 queue becomes empty or the other difference process crossesthe other threshold,

i.e., whenD2,1(t) ≥ k2,1. As soon as either of these events occurs, newly available pool-2

agents are only assigned to class2 and the thresholdk1,2 is reinstated.

We can initiate sharing in the opposite direction when firstD2,1(t) ≥ k2,1 and there are

no class-2 agents serving class-1 customers. At the first time both conditions are satisfied,

we start sharing with a pool-2 agent serving a class-1 customer. When that first assignment

takes place, we remove the thresholdk2,1 and again use the same procedure as before, but

now with the ratio parameterr2,1. In particular, a newly available type-1 agent serves the

customer at the head of the class-2 queue ifD2,1(t) > 0; otherwise the agent serves a
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customer from his own class.

Upon arrival, a class-i customer is routed to pooli if there are idle servers; otherwise

the arrival goes to the end of the class-i queue. An arrival might increase the queue to a

point that sharing is activated. Then the first customer in queue is served by the other class

(presumably the agent that has been idle the longest, but we do not focus on individual

agents).

The queue-difference stochastic processes in (1.1.1) willnever provide any instanta-

neous motivation to have agents of both types simultaneously inefficiently serving the other

class ifr1,2 ≥ r2,1. That property will be satisfied when we apply a cost functionto specify

the ratio parameters in§2.3.2.

Our FQR-T control is appealing for several reasons. First, it is automatic and simple;

we need not directly discover the arrival rates in order to find out when overloads occur, and

then decide what amount of sharing should be done. Instead, FQR-T automatically detects

the time the system becomes overloaded, and then automatically enforces the optimal ratio,

by observing only the size of the two queues. It is easier to use the information about the

queues, which is readily available, than to use informationabout the arrival rates, which

is not readily available. Moreover, simulation experiments indicate that FQR-T performs

better (produces lower expected costs) than fixingZi,j at their optimal values, even with

known arrival rates; see Figure 2.4.

1.2 Our Modeling Contribution

In this dissertation we contribute to the literature on overload (or congestion) control in

queueing systems. There is a substantial literature studying controls that route (or assign)

customers (or jobs) to servers, possibly exploiting thresholds, but many of these papers, like

[11] and references therein, focus on single-server systems without customer abandonment,
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whereas we focus on many-server systems with customer abandonment.

One feature of many-server systems with customer abandonment we will exploit is

the rate at which the transient distribution approaches itssteady-state limit: It tends to be

much faster for many-server queues. In particular, the systems we consider tend to reach

steady-state in a few mean service times; e.g., see (20) in [24] and (2.17) in [79]. (We will

elaborate in§2.7.1.) Hence, in our analysis of performance during an overload incident,

we approximate using the new steady state, determined by thenew arrival rates (assumed

constant). Customer abandonments ensure that the system remains stable.

We contribute to the call-routing problem for multi-class and multi-site call centers

with skill-based routing; see§5 of [26] and§§2.3.3, 4.1, 4.2 of [2]. Others have proposed

responding to stochastic fluctuations and unexpected overloads by modulating demand in

different ways: (i) admission control, (ii) making delay announcements that may induce

customers to leave, use a different service channel (e.g., email instead of voice), or call

back later, and (iii) acting to reduce service times, e.g., by curtailing cross-selling activities;

see§3 of [2] and [5].

In contrast, our work relates to the larger literature exploiting server flexibility (supply-

side management). One approach is to have extra temporary servers available on short

notice; see [12] and references therein. Instead, we propose using servers that are already

working; i.e., we propose a form of resource pooling, which exploits cross training; see

§4.2 of [2] and§5.1 of [26]. As should be anticipated, though, our control tends to be more

effective in alleviating congestion (rather than just balancing the service degradation) when

the less-loaded system actually has some slack. Our work draws on the queue-ratio control

proposed in [29, 31], which applies to very general network topologies. Here we consider

the relatively difficultX model, allowing sharing in both directions (as depicted in Figure

1.1), but our approach makes the model behave more like theN model, in which only one

service pool can serve both classes (so that there is sharingin only one direction); see [69].
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However, we make significant departures from the previous literature. First, we want

resource sharing only in the presence of the unanticipated overload, and only in the proper

direction, which depends on the nature of the overload. Hence, we turn on and off the

sharing. Second, we regard the overload as a rare exceptional unanticipated event, rather

than a stochastic fluctuation in demand. Thus, we think that it is inappropriate to perform a

long-run steady-state analysis of system performance withalternating normal and overload

periods (although that could be done). Instead, we focus on asingle overload in isolation.

Since the system tends to be overloaded, even after sharing has been activated, system

performance tends to be well approximated by deterministicfluid approximations, as in

[79]. Our work also relates to the literature on arrival-rate uncertainty; see§4.4 of [26] and

§2.4 of [2]. Arrival-rate uncertainty also tends to make deterministic fluid approximations

remarkably accurate; e.g., see [10] and their previous papers with Harrison, and [82].

1.3 Mathematical Models

The most basic mathematical model of a call center is theM/M/N (also known as the

Erlang C) model. In this model there is one service pool having N agents, one class of

customers and an infinite waiting room for customers in queue. The first ’M’ stands for

the assumed Markovian arrival process, i.e., a Poisson process, and the second ’M’ stands

for the Markovian service process, i.e., service times are assumed to be independent and

identically distributed (i.i.d.) exponential random variables. Important extensions of the

Erlang-C model are theM/M/N/K model, having a finite buffer (waiting room) of size

K, and theM/M/N +M (Erlang-A), which incorporates customer abandonment. In this

model, customers are assumed to be i.i.d. with exponential patience (the ‘+ M’ stands for

the Markovian abandonment process). In particular, the Erlang-A model assumes that each

arriving customer has an exponential patience, and will abandon if he cannot enter service
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before running out of patience. All the above models can be viewed as a variation of the

M/M/N/K +M model, having a single class of customers, single service pool with N

agents, a buffer of sizeK ≤ ∞ and customer abandonment (with the patience rate allowed

to be infinite).

TheM/M/N/K +M model is attractive since it is relatively easy to analyze. Specifi-

cally, due to the Markovian assumptions, the queue-length process constitutes a birth-and-

death (BD) process with state space{0, 1, . . . , N +K}, or N ≡ {0, 1, 2, . . .} if K = ∞.

Thus, closed-form expressions for several steady state quantities of interest are easy to

derive and compute. (See§6.1 in [85] for exact analysis of the Erlang-A model.)

Why Heavy Traffic?

Even for the simpleM/M/N/K +M model a useful way to obtain insight isheavy traffic

(HT) approximations. For example, the insight gained by considering the three regimes in

§1.3.2 below is due to HT-limits considerations. Moreover, if the Markovian assumption

is relaxed, exact analysis becomes much harder to carry out and often intractable. (How-

ever, results for theM/M/N +G model, having a general abandonment distributions, are

available. See§6 in [85] for a summary of these results.)

Even in fully Markovian models, exact analysis becomes too difficult to conduct once

the dimension of the model increases. If we consider a systemhaving more than one

customer class and/or more than one service pool, then exactanalysis becomes intractable

and finding the optimal staffing and routing schemes becomes impractical. In these cases

HT approximations become a valuable tool.

The X model considered in this thesis is a multidimensional generalization of the

Erlang-A model. Although it is assumed to be Markovian, exact analysis becomes in-

tractable when sharing is taking place under FQR-T. The transient analysis of our model

proves to be hard,even when we consider the deterministic HT fluid approximation for the
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stochastic systems. However, the stationary fluid-limit approximation for the X model un-

der FQR-T is simple, and we use it in order to determine the control parameters and show

that the control is optimal in the fluid limit.

1.3.1 The Conventional Heavy Traffic Regime

Heavy traffic limits were first proved by Kingman in [47, 48] asapproximations for steady

state distributions of a heavily loadedG/G/1 queue. The HT procedure was adapted to

the multi-server settings, and extended to stochastic-process limits, by Iglehart and Whitt

in [37, 38]. We refer to [78] for a literature review.

We now describe the standard HT limit for theG/G/1 queue. Letρ denote the server

utilization, i.e., the long-run proportion of time that theserver is busy. Ifρ < 1 but close to

unity, then, although the system is stable, the queue lengthbecomes arbitrarily large over

large time intervals. Loosely speaking, under the right condition on ρ, the queue length

process has fluctuations of order1/(1− ρ) over time intervals of order1/(1− ρ)2, whenρ

is close to1.

To make these statements rigorous, consider a sequence ofG/G/1 systems indexed by

n ≥ 1, and letρn ≡ λn/µ, whereλn denotes the arrival rate in systemn andµ denotes

the service rate, which is fixed for all systems. LetQn(t) denote the queue-length process

(number of customers in the system at timet ≥ 0) in systemn. Then, if

√
n(1− ρn) → β ∈ (−∞,∞) asn→ ∞,

then
Qn(nt)√

n
⇒ R(t) asn→ ∞, (1.3.1)

where⇒ stands for weak convergence (convergence in distribution,see [13], [78]), and
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R is the well-studied reflected Brownian motion, which has an exponential steady state

distribution. The convergence holds not only pointwise (ateach timet); the full process

{n−1/2Qn(nt) : t ≥ 0} converges in distribution to the process{R(t) : t ≥ 0} in an

appropriate function space. A result of the type (1.3.1) is called afunctional central limit

theorem(FCLT) since the scaling is that of the central limit theorem, but the convergence

takes place in a function space. It is a generalization of thebasic FCLT in Donsker’s

theorem.

The limit in (1.3.1) is the basis of what is now known as “conventional HT”. In the

conventional HT, the number of servers in each station remains fixed, and the utilization of

each station approaches one in an appropriate manner. Observe that, since the queue-length

process becomes large while the service rate remains fixed, the waiting times of customers

in queue also become very large. This phenomenon is true in general for systems in the

conventional HT. In single-server systems (or when the number of servers in each station

is fixed along the sequence) one must choose between having a highly utilized system with

long waiting times, or a less utilized system with shorter waiting times in queues.

The conventional HT is inadequate for the study of large systems with many servers. As

we mentioned above, call canters typically consist of service pools having a large number

of agents. Also, as experience shows, customers in large call centers typically do not

experience long waiting times, even when the utilization ofthe agents is close to1. Thus,

a different approach is needed in order to adequately analyze large systems.

1.3.2 The Many-Server HT Regime

As the name suggests, the many-server heavy-traffic (MS-HT)regime is concerned with

large pools of servers. The first result is due to Iglehart in [36], who considered the

M/M/N (Erlang-C) model. In particular, to achieve a MS-HT limit, Iglehart considered a

sequence ofM/M/N systems (it is natural to let the number of serversN be also the index
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of the sequence), with a fixed service rate for all elements along the sequence, but with the

arrival rates and number of servers growing to infinity. However, the number of servers

N grows to infinity so fast, that the limit becomes equivalent to that of the Markovian

infinite-server queue (M/M/∞). In particular, a properly scaled sequence of stochastic

processes, representing the number of customers in the system, converges weakly to an

Ornstein-Uhlenbeck (OU) diffusion process.

Since the limit in this regime is indistinguishable from that of theM/M/∞, if this

regime is applied to the analysis of call centers, then we saythat the system is operating

under thequality-driven(QD) regime. The QD regime is usually not suitable for call-center

analysis, as there are no customers waiting to be served, andno customer abandonment in

the limit.

Note the difference between conventional HT and the infinite-server-type HT: In con-

ventional HT, the probability that customers will be waiting in queue approaches1 in the

limit, while in the latter QD regime the probability of waiting approaches0. Systems which

are designed to operate such that the probability that a customer will wait to be served ap-

proaches one are said to operate in theefficiency driven(ED) regime, since, asymptotically,

all agents are busy and all customers must wait to be served.

However, the QD and ED regimes are not the only MS-HT regimes;Consider a se-

quence ofG/M/N queues with arrival rateλN for theN th element of the sequence, with

λN/N → λ asN → ∞, for someλ > 0. Also assume that the service rates satisfy

µN ≡ µ > 0 for all N ∈ N. Fort ≥ 0, let

Q̂N (t) ≡ QN(t)−N√
N

, N ∈ N. (1.3.2)

Observe that̂QN is centered about the number of serversN , so thatQ̂N(t) < 0 indicates

that there is idleness in the system, whereasQ̂N (t) > 0 indicates that there are customers
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waiting to be served, at timet.

In [33], Halfin and Whitt observed that a non-degenerate diffusion limit can be obtained

for the number-in-system process (1.3.2), with this limiting diffusion process fluctuating

above and below zero. Specifically, assume that

√
N(1− ρN ) → β > 0 as N → ∞. (1.3.3)

Condition (1.3.3) is equivalent to thesquare-root safety staffing rule, namely

λN/µ = N − β
√
N + o(

√
N),

whereo(
√
N) denotes any functionf : N → R, satisfyingf(N)/

√
N → 0 asN → ∞.

Then, under (1.3.3), if̂QN (0) ⇒ Q̂(0), then

Q̂N ⇒ Q̂ as N → ∞, (1.3.4)

whereQ̂ is a well defined diffusion process, and the convergence takes place in an appro-

priate function space (i.e., the whole processQ̂N converges to the diffusion processQ̂).

In addition to the convergence result above, Halfin and Whitt[33] analyzed the steady

state properties of the limiting diffusion process. They were able to show that the stationary

distribution of the limiting diffusion is the limit of the scaled sequence of stationary distri-

butions for the stochastic number-in-system processes. Thus, the steady-state probability

of having to wait converges to a number strictly between zeroand one, as opposed to the

QD and ED regimes described above. The regime developed in [33] is now known the

Halfin-Whitt regime, or thequality and efficiency(QED) regime, since it incorporates both

the QD and the ED regimes. In the QED regime, high server utilization (the proportion of

idle servers in the system is at most of order1/
√
N) is achieved together with short waiting
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times, which are of order1/
√
N . As a consequence, one needs onlyβ

√
N “extra” service

capacity in order to achieve any given level of service, forβ in (1.3.3).

For service systems, modeling customer abandonment is important. For the theM/M/N+

M (Erlang-A) model, the same three different MS-HT limiting regimes, identified in [33],

were shown to exist in [27] by the limit in (1.3.3). The regimes (i) ED, (ii) QED, and

(iii) QD then occur, respectively, if the limit in (1.3.3) holds with (i) β = −∞, (ii)

−∞ < β < ∞, and (iii) β = +∞. These three regimes also generalize to more com-

plex queueing networks (and non-exponential service times).

Operating under the QED regime carries a risk; a well-operated call center is usually

designed to have a utilization ofρ ≈ 0.95. Hence, if the arrival rates are even slightly

larger than expected, (or if the number of agents is smaller than planned) the system may

encounter an unexpected overloaded. In such cases, the ED regime becomes the appropriate

limiting approximation to consider, e.g., see [79], [82]. Moreover, systems are sometimes

designedto operate under the ED regime, particularly if they are not revenue generating,

in order to decrease the operating costs. Thus, in recent years there has been a growing

interest in the HT ED limits. See, e.g., [27], [58], [79], [81] and [82]. The ED regime

is often appropriate for service systems, and is nontrivialto analyze, since customers can

abandon. Abandonment ensures that the system under consideration is stable.

Consider theM/M/N +M model, and letρN ≡ ρ > 1 for all N ∈ N, so that the

arrival rate to each system along the sequence is larger thanits maximal service rate. In

that case, the sequence of queue-length processes, centered about the number of servers

(similar to the expression (1.3.2)) will diverge to infinityfor eacht > 0, since the queue

length is orderN larger than the number of agents, even though abandonment keeps each

system along the sequence stable. If one is interested in obtaining FCLT, one should find

a new argument to center about. It turns out the the centeringargument in the ED regime

is often of interest for its own right, and can be nontrivial to achieve. In order to find that
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centering argument, we consider the limit of the sequenceQ̄N ≡ QN/N . Let

Q̄ ≡ lim
N→∞

Q̄N . (1.3.5)

(Assuming the limit in (1.3.5) exists.) Limits of the type (1.3.5) are called “fluid limits”,

since they tend to be continuous and deterministic processes. They are also calledfunc-

tional laws of large numbers(FLLN), since the scaling is that of the law of large numbers,

and the limit describes the mean values of the random sequence. The fluid limit of the

above Erlang-A model is relatively easy to establish; see [79]. In general, however, fluid

limits can be hard to characterize. Moreover, they can proveto be a crucial step in the proof

of the FCLT refinements, as in our case. See also [21].

1.3.3 Establishing HT Limits

There are several ways to prove that a sequence of stochasticprocesses converges in dis-

tribution. Here we briefly review the three most widely used methods in the HT literature.

For background on the different methods see [13], [25] and [78].

We start with defining the space in which the stochastic processes under considera-

tion exist; For a subintervalI of [0,∞) let Dk(I) ≡ D([I,Rk) be the space of all right-

continuousRk-valued functions, with limits from the left everywhere, endowed with the

SkorohodJ1 topology. LetDk ≡ D([0,∞),Rk), with D ≡ D1. Let Ck(I) ⊂ Dk(I) be

the subspace of continuous functions in ofDk(I). Usually, the sequences of stochastic

processes considered are random elements inDk, while the limits are typically in the sub-

space of continuous functionsCk, in which case theJ1 topology coincides with the uniform

topology.

The most widely used method in the HT literature uses thecontinuous mapping the-

orem (CMT). The CMT approach exploits established stochastic-process limits (usually
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Donsker’s theorem or a variant) to obtain new limits. In particular, if the sequence of

processes considered can be represented as a continuous mapping fromDk to itself of pro-

cesses whose limits are known, then the limit of the sequencecan be characterized. The

hard step is then showing that a given mapping is continuous.(Even addition is in general

not a continuous function inD). However, many useful functions, which are often needed

in practice, were shown to be continuous in appropriate topologies. For many useful con-

tinuous functions (in different topologies) see§13 in [78].

The second method, which can be applied to Markov processes,is the operator semi-

group approach. Convergence of the generators of Markov processes (in an appropriate

sense; see [25]) implies the convergence of the corresponding semigroups, which in turn

implies the convergence of the Markov processes. The general theory is hard to apply,

and rarely used in the HT literature. (But see [71] for a queueing application). However,

simplified versions of the theory were applied extensively.Specifically, if the elements in

the sequence arebirth and death(BD) procesess, Stone’s theorem [66] can often be ap-

plied. Stone’s theorem reduces the problem of showing that the generators of the processes

converge to showing that the sequence of infinitesimal meansand variances converge. For

queueing applications, see e.g., [27], [36], [79].

The third method is the compactness approach. Proving limittheorems in this method

follows two steps: (i) showing that the sequence under consideration is pre-compact and

(ii) uniquely characterizing the limit. In the function spaceDk (endowed with theJ1

metric), pre-compactness is equivalent to sequential compactness, i.e., a sequence is pre-

compact if each of its subsequences has a further convergingsubsequence, e.g., see [57].

The framework of weak convergence via the compactness approach was developed by Pro-

horov [60]. The direct half of Prohorov’s theorem (Theorem 5.1 in [13]), applied for ran-

dom elements ofCk andDk, essentially reduces to the Arzelà-ascoli characterization (and

its variant toDk) of relative-compact sets in those function spaces.



CHAPTER 1. INTRODUCTION 17

We will use the compactness approach to prove the main resultof this dissertation,

namely the fluid limit of the overloaded X model under FQR-T. However, in our proofs,

we will also make extensive use of the CMT. Moreover, the diffusion limits can be derived

using the CMT, building on the fluid limit.

1.4 The Analytical Contribution

Chapters 3 and 4 are devoted to the mathematical analysis of the X model under FQR-

T. In particular, Chapter 3 is dedicated to a dynamical-system-type study of anordinary

differential equation(ODE), which will be shown to arise as the fluid limit (FLLN) of

the X model in Chapter 4 (with some proofs appearing in Chapter 5). Chapters 3 and 4

may seem out of order, because we establish properties of thelimit before we prove the

convergence to that limit. However, the order is appropriate because the properties of the

limiting ODE and its solution play a key role in the proof of the limit theorems in Chapter

4.

In Chapter 3 we show that there exists a unique solution to theODE over an interval

[0, δ) for someδ > 0. Conditions for extending this interval (typically all theway to infin-

ity) are provided. We also prove that there exists a unique stationary point to the ODE. If

the solution to the ODE exists on[0,∞), then it is shown that the solution must converge

to its stationary point exponentially fast. Finally, we provide an efficient numerical algo-

rithm, based on the matrix geometric method and the classical Euler forward algorithm, for

solving the ODE.

In Chapter 4 we show that the sequence of overloaded X systems, operating under FQR-

T, is pre-compact. We then show that the limit of every converging subsequence satisfies

the three-dimensional ODE which was studied in Chapter 3. The uniqueness of the solution

to the ODE over[0, δ) implies that the whole sequence of fluid-scaled processes converges
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to the solution of the ODE. Proving convergence over the finite interval[0, δ) (no matter

how small) is sufficient, since the convergence can be extended as long as the solution to

the ODE is known to be unique.

An Averaging Principle

The main difficulty in establishing weak convergence via thecompactness approach is usu-

ally in characterizing the limit. In our case, characterizing the limit is hard since FQR-T

is driven by one of the queue-difference processes in (1.1.1), depending on which class

receives help. When the sequence of fluid-scaled X models is considered, the queue-

difference process is not being scaled and hence does not converge to a deterministic quan-

tity due to the spatial scaling. However, this control-driving process operates in a different

time scale than the fluid-scaled processes. In the limit, a complete separation of time scales

is achieved, so that the queue-difference process converges to a (time-dependent) steady

state at each instant of time. (Hence, it achieves along-run averaginginstantaneously,

where the “long-run” is with respect to the fast time scale.)We refer to this fast long-run

averaging phenomenon as anaveraging principle(AP).

The AP of the queue-difference stochastic process also complicates the analysis of the

limiting ODE. Since this process is not being scaled, it doesnot become deterministic in

the limit. The ODE itself is deterministic only due to the AP.We call the stochastic process

which drives the ODE thefast-time-scale process(FTSP), because at each timet ≥ 0,

the FTSP is replaced by its long-run average behavior. Now, since the FTSP determines

the evolution of the ODE while, at the same time, the solutionto the ODE determines the

distribution of the FTSP, it may seem that the ODE cannot be fully analyzed. However,

the separation of time scales allows for a complete analysisof the ODE, since the long-run

behavior of the FTSP at each fixed timet ≥ 0 is determined by the value of the solution to

the ODE at the fixed timet.
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The second complication is that the AP produces a singularity region in the state space,

causing the ODE to be discontinuous in its full state space. Hence, both the convergence to

the MS-HT fluid limit, and the analysis of the solution to the ODE depend heavily on the

state space for the ODE, which is characterized in terms of the FTSP.

There are evidently only a few papers in the queueing literature involving averaging

principles. Two notable papers are [19], which considers the diffusion limit of a polling

system with zero switch-over times, and [35], which considers large loss networks under

a large family of controls. Reference [35] is closely related to our work since it considers

the fluid limits of such loss systems, with the control-driving process moving at a faster

time scale than the other processes considered. However, the proof techniques here and in

[35] are very different. In particular, the AP in [35] is proved via the martingale problem,

building on [49].

We refer to [35] and [49] for a review of AP phenomenon in stochastic settings, and

to [45] for AP-type arguments in deterministic dynamical systems. However, we note that

our AP is very different than the settings considered in [45]. In particular, although our

ODE is deterministic, the AP is stochastic in nature. In other words, our ODEis driven

by a stochastic process. The ODE itself is deterministic since the stochastic process is, at

each timet ≥ 0, replaced by its long-run average behavior. This makes our ODE analysis

an interesting combination of the dynamical-systems and probability theories.

State Space Collapse

As in many multi-class queueing networks, there is no underlying continuous mapping

representing the queue-length process, e.g., see [16], [84]. However, often one can work

with “cruder” processes, which do not include the exact interaction between the different

processes considered. In that case, a CMT may be applicable for a lower-dimensional
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(“crude”) process. That can be done by showing that the multidimensional process de-

scribing the system is experiencing astate-space collapse(SSC). That is, in the limit, the

multidimensional processes exists in a lower-dimensionalhyperplane of its space.

In our proof of the AP we also achieve a SSC result for the queue-length process. We

show that the limit of the two-dimensional queue-length process exists in a one-dimensional

hyperplane ofD2([0, δ)). Letting Q̂i denote the diffusion limit of class-i queue,i = 1, 2,

we have that

Q̂1(t) = r1,2Q̂2(t) t ∈ [0, δ). (1.4.1)

(Here[0, δ) denotes the maximal interval on which the fluid limit is knownto exist. Typ-

ically we can takeδ = ∞.) Hence, we can analyze the sequence of the one-dimensional

total queue-length processesQ̂n
s ≡ Q̂n

1 + Q̂n
2 , Using (1.4.1), we deduce that

Q̂1 =
r

1 + r
Q̂s, and Q̂2 =

1

1 + r
Q̂s,

whereQ̂s is the diffusion limit ofQ̂n
s . Of course, the same relation holds for the fluid-limit

queues.

There is a large body of HT literature which includes SSC results, and we refer to [29]

for references. We mention that a framework for proving SSC was developed by Bramson

[16] in the conventional HT. His work was later extended by Dai and Tezcan [21] to the

MS-HT QED regime. Gurvich and Whitt [29] proved that SSC holds for general network

topologies operating under the queue-and-idleness ratio (QIR) family of controls. QIR

aims to keep the queue length of each class and the proportionof idle servers at each pool

at pre-specified ratios of the aggregated queue length and aggregated idleness in the system.

In closing we remark that we could not use Bramson’s framework and its extensions

to the MS-HT in [21] and [29]. First, these two references areconcerned with the QED

regime, whereas we are concerned with the ED regime. More importantly, the SSC result
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is too crude for our needs. Knowing that SSC occurs in the HT limit, so that the queues

exist in a one-dimensional hyperplane, is not sufficient forour purposes. To characterize

the limit, we must also know the service process, i.e., how many customers from each

class are being served in each service pool at every timet ≥ 0. We thus need to consider

the customer-server assignment process, which drives the control and depends on all pro-

cesses. (In [29] this problem is avoided by assuming that theservice rates are class or pool

dependent. in cyclic networks, such as the X model. Thus the exact service process can be

ignored in their settings.)



Chapter 2

Responding to Unexpected Overloads in

Large-Scale Service Systems

In this chapter we elaborate on the X model and its main characteristics. We then derive

a heuristic stationary fluid approximation (which will be justified rigorously in the next

chapters) to analyze the system under the unexpected and unknown overloads.

Assuming that a convex holding cost is incurred on the two queues during overload

incidents, we find the optimal server allocation in the heuristic stationary fluid approxima-

tion. We then propose the QR-T and FQR-T family of controls, which are argued to be

superior to a fixed partition of the service pools when sharing is needed. Simulation ex-

periments show that our control actually performs better than the fluid-optimal fixed server

allocation, even if the arrival rates are known.

2.1 The Modelling Approach

The X model. As an idealized model of two separate service systems with the capability

of sharing, we consider theX model, depicted in Figure 1.1 Chapter 1. TheX model has

22
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two homogeneous customer classes and two homogeneous agentpools. We assume that

each customer class has a service pool primarily dedicated to it, but all agents are cross-

trained, so that they can handle calls from the other class, even though they may do so

inefficiently or ineffectively. Under normal loading (at ornear forecasted arrival rates), we

want each class to be served only by its designated agents, without any help from cross-

trained agents in the other service pool. We assume that staffing has been performed in

standard ways, so that the number of agents in each pool is adequate to meet performance

targets at forecasted arrival rates. However, we also want to automatically activate sharing

when there are unexpected unbalanced overloads, either when only one class is overloaded

or when both classes are overloaded but one is much more overloaded than the other.

More specifically, we consider a fully Markovian model. Customers from the two

classes arrive according to independent Poisson processeswith arrival ratesλ1 andλ2.

There is a queue for each customer class, with customers fromeach class entering service

in order of arrival. We assume that waiting customers have limited patience. A class-i cus-

tomer will abandon if he does not start service before a random time that is exponentially

distributed with mean1/θi. There are two service pools, with poolj havingmj homoge-

neous servers working in parallel. The service times are mutually independent exponential

random variables, but the mean may depend on both the customer class and the service

pool. The mean service time for a class-i customer served by a type-j agent is1/µi,j. Let

the service times, abandonment times and arrival processesbe mutually independent. Let

Qi(t) be the number of class-i customers in queue and letZi,j(t) be the number of type-j

agents busy serving class-i customers, at timet. With the assumptions above, the stochas-

tic process(Qi(t), Zi,j(t); i = 1, 2; j = 1, 2) becomes a six-dimensional continuous-time

Markov chain, given any routing policy that depends on this six-dimensional state.

In this context, under normal loading we want each class served only by agents from

its own designated service pool; i.e., we wantZ1,2(t) ≈ Z2,1(t) ≈ 0 for all t. One possible
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reason is that the value of service by agents from the other pool might be less, perhaps

because they lack specialized skills. Another possible reason is that service by the cross-

trained agents is less efficient; we might have thestrong inefficient-sharing condition

µ1,1 > µ1,2 and µ2,2 > µ2,1. (2.1.1)

We examine the inefficient-sharing case. Throughout this chapter, we assume thebasic

inefficient-sharing condition

µ1,1µ2,2 ≥ µ1,2µ2,1. (2.1.2)

Clearly, condition (2.1.1) implies condition (2.1.2). These conditions play a role in§2.3.2.

In thisX-model setting with inefficient sharing, we suppose that an unexpected over-

load occurs at some unanticipated time that changes the arrival rates. We assume that we

are unable to immediately change the staffing levels in response to that unexpected over-

load. However, we do have the option of allowing some of the cross-trained agents from

the less-loaded service pool serve customers from the more overloaded customer class. In

addition, we do not know the new arrival rates when the overload occurs. Thus we need to

develop a control that depends on the system history; in someway we must discover that

the arrival rates have indeed changed. That is challenging,because stochastic fluctuations

under normal loading may make us think that the arrival rateshave changed when in fact

they have not. We illustrate with the following example.

Example 2.1.1.To illustrate, consider a symmetric model with forecasted arrival rates

λ1 = λ2 = 90 per unit of time, where the mean service time for customers served by

designated agents isµ−11,1 = µ−12,2 = 1.0, while the mean service time for customers served by

agents from the other pool isµ−11,2 = µ−12,1 = 1.25. We measure time in units of mean service

times by designated agents, which for discussion we take to be 5 minutes. Notice that

condition (2.1.1) holds here: For all agents, the mean time required to serve the other class
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is 25% greater than the mean time required to serve an agent’s own class. Let customers

abandon at rateθ1 = θ2 = 0.4.

Because serving the other class is less efficient, with theseparameters it makes sense

to operate the system as two separate systems. Following standard staffing methods for a

single-class single-poolM/M/m +M model, we may assignm1 = m2 = 100 agents to

the two service pools. That makes the traffic intensitiesρ1 ≡ λ1/m1µ1,1 = ρ2 = 0.90,

which we regard as normal loading. With this staffing, standard algorithms show that

steady-state performance is quite good:82% of the arrivals enter service immediately upon

arrival without joining the queue, only0.5% of the arrivals abandon, the average size of

each queue is1.1, and the expected conditional waiting time, given that the customer is

served, is only0.012 (about3.6 seconds with a mean service time of5 minutes).

Now suppose that, at some unanticipated time, the arrival rate for class1 jumps to

λ1 = 130, while the arrival rate for class2 remains atλ2 = 90. If class1 receives no help

from pool2, then class1 experiences severe congestion. Assuming that the system reaches

steady state after this shift in arrival rate (which does nottake very long, approximately

a few mean service times, as confirmed by simulations - see§2.7.1), almost all class-1

customers must wait before starting service,23% of the class-1 customers abandon, the

average size of the class-1 queue becomes75, the expected conditional waiting time given

that a class-1 customer is served is0.65 (3.25 minutes).

If, as system managers, we were able to recognize that the class-1 arrival rate had shifted

to 130, then we might elect to reassign some of the class-2 agents. For example, we might

let 25 of the pool-2 agents be devoted to serving class1. That increases the total service

rate responding to the class-1 arrival rate of130 from 100 to100+(1/1.25)25 = 120, while

leaving a total service rate of100 − 25 = 75 to respond to the class-2 arrival rate of90.

Since sharing is inefficient, we must sacrifice25 units of service rate for class2 in order to

gain20 units of service rate for class1.
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Assuming that the two classes can be modelled asM/M/m+M queues (which is only

approximately correct for class1 because its servers have become heterogenous), we can

analyze the performance, e.g., by [80]. The pair of abandonment probabilities for the two

classes changes from(0.23, 0.005) to (0.08, 0.17); the pair of mean queue lengths for the

two classes changes from(75, 1.1) to (26, 38); and the pair of conditional expected waiting

times given that the customer is served changes from(0.65, 0.012) to (0.205, 0.450) (1.03

minutes and2.25 minutes, respectively). In this chapter we develop a control that responds

in a similar way, but does so automatically without having toknow that the arrival rates

made that specific shift, and without making a fixed partitionof the agents.

Analysis with a cost function.The advantage of such sharing, or any other control that

produces similar sharing by the inefficient cross-trained agents, depends upon the cost of

the congestion experienced. To assess that cost, we will assume that there is a cost function

C, with C(Q1(t), Q2(t)) representing the expected cost rate incurred at timet if the vector

of queue lengths at timet is (Q1(t), Q2(t)). If the overload incident takes place over the

time interval[a, b], then the expected total cost would be

CT ≡ E

[∫ b

a

C(Q1(t), Q2(t)) dt

]
=

∫ b

a

E[C(Q1(t), Q2(t))] dt. (2.1.3)

We assume that the cost functionC is convex and strictly increasing. The convexity ex-

plains why we might want to share when one class is much more overloaded than the other,

no matter which class is overloaded.

In this context, our goal is to choose a routing policy, whichmay allow assignments

to cross-trained agents, in order to achieve low (near-minimum) expected total cost for all

possible overload incidents and resulting stochastic processes(Q1(t), Q2(t)), while pro-

ducing only a negligible amount of sharing under normal loading. To define what we mean

by an “overload incident,” We can first specify an interval[a, c] over which the arrival-rate
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vector (λ1(t), λ2(t)) differs from the nominal vector. (We assume that the arrivalpro-

cess is a nonhomogeneous Poisson process with these new arrival rates.) However, we

should also include an additional interval[c, b] after timec to allow the vector queue-length

(Q1(t), Q2(t)) to return to its nominal steady-state value. (Engineering judgement is re-

quired.) In our analysis, we simplify by restricting attention to scenarios, as in the example

above, in which the pair of arrival rates(λ1, λ2) makes a sudden unexpected shift at some

time, and remains at the new vector for a significant duration, so that the system reaches

a new steady-state at the new arrival-rate vector. (Customer abandonment ensures that the

system reaches steady state for any arrival-rate vector.) Our control applies more generally.

For such scenarios, we simplify by re-expressing our goal asminimizing the expected

steady-state cost; i.e., we aim to minimizeCT ≡ E[C(Q1, Q2)], where(Q1, Q2) is the vec-

tor of steady-state queue lengths associated with the new arrival-rate vector associated with

the overload. We will use this steady-state overload framework to set the control parame-

ters and demonstrate effectiveness, but the control applies to other overload scenarios. For

this steady-state analysis to be effective, it is importantthat the system approaches the new

steady state associated with the overload relatively quickly. As illustrated in the concrete

example above, this tends to happen in a few mean service times. We discuss this important

point further in§2.7.1.

In the context of Example 2.1.1, we might have a shift in arrival rates lasting five hours.

It might not be possible to change the staffing in response, because it is in the middle of the

same day. The initial transient period might last3 mean service times or15 minutes, which

is 5% of the total overload incident. There might then be a recovery period lasting about5

mean service times or25 minutes, after which the system returns to steady state. Forsuch

overloads, the steady-state is evidently reasonable, and it is essential for tractability. Even

with this simplifying approximation, the control problem for the stochastic system is very

difficult. We will get an approximate solution only after exploiting a fluid approximation in
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addition to this steady-state analysis; see§2.3.2. Even with that approximation, the analysis

with a general increasing convex cost function gets complicated; see§2.3.2. However, as

a byproduct, there is a very nice simple story (explicit formulas for everything), provided

that we assume a separable quadratic power cost function; see Proposition 2.3.5.

2.2 The Proposed Control

We start by briefly reviewing thefixed-queue-ratio(FQR) routing rule from [29] and then

we show that the FQR rule without thresholds can perform poorly with inefficient sharing,

where the conditions in the theorems of [29] are violated. Then we introduce our proposed

modification of FQR in order to treat unexpected overloads. It involves general queue-ratio

functions, as in [31], and thresholds, one of each for each direction of sharing.

2.2.1 FQR and its Difficulties with Inefficient Sharing

With two queues, FQR can be implemented by considering a (weighted)queue-difference

stochastic processD(t) ≡ Q1(t)−rQ2(t), t ≥ 0, wherer is a single target-ratio parameter

that management can set. With FQR for theX model, a newly available agent in either

service pool serves the customer at the head of the class-1 (class-2) queue ifD(t) > 0

(D(t) < 0), and serves the customer at the head of its own queue ifD(t) = 0. The goal of

FQR is to maintain a nearly constant queue ratio:Q1(t)/Q2(t) ≈ r throughout time. When

r = 1, FQR coincides with serving the longer queue.

Under regularity conditions, the FQR control has two very desirable features for large-

scale service systems, which makes it possible to reduce themulti-class multi-pool staffing-

and-routing problem to the well-understood single-class single-pool staffing problem. First,

if the required conditions are satisfied, then FQR tends to producestate-space collapse

(SSC); i.e., for theX model, the two-dimensional queue-length vector(Q1(t), Q2(t)) tends
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to evolve approximately as a one-dimensional process determined by the total queue length

QΣ(t) ≡ Q1(t)+Q2(t). In particular,Qi(t) ≈ piQΣ(t) for i = 1, 2, wherep1 = r/(1+r) =

1 − p2; e.g., see Figure 2.12 in§2.7.2. Moreover, it does so in a way such that all three

stochastic processes -QΣ(t),Q1(t) andQ2(t) - remain appropriately stable ast → ∞. In-

deed, [29] show that, under regularity conditions, FQR achieves SSC asymptotically in the

quality-and-efficiency-driven (QED) many-server heavy-traffic limiting regime. Second,

with FQR, it is possible to choose the ratio parameterr (or, equivalently, the queue propor-

tionspi) in order to determine the optimal level of staffing to achieve desired service-level

differentiation; i.e., staffing costs are minimized subject to meeting class-dependent delay

targetsP (Wi > Ti) = α; see 2.7.2 and [29]. [31] also showed how to staff to minimize

convex costs under normal loading. In that case, the asymptotically optimal control in the

QED regime is not FQR, but a state-dependent generalization: the queue-and-idleness-

ratio (QIR) control. Our optimal queue ratios for the fluid model under overloading with

convex costs are of the same state-dependent form.

However, in our setting, where service provided by non-designated agents is inefficient,

neither FQR nor QIR, without the extra thresholds, is appropriate in normal loading, be-

cause they induce undesired sharing. Because of the inefficient sharing, the system isnot

work-conserving; sharing causes the required workload to increase. Indeed, the conditions

in the key theorems of [29, 31] are violated. In fact, those conditions are actually needed

to maintain stability. (However, for FQR without the thresholds, SSC is still achieved; the

two queues explode together.)

Example 2.2.1.To illustrate, consider theX model with parametersm1 = m2 = 100,

µ1,1 = µ2,2 = 1.0, µ1,2 = µ2,1 = 0.8, λ1 = λ2 = 0.99 andθ1 = θ2 = 0.0 (no abandon-

ment). Since the traffic intensities areρi = λi/miµi,i = 0.99, the two separate systems

without sharing are stable (with mean queue length85 and mean waiting time0.85). How-

ever, if we use FQR withr = 1, then inefficient sharing is generated, so that a significant
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proportion of each agent pool is busy serving the other class. As a consequence, the arrival

rate actually exceeds the service rate and the queue lengthsdiverge to infinity. Here, there

still is SSC, but the two queue lengths diverge together.

This difficulty when FQR is applied inappropriately is illustrated by Figures 2.1 and

2.2. They show the sample paths ofQ1(t) andZ2,1(t), starting empty, in one simulation

run. After an initial transient period, the number of agentsserving the other class fluctuates

aroundE[Z1,2] = E[Z2,1] ≈ 39, while the queue grows in an approximately linear rate; the

simulation estimate isE[Qi(t)] ≈ 6.8t, t ≥ 0. (These numerical values are estimated from

multiple simulation runs. The confidence intervals are lessthan1%.
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Customer abandonment necessarily prevents the queues fromexploding. Even in the

worst case, when all agents are dedicated to the wrong class,the system would be stable.

However, there still is performance degradation, e.g., with θ1 = θ2 = 0.2 andr = 1 about

39% of the agents in each pool are busy serving customers from theother class which

causes the queues to grow from10, if there is no sharing, to34. More details appear in

§2.7.2.
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2.2.2 The Proposed Control: FQR-T

Here is the lesson from the previous subsection: If we are going to use a queue-ratio control,

then we need to take extra measures to prevent sharing under normal loading. First, we want

to prevent simultaneous inefficient sharing in both directions. Hence, we restrict the routing

to one-way sharingat any time: We do not allow a newly available type-2 agent to serve

a waiting class-1 customer if there are any type-1 agents busy serving class-2 customers.

And similarly in the other direction. (However, over time, the direction of one-way sharing

may change; we are not considering the so-calledN model, which only allows one-way

sharing in one fixed direction.)

From cost considerations, discussed in§2.3, we want to allow different ratio param-

etersr1,2 andr2,1 for the different ways we may share. (In general, we may need more

complicated ratio functions or, equivalently, sharing regions; see§2.3.2, especially Figure

2.3.) In order to permit sharing only in the presence of unbalanced overloads, we suggest

fixed-queue-ratio routing with thresholds(FQR-T). In addition to the two ratio parame-

tersr1,2 andr2,1, we introduce two positive thresholdsk1,2 andk2,1. We then define two

queue-difference stochastic processes

D1,2(t) ≡ Q1(t)− r1,2Q2(t) and D2,1(t) ≡ r2,1Q2(t)−Q1(t). (2.2.1)

As long asD1,2(t) < k1,2 andD2,1(t) < k2,1, we do not allow any sharing, i.e., we only let

agents serve customers from their designated class.

However, available pool-2 agents are assigned to class-1 customers whenD1,2(t) ≥

k1,2, provided that no pool-1 agents are still serving a class-2 customer. As soon as the

first pool-2 agent is assigned to serve a class-1 customer, we drop the thresholdk1,2, but

keep the other thresholdk2,1. (We could elect to add another threshold for the sharing;

see§2.7.6.) Once one-way sharing has been activated with pool2 helping class1, we use
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ordinary FQR with ratio parameterr1,2. Upon service completion, a newly available type-2

agent serves the customer at the head of the class-1 queue (the class-1 customer who has

waited the longest) ifD1,2(t) > 0; otherwise the agent serves a customer from his own

class. In this phase, pool-1 agents only serve class-1 customers. Only one-way sharing

in this direction will be allowed until either the class-1 queue becomes empty or the other

difference process crosses the other threshold, i.e., whenD2,1(t) ≥ k2,1. As soon as either

of these events occurs, newly available pool-2 agents are only assigned to class2 and the

thresholdk1,2 is reinstated.

We can initiate sharing in the opposite direction when firstD2,1(t) ≥ k2,1 and there are

no class-2 agents serving class-1 customers. At the first time both conditions are satisfied,

we start sharing with a pool-2 agent serving a class-1 customer. When that first assignment

takes place, we remove the thresholdk2,1 and again use FQR with one-way sharing, but

now with the ratio parameterr2,1.

Upon arrival, a class-i customer is routed to pooli if there are idle servers; otherwise

the arrival goes to the end of the class-i queue. An arrival might increase the queue to a

point that sharing is activated. Then the first customer in queue is served by the other class

(presumably the agent that has been idle the longest, but we do not focus on individual

agents).

The queue-difference stochastic processes in (2.2.1) willnever provide any instanta-

neous motivation to have agents of both types simultaneously inefficiently serving the other

class ifr1,2 ≥ r2,1. That property will be satisfied when we apply a cost functionto specify

the ratio parameters in§2.3.2.

To illustrate how FQR-T performs in normal loading (heavy load, but not overloaded),

we again consider Example 2.2.1 with abandonments at rateθi = 0.2. We let r1,2 =

r2,1 = 1, so that there is no change from FQR above, but now we add thresholdsk1,2 =

k2,1 = 10. The performance is greatly improved with FQR-T compared toFQR without
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thresholds:E[Z1,2] = E[Z2,1] ≈ 2.0 for FQR-T, whileE[Z1,2] = E[Z2,1] ≈ 39 for FQR.

As a consequence, the performance for FQR-T is almost the same as without sharing. In

particular, with FQR-T, the abandonment rate is slightly higher than without sharing (2.5%

compared to2.0%), but the average queue length is actually less(9.4 compared to10.0).

In fact, FQR-T can outperform no sharing with larger threshold values, because of the

resource-pooling effect. For more details, see§2.7.2.

2.3 The Fluid Approximation for the Steady State

In order to obtain a tractable characterization of performance for FQR-T and find good

queue-ratio parameters, we now introduce a deterministic fluid approximation. To describe

the steady-state behavior of our model when there is no sharing, we first discuss the case of

a single customer class served by a single service pool - the classicalM/M/m+M model,

with arrival rateλ, individual service rateµ and abandonment rateθ. Afterwards we treat

the more general X model.

2.3.1 One Class and One Pool

For theM/M/m+M model, the approximating deterministic fluid model has beenstud-

ied in [79] via many-server heavy-traffic limits. Here we will derive the simple steady-state

formulas directly. We assume that input and output (which wecall fluid) occurs determinis-

tically at the specified rates. We think of the system as largeand thus regard the number of

customers and servers as continuous quantities as well. Thus, fluid arrives deterministically

and continuously at constant rateλ. Fluid also is served and abandons deterministically and

continuously at rates that are directly proportional to thenumber of busy servers and the

queue length, respectively. If the “number” of busy serversis x, then fluid is served at rate

xµ; if the queue length isq, then fluid abandons at rateqθ.



CHAPTER 2. RESPONDING TO UNEXPECTED OVERLOADS 34

We say that the system is overloaded if the input rate exceedsthe maximum possible

total service rate. Givenm servers, each working at rateµ, the maximum possible total

service rate ismµ. Thus the system is overloaded ifλ > mµ, and not overloaded otherwise.

If the system is overloaded, then in steady state all serverswill be busy and there will be a

queue of waiting fluid, with contentq, which can be determined simply be equating the rate

in to the rate out, including customer abandonment:rate in≡ λ = mµ + qθ ≡ rate out.

As an immediate consequence, we getq = (λ − mµ)/θ. If the system is not overloaded,

i.e., if λ ≤ mµ, then there will be no queue. Then we can describe the steady-state via the

amount of spare service capacity (number of idle servers),s, which again can be determined

by equating the rate in to the rate out:rate in≡ λ = (m−s)µ ≡ rate out. As an immediate

consequence, we gets = m−(λ/µ). Without directly specifying whether or not the system

is overloaded, we can write

q =
(λ−mµ)+

θ
and s =

(
m− λ

µ

)+

, (2.3.1)

where(x)+ ≡ max {x, 0}. We always have thecomplementarity relationqs = 0.

From the point of view of our analysis, we regardλ as an unknown parameter, but we

consider the remaining parametersm, µ andθ as fixed and known. For any givenλ, we

can computeq ands as indicated above. With our overload control problem in mind, it is

significant that we can recoverλ from the pair(q, s), because we want to learn aboutλ by

observing(q, s). If q > 0 ands = 0, then necessarily we areoverloaded, andλ = θq+mµ;

if q = 0 ands > 0, then necessarily we areunderloaded(which includes normally loaded),

andλ = (m − s)µ; if q = 0 ands = 0, then necessarily we arecritically loaded, and

λ = mµ; we cannot haveq > 0 and s > 0. For an overloaded fluid queue,λ is an

increasing linear function ofq; for an underloaded queue,λ is a decreasing linear function

of s.
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As discussed in [79], we can also describe the transient behavior of the fluid model and

determine other performance measures. For example, if the fluid model is overloaded, then

the associated approximate potential steady-state waiting time (virtual waiting time for a

customer with infinite patience) isw = log (λ/mµ)/θ1 = log (ρ)/θ1, whereρ ≡ λ/mµ is

the traffic intensity, satisfyingρ > 1; see (2.26) of [79].

Note that an increasing convex function ofw is an increasing convex function ofλ for

λ ≥ mµ. Sinceλ is a positive linear function ofq under overloads, we see that an increasing

convex function ofw itself is a convex increasing function ofq, as we have assumed in our

optimization formulation. Similarly, the abandonment rate in the overloaded fluid model is

θq = λ−mµ, so the abandonment rate is an increasing linear function ofq under overloads.

2.3.2 The Optimal Solution for the X Fluid Model

TheX fluid model is a natural generalization of the single-class single-pool fluid model

above. Now we have two deterministic arrival ratesλ1 andλ2, one for each class, with the

additional parameters{mj , θi, µi,j; i = 1, 2; j = 1, 2}. Closely paralleling the discussion

above, we will be characterizing the steady-state performance in terms of the quantities

(Q1, Q2, S1, S2), whereQi is the fluid content at the class-i queue, whileSj is the amount

of spare capacity at poolj.

The steady-state behavior of theX fluid model depends on the number of agents from

each pool assigned to (and actually busy serving customers from) each customer class, i.e.,

the deterministic vector(Z1,1, Z1,2, Z2,1, Z2,2), whereZi,j is the number of pool-j agents

assigned to serve class-i customers, which is regarded as a continuous variable. To be

legitimate assignments, we must haveZi,j ≥ 0 for all i andj with Z1,1 + Z2,1 ≤ m1 and

Z1,2 + Z2,2 ≤ m2. Since these agents are actually busy serving customers, wemust also

haveλ1 ≥ Z1,1µ1,1 + Z1,2µ1,2 andλ2 ≥ Z2,1µ2,1 + Z2,2µ2,2. Once we assign values to

these variablesZi,j, we reduce theX model to two single-class single-pool models. The
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arrival rate for classi is λi, while the service rate for classi isZi,1µi,1 + Zi,2µi,2. Classi is

then overloaded if and only ifλi > Zi,1µi,1 + Zi,2µi,2, in which case the steady-state fluid

content in the class-i is

Qi =
λi − Zi,1µi,1 − Zi,2µi,2

θi
. (2.3.2)

If classi is not overloaded, thenQi = 0. The spare capacity in poolj in steady state is

Sj = mj − Z1,j − Z2,j ≥ 0, j = 1, 2.

In thisX fluid model setting, for known arrival rates, our initial goal is to determine the

minimum costC∗(λ1, λ2), which is the minimum ofC(Q1(Z1,1, Z1,2)), Q2(Z2,1, Z2,2)) for

specified arrival-rate vector(λ1, λ2), which we denote simply byC(Z1,1, Z1,2, Z2,1, Z2,2),

over all feasible fixed assignment vectors(Z1,1, Z1,2, Z2,1, Z2,2) inR4 withQi ≡ Qi(Zi,1, Zi,2)

defined in (2.3.2). We let the asterisk denote the optimal solution. (We do not consider more

general controls.) We will apply the optimal solution to findthe optimal state-dependent

queue-ratio functions.

Let qi be the queue length of classi and letsi be the spare capacity in pooli when there

is no sharing. They can be expressed as in (2.3.1), with formulas depending oni. In the

fluid model, we regard the system as being in normal loading ifneither queue is overloaded

without sharing, i.e., ifq1 = q2 = 0, but the amount of spare capacity is not too large. Since

the cost function is increasing and convex, under normal loading we achieve the minimum

cost by lettingZ1,2 = Z2,1 = 0 (no sharing) to obtainQi = 0 for i = 1, 2. The unexpected

overload means that eitherq1 > 0 or q2 > 0, or both. Henceforth we assume that to be the

case.

The natural model state is(λ1, λ2), but an equivalent representation is(q1, s1, q2, s2),

where we always have the complementarity relationq1s1 = q2s2 = 0. If qi > 0, then

λi = miµi,i + qiθi; if si > 0, thenλi = (mi − si)µi,i. This alternative representation

implies that, for theX fluid model, we can determine the arrival rates by observing the
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queue lengths and spare capacities.

LetZ∗i,j be the optimal value of the variableZi,j. We start by stating some basic propo-

sitions, which serve to simplify ourX-fluid-model optimization problem. We first reduce

the number of variables from four to two. The following is immediate.

Proposition 2.3.1.(no idle agents) If we do not haveQ∗1 = Q∗2 = 0, then there should be

no idle agents, i.e.,S∗j = 0 or, equivalently,Z∗1,j + Z∗2,j = mj for j = 1, 2.

As a consequence of Proposition 2.3.1, ifq1 > 0, q2 = 0 ands2 > 0, then necessarily

Z∗1,2 > 0. Moreover, eitherZ∗1,2 ≥ s2 orQ∗1 = Q∗2 = 0.

We next show that inefficient sharing implies no two-way sharing.

Proposition 2.3.2.(one-way sharing) Since the service rates satisfy the inefficient-sharing

conditionµ1,1µ2,2 ≥ µ1,2µ2,1 in (2.1.2), it suffices to consider one-way sharing; i.e.,Z∗1,2Z
∗
2,1 =

0.

Proof: Suppose thatZ1,2 > 0 andZ2,1 > 0, so that we have sharing in both directions. It

suffices to assume thatQ1 > 0 andQ2 > 0. We will show that, for appropriate positive

variablesx1,2 andx2,1, if we replace(Z1,2, Z2,1) by (Z1,2 − x1,2, Z2,1 − x2,1), then both

queue lengths will decrease until one of the variablesZ1,2 − x1,2 or Z2,1 − x2,1 becomes0

or both queues become empty. We definex2,1 as an appropriate constant multiple ofx1,2,

so that we have a single real variable. To do so, letγi ≡ λi − Zi,1µi,1 − Zi,2µi,2 > 0 for

i = 1, 2. Then letx2,1 ≡ βx1,2, whereβ ≡ (γ2µ1,2 + γ1µ2,2)/(γ2µ1,1 + γ1µ2,1). Then

we consider what happens as we increasex1,2, assuming thatβ remains constant. Let

∆i ≡ θi(Qi(0) − Qi(x1,2)), whereQi(x1,2) denotesQi with the initial vector of sharing

levels(Z1,2, Z2,1) replaced by(Z1,2 − x1,2, Z2,1 − βx1,2). Then

∆1 = x1,2γ1

(
µ1,1µ2,2 − µ1,2µ2,1

γ2µ1,1 + γ1µ2,1

)

∆2 = x1,2γ2

(
µ1,1µ2,2 − µ1,2µ2,1

γ2µ1,1 + γ1µ2,1

) (2.3.3)
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Clearly,∆i ≥ 0 for both i if and only if inequality (2.1.2) holds. Moreover, from (2.3.2)

and (2.3.3), we see that both queues become empty at the same level ofx1,2. Hence, we

can decrease both variablesZ1,2 andZ2,1 by increasingx1,2 until one of these variables

becomes0 or both queue lengths simultaneously become0.

As a consequence of Proposition 2.3.2, we can re-express thebasic optimization prob-

lem, first, in terms of two convex real-valued functions of a single real variable,C1,2 and

C2,1, and second, in terms of a single combined convex function ofa single real variable,

Cc. Let 1A be the indicator function of the setA; i.e.,1A(x) = 1 if x ∈ A and1A(x) = 0

otherwise.

Proposition 2.3.3.(single-variable functions)Since the inefficient-sharing condition(2.1.2)

holds, the optimal cost can be expressed as

C∗(λ1, λ2) = C∗(q1, s1, q2, s2)) = min {C1,2(Z1,2), C2,1(Z2,1)}

= min {Cc(Z1,2 − Z2,1)}
(2.3.4)

overZ1,2 andZ2,1 such that0 ≤ Z1,2 ≤ m2, 0 ≤ Z2,1 ≤ m1 andZ1,2Z2,1 = 0, where

C1,2(Z1,2) ≡ C1,2(Z1,2;λ1, λ2)

≡ C

(
(λ1 −m1µ1,1 − Z1,2µ1,2)

+

θ1
,
(λ2 − (m2 − Z1,2)µ2,2)

+

θ2

)

≡ C1,2(Z1,2; q1, s1 = 0, q2, s2)

≡ C

(
(q1 − µ1,2Z1,2)

+

θ1
,
(q2 − s2µ2,2 + µ2,2Z1,2)

+

θ2

)
,

(2.3.5)

Cc(Z1,2 − Z2,1) ≡ C1,2(Z1,2 − Z2,1)1{Z1,2−Z2,1≥0} + C2,1(−(Z1,2 − Z2,1))1{Z1,2−Z2,1<0}

= C1,2(Z1,2)1{Z1,2>0} + C2,1(Z2,1)1{Z2,1>0} + C(q1, q2)1{Z1,2=Z2,1=0},
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with qi andsi defined in(2.3.1), satisfyingq1s2 = q2s2 = 0, andC2,1(Z2,1) defined analo-

gously toC1,2(Z1,2) in (2.3.5). The functionsC1,2 andC2,1 are continuous strictly convex

functions of the single real variablesZ1,2 andZ2,1 over their domain. If, in addition, the

stronger inefficient-sharing conditionµ1,1 > µ1,2 andµ2,2 > µ2,1 in (2.1.1)holds, thenCc

is also a continuous strictly convex function of the single real variableZ1,2 − Z2,1 over the

domain specified in Proposition 2.3.3.

Proof: The representation is an immediate consequence of Proposition 2.3.2. SinceC1,2(Z1,2)

is the composition of a strictly convex function and a linearfunction, it is a strictly convex

function ofZ1,2; e.g., p. 38 of [62]; similarly forC2,1(Z2,1). To establish the convexity of

Cc, first assume thatC is differentiable. It suffices to show that the derivative ofCc with

respect toZ1,2 −Z2,1, denoted byC ′c, is nondecreasing. Existence and monotonicity of the

derivativeC ′c away from the boundary pointZ1,2−Z2,1 = 0 follows from the differentiabil-

ity and convexity ofC1,2 andC2,1, assuming thatC is differentiable and convex. However,

even ifC is differentiable, the derivative ofCc need not exist atZ1,2−Z2,1 = 0. It suffices to

show that the left derivative is less than the right derivative at this point. The right derivative

ofCc at0, denoted byC
′+
c (0), coincides with the derivativeC ′1,2(0), while the left derivative

ofCc at0, denoted byC
′−
c (0), coincides with−C ′2,1(0). LetC ′i denote the partial derivative

of C with respect to itsith coordinate at the argument(q1 − (s1µ1,1/θ1), q2 − (s2µ2,2/θ2)),

which is positive becauseC is increasing. Then observe that

C ′1,2(0) = −C ′1
(
µ1,2

θ1

)
+ C ′2

(
µ2,2

θ2

)
and − C ′2,1(0) = −C ′1

(
µ1,1

θ1

)
+ C ′2

(
µ2,1

θ2

)

Hence,C ′1,2(0) ≥ −C ′2,1(0), so thatC
′+
c (0) > C

′−
c (0) if the two inequalities in (2.1.1) hold.

These relations can be extended to non-differentiable functionsC by working with left and

right derivatives.

Corollary 2.3.1. (three intervals) If the stronger inefficient-sharing condition(2.1.1)holds,
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then for each pair of arrival rates(λ1, λ2) or initial state(q1, s1, q2, s2) (without sharing),

there are two thresholdsζ1,2 ≥ ζ2,1 such that exactly one of the following occurs:

(i) Z∗1,2 > 0 and Z∗2,1 = 0 for Z1,2 − Z2,1 > ζ1,2,

(ii) Z∗2,1 > 0 and Z∗1,2 = 0 for Z1,2 − Z2,1 < ζ2,1

(iii) Z∗1,2 = Z∗2,1 = 0 for ζ2,1 ≤ Z1,2 − Z2,1 ≤ ζ1,2. (2.3.6)

The value of Corollary 2.3.1 will be clear when we turn our attention to the queue ratio

r below. We can apply Proposition 2.3.2 to get further simplification if there is initially

spare capacity. Then, from the beginning, we know that we canonly have sharing with

help provided by the pool with spare capacity; i.e., ifq1 > 0 > s2, thenZ∗1,2 > 0 and

Z∗2,1 = 0, so that it suffices to minimizeC1,2(Z1,2).

It is natural to have the cost functionC be smooth, in which case the optimal solution

can be found by simple calculus. Proposition 2.7.1 concludes that, if the optimal solution

found by calculus falls outside the feasible set, then the actual optimum value is obtained

at the nearest boundary point.

It is easy to see that there is a one-to-one correspondence between the queue ratio

r ≡ Q1/Q2 and the real variableZ1,2 − Z2,1 used to specify the optimization problem

in Proposition 2.3.3. That implies that there is a one-to-one correspondence between the

fixed-agent-allocation optimization problem (choosingZ1,2 andZ2,1) and the (fixed) queue-

ratio control problem (choosing state-dependent queue-ratio functionsr1,2 andr2,1) in the

fluid-model context. We establish it formally in§2.7.4.

Finally, we provide a basis for an efficient algorithm to determine the equivalent optimal

controls. To do so, we effectively reduce the dimension fromtwo to one by observing

that special weighted sums of the queue lengths (and corresponding weighted sums of the

arrival rates) are independent of the agent-assignment variablesZ1,2 andZ2,1. We only
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state the result forZ1,2; the corresponding result forZ2,1 is stated in§2.7.5. The proof is

verification by direct computation, so we omit it. For understanding, it may be helpful to

refer to Figure 2.3 in the next subsection.

Proposition 2.3.4.(constant weighted queue lengths) Let

a1,2 ≡
µ2,2θ1
µ1,2θ2

and ã1,2 ≡
µ1,2

µ2,2

. (2.3.7)

Consider any initial state(λ1, λ2), or equivalently(q1, s1, q2, s2), with s1 = 0. Then

w1,2 ≡ a1,2

(
λ1 −m1µ1,1

θ1

)
+

(
λ2 −m2µ2,2

θ2

)
= a1,2q1 + q2 −

s2µ2,2

θ2

= a1,2Q1(Z1,2) +Q2(Z1,2)−
S2(Z1,2)µ2,2

θ2
(2.3.8)

for all Z1,2 with 0 ≤ Z1,2 ≤ m2.

Proposition 2.3.4 implies that the locus of all nonnegativequeue-length vectors(Q1, Q2) ≡

(Q1(Z1,2), Q2(Z1,2)) associated with initial state(λ1, λ2), or equivalently(q1, s1, q2, s2),

with s1 = 0, is on the line{(Q1, Q2) : a1,2Q1 + Q2 = w1,2} in the nonnegative quadrant.

Thus, for any nonnegative constantw1,2, the optimal queue-length vector(Q∗1, Q
∗
2) and the

optimal queue-ratior∗1,2 ≡ Q∗1/Q
∗
2 restricted to one-way sharing(Z2,1 = 0) are the same

for all initial states(q1, s1, q2, s2) with s1 = 0 satisfying (2.3.8) provided thatq1 ≥ Q∗1. In

that case,a1,2Q∗1 + Q∗2 = w1,2. That same optimal queue-length vector and optimal queue

ratio holds for all arrival pairs(λ1, λ2) wheres1 = 0, Z2,1 = 0 and

λ1 + ã1,2λ2 = w̃1,2 ≡
θ1θ2w1,2 + a1,2θ2m1µ1,1 + θ1m2µ2,2

a1,2θ2
. (2.3.9)

And similarly for sharing in the other direction; see§2.7.5.
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2.3.3 Computing the Optimal Queue-Ratio Functions

We now demonstrate how to numerically find the optimal state-dependent queue ratiosr∗1,2

andr∗2,1 as functions of the fluid state(Q1, S1, Q2, S2). With the thresholds, this gives us

a state-dependentqueue-ratio control with thresholds(QR-T). To illustrate, we consider a

(nonseparable) quadratic cost function of the form

C(Q1, Q2) = 3Q2
1 + 2Q2

2 +Q1Q2 + 10Q1 + 5Q2. (2.3.10)

For any vector of arrival rates(λ1, λ2) we can assign one, and only one, point in the

(Q1, Q2) plane, which represents the queue lengths associated with these arrival rates, when

there is no sharing. To represent spare capacity, we allow negative values; i.e.,−Qi is short-

hand for−Siµi,i/θi. (We actually plot(Q1 − S1µ1,1/θ1, Q2 − S2µ2,2/θ2) even though the

axes are simply labelledQi.)

We apply Proposition 2.3.4 to find the optimal queue ratios. We first consider when

pool 2 helps class1. To treat that case, we letλ2 = m2µ2,2, so that class2 has no queue

before pool2 helps class1. We then assume thatλ1 > m1µ1,1 so that class1 is overloaded.

We then choose a large set of positive weighted arrival sums{w̃1
1,2, . . . , w̃

n
1,2} and find the

optimal queue ratio for each. In the first step, we letλ1 ≡ w̃1,2 − ã1,2λ2, using (2.3.9).

We then write (2.3.10) as a function ofZ1,2, take its derivative and find the optimalZ∗1,2.

PluggingZ∗1,2 in the queue equations gives us the optimal queue lengths (for the specific

arrival rates), and the optimal queue ratior∗1,2. We repeat this for everỹwi
1,2 to get the curve

1/r∗1,2 depicted in Figure 2.3. To find the curve1/r∗2,1 we go through essentially the same

procedure forZ∗2,1.

Figure 2.3 simultaneously depicts the three optimal sharing regions in the two-dimensional

state space and the two curves of optimal queue ratios. It wasgenerated using Matlab on a

system with the following parameters:m1 = m2 = 100, µ1,1 = µ2,2 = 1, µ1,2 = µ2,1 = 0.8
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andθ1 = θ2 = 0.3. In addition, Figure 2.3 shows how to find the optimal queue ratio for
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Figure 2.3: Curves of the optimal queue ratios for anX model

two possible initial queue lengths denoted by stars. When the initial queue-length vector is

(Q1, Q2) = (150, 0) (equivalently,λ1 = 145 andλ2 = 100), then the optimal queue-length

vector is(Q∗1, Q
∗
2) = (76.5, 91.8) and the optimal queue ratio isr∗1,2 ≡ Q∗1/Q

∗
2 = 0.83. This

optimal queue ratio is the intersection of the curve1/r1,2 with the line with slope−a1,2 that

passes through(150, 0) (the circle on the1/r1,2 curve). When the initial queue-length vec-

tor is (Q1, Q2) = (0, 150) (equivalently,λ1 = 100 andλ2 = 145), we getr∗2,1 = 0.41

and(Q∗1, Q
∗
2) = (46.6, 112.8). The optimal queue ratio is also the intersection of the curve

1/r2,1 with the line with slope−a2,1 that passes through(0, 150) (the circle on the1/r2,1

curve).

Both the1/r∗1,2 and1/r∗2,1 curves seem to be linear, although that is actually not quitethe
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case; ther∗i,j ’s are not constants for this cost function. For example, we already noted that,

for (λ1, λ2) = (145, 100) the optimal queue ratio isr∗1,2 = 0.83. If we changeλ1 to110 then

the optimal ratio becomes0.80. For the other sharing direction, if(λ1, λ2) = (100, 145),

thenr∗2,1 = 0.41, but if we changeλ2 to 110, then the optimal ratio changes to0.38.

The fact the the two optimal-ratio curves are nearly linear in Figure 2.3 suggests that

we can approximate the optimal queue-ratio function by fixedqueue ratios, depending only

on the direction of sharing; i.e., we can use FQR-T with only two values: one forr1,2 and

the other forr2,1. In our example we may choose to user1,2 = 0.8 andr2,1 = 0.4. The cost

for using a nearly optimal ratio is very small in the fluid approximation, and even smaller

in the stochastic system.

To understand when the optimal queue-ratio functions are nearly linear, as in the exam-

ple above, and what the structure should be more generally, we investigate structured cost

functions in§2.7.6. We obtain explicit analytical expressions in special cases. We focus

on separable cost functions:C(Q1, Q2) = C1(Q1) + C2(Q2), where each component cost

functionCi is strictly convex, strictly increasing and twice differentiable. For example, we

find that QR-T reduces to FQR-T exactly whenCi(Qi) = ciQ
ni

i with n1 = n2; the case

n1 = n2 = 2 is close to (2.3.10).

Proposition 2.3.5.(explicit solution) WhenC(Q1, Q2) = c1Q
2
1 + c2Q

2
2, FQR-T is optimal

for theX fluid model with

r∗1,2 ≡ a1,2c2
c1

=
c2µ2,2θ1
c1µ1,2θ2

, r∗2,1 ≡
a2,1c2
c1

=
c2µ2,1θ1
c1µ1,1θ2

,

Z∗1,2 =
(c1µ1,2θ1)(q1 − (s1µ1,1/θ1))− (c2µ2,2θ2)(q2 − (s2µ2,2/θ2))

c1µ2
1,2/θ1 + c2µ2

2,2/θ2
,

Z∗2,1 =
c2µ2,1θ2(q2 − (s2µ2,2)/θ2)− c1µ1,1θ1(q1 − (s1µ1,1)/θ1)

c1µ2
1,1 + c2µ2

2,1

. (2.3.11)
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In Proposition 2.3.5, the cost is specified by a single parameter: The ratioc1/c2 spec-

ifies the relative importance of the two queues. (The remaining parameter is equivalent to

choosing the monetary units.) Finally, we caution that other cases (e.g., linear costs) can

be quite different; see§2.7.6.

2.3.4 Application to the Stochastic Model

We can directly apply the QR-T control derived above to the stochastic model. Figure 2.3

identifies three sharing regions to apply to the stochastic process(Q1(t), S1(t), Q2(t), S2(t))

once sharing has been activated. There are two regions for each direction of sharing; e.g., if

sharing has been activated with pool2 helping class1, available pool-2 agents serve class-1

customers when the queue-length vector falls in the lower right region, whereas there is no

sharing in the other two regions. The way to share is described in §2.2.2.

2.4 Choosing the Thresholds

We now consider how to choose the thresholdsk1,2 andk2,1. These thresholds have two

important roles: First, they automatically detect when thesystem becomes overloaded and,

second, they prevent unwanted sharing in normal loading. Ifthe thresholds are too large,

then the queues may not reach them during the overload. (Abandonments necessarily keep

the queues from increasing without bound, even under overloads.) On the other hand, as

discussed in§2.2.1, if the thresholds are too small, then sharing may be activated too often,

so that we may get inefficient sharing.

Unfortunately, the fluid analysis cannot reveal the “right”size of the thresholds, since

the fluid queues are empty under normal loading. We need to understand the extent of the

stochastic fluctuations, something which is not captured bythe fluid approximation. At
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this point, it is convenient to apply many-server heavy-traffic limits to gain additional in-

sight. To understand the general idea, it suffices to refer toestablished limits for the basic

M/M/n +M model, as in [27] and [79]. There, both fluid models and refineddiffusion

process models are obtained as limits as the scale increases, where scale is measured by

the numbern of servers. What is unusual here, though, is that we are simultaneously inter-

ested in the quality-and-efficiency-driven (QED) regime and the efficiency-driven (ED) or

overloaded regime.

The QED regime is appropriate to describe normal loading, which is what prevails

before the overload occurs, while the ED regime is appropriate to describe the overloaded

system. In both cases, the arrival rate is allowed to grow asn → ∞, while the service rate

and abandonment rate are held fixed. The important insight isthat the queue lengths tend

to be of orderO(
√
n) in the QED regime, as depicted by the diffusion limit in the QED

regime, while the queue lengths tend to be of orderO(n) in the ED regime, as depicted by

the fluid limit in the ED regime.

Thus, to prevent unwanted sharing when the system is normally loaded, we should

choose the thresholds to be of size bigger thanO(
√
n). That ensures that the weighted-

queue-difference processes,D1,2 andD2,1, will not move above the thresholds by random

fluctuations. On the other hand, we should choose the thresholds to beo(n), so that the

thresholds will be asymptotically negligible compared to theO(n) fluid content. Then,

asymptotically, they will be exceeded instantaneously when the overload occurs and they

will not significantly alter the queue ratios. From this simple reasoning, we see that it

suffices to haveκ(n)i,j = O(np) asn → ∞ for 1/2 < p < 1. (Incidentally, that scaling also

makes the thresholds out of reach in normal loading in the law-of-the-iterated logarithm

scaling of(n log log n)1/2.)

This asymptotic analysis shows that the thresholds chosen in this way are asymptoti-

cally optimal, both during normal loading and during overload incidents. Asymptotically,
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the thresholds will be exceeded negligibly often during normal loading; asymptotically, the

thresholds do not alter the optimal average cost in the overload incidents. For the case of

normal loading, we can apply the QED results in [27]; for the overload incidents, the ED

results in [79] provide only heuristic support, because they apply only to theM/M/n+M

model. The ED fluid model for theX model with FQR-T is analyzed in the next two

chapters.

Of course, we actually have a system with one fixedn. When we want to apply the

theory to a real system, with a finite number of agents, it becomes hard to distinguish

betweenO(n) andO(
√
n). For example, ifn = 100, then both10 = 0.1n and10 =

√
n. Thus, as in any application of asymptotic results, we should numerically verify that

the values chosen are appropriate, and refine them if necessary, for which we can use

simulation. For example, for a system with100 agents in each pool (and abandonment rates

less than service rates), we found thatκi,j = 10 is effective. We found that the performance

is not too sensitive to the choice of the thresholds, provided that they are neither too small

nor too large. We present simulation results for FQR-T undernormal loading in§2.8.2,

including a sensitivity analysis for the thresholds.

2.5 Simulation Experiments

Our analysis has been based on a fluid approximation of a stochastic system. It remains to

show that the fluid approximation is suitably accurate for the stochastic system and that the

optimal control for the fluid model works well in the stochastic system. For those purposes,

we conduct simulation experiments.
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2.5.1 Accuracy Of The Fluid Approximation

In this subsection we investigate the accuracy of the approximation. To show how the accu-

racy increases as the system becomes larger, we simulated three cases, each case represents

an element in a sequence of queueing systems indexed byn, scaled to satisfy a many-server

heavy-traffic limit in the ED regime asn → ∞. We use the same fixed service and aban-

donment rates as before (µi,i = 1, µ1,2 = µ2,1 = 0.8 andθi = 0.3). We consider a fixed

queue ratior = 1. We let the arrival rates beλ1 = 1.3n andλ2 = n, when there aren

agents in each service pool. The three cases we consider aren = 25, 100, 400. We let

the thresholds for these three values ofn be k1,2 = k2,1 = 3, 10, 30, respectively. (The

thresholds were dropped when exceeded.)

Table 2.1 shows the results. Each result is the average of5 independent simulation runs

having300, 000 arrivals in each run. The half-width of95% confidence intervals, calculated

using thet random variable with4 degrees of freedom, are also given.

To show both the actual performance and the convergence to the fluid limit asn in-

creases, we display both the direct values and the scaled values, dividing byn. Since the

scaled values tend to be nearly independent ofn, we witness the heavy-traffic fluid limit.

We see that the approximations get better asn increases, but they are already not too bad

whenn = 25.

2.5.2 Comparing The Two Controls

In the fluid analysis, choosing the number of agents in each pool that are helping customers

from the other class is equivalent to choosing the queue ratio, ri,j. However, that is not the

case in the actual stochastic system. With specified numbersof agents serving customers

from the other class, the queue ratio fluctuates randomly. With specified queue ratios, the

numbers of agents helping the other class fluctuates randomly. Moreover, with specified



CHAPTER 2. RESPONDING TO UNEXPECTED OVERLOADS 49

n=25 n=100 n=400

perf. meas. approx. sim. approx. sim. approx. sim.

Q1 13.9 13.5 55.6 52.8 222.2 216.7
±0.4 ±1.2 ±7.0

Q1/n 0.56 0.54 0.56 0.53 0.56 0.54
±0.02 ±0.01 ±0.02

Q2 13.9 15.7 55.6 58.4 222.2 223.1
±0.5 ±1.2 ±7.0

Q2/n 0.56 0.63 0.56 0.58 0.56 0.56
±0.02 ±0.01 ±0.02

ratio 1.0 0.98 1.0 0.90 1.0 0.96
±0.02 0.00 0.00

Z1,2 4.2 4.8 16.7 17.7 66.7 66.4
±0.2 ±0.3 ±2.2

Z1,2/n 0.17 0.19 0.17 0.18 0.17 0.17
±0.01 ±0.00 ±0.01

Cost 1.37 1.79 19.35 20.28 299.6 299.8
(thousands) ±0.01 ±0.81 ±19.2

Table 2.1: A comparison of steady-state performance measures in the fluid approximation
with corresponding simulation results for the MarkovianX model. For eachn, there aren
agents in each pool, withλ1 = 1.3n, λ2 = n, µi,i = 1, µ1,2 = µ2,1 = 0.8 andθi = 0.3. The
thresholdsk1,2 = k2,1 are3, 10, 30 for n = 25, 100, 400, respectively.

numbers of agents serving customers from the other class, the two queue-length processes

evolve independently. In sharp contrast, with specified queue ratios, the queue-length pro-

cesses are strongly dependent, as in Figure 2.12. This suggests that there is a big difference

between the two controls in a real, stochastic system. We thus expect the average cost un-

der FQR-T to be different than the average cost when fixingZi,j. We conducted simulation

experiments to compare the two controls.

To compare the two controls - FQR-T, and fixedZi,j - we simulated a system withmi =

100 agents in each pool, arrival ratesλ1 = 130 andλ2 = 100, service ratesµ1,1 = µ2,2 = 1

andµ1,2 = µ2,1 = 0.8, and abandonment ratesθ1 = θ2 = 0.3. Since class1 is overloaded,
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we tookk2,1 = k1,2 = 10, but once we go over the thresholdk1,2, we drop it, so that it

becomesk1,2 = 0.

Figure 2.4 presents simulation results comparing the two average costs for five different

cases:(1) r1,2 = 1.2, Z1,2 = 15, (2) r1,2 = 1, Z1,2 = 17, (3) r1,2 = 0.83, Z1,2 = 19 (optimal

point),(4) r1,2 = 0.6, Z1,2 = 22 and(5) r1,2 = 0.4, Z1,2 = 25. For each point, we fixed the

queue-ratior1,2, and used FQR-T with this ratio. For each suchr1,2, there is an equivalent

Z1,2 in the fluid equations. Since thisZ1,2 is not necessarily an integer, we rounded it up to

the smallest integer larger thanZ1,2, i.e., we used⌈Z1,2⌉ in each simulation of the fixed-Zi,j

control. According to the fluid approximation, the optimal queue ratio isr1,2 = 0.83, and

the respective optimalZ1,2 is equal to18.4, rounded up to19 in the simulation experiments.
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Figure 2.4: Cost of using FQR-T vs. fixed partition

For each case, we conducted5 independent simulation runs using FQR-T, and5 inde-

pendent simulation runs with a fixedZ1,2, each run with300, 000 arrivals. The independent
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replications make it possible to reliably estimate confidence intervals using thet statistic

with 4 degrees of freedom. The large number of arrivals ensures that the transient behavior

in the beginning of the simulation, before reaching steady state, does not affect the final

simulation estimates of the steady-state averages. Additional simulation results are given

in Table 2.2 in§2.8, including the half-width of95% confidence intervals and a comparison

of the simulation to the fluid approximation.

There are several interesting observations to be made: First, ther-cost curve lies sig-

nificantly below theZ-cost curve, which shows that FQR-T is a superior control. Atthe

optimal point for FQR-T, the average cost under FQR-T is about 5.4% smaller than the

average cost under the fixed-Z1,2 control.

Secondly, FQR-T tends to be a more robust control. Small changes inr do not produce

large changes in the cost. Note that the largestr value here (1.2) is 3 times as large as the

smallestr value (0.4), whereas the largestZ value here (25) is only 1.6 times as large as

the smallestZ value (15). Moreover, the average costs when using FQR-T withr1,2 = 1.2

andr1,2 = 1 are still smaller than the cost of fixingZ1,2 at its optimal value. For further

discussion, see§2.8.

2.6 Conclusions

In this chapter we studied ways to respond to unexpected overloads in large-scale service

systems. We considered the MarkovianX model with two customer classes and two service

pools, assuming that agents are more effective serving customers from their own class than

customers from the other class, as specified by the inefficient-sharing conditions in (2.1.1)

and (2.1.2). Thus we want negligible sharing under normal loads, but we want to activate

sharing when there is an unexpected overload at an unanticipated time, without knowing

what the new arrival rates will be.
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The main ideas for analyzing the performance and determining appropriate queue-ratio

functions for thequeue-ratio with thresholds(QT-R) andfixed-queue ratio with thresholds

(FQR-T) controls we propose are: (i) to use steady-state analysis and (ii) to apply an ap-

proximating deterministic fluid model. The QR-T and FQR-T controls proposed for the ac-

tual stochastic system are direct applications of the corresponding optimal controls derived

for the fluid model in§2.3.2. We developed an algorithm to find the optimal queue-ratio

curves for a general convex cost function in Proposition 2.3.4 and§2.3.3. The resulting QR-

T control is easily understood as a partition of the state space into three sharing regions, as

depicted in Figure 2.3, with two regions for each direction of sharing.

In Proposition 2.3.5 we also provided strong justification for FQR-T when the cost

function has the formC(Q1, Q2) = c1Q
2
1 + Q2

2 for some constantsc1 and c2. In that

case, we proved that FQR-T is optimal for the fluid model (i.e., the optimal QR-T control

reduces to an instance of FQR-T) and exhibited the explicit optimal queue-ratio parameters.

Then the optimal queue-ratio parameters depend on the cost functionC only via the single

parameterc1/c2, which succinctly captures the relative importance of the two queues. For

other sharing regions, see§2.7.6.

The main ideas for gaining insight into appropriate threshold values were to apply (i)

many-server heavy-traffic asymptotics and (ii) simulation. Heuristically, we showed that

the thresholds should be asymptotically optimal simultaneously for periods of normal load-

ing and for periods of overload. Asymptotically, no tradeoff need be made. The require-

ment is that the thresholds should be of orderO(np) asn → ∞, where1/2 < p < 1 and

n is the system scale factor. We used simulation to verify thatthe thresholds work well for

given finiten.

Our FQR-T (or QR-T) control is appealing for several reasons. First, it is automatic and

simple; we need not directly discover the arrival rates in order to find out when overloads
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occur, and then decide what amount of sharing should be done.Instead, FQR-T automati-

cally detects the time the system becomes overloaded, and then automatically enforces the

optimal ratio, by observing only the size of the two queues. It is easier to use the informa-

tion about the queues, which is readily available, than to use information about the arrival

rates, which is not readily available. Moreover, simulation experiments indicate that FQR-

T performs better (produces lower expected costs) than fixing Zi,j at their optimal values,

even with known arrival rates; see Figure 2.4.
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2.7 Supporting Material

In this section we present additional material supplementing the results in the main chap-

ter. The topics are ordered as they arise in the chapter. In§2.7.1 we discuss the way the

transient distribution approaches its steady-state limit, both at the beginning and the end of

an overload incident. In§2.7.2 we provide additional discussion about the FQR and FQR-

T controls, supplementing§2.2. In §2.7.3 we present additional details about the optimal

solution for the deterministic fluid model during the overload, supplementing§2.3. Finally,

in §2.8 we present additional simulation results about the performance of the control. In

§2.8.1 we present a table of detailed simulation results supporting Figure 2.4. In§2.8.2

we present additional simulation results about the performance of FQR-T under normal

loading. We perform a sensitivity analysis for the thresholds there.

2.7.1 Time To Reach Steady State

An important aspect of our QR-T and FQR-T controls is the transient behavior of the sys-

tem. When the overload incident occurs, the system must shift from steady state under

normal loading to steady state under the overload. Afterwards, at the end of the overload

period, there is a recovery period, during which the system shifts back to the original steady

state. From analysis and extensive simulations, we conclude that these two transient pe-

riods do not dominate, so that it is possible to use steady-state analysis as a reasonable

approximation. In this section, we provide some supportingsimulation results and discuss

the supporting mathematical results.

Simulation Experiments We start by doing a simulation experiment of an overload

incident, including all five regimes: (i) steady state before the overload, (ii) transition to

new steady state at the beginning of the overload, (iii) new steady state under the overload,

(iv) recovery period and (v) original steady state again after the overload.
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Our example is based on Example 2.1.1 in the main chapter and the associated typical

overload incident described at the end of§4.2. We assume that there is an overload incident

that lasts5 hours when the mean service times are5 minutes. Given that we measure time

in units of mean service times, the overload incident lasts60 time units. Thus, we simulate

the system over the time interval[0, 150], and have the overload begin at time80 and end

at time140. Thus, the initial transient begins at time80, while the recovery period begins

at time140.

We consider a large system withn = 400 agents in each pool. For the normal loading,

we letλ1 = λ2 = 380; for the overload during[80, 140], we letλ1 = 520, while λ1 = 380

as before. As in Example 2.1.1, we let the mean service time for customers served by

designated agents beµ−11,1 = µ−12,2 = 1.0, while the mean service time for customers served

by agents from the other pool isµ−11,2 = µ−12,1 = 1.25. We let customers abandon at rate

θ1 = θ2 = 0.4.

Since class1 experiences the overload, we will have pool2 helping class1 during the

overload incident. Typical sample paths of the processesZ1,2(t) andQ1(t) generated by

simulation are shown in Figures 2.5 and 2.6 below. A dotted horizontal line depicts the

steady-state fluid approximation during the overload. We donot show the other processes.

From corresponding plots ofQ2(t) andQ1(t), it is evident that they move together during

the overload, reflecting state-space collapse, but they move independently during normal

loading. From the displayed sample path, we see that the system indeed reaches a new

steady state after a few mean service times, as claimed in theintroduction.

To elaborate, we also show corresponding sample paths in Figures 2.7 and 2.8 with

n = 100 agents in each pool. One important observation is that in both systems (n = 100

andn = 400) it takes less than3 time units for the queues to hit their fluid value, denoted

by the dotted horizontal lines. The recovery time, after theoverload incident has ended, is

also very short, and is about2 time units for the queues in both systems.
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Figure 2.5: Z1,2(t)/400 with overload
over[80, 140], n = 400.
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Figure 2.6: Q1(t) with overload over
[80, 140], n = 400.

The story is different for theZ1,2(t) process. To make the connection between the two

cases clear, we present theproportion of class-1 customers in pool2 instead of the actual

number, i.e., we showZ1,2(t)/n in Figures 2.5 and 2.7. First, when the overload begins

at time80, it takes some time until the queues hit the thresholdk1,2. That is the reason

whyZ1,2(t) starts growing a bit after time80. It is interesting to see how our choice of the

thresholds influences this delay. Recall that we choose the thresholds to be of order of size

less thanO(n) but greater thanO(
√
n); see§2.4 for more details. In these simulations, we

tookκi,j = 20 for n = 400 andκi,j = 10 for n = 100. This explains why in then = 400

system it takes less time forZ1,2(t) to start increasing than in then = 100 system: The

thresholds are relatively smaller for the bigger system.

We also observe a difference between the two systems after the arrival rates return to

normal at time140. At this time, theZ1,2(t) processes start decreasing immediately and in

a very fast rate. But now, service-pool2 stops serving class-1 customers faster in the small

system. LetT1,2 be the time it takes for pool2 to stop serving all class-1 customers after

the end of the overload incident (after140 in our example). As an approximation, we have

E[T1,2] ≈
r∑

j=1

1

j · µ1,2
,
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wherer ≡ Z1,2(140). Hence, the largerZ1,2(140) is, the longer it takesZ1,2(t) (or equiva-

lently,Z1,2(t)/n) to reach zero after the arrival rates shift back to normal. Yet, in both cases

Z1,2(t)/n drops below0.1 in about2 time units, so that the total service rate in service-pool

2 is greater thanλ2 in 2 time units after the shift. In summary, we see that the transient

period is relatively short, and a steady-state analysis is reasonable to apply.
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Figure 2.7:Z1,2(t)/100 for FQR-T, with
overload over[80, 140], n = 100.
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Figure 2.8:Q1(t) for FQR-T, with over-
load over[80, 140], n = 100.
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Figure 2.9:Z1,2(t)/25 for FQR-T, with
overload over[80, 140], n = 25.
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Figure 2.10:Q1(t) for FQR-T, with over-
load over[80, 140], n = 25.

Mathematical AnalysisWe now provide further support. We first review mathematical

analysis of theM/M/n+M model; we next contrast with single-server models; afterwards

we discuss implications for our X model
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The M/M/n+M model. Consider theM/M/n +M model with arrival rateλ, service

rateµ and abandonment rateθ. First, it is useful to consider the special case in whichθ = µ;

then the number in system is distributed the same as in anM/M/∞ system with service

rateθ = µ. Thus the number in system at timet has a Poisson distribution for each fixed

initial state. An explicit expression for the meanm(t) at timet, starting empty, is given

in (20) of [24]. More generally, the meanm(t) satisfies an ordinary differential equation

(ODE); see Corollary 4 of [24]. These results show thatm(t) and the entire distribution

reaches steady state approximately at timec/µ, some constantc times the mean service

time1/µ. The constantc depends on our criterion; the critical time constant is1/µ, a mean

service time.

For the more general overloadedM/M/n +M model (without assuming thatθ = µ),

it is helpful to consider the deterministic fluid approximation in [79]. Formula (2.17) there

shows that the fluid approximation for the number in queue,q(t), starting with all the

servers busy, again evolves as theM/M/∞ ODE, but with arrival rateλ− nµ and service

rateθ. That implies that the fluid queue content (approximating the number in queue),

starting from all servers busy but no queue, reaches steady state approximately at timec/θ,

some constantc times the mean abandonment time1/θ. That too will be approximately

c/µ provided thatθ is not too different fromµ. The critical time constant here is1/θ, a

mean time to abandon.

To illustrate this mathematical analysis, we do a simulation of theM/M/n+M model.

We base our example here on Example 2.1.1 in§4.2. In that example, the service rates in

both pools areµi,i = 1, the abandonment rates areθi = 0.4 and the number of agents in

each pool is100. In this example the arrival rates changed at some instant from (λ1, λ2) =

(90, 90) to (λ1, λ2) = (130, 90). We show what happens if class1 receives no help from

service-pool2. Then the class-1 queue behaves like anM/M/100+M queue. Figure 2.11

depicts a simulated sample path of anM/M/100+M queue, when the system is initialized
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empty at time0. The average steady-state queue length in the overload incident is about
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Figure 2.11: Time to reach steady state.

75, and it can be seen that this steady-state value is reached within about4 time units when

the system is initialized empty. (Time is measured in units of mean service times). If we

assume, as in our example above, that the system was operating before the arrival rates

changed, then most of the agents were probably busy, and the time to reach the new steady

state is about2 time units (two mean service times).

Single-Server models.In the introduction we stated that the number in system tends

to approach steady state more quickly in many-server queueswith abandonment than in

single-server queues without abandonment. We should beginwith a qualification: Slow

approach to steady state occurs for single-server systems without abandonment when the

system is heavily loaded. For single-server queues, we refer to Section III.7.3 of [20] on

the relaxation time. Sections 4.6 and 5.1 of [76] gives conventional heavy-traffic approx-

imations (whenρ ↑ 1 with n fixed, whereρ ≡ λ/nµ is the traffic intensity) for the time

required for the mean number in system to reach steady state in the generalG/G/n model

with fixedn and without customer abandonment. The time required to reach steady state is
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approximatelyc/(1−ρ)2 mean service times, wherec is a constant depending on the num-

ber of servers,n, the variability of the arrival and service processes (quantified explicitly)

and again the criterion. Clearly the time to reach steady state can be quite long whenρ is

high.

The X model. For ourX model, there are two implications of theM/M/n+M analysis

above: First, when the overload incident begins, the queue length should be negligible, so

that the fluid content in a newly overloaded queue will grow approximately linearly at rate

λ − nµ, because the opposite forceθq(t) will be small, sinceq(t) is initially small. That

means that the threshold will be quickly passed if there is a significant unbalanced overload.

For our more complicatedX model with the QR-T control, after the threshold has been

exceeded, the theoretical analysis for theM/M/n + M model above provides a rough

heuristic analysis indicating what should happen, but the actual evolution still depends on

the state of the six-dimensional Markov chain(Qi(t), Zi,j(t); i = 1, 2; j = 1, 2). Thus

we rely on simulation to confirm that the actual behavior is indeed similar to what occurs

in these simple many-server models. We remark that the state-space collapse discussed

in the next subsection indicates that(Q1(t), Q2(t)) should evolve approximately as a one-

dimensional process, suggesting that the analysis above should not be too far off when the

service ratesµi,j do not differ greatly.

2.7.2 More on FQR

In this section we present additional background on FQR; formore, see [29, 30, 31, 32]. We

first illustrate the state-space collapse (SSC). The conditions for SSC are satisfied if either

the service rates only depend upon the customer class or the service rates only depend upon

the agent pool. To illustrate, suppose that the service rates are independent of both class

and pool, withµ1,1 = µ1,2 = µ2,1 = µ2,2 = 1.0. Figure 2.12 shows the plots of typical

sample paths of the two queue-length processes whenλ1 = λ2 = m1 = m2 = 100 and
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θ1 = θ2 = 0.2. From Figure 2.12, we can clearly see the SSC.
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Figure 2.12: State-Space Collapse

We observed that, with FQR, it is possible to choose the ratioparameterr (or, equiva-

lently, the queue proportionspi) in order to determine the optimal level of staffing to achieve

desired service-level differentiation. For example, under normal loading, our goal may be

to choose staffing levels as small as possible subject to having 80% of class-1 customers

wait less than20 seconds, while80% of class-2 customers wait less than60 seconds. To

see how this can be done with FQR, letTi be the class-i delay target (e.g.,T1 = 0.033

andT2 = 0.100 for 20 seconds and60 seconds if the mean service times are10 minutes);

let Wi be the class-i waiting time before starting service; letpi be the queue proportion

determined byr. As explained in [29], the following string of approximations show how

the individual class-i performance targetsP (Wi > Ti) ≤ α, for bothi, can be reduced into

a single-class single-pool performance targetP (W > T ) ≤ α for an appropriate choice of
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the queue proportionspi and the aggregate targetT :

P (Wi > Ti) ≈ P (Qi > λiTi) ≈ P (piQΣ > λiTi) ≈ P

(
QΣ >

2∑

k=1

λkTk

)

≈ P

(
λW >

2∑

k=1

λkTk

)
≈ P (W > T ) ≤ α , (2.7.1)

where we definepi ≡ λiTi/(λ1T1 + λ2T2), λ ≡ λ1 + λ2 andT ≡ (λ1T1 + λ2T2)/(λ1 +

λ2). The first approximation in (5.5.37) follows by a heavy-traffic generalization of Little’s

law, establishing that the steady-state queue-length and waiting-time random variables are

related approximately byQi ≈ λiWi. The second approximation in (5.5.37) is due to SSC:

Qi ≈ piQΣ. The third approximation is obtained by choosingpi as specified above. The

fourth approximation in (5.5.37) follows from the heavy-traffic generalization of Little’s

law once again, for the entire system:QΣ ≈ λW for λ as defined above, whereW is the

waiting time for an arbitrary customer. The fifth and final approximation follows by the

appropriate definition of the aggregate targetT , as defined above. With this reduction, we

can determine the overall staffing by using elementary established methods for the single-

class single-pool model. That is, we choose the total numberof agents,m, so thatP (W >

T ) ≤ α in theM/M/m +M model. We then letmi = pim. From (5.5.37) and the fact

thatr = p1/(1− p1), we see that the required ratio is

r =
p1

1− p1
=
λ1T1
λ2T2

. (2.7.2)

For theX model (and more generally), Theorem 4.1 of Gurvich and Whitt[30] shows that,

if the service rates only depend on the service pool or the class (but not both), then FQR is

asymptotically optimal to minimize linear staffing costs subject to service-level constraints,

as above, in the QED many-server heavy-traffic regime.

As was shown in§2.2.1, with inefficient sharing FQR without the thresholds we add
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in FQR-T can cause the queues in the general X-model system toexplode when there

is no abandonment, because of the inefficient sharing. We nowshow that there is also

serious performance degradation when we include customer abandonment. We use the

same example as in§2.2.1, only adding abandonments with ratesθ1 = θ2 = 0.2. As before,

there are100 agents in each pool. The arrival rates areλ1 = λ2 = 99 and the service rates

areµ1,1 = µ2,2 = 1 andµ1,2 = µ2,1 = 0.8. To describe the performance degradation,

we compare the performance to the no-sharing case. When there is no sharing,2% of the

customers abandon, the mean queue length is10 and the mean conditional waiting time

given that the customer is served is0.10. On the other hand, for FQR withr = 1, again

about39% of the agents are busy serving customers from the other class. That reduces the

effective service rate for each class from100 to 92.2. As a consequence, about7% of the

customers abandon, the mean queue length is34 and the average conditional waiting time

given that the customer is served is0.35.

Figures 2.13 and 2.14 show the sample paths of the number of agents in pool1 helping

class-2 customers, and the class-1 queue, respectively. Due to the symmetry of the system

in our example, theZ2,1 andQ2 figures are very similar, and the fluid approximations for

both queues andZi,j ’s are equal.

In contrast, to illustrate how FQR-T performs, we consider the same example: Example

2.2.1 with abandonments at rateθi = 0.2. We letr1,2 = r2,1 = 1, so that there is no change

from FQR above, and we let the thresholds bek1,2 = k2,1 = 10. The results of a simulation

experiment are shown in Figures 2.15 and 2.16. Numerical values were given in§2.2.2.

The performance is greatly improved with FQR-T.

2.7.3 Optimal Solution for the Fluid Model

In this section we provide additional material supplementing§2.3.
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Figure 2.13:Z2,1(t)/100 for FQR with
r = 1.
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Figure 2.14:Q1(t) for FQR withr = 1.
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Figure 2.15: Z2,1(t)/100 with FQR-T,
r = 1.
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Figure 2.16:Q1(t) with FQR-T,r = 1.

Optimal Values Beyond the BoundariesIt is natural to have the cost functionC be

smooth, in which case the optimal solution can be found by simple calculus. The following

result concludes that, if the optimal solution found by calculus falls outside the feasible

set, then the actual optimum value is obtained at the nearestboundary point. Leta ∧ b ≡

min {a, b} anda∨b ≡ max {a, b}. We omit the proof, which is a standard convexity result.

Proposition 2.7.1.(optimal values beyond the boundaries) Let Z̄1,2 andZ̄2,1 be the values

of Z1,2 andZ2,1 yielding minimum values ofC1,2 andC2,1 in (2.3.5), and letẐ1,2 and Ẑ2,1
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be the corresponding values yielding the minima ignoring the constraints in Proposition

2.3.3. ThenZ̄1,2 = Ẑ1,2 ∨ 0 ∧m2, Z̄2,1 = Ẑ2,1 ∨ 0 ∧m1 and(Z∗1,2, Z
∗
2,1) can assume only

two possible values:(Z̄1,2, 0) or (0, Z̄2,1).

2.7.4 The Relation between r and Z

In §2.3.2 we observed that there is a one-to-one correspondencebetween the queue ratio

r ≡ Q1/Q2 and the real variableZ1,2 − Z2,1 used to specify the optimization problem

in Proposition 2.3.3. That implies that there is a one-to-one correspondence between the

fixed-agent-allocation optimization problem (choosingZ1,2 andZ2,1) and the queue-ratio

control problem (choosing a state-dependent queue-ratior) in the fluid-model context.

Proposition 2.7.2. (relatingr andZ1,2 − Z2,1) For any given arrival-rate vector(λ1, λ2)

or initial state (q1, s1, q2, s2) (without sharing), the queue ratior ≡ Q1/Q2 is a strictly

decreasing differentiable function ofZ1,2 − Z2,1, denoted byφ, asZ1,2 − Z2,1 varies over

its allowed domain in Proposition 2.3.3. Thus, the functionφ has a unique inverseφ−1 and

there exists a unique optimalr∗ ≡ r∗(q1, s1, q2, s2), which is characterized by

r∗ = φ−1(Z∗1,2 − Z∗2,1), (2.7.3)

where bothr∗ andZ∗1,2−Z∗2,1 are understood to be functions of the initial state(q1, s1, q2, s2).

Moreover, there are two thresholdsη1,2 > η2,1 such that we want one-way sharing with pool

2 helping class1 if r > η1,2, in which case we letr1,2 = r∗; we want one-way sharing with

pool 1 helping class2 if r < η2,1, in which case we letr2,1 = r∗; and we want no sharing

at all if η2,1 ≤ r ≤ η1,2. The thresholds are obtained from the thresholdsζ1,2 and ζ2,1 in

Corollary 2.3.1byη1,2 = φ−1(ζ1,2) andη2,1 = φ−1(ζ2,1).

Proof: By (2.3.5), when pool2 helps class1, Q1 is a strictly decreasing differentiable

function ofZ1,2 and whileQ2 is a strictly increasing differentiable function ofZ1,2. On the
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other hand, when pool1 helps class2, Q1 is a strictly increasing differentiable function of

Z2,1 and whileQ2 is a strictly decreasing differentiable function ofZ2,1. Thusr ≡ Q1/Q2

is a strictly decreasing differentiable function ofZ1,2 − Z2,1 over its domain.

2.7.5 Constant Weighted Queue Length

We now complete Proposition 2.3.4 by exhibiting the result for pool1 helping class2.

Proposition 2.7.3.(constant weighted queue lengths with pool1 helping class2) Let

a2,1 ≡
µ2,1θ1
µ1,1θ2

and ã2,1 ≡
µ2,1

µ1,1
. (2.7.4)

Consider any initial state(λ1, λ2), or equivalently(q1, s1, q2, s2), with s2 = 0. Let

w2,1 ≡ a2,1

(
λ1 −m1µ1,1

θ1

)
+

(
λ2 −m2µ2,2

θ2

)
= a2,1

(
q1 −

s1µ1,1

θ1

)
+ q2. (2.7.5)

Then

a2,1

(
Q1(Z1,2)−

S1(Z2,1)µ1,1

θ1

)
+Q2(Z2,1) = w2,1 (2.7.6)

for all Z2,1 with 0 ≤ Z2,1 ≤ m1.

Just as with Proposition 2.3.4, Proposition 2.7.3 implies that the locus of all nonnegative

queue-length vectors(Q1, Q2) ≡ (Q1(Z2,1), Q2(Z2,1)) associated with initial state(λ1, λ2),

or equivalently(q1, s1, q2, s2), with s2 = 0, is on the line{(Q1, Q2) : a2,1Q1 +Q2 = w2,1}

in the nonnegative quadrant. Thus, for any nonnegative constantw2,1, the optimal queue-

length vector(Q∗1, Q
∗
2) and the optimal queue-ratior∗2,1 ≡ Q∗1/Q

∗
2 restricted to one-way

sharing(Z1,2 = 0) are the same for all initial states(q1, s1, q2, s2) with s2 = 0 satisfying

(2.3.8)andq2 ≥ Q∗2. Moreover,a2,1Q∗1 + Q∗2 = w2,1. That same optimal queue-length

vector and optimal queue ratio holds for all arrival pairs(λ1, λ2) wheres2 = 0, Z1,2 = 0
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and

λ1 + ã2,1λ2 = w̃2,1 ≡
θ1θ2w2,1 + a2,1θ2m1µ1,1 + θ1m2µ2,2

a2,1θ2
. (2.7.7)

2.7.6 Structured Separable Cost Functions

At the end of§2.3.3, we observed that we can obtain explicit analytical expressions for the

optimal ratio control if we impose additional structure on our cost function. We give the

main results in this section and provide supporting detailsin the next section.

Main ResultsWe first assume thatC is separable, i.e.,C(Q1, Q2) = C1(Q1)+C2(Q2),

where each component cost functionCi is strictly convex, strictly increasing and twice

differentiable. We start by assuming that the derivativesC ′i are strictly increasing, so that

their inverses exist. LetΨ(Q1) ≡ C ′1(Q1) and letΨ−1 be its inverse. Then one of the

following relations between the queue lengths should hold,when we choose the one that

minimizes the cost:

Q1 = Ψ−1(a1,2C
′
2(Q2)) or Q1 = Ψ−1(a2,1C

′
2(Q2)), (2.7.8)

for a1,2 defined in (2.3.7) anda2,1 defined in§2.7.5. IfC ′1 is not strictly increasing, then we

work with the left-continuous inverse ofΨ defined byΨ← ≡ {x : Ψ(x) ≥ y}.

Power functions. If the cost functionsCi are simple power functions, i.e.,Ci(Qi) ≡

ciQ
ni

i for i = 1, 2, then we have that eitherQ∗1 = r∗1,2Q
∗(n2−1)/(n1−1)
2 orQ∗1 = r∗2,1Q

∗(n1−1)/(n2−1)
2 ,

where

r∗1,2 ≡ n1−1

√
a1,2c2n2/c1n1 and r∗2,1 ≡ n1−1

√
a2,1c2n2/c1n1. (2.7.9)

Whenn1 = n2,Q∗1/Q
∗
2 is a fixed queue ratio, eitherr∗1,2 or r∗2,1 for r∗i,j as in (2.7.9). Thus, we

need only to decide which way we should share, and then use FQR-T with the appropriate
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r∗i,j; i.e., we are in the setting of Figure 2.3 with constant ratios for which we have explicit

expressions.

Quadratic functions. In practice it may be difficult to actually specify an appropriate

cost function. Thus, for practical application we suggest quadratic functions:Ci(Qi) ≡

ciQ
2
i + biQi + ai for i = 1, 2. These functions might be obtained by performing an approx-

imation (e.g., via Taylor series approximation to an analytical expression or least squares

fit to data). In this case, we have either

Q∗1 − r∗1,2Q
∗
2 = k∗1,2, or Q∗1 − r∗2,1Q

∗
2 = k∗2,1, (2.7.10)

for

r∗1,2 ≡
a1,2c2
c1

=
c2µ2,2θ1
c1µ1,2θ2

, r∗2,1 ≡
a2,1c2
c1

=
c2µ2,1θ1
c1µ1,1θ2

. (2.7.11)

and

k∗1,2 ≡
a1,2b2 − b1

2c1
, k∗2,1 ≡

a2,1b2 − b1
2c1

. (2.7.12)

In other words, we keep a fixed-queue ratio centered about a constantk∗i,j instead of zero.

That is, we employ new thresholds after sharing has been activated. (The current thresholds

k∗i,j are not to be confused with the thresholdski,j used with the queue-difference processes

in (2.2.1) to test for the occurrence of overloads. We usek∗1,2 only after sharing with pool

2 helping class1.) From the two formulas in (2.7.11), we directly see how these ratio

parameters and thresholds should depend on the model parameters. In particular, each ratio

is either directly proportional or inversely proportionalto each of six model parameters.

Quadratic and linear power functions. A natural simple cost function is the quadratic

power function, which is is special case of the general powerfunction withn1 = n2 = 2

and a special case of the general quadratic function withb1 = b2 = a1 = a2 = 0. The

optimal control then is precisely FQR-T (k∗1 = k∗2 = 0), as indicated in Proposition 2.3.5.
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In §2.7.7 we also discuss the special casesn1 = 2, n2 = 1 andn1 = 1, n2 = 1.

FQR-T without cost functions. Clearly, FQR-T could be employed directly without

specifying any cost function, using engineering judgment to set the parameters. Even if

that is the case, the queue-ratio formulas in (2.7.11) and possibly the centering formulas

in (4.2.5) provide important insight into how the control parameters should depend on the

model parameters.

2.7.7 Supporting Details About Structured Separable Cost Functions

We now supplement§2.7.6 by providing more details about the fluid model with a separable

cost function. As before, we assume thatC is separable, and that each component cost-

functionCi is strictly convex, strictly increasing and twice differentiable. We then relax the

strictly-increasing assumption, and consider linear functions.

Let C(Q1, Q2) be a separable function. We can writeC as a function of one variable

Z1,2 orZ2,1, depending on which way the sharing is done.

C(Q1, Q2) = C1(Q1) + C2(Q2) ≡ C1,(i,j)(Zi,j) + C2,(i,j)(Zi,j) ≡ C(Zi,j), (2.7.13)

where

C1,(1,2)(Z1,2) ≡ C1

(
q1 −

s1µ1,1

θ1
− Z1,2µ1,2

θ1

)
,

C2,(1,2)(Z1,2) ≡ C2

(
q2 −

s2µ2,2

θ2
+
Z1,2µ2,2

θ2

)
.

and

C1,(2,1)(Z2,1) ≡ C1

(
q1 −

s1µ1,1

θ1
+
Z2,1µ1,1

θ1

)
,

C2,(2,1)(Z2,1) ≡ C2

(
q2 −

s2µ2,2

θ2
− Z2,1µ2,1

θ2

)
.
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Hence, the optimalZ1,2 is achieved when

C ′(Z1,2) = −C ′1,(1,2)(Z1,2)

(
µ1,2

θ1

)
+ C ′2,(1,2)(Z1,2)

(
µ2,2

θ2

)
= 0,

or equivalently,

C ′1(Q1) =
µ2,2θ1
µ1,2θ2

C ′2(Q2) ≡ a1,2C
′
2(Q2).

Similarly, the optimalZ2,1 is achieved when

C ′1(Q1) =
µ2,1θ1
µ1,1θ2

C ′2(Q2) ≡ a2,1C
′
2(Q2).

The fact thatCi is strictly convex implies thatC ′′i ≥ 0. If C ′′i > 0 thenC ′i is strictly

increasing, and its inverse function exists. LetΨ(Q1) ≡ C ′1(Q1) and letΨ−1 be its inverse.

Then one of the following relations between the queues should hold:

either Q1 = Ψ−1(a1,2C
′
2(Q2)) or Q1 = Ψ−1(a2,1C

′
2(Q2)), (2.7.14)

where we choose the relation that minimizes the cost-functionC(Q1, Q2).

If the inverse ofΨ does not exist, then we can work with the left-continuous inverse of

Ψ defined byΨ←(y) ≡ {x : Ψ(x) ≥ y}.

We now consider separable cost functions of the form:

C(Q1, Q2) = c1Q
n1

1 + c2Q
n2

2 , n1, n2 ∈ N, (2.7.15)

where each component is a power function. The optimal solution is given in the main

chapter. We observe that the compatible-ratio conditionr1,2 ≥ r2,1 in S 2.2.2 holds, because

r∗1,2
r∗2,1

= n1−1

√
a1,2
a2,1

= n1−1

√
µ1,1µ2,2

µ1,2µ2,1
≥ 1,
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under the inefficient-sharing condition (2.1.2). Whenn1 = n2 we get

Q∗1
Q∗2

= r∗1,2 or
Q∗1
Q∗2

= r∗2,1;

i.e., it is optimal to keep a fixed-queue ratio. Thus, we need only to decide on which way

we should share, and then use FQR-T with the appropriate fixedqueue ratior∗i,j.

These results explain why the optimal ratios in our numerical example with the cost

function in (2.3.10) in§2.3.3 are almost constant. In the numerical example there are

other terms, but the dominating ones are the quadratic terms. As the queues get larger, the

influence of the smaller-power terms decreases, and the optimal ratios converge to fixed

numbers. If the function is separable (as would be the case ifour example had not had the

Q1Q2 term), then the convergence is to the same ratios as if the only terms arec1Qn
1+c2Q

n
2 .

The mixed terms of powern change these numbers. For the cost function in (2.3.10), the

Q1Q2 terms is also of power2, and hence the optimal ratios converge to different numbers

than (2.7.9). But for that example, clearly the optimal ratios are nearly constant.

In §2.7.6 we introduced the general separable quadratic cost function to provide a

tractable approximation for a broad range of possible cost functions. We observed that

the optimal queue-ratio function becomes a shifted versionof FQR-T, which is just FQR-T

centered at pointsk∗1,2 andk∗2,1 instead of centered at0. We now illustrate the resulting

control for a candidate cost function. In order to make the linear components have approx-

imately equal weight to the quadratic components when the queue lengths are about50, we

divide the coefficientsci for the quadratic terms by10. We also omit the mixed termQ1Q2,

which violated the separability property. Instead of the cost function in (2.3.10), we now

consider the cost function

C(Q1, Q2) ≡ 0.3Q2
1 + 10Q1 + 0.2Q2

2 + 5Q2. (2.7.16)
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The centering is depicted by the y-intercepts on the two lines in Figure 2.17.
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Figure 2.17: The optimal queue ratios (shifted FQR).

We now consider the two linear cases. When one or more of the component cost func-

tionsCi is linear, we are led to modify our control. We indicate how our fluid-model anal-

ysis can be applied to generate alternative controls in these cases, but we do not examine

their performance here.

n1 = 2,n2 = 1. The cost-functionC(Q1, Q2) = c1Q
2
1 + c2Q2 has one quadratic term

and one linear term. The special structure of this function (C2 not strictly convex) changes

the control. Now, there is no longer dependence on the two queues, sinceQ2 no longer

comes into play. By (2.7.14),

Q∗1 =
a1,2c2
2c1

≡ k∗1,2 or Q∗1 =
a2,1c2
2c1

≡ k∗2,1.

Thus, we are no longer trying to keep a relation between the two queues, but instead we

keepQ1 not bigger thank∗1,2 or k∗2,1, depending which is optimal to use. To keepQ1 at its

optimal target, we modify our control: If class1 is overloaded such thatq1 > k∗1,2, then

wheneverD1,2 ≥ max{k1,2, k∗1,2} every newly available agent takes his next customer from
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the head of queue1. Otherwise, every agent takes his next customer from the head of its

own class queue.

If class2 is overloaded, then we can haveZ2,1 > 0 as long as we keepQ1 < k2,1.

Hence, ifD2,1 < k2,1 andQ1 < k2,1, then every newly available agent takes his next

customer from the head ofQ2. Otherwise, he will take his next customer from the head of

his own class queue.

n1 = 1,n2 = 1. The purely-linear cost functionC(Q1, Q2) = c1Q1 + c2Q2 is even

more different than the functions we considered so far. However, it is well known that a

linear function attains its minima on the boundaries of its domain. In our setting, this means

that we either try to keep the queue that needs help at zero, orthat we do not help it at all.

WhenZ1,2 > 0, we have

C(Q1, Q2) = C(Z1,2) = c1

(
q1 −

s1µ1,1

θ1
− µ1,2

θ1
Z1,2

)
+ c2

(
q2 −

s2µ2,2

θ2
+
µ2,2

θ2
Z1,2

)

= c1

(
q1 −

s1µ1,1

θ1

)
+ c2

(
q2 −

s2µ2,2

θ2

)
+

(
c2µ2,2

θ2
− c1µ1,2

θ1

)
Z1,2.

Thus, if
c1µ1,2

θ1
≤ c2µ2,2

θ2
(2.7.17)

the functionC(Z1,2) is increasing, and its minima is attained whenZ1,2 = 0. Otherwise,

the function is decreasing, and it is optimal to takeZ1,2 as large as needed to ensureQ1 = 0

(the simple calculus gives us thatZ∗1,2 = m2, but of course class1 may not have enough

arrivals to fill both service pools). This means that we either share completely, or not share

at all.
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Similarly, for

C(Q1, Q2) = C(Z2,1) = c1

(
q1 −

s1µ1,1

θ1
− µ1,1

θ1
Z2,1

)
+ c2

(
q2 −

s2µ2,2

θ2
+
µ2,1

θ2
Z2,1

)

= c1

(
q1 −

s1µ1,1

θ1

)
+ c2

(
q2 −

s2µ2,2

θ2

)
+

(
c1µ1,1

θ1
− c2µ2,1

θ2

)
Z2,1,

if
c2µ2,1

θ2
≤ c1µ1,1

θ1
(2.7.18)

thenC(Z2,1) is increasing, and its minima is attained atZ2,1 = 0. Otherwise,C(Z2,1) is

decreasing, and it is optimal to takeZ2,1 as large as needed (and possible) to make sure that

Q2 = 0.

Rewriting the inefficient-sharing condition (2.1.2), we get

µ1,1

µ2,1

≥ µ1,2

µ2,2

.

If the two inequalities (3.5.7) and (3.5.8) hold together, then

θ1c2
θ2c1

≤ µ1,2

µ2,2
and

µ1,1

µ2,1
≤ θ1c2
θ2c1

,

but this contradicts the inefficient-sharing condition above, unless all the inequalities hold

as equalities. Thus, we can have at most one of the inequalities, (3.5.7) or (3.5.8), hold

under (2.1.2).

At first glance, it may seem from the discussion above that, when the holding cost is

linear, we should not consider the system as anX model, but rather as anN model (sharing

can be done in only one direction), if either (3.5.7) or (3.5.8) hold, or two independentI

systems (no sharing at all), if none of these two inequalities hold. But that is not so. If

there is spare capacity in one class, while the other class isoverloaded, then it is always
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optimal to use the extra agents to help the overloaded class.Since we do not know what

the overload incident will produce, we cannot restrict the model to anN model in advance.

Let us summarize what we have found: The cost analysis leads us to give priority to

either queue1 or queue2. Suppose that it is optimal to give priority to queue1. That leads

us to set the threshold for pool 2 helping class 1 atk1,2 = 0. In the fluid model that will

either produce the desired resultQ1 = 0 orQ1 > 0 andZ1,2 = m2, with pool2 devoting

all its effort to class1. There remains another case: when pool 1 has spare spare capacity.

In that case, within the fluid model, if pool 2 is overloaded, then pool 1 should devote all

the required spare capacity to serving class 2. We should haveZ2,1 = s1 ∧ q2. If s1 > q2,

then the help pool 1 provides to class 2 makes both queues empty, and there is remaining

spare capacity for pool 1. On the other hand, ifs1 ≤ q2, then we have exactlyZ2,1 = s1.

Overall, there are three possible end results in the fluid model: (i) Q1 > 0 andZ1,2 = m2,

(ii) Q1 = Q2 = 0, (iii) Q2 > 0,Q1 = 0 andZ2,1 = s1.

We now must consider how to implement that control in the actual system. As indicated

above, to give priority to queue 1 at all times, we can setk1,2 = 0, and we always allow

pool 2 to help class1, even ifZ2,1 > 0. The only difficulty is detecting whether or not

pool 1 has spare capacity, so that we can have pool 1 helping class2. For this purpose, we

propose using a positive queue threshold for queue 2: We let an available agent in pool1

help class2 if, and only if,Q2 > k2,1,Q1 = 0 andZ1,2 = 0.

Since we allow pool2 to serve class1 all the time, we could possibly have simulta-

neous two-way sharing (bothZ1,2 > 0 andZ2,1 > 0), but there should be only minimal

simultaneous two-way sharing. It remains to further investigate this case.

2.8 Additional Simulation Results

In this section we present additional simulation results.
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2.8.1 Comparing the Two Controls

We now supplement the comparison of the two controls (the fixed staffing levels versus

QR-T) in §2.5.2 by presenting detailed simulation results. These aregiven in Table 2.2,

including the half-width of95% confidence intervals and a comparison of the simulation to

the fluid approximation.

As stated before, for each case, we conducted5 independent simulation runs using QR-

T, and5 independent simulation runs with a fixedZ1,2, each run with300, 000 arrivals. The

independent replications make it possible to reliably estimate confidence intervals using the

t statistic with4 degrees of freedom. The large number of arrivals ensures that the transient

behavior in the beginning of the simulation, before reaching steady state, does not affect

the final simulation estimates.

We now provide additional observations about our simulation results for this example.

Another important observation is that FQR-T is doing a better job in keeping the ratio

between the two queues close to the desired ratio. The accuracy becomes even better when

the system is larger (see the “ratio” row in Table 2.1 in then = 400 columns). We have also

included a column showing the simulated standard deviations of the ratios. Note how small

the standard deviations are when using FQR-T, in comparisonto the standard deviations

when using the fixed-Z1,2 control. Since FQR-T is working towards keeping the ratio

between the two queues fixed throughout, the ratio between the two queues at any time

point is approximatelyr1,2. It also makes the two queues strongly positively correlated,

which reduces the overall variance. In contrast, under the fixed-Z1,2 control, the two queues

are independent with zero correlation.

The simulated ratio was calculated as a long-run average of the ratio between the two

queues throughout the simulation time. We can compare it toQ1/Q2 from Table 2.1 which

appears in§2.5.1 (in then = 100 columns) which is also approximately0.9. These agree
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Cost (in thousands) actual ratio actualZ1,2

policy Approx. Sim. Approx. Sim. std. Approx. Sim.
r = 1.20 19.65 20.51 1.20 1.07 0.16 15.0 15.9

±0.64 ±0.00 ±0.01 ±0.4

r = 1 19.35 20.28 1.00 0.90 0.13 16.7 17.7

±0.81 ±0.00 ±0.01 ±0.3

FQR-T r = 0.83 19.25 19.73 0.83 0.76 0.11 18.4 18.9

±0.64 ±0.00 ±0.00 0.5

r = 0.60 19.56 21.16 0.60 0.56 0.08 21.4 22.1

±0.77 ±0.00 ±0.00 ±0.3

r = 0.40 20.75 22.31 0.40 0.37 0.06 25.0 25.3

±0.92 ±0.00 ±0.00 ±0.3

Z1,2 = 15 19.65 21.47 1.20 1.52 1.93 15.0 15.0

±0.57 ±0.08 ±0.29 ±0.0

Z1,2 = 17 19.32 21.35 0.96 1.13 1.17 17.0 17.0

±0.46 ±0.11 ±0.45 ±0.0

fixedZ1,2 Z1,2 = 19 19.26 20.86 0.78 0.87 0.75 19.0 19.0

±0.37 ±0.07 ±0.57 ±0.0

Z1,2 = 22 19.69 21.42 0.56 0.61 0.38 22.0 22.0

±0.60 ±0.05 ±0.04 ±0.0

Z1,2 = 25 20.75 22.63 0.40 0.42 0.33 25.0 25.0

±0.86 ±0.01 ±0.14 ±0.0

Table 2.2: Full simulation results of Figure (2.4). The ‘approx’ columns show the antic-
ipated results according to the fluid model, and the ‘sim.’ columns show the simulation
results, together with half-width confidence interval.

closely because of state-space collapse, as in Figure 2.12 discussed in§2.7.2.

Finally, Table 2.2 shows that the fluid approximation tends to underestimate the actual

average cost in the stochastic model. That is understandable, because the fluid model ig-

nores stochastic fluctuations, which will tend to increase the average costs with a convex

cost function. However, note that the fluid approximation does do an excellent job in de-

scribing the relative costs. In particular, the fluid model succeeds in locating the correct

minima for both controls.
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2.8.2 Performance of FQR-T Under Normal Loading

In §2.2.1 we saw that FQR-T performs well whenk1,2 = k2,1 = 10 for Example 2.2.1 with

n = 100 servers andλi = 99, showing that FQR without thresholds and one-way sharing

can perform poorly. To supplement those simulation resultsand the simulation results in

§2.5, in this section we present additional simulation results. As in Table 2.1, we consider

three values ofn: n = 25, n = 100 andn = 400. We let the arrival rates in both queues

beλ(n)i = 0.98n. The service-rate and abandonment-rate parameters are fixed atµi,i = 1.0,

µ1,2 = µ2,1 = 0.8, θi = 0.2. We let the thresholds bek(n)1,2 = k
(n)
2,1 = 0.1n, rounded up

to 3.0 for n = 25. We compare the results of FQR-T to theM/M/n +M model, which

would prevail if there were absolutely no sharing at all. As before, we see that the mean

queue lengths are actually slightly smaller with FQR-T. That shows that the little sharing

that takes place with FQR-T is not so bad.

Due to the symmetry of the system under the parameters we chose, there is no difference

between the steady-state values of both queues and service pools. Thus, we display only

Q1 andZ1,2. We can see that as the system becomes larger, the sharing decreases, and the

queue size gets closer to the queue length in anM/M/n+M model.

2.8.3 Sensitivity Analysis For the Thresholds

We now consider different values for the thresholds with andwithout one-way sharing. Our

objective is to perform a sensitivity analysis for the thresholds for a finite system (in this

case having100 agents in each service pool), as a complimentary to the asymptotic line of

reasoning in§2.4. The simulation results, displayed in Table 2.4, are forsystems having

λi = 98, µ1,1 = µ2,2 = 1, µ1,2 = µ2,1 = 0.8 andθi = 0.2, i = 1, 2. We vary the thresholds

betweenκi,j = 1 andκi,j = 30, i, j = 1, 2. (Note that withκi,j = 1 FQR-T reduces to

FQR.) For ease of exposition we taker1,2 = r2,1 = 1. The symmetry allows us to present



CHAPTER 2. RESPONDING TO UNEXPECTED OVERLOADS 79

n=25 n=100 n=400

perf. meas. I model sim. I model. sim. I model sim.

E[Q1] 5.1 4.8 8.4 7.3 11.3 10.5
±0.3 ±1.0 ±2.6

E[Q1/n] 0.20 0.19 0.08 0.07 0.03 0.03
±0.01 ±0.01 ±0.01

E[Z1,2] − 1.3 − 1.9 − 1.3
±0.1 ±0.2 ±0.4

E[Z1,2/n] − 0.05 − 0.02 − 0.00
±0.01 ±0.00 0.00

Table 2.3: A comparison of the exactI-model queues with simulation results for the steady-
state performance measures of theX model in normal loading under FQR-T. The arrival
rates areλ(n)1 = λ

(n)
2 = 0.98n and the thresholds areκ(n)1,2 = κ

(n)
2,1 = 0.1n. Service rates are

µ1,1 = µ2,2 = 1, µ1,2 = µ2,1 = 0.8 and the abandonment rates areθ1 = θ2 = 0.2

the results forE[Q1] andE[Z1,2] only, and considerk1,2 = k2,1. (If r1,2 6= r2,1 then the

sensitivity analysis should be performed for each of the twothresholds separately.)

Table 2.4 clearly shows the benefits of using one-way sharing, since even withκi,j = 1

the performance is almost as good as when we add thresholds ofsize15. However, recall

that the thresholds play a vital role in our control: In addition to helping prevent unwanted

sharing, they act as “overload detectors”: WhenDi,j(t) first crosses the thresholdκi,j, we

consider class-i queue to be overloaded, and sharing is activated with poolj helping queue

i.

As discussed in§2.4, we do not want to have the thresholds too large, as they will fail to

detect small overloads. Moreover, we see that it can actually be beneficial to share a little,

even when the system is not overloaded; Observe that the average queue length in the case

κi,j = 30 is larger than whenκi,j is 10, 15 or 20. (See also the last paragraph in§2.2.)

Thus, in choosing the thresholds we need to make sure that under normal loadings they

will not be crossed too often, but even small overloads will be detected. Here we see that

any value in{10, . . . , 20} is reasonable, both with one-way sharing and without. To ensure



CHAPTER 2. RESPONDING TO UNEXPECTED OVERLOADS 80

that even small overloads will be detected by the thresholds, it is probably best to take

10 ≤ κi,j ≤ 15.

Insight From the Asymptotic Analysis of the Thresholds. The asymptotic analysis

in §2.4 helps to find good candidates for the thresholds for larger systems. In our example,

we can heuristically think of30 as being of orderO(n), while 10 and15 are of a smaller

order, sayO(n0.6). Then30 = 0.3n, 15 ≈ n0.6 and10 ≈ 2/3n0.6.

This line of reasoning hints at what the thresholds should be(approximately) for a larger

system having the same service and abandonment parameters.For example, ifn = 1000

thenκi,j = 0.3n = 300 is too large, but64 ≈ n0.6 ≤ κi,j ≤ 2/3n0.6 ≈ 42 are good

candidates for the thresholds. The threshold values can be determined using simulations,

just as in Table 2.4.

With One-Way Sharing Without One-Way Sharing

perf. meas. E[Q1] E[Z1,2] E[Q1] E[Z1,2]

κi,j = 1 8.4 2.8 29.9 38.2
±0.4 ±0.3 ±1.7 ±0.6

κi,j = 5 8.3 2.4 8.6 8.1
±0.9 ±0.3 ±0.6 ±0.1

κi,j = 10 7.5 1.9 7.4 3.6
±0.4 ±0.2 ±0.6 ±0.2

κi,j = 15 7.2 1.5 7.1 2.1
±0.6 ±0.2 ±0.6 ±0.1

κi,j = 20 7.5 1.1 7.3 1.3
±0.7 ±0.2 ±0.7 ±0.2

κi,j = 30 8.2 0.5 8.2 0.5
±0.9 ±0.1 ±0.7 ±0.1

Table 2.4: Sensitivity analysis of the effect of the thresholds in a system with100 agents
in each pool. The arrival rates areλ1 = λ2 = 98. Service rates areµ1,1 = µ2,2 = 1,
µ1,2 = µ2,1 = 0.8 and the abandonment rates areθ1 = θ2 = 0.2. All the results are derived
from five independent simulation runs.



Chapter 3

Transient and Stability Analysis

This chapter is devoted to the study of a dynamical system, represented by a three-dimensional

ordinary differential equations(ODE). In Chapter 4 this ODE will be shown to arise as the

many-server heavy-traffic(MS-HT) fluid limit of the overloaded Markovian X service-

system model operating under FQR-T, as in Chapter 2. However, in this chapter we will

derive the ODE heuristically, by considering the behavior of the stochastic X model when

the number of servers in each service pool becomes large. In particular, we will apply a

heavy-trafficaveraging principle(AP) as an engineering principle, in order to justify the

ODE considered here. As mentioned above, a rigorous justification is given in Chapters 4

and 5.

The FQR-T control is driven by a queue-difference stochastic process, which operates

in a faster time scale than the queueing processes themselves, so that it achieves a time-

dependent steady state instantaneously in the MS-HT limit.In Chapter 4 we will show

that convergence of the fluid-scaled sequence of overloadedX-model systems to this ODE

holds, provided that the driving process is replaced by its long-run average behavior at each

instant of time.

The AP creates a singularity region, causing the ODE not to becontinuous in its full

81
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state space. Hence, classical results of ODE theory, such asthose establishing existence,

uniqueness and stability of solutions, cannot be applied directly. Moreover, existing algo-

rithms for numerically solving ODE’s cannot be applied directly either, since the solution

to the ODE requires that the time-dependent steady state of alimiting fast-time-scale pro-

cess be computed at each instant. Nevertheless, we provide results about the existence and

uniqueness of solutions to the ODE, prove that there exists aunique stationary point; and

give easily verifiable conditions for the fluid process to converge to its stationary point.

Moreover, we show that the convergence to stationarity is exponentially fast. Finally,

we provide a numerical algorithm, based on the matrix-geometric method, for solving the

ODE.

Since this chapter appears before the fluid limit is derived,we briefly explain how the

fluid limit is derived. We also review the main points of Chapter 2 which will be needed

for our analysis here.

3.1 Preliminaries

We now briefly summarize the essential conclusions of Chapter 2.

3.1.1 The Approximating Deterministic Fluid Model in Steady State

Given the model in§2.2.1, we want to determine an effective control and analyzeits perfor-

mance. In order to (approximately) minimize the expected cost over the overload incident,

we exploited two characteristics of many-server systems: First, an overloaded many-server

service system can be well approximated by a fluid model, which is deterministic and rel-

atively easy to analyze; e.g., see [79]. Second, as demonstrated in§2.7.1, many-server

systems approach steady state relatively quickly. (In thischapter, we provide additional
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mathematical support by showing that the fluid model converges to stationarity exponen-

tially fast.) These properties support restricting attention to steady-state analysis of the

fluid model during the overload incident.

A main conclusion of Chapter 2 is that for the fluid model in steady state (in overload),it

is possible to minimize the steady-state cost by choosing appropriate queue-ratio functions,

which can be calculated in advance. (The queue-ratio functions can be functions of the

arrival rates or of the queue lengths without sharing.) Moreover, as we explain below, it

often suffices to use fixed queue ratios (FQR), with one ratio for each direction of sharing.

In addition, under the basic inefficient sharing conditionµ1,1µ2,2 ≥ µ1,2µ2,1, it is never

optimal to simultaneously share in both directions. That property justifies the additional

requirement thatat most one service pool is allowed to serve customers from both classes

at any time. In practice, this additional restriction helps prevent unwanted sharing under

normal loads. It directly prevents simultaneous sharing inboth directions.

Thus, we are lead to consider the deterministic fluid model. Specifically, we approx-

imate the stochastic processesQi(t) andZi,j(t) by deterministic and differentiable (thus,

continuous) functions, which we call “fluid”. Letqi(t) andzi,j(t), i, j = 1, 2, be the deter-

ministic fluid approximations ofQi(t) andZi,j(t), respectively. Then(qi(t), zi,j(t); i, j =

1, 2, t ≥ 0) is called the “fluid model” (or the “fluid approximation”) of the stochastic sys-

tem. Letq∗i andz∗i,j be the limits of the fluid functions ast → ∞, assuming these limits

exist. Then the vector(q∗i , z
∗
i,j; i, j = 1, 2) ∈ R6 is called the steady-state of the fluid model,

or alternatively, the stationary point of the fluid model (see §3.5 for a formal definition).

As indicated above, we assume that queue1 is overloaded and is receiving help from

pool 2, so thatz∗1,2 > 0. As mentioned before, this implies thatz∗2,1 = 0 andz∗1,1 = m1.

If we further assume that pool2 is overloaded after sharing, we have thatz∗2,2 = m2 −

z∗1,2. That is the main case we want to consider. Hence, we need onlyconsider the three-

dimensional steady-state vectorx∗ = (q∗1 , q
∗
2, z
∗
1,2). Now, for x(t) ≡ (q1(t), q2(t), z1,2(t))
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to remain fixed for allt, the flow into the system must be equal to the flow out of the

system. Hence, in steady state, there arem1 agents processing class-1 fluid in pool 1 at

rateµ1,1, plusz∗1,2 agents in pool2, processing at rateµ1,2. In addition to the class-1 fluid

leaving the system due to the service process, there is also fluid leaving the system due to

the abandonment process, with rateθ1q
∗
1 in steady state. Similarly, class-2 fluid is served by

the remainingm2−z∗1,2 servers in pool2, which process at rateµ2,2. All the class-2 arrivals

which are not served, abandon at rateθ2q
∗
2. Equating the input to each queue (which is just

the arrival rate to this queue) to the output from each queue,we see that

λ1 = µ1,1m1 + µ1,2z
∗
1,2 − θ1q

∗
1 and λ2 = µ2,2(m2 − z∗1,2)− θ2q

∗
2,

from which we get the expressions for the stationary queue lengths

q∗1 =
λ1 − µ1,1m1 − µ1,2z

∗
1,2

θ1
and q∗2 =

λ2 − µ2,2(m2 − z∗1,2)

θ2
. (3.1.1)

This steady-state fluid framework greatly simplifies the control problem, because in the

setting above there is only the single decision variablez∗1,2. The equations in (3.1.1) can be

used to find the optimalz∗1,2 by solving the simple optimization problem of minimizing the

convex-cost functionC(q∗1, q
∗
2) over the constraint0 ≤ z∗1,2 ≤ m2.

It follow immediately from (3.1.1) thatq∗1 is decreasing withz∗1,2, while q∗2 is increas-

ing with z∗1,2. Consequently, for given arrival ratesλ1 andλ2, The optimalz∗1,2 determines

a unique ratio between the steady-state fluid queues,r∗1,2(q
∗
1, q
∗
2) ≡ r∗1,2(λ1, λ2) ≡ q∗1/q

∗
2.

(Similar analysis holds forr∗2,1(λ1, λ2) which is used when class2 is being helped by pool

1.) In general, the optimal ratios are different for different arrival rates. An efficient algo-

rithm to find the optimal ratio-function was developed in Chapter 2.

However, as explained in Chapter 2, the optimal ratios oftentend to be approximately
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the same for all possible overloads;r∗i,j(λ1, λ2) ≈ ri,j, so that it is usually enough to con-

sider only one fixed queue ratio for each direction of sharing. This conclusion is supported

mathematically when we impose additional conditions on theconvex cost function. Since

the actual cost function be difficult to specify, it is natural to consider simple parametric spa-

cial cases. In particular, it is natural to assume that the holding cost is a separable quadratic

function, i.e., of the formC(q1, q2) = C1(q1) + C2(q2), with Ci(qi) = ciq
2
i + biqi + ai,

i = 1, 2. In that case, the optimal queue-ratio function has a relatively simple explicit

form, in particular, we can translate each of the state-dependent queue ratios to a fixed ratio

shifted by a constant. More specifically, the optimal relation that should hold between the

two queues isq∗1 − r∗i,jq
∗
2 = κi,j, i, j = 1, 2, whereκi,j andr∗i,j are fixed constants for all

possible overloads. If, in addition,bi = ai = 0 so thatCi(qi) = ciq
2
i , thenκi,j = 0, and the

optimal relation between the queues should be a fixed queue ratio, i.e.,r∗i,j(λ1, λ2) ≡ r∗i,j.

Thus there is a theoretical basis for using FQR once sharing has been activated. However,

we also consider shifted FQR, which is the optimal control for all separable quadratic cost

functions.

3.1.2 The FQR-T Control for the Original Queueing Model

Having found the optimal steady-state fluid levels for the fluid model, we suggested em-

ploying the FQR-T control (or its variants), which is described in§2.2. The purpose of the

control is to automatically detect overloads immediately when they occur, and maintain the

optimal ratio between the two queues when the system is overloaded.

With the assumptions on the X system and the FQR-T control, the six-dimensional

stochastic process(Qi(t), Zi,j(t); i, j = 1, 2) is a CTMC. Once sharing is initialized, the

control keeps the two queues at approximately the target ratio, e.g., if queue1 is be-

ing helped, thenQ1(t) ≈ r1,2Q2(t). If sharing is done in the opposite direction, then

r2,1Q2(t) ≈ Q1(t) for all t ≥ 0.
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In general (if the convex cost function is not separable and quadratic) the two optimal

ratios depend on the arrival rates to the system, which are assumed to be unknown. In

that case we can use thequeue-ratio-with-thresholds control(QR-T), proposed in Chapter

2, which uses the state-dependent queue ratios at each decision epoch. However, even if

QR-T is used, then after a short period of time the system should stabilize at a fixed ratio

r∗i,j, which is optimal for the specific (unknown) arrival rates; i.e., QR-T will automatically

“discover” the optimal ratio. Once the queue-ratio stabilizes at a fixed ratio, the control is

the same as FQR-T.

If the optimal relation between the queues isq∗1 = r∗1,2q
∗
2 + κ1,2 for someκ1,2 ∈ R

(assuming that pool2 needs to help class1), as is the case when the holding cost is separable

and quadratic with non-zero constant and linear terms, thenwe use theshifted FQR-T

control. Shifted FQR-T centers aboutκ1,2 instead at about zero. For example, if class

1 is overloaded, then every server takes his new customer fromthe head of queue1 if

Di,j(t) > κ1,2. Otherwise, it takes the new customer from the head of its ownclass queue.

We call that controlshifted FQR-Tsince it keeps the two queues at a fixed ratio, but shifted

by the constantκ1,2. We can think of FQR-T as the special case of shifted FQR-T with

κ1,2 = 0.

Our analysis so far relies on the assumption that FQR-T and shifted FQR-T achieve

their purpose, i.e., that they keep the the two queues approximately in fixed relation. In

the stochastic system this means that the two-dimensional vector (Q1(t), Q2(t)) should

tend to evolve approximately as a one-dimensional process.In the fluid model this ap-

proximation becomes exact; We no longer need to consider thethree-dimensional process

x(t) ≡ (q1(t), q2(t), z1,2(t)), since it is enough to considerz1,2(t) together with only one of

the queues. The other queue is determined by the first via thestate-space collapse(SSC)

equationq1(t) = ri,jq2(t)+κi,j, depending on which way the sharing is performed. In [59]

SSC is substantiated via simulation; in Chapter 4 it will be shown to hold asymptotically
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in the MS-HT limit, which we describe in the next section.

In [59] we suggest the fluid approximation{x(t) : t ≥ 0}, which is characterized by a

three-dimensional ODE involving the AP. In order to developthis approximation, we con-

sidered the fluid as a limit of a properly scaled sequence of stochastic X models operating

under (shifted) FQR-T. We then argued that the transient fluid model has a stationary point,

which agrees with the optimal solution derived heuristically before. However, none of the

claims were proved, and were only verified using simulation experiments.

Unlike the steady-state fluid approximation, there appearsto be no simple heuristic

derivation of the transient ODE without considering the original stochastic system. To see

why, assume that FQR-T is employed with a ratior1,2. If FQR-T indeed keeps the ratio

between the two queues fixed, thenq1(t) = r1,2q2(t) for eacht. But thenD̃1,2(t) ≡ q1(t)−

r1,2q2(t) = 0 for eacht, which implies that every newly available server takes his next

customer from the head of queue1 at any timet. Obviously, this heuristic approximation

is meaningless. Hence, a more careful treatment of the difference-processes̃Di,j is needed;

we somehow need to capture the fact that, in the fluid model, fluid is flowing from queue

1 to both service pools at every timet. To do that, we evidently must consider the fluid

model as a limit of stochastic X models.

3.2 The Many-Server Heavy-Traffic Fluid Limit

We first describe the convergence of the sequence of stochastic systems to the fluid limit,

as was conjectured in [59] and will be established in Chapter4. Without loss of generality

we assume that class1 is overloaded, and receives help from service-pool2. (Class2 may

also be overloaded, but less than class1, so that pool2 should be serving some class-1

customers.)
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3.2.1 Many-Server Heavy-Traffic (MS-HT) Scaling

To develop the fluid limit, we consider a sequence of X systems, indexed byn (denoted by

superscript), with arrival rates and number of servers growing proportionally ton, i.e.,

λ̄ni ≡ λni
n

→ λi and m̄n
i ≡ mn

i

n
→ mi as n→ ∞, (3.2.1)

with the service and abandonment rates held fixed. We then define the associated fluid-

scaled stochastic processes

Q̄n
i (t) ≡

Qn
i (t)

n
and Z̄n

i,j(t) ≡
Zn

i,j(t)

n
, i, j = 1, 2, t ≥ 0. (3.2.2)

For each systemn, there are thresholdkn1,2 andkn2,1, scaled as suggested in Chapter 2:

kni,j
n

→ 0 and
kni,j√
n
→ ∞ as n→ ∞, i, j = 1, 2. (3.2.3)

The first scaling byn is chosen to make the thresholds asymptotically negligiblein MS-

HT fluid scaling, so they have no asymptotic impact on the steady-state cost. The second

scaling by
√
n is chosen to make the thresholds asymptotically infinite in MS-HT diffusion

scaling, so that asymptotically the thresholds will not be exceeded under normal loading.

It is significant that MS-HT scaling shows that we shold be able to simultaneously satisfy

both conflicting objectives in large systems. There are alsothe shifting thresholdsκni,j,

arising from consideration of separable quadratic cost functions; see§3.1.2, but we do not

specify their scale.

We let time zero be the time at whichQn
1 (0) = kn1,2, and sharing is activated by send-

ing the first class-1 customer to service pool2. We thus need only considerκn1,2 and the

weighted-difference process̃Dn
1,2(t) ≡ Qn

1 (t) − r∗1,2Q
n
2 (t). However, ifκn1,2 → ∞, then
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D̃n
1,2 → ∞ asn→ ∞. Hence, we redefine the difference process. Let

Dn(t) ≡ (Qn
1 (t)− κn)− rQn

2 (t), t ≥ 0, (3.2.4)

whereκ ≡ κ1,2 andr ≡ r∗1,2.

With this definition, we allowκn to be of any order less than or equal toO(n); in

particular, we assume thatκn/n → κ for 0 ≤ κ < ∞. There are two principle cases:

κ = 0 andκ > 0. The first case produces FQR; the second case produces shifted FQR.

(Since the overload has already begun, the original thresholdskni,j no longer play a role.)

We now apply FQR using the processDn in (3.2.4): ifDn(t) > 0, then every newly

available agent (in either pool) takes his new customer fromthe head of the class-1 queue.

If Dn(t) ≤ 0, then every newly available agent takes his new customer from the head of

his own queue.

3.2.2 Representation

In order to understand why the ODE takes the form it does, it ishelpful to see the represen-

tation used in the first step in establishing the MS-HT limit.Following common practice, as

reviewed in§2 of [57], we represent all the processes of interest in termsof mutually inde-

pendent random-time-changed rate-1 Poisson processes: LetNa
i , N s

i,2 andNu
i for i = 1, 2

be six mutually independent rate-1 Poisson processes.

For simplicity, we restrict attention to the main case, which can be shown to be asymp-

totically equivalent to the actual system: We assume that all agents are busy all the time

and no class-2 customers are being served at service-pool1. Thus, we haveZn
2,1(t) = 0,

Zn
1,1(t) = mn

1 andZn
2,2(t) = mn

2 −Zn
1,2(t), for all t ≥ 0, so that we need only considerZn

1,2.

We thus obtain the following representation for the three processesQn
1 , Qn

2 andZn
1,2 in
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terms of the queue-difference processDn in (3.2.4):

Zn
1,2(t) ≡ Zn

1,2(0) +N s
2,2

(
µ2,2

∫ t

0

1{Dn(s)≥0}(m
n
2 − Zn

1,2(s)) ds

)

−N s
1,2

(
µ1,2

∫ t

0

1{Dn(s)<0}Z
n
1,2(s) ds

)
, t ≥ 0.

Qn
1 (t) ≡ Qn

1 (0) +Na
1 (λ

n
1 t)−N s

1,1(m
n
1µ1,1t)−N s

1,2

(
µ1,2

∫ t

0

1{Dn(s)≥0}Z
n
1,2(s)) ds

)

−N s
2,2

(
µ2,2

∫ t

0

1{Dn(s)≥0}(m
n
2 − Zn

1,2(s)) ds

)
−Nu

1

(
θ1

∫ t

0

Qn
1 (s)) ds

)
, t ≥ 0.

Qn
2 (t) ≡ Qn

2 (0) +Na
2 (λ

n
2 t)−N s

2,2

(
µ2,2

∫ t

0

1{Dn(s)<0}(m
n
2 − Zn

1,2(s)) ds

)

−N s
1,2

(
µ1,2

∫ t

0

1{Dn(s)<0}Z
n
1,2(s) ds

)
−Nu

2

(
θ2

∫ t

0

Qn
2 (s)) ds

)
, t ≥ 0.

(3.2.5)

We then construct the usual martingale processes by subtracting the stochastic intensi-

ties, lettingMn,a
i (t) ≡ Na

i (λ
n
i t)− λni t, M

n,u
i (t) ≡ Nu

i

(
θi
∫ t

0
Qn

i (s)) ds
)
− θi

∫ t

0
Qn

i (s) ds

andMn,s
i,2 (t) ≡ N s

i,2(I
n
i,2(t))− Ini,2(t), whereIni,2(t) is the stochastic intensity used with the

Poisson-processN s
i,2(t), e.g.,In1,2(t) ≡ µ1,2

∫ t

0
1{Dn(s)<0}Z

n
1,2(s) ds.

The fluid limit is a FWLLN. To express it, letD be the usual function space of right-

continuous functions on the interval[0,∞) with left limits in (0,∞), endowed with the

usual topology and let⇒ denote convergence in distribution; see [25, 78].

We next rewrite the equations in (3.2.5) by subtracting and adding the stochastic intensi-

ties, and then dividing each equation byn. It can be shown thatMn,a
i /n⇒ 0,Mn,u

i /n⇒ 0

andMn,s
i,2 /n ⇒ 0 in D asn → ∞, (where0 here stands for the zero function). Hence, we

replace these processes by anop(1) term, where a sequence{Y n : n ≥ 1} of processes

in D satisfiesY n = op(1) if Y n ⇒ 0 in D asn → ∞. We thus have the associated
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representation for the fluid-scaled queueing processes:

Z̄n
1,2(t) ≡ Z̄n

1,2(0) + µ2,2

∫ t

0

1{Dn(s)≥0}(m̄
n
2 − Z̄n

1,2(s)) ds

− µ1,2

∫ t

0

1{Dn(s)<0}Z̄
n
1,2(s) ds+ op(1), t ≥ 0,

Q̄n
1 (t) ≡ Q̄n

1 (0) + λ̄n1 t− m̄n
1 t− µ1,2

∫ t

0

1{Dn(s)≥0}Z̄
n
1,2(s)) ds

− µ2,2

∫ t

0

1{Dn(s)≥0}(m̄
n
2 − Z̄n

1,2(s)) ds− θ1

∫ t

0

Q̄n
1 (s) ds+ op(1), t ≥ 0,

Q̄n
2 (t) ≡ Q̄n

2 (0) + λ̄n2 t− µ2,2

∫ t

0

1{Dn(s)<0}(m̄
n
2 − Z̄n

1,2(s)) ds

− µ1,2

∫ t

0

1{Dn(s)<0}Z
n
1,2(s) ds− θ2

∫ t

0

Qn
2 (s)) ds+ op(1), t ≥ 0.

(3.2.6)

The ODE we study is an approximation for the three-dimensional fluid-scaled process

X̄n ≡ (Q̄n
1 , Q̄

n
2 , Z̄

n
1,2) with components defined in (3.2.6).

3.2.3 A Heuristic View of the AP

In fact, the ODE we study is the limit of the three-dimensional fluid-scaled process̄Xn ≡

(Q̄n
1 , Q̄

n
2 , Z̄

n
1,2) with components defined in (3.2.6); i.e., in Chapter 4 we showthatX̄n ⇒ x

in D3 asn → ∞, wherex ≡ (q1, q2, z1,2) is a deterministic limit satisfying the ODE. The

resulting ODE can be seen directly from the differential form of the integral representation

in (3.2.6), provided that we invoke the AP discussed below. As a result of the AP, the in-

dicator functions1{Dn(s)≥0} and1{Dn(s)<0}, appearing in the integrands, are replaced by by

deterministic functions, denoted byπ1,2(x(s)) and1− π1,2(x(s)), respectively (in addition

to replacingX̄n by x).

The AP is concerned with the system behavior when sharing is taking place; i.e., when

some, but not all, of the pool 2 agents are serving class 1. In that situation, it can be shown
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that the queue-difference processDn in (3.2.4) is an orderO(1) process, without any spatial

scaling, i.e., for eacht, the sequence of unscaled random variables{Dn(t) : n ≥ 1} turns

out to be stochastically bounded (or tight) inR. That implies thatDn operates in a time

scale that is different from the other processesQn
i andZn

1,2, which are scaled by dividing

by n in (3.2.2) and (3.2.6). A heuristic explanation is that, with the MS-HT scaling in

(3.2.1), in order for the two queues to change significantly (in a relative sense), which is

captured by the scaling in (3.2.2), there needs to beO(n) arrivals and departures from the

queues. In contrast, the difference processDn can never go far from0, because it has

drift pointing towards0 from both above and below. Thus, the difference process oscillates

more and more rapidly about0 asn increases. It transitions above and below0 of order

O(n) times in any finite interval. Thus, over short time intervalsin which Xn remains

nearly unchanged (for largen), the processDn moves frequently in its state space, nearly

achieving a local steady state rapidly with respect toX̄n. As n increases, the speed of the

difference process increases, so that in the limit, it achieves a steady state instantaneously.

That steady state is a local steady state, because it dependsonx(t), the fluid limitx at time

t.

To formalize this separation of time scales, we define a family of time-incremented

difference processes: for eachn ≥ 1 andt ≥ 0, let

Dn
t ≡ Dn(Xn(t), s) ≡ {Dn(t+ s/n) : s ≥ 0}. (3.2.7)

Dividing s by n in (3.2.7) allows us to examine what is happening right aftertime t in the

faster time scale. For eacht, a different processDn
t is defined. For everyt ≥ 0 ands > 0,

the time increment[t, t+ s/n) becomes infinitesimal in the limit. A main result in Chapter
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4 is that, for eacht ≥ 0,

Dn
t ≡ {Dn(Xn(t), s) : s ≥ 0} ⇒ Dt ≡ {D(x(t), s) : s ≥ 0} in D asn→ ∞, (3.2.8)

where the limitDt ≡ {D(x(t), s) : s ≥ 0} is apure-jump continuous-time Markov process

with state space{k + rj : k ∈ Z, j ∈ Z}. We callDt the fast-time-scale-process(FTSP).

This limit is easy to understand by examining the transitionrates of the processDn
t defined

in (3.2.7), which depend on the CTMC̄Xn(t).

The deterministic functionπ1,2, mentioned in the first paragraph of this section, is the

steady-state probability of the set[0,∞) for the FTSP, i.e.,

π1,2(x(t)) ≡ lim
s→∞

P (D(x(t), s) ≥ 0) = lim
u→∞

1

u

∫ u

0

1{D(x(t),s)≥0} ds, (3.2.9)

which depends onx because the distribution of{D(x(t), s) : s ≥ 0} depends on the value

of x(t) ∈ R3.

To actually establish convergence for̄Xn in (3.2.6), we go further in Chapter 4 and

prove local uniform convergence int, which implies that for anyǫ > 0, there existn0 and

η > 0 such that, for anyn ≥ n0,

∣∣∣∣
1

η

∫ t+η

t

1{Dn(Xn(t),s)≥0} ds− π1,2(x(t))

∣∣∣∣ < ǫ. (3.2.10)

The local uniform convergence allows us to replace the indicator functions in the integrals

in (3.2.6) with theπ1,2 functions in the fluid limit.

3.2.4 The Fluid-Limit ODE

The discussion in§§3.2.2 and 3.2.3 above is an outline of the convergence resultin Chapter

4. A different approach appeared§4.2 of [59], where the ODE was developed directly,
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assuming that the fluid limit exists, and is differentiable.The convergencēXn ⇒ x, es-

tablished in Chapter 4 based on the representation (3.2.6) together with the AP in (3.2.7)-

(3.2.10), lead to the same ODE as in [59]. We now specify the ODE, which is the main

subject of this chapter.

The general form of an ODE iṡx(t) = Ψ(x(t), t) for a functionΨ, whereẋ(t) is

the derivative evaluated att. In addition, our ODE isautonomous(or time invariant)

becauseΨ(x(t), t) ≡ Ψ(x(t)). An autonomous ODE does not depend explicitly on the

time-argumentt, and its behavior is invariant to shifts in the time origin.

We consider the autonomous ODE

ẋ(t) ≡ (q̇1(t), q̇2(t), ż1,2(t)) = Ψ(x(t)) ≡ Ψ(q1(t), q2(t), z1,2(t)), t ≥ 0, (3.2.11)

whereΨ(x) : [0,∞)2 × [0, m2] → R3 can be displayed via

q̇1(t) ≡ λ1 −m1µ1,1 − π1,2(x(t)) [z1,2(t)µ1,2 + z2,2(t)µ2,2]− θ1q1(t)

q̇2(t) ≡ λ2 − (1− π1,2(x(t))) [z2,2(t)µ2,2 + z1,2(t)µ1,2]− θ2q2(t)

ż1,2(t) ≡ π1,2(x(t))z2,2(t)µ2,2 − (1− π1,2(x(t)))z1,2(t)µ1,2,

(3.2.12)

with π1,2 : [0,∞)2 × [0, m2] → [0, 1] defined in (3.2.9).

Some of the results in this chapter depend on the initial value of the ODE. In that case,

we consider theinitial value problem(IVP)

ẋ(t) = Ψ(x(t)), x(0) = w0 (3.2.13)

for Ψ(x) in (3.2.11) - (3.2.12).

We remark that specifying the IVP in (3.2.11)-(3.2.13) doesnot fully characterize the

limit of X̄n, given convergence of the initial conditions̄Xn(0) → w0 w.p. 1, wherew0 ≥ 0
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is deterministic, as required in Chapter 4. First, it is not initially evident that a solution

to the ODE exists. Second, even if a solution does exist, thissolution must be unique as

well in order for it to characterize the limit of̄Xn, because in the proof of convergence the

ODE initially appears only as the limit of a converging subsequence. In general, different

subsequences may converge to different limits. Thus, our first task here is to prove the

existence of a unique solution to the IVP in (3.2.13).

The proof of existence and uniqueness of a solution to (3.2.13), is tied to the char-

acterization ofπ1,2 in (3.2.12) and (3.2.9), and thus the FTSPDt. We need to determine

conditions for the FTSPDt to be positive recurrent, so that the AP holds, and then calculate

its steady-state distribution in order to findπ1,2. Moreover, we need to establish topological

properties of the functionπ1,2, such as continuity and differentiability.

3.3 The Fast-Time-Scale Process

Recall that the FTSPDt is the limit ofDn
t without any scaling (see (3.2.8)), whereDn

t is

the time-incremented difference process defined in (3.2.7)in terms of the queue-difference

stochastic processDn ≡ (Qn
1 − κn) − rQn

2 in (3.2.4). Since there is no scaling of space,

the state space for the FTSPDt is the countable lattice{±j ± kr : j, k ∈ Z} in R. To see

this, first observe from (3.2.4) thatDn has state space{±j ± kr − κn : j, k ∈ Z}. Next,

because of the subtraction in (3.2.7),Dn
t has state space{±j ± kr : j, k ∈ Z}. Finally,

because of the convergence in (3.2.8), the FTSPDt has this same state space.

3.3.1 The Fast-Time-Scale CTMC

We fix a timet and assume that we are given the valuex(t) ≡ (q1(t), q2(t), z1,2(t)). In order

to simplify the analysis we assume thatr is rational. That clearly is without any practical

loss of generality. Specifically, we assume thatr = j/k for some positive integersj andk
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without any common factors. We then multiply the process byk, so that all transitions can

be expressed as±j or ±k in the state spaceZ. In that case,Dt ≡ {D(x(t), s) : s ≥ 0}

becomes a continuous-time Markov chain (CTMC), which we refer to as thefast-time-scale

Markov chain(FTSMC).

Let λ(j)+ (m, x(t)), λ(k)+ (m, x(t)), µ(j)
+ (m, x(t)) andµ(k)

+ (m, x(t)) be the transition rates

of the FTSMCDt for transitions of+j, +k, −j and−k, respectively, whenD(x(t), s) =

m > 0. Similarly, we define the transitions whenD(x(t), s) = m ≤ 0: λ(j)− (m, x(t)),

λ
(k)
− (m, x(t)), µ(j)

− (m, x(t)) andµ(k)
− (m, x(t)). These rates are the limits of the rates ofDn

t

asn→ ∞ with X̄n(t) ⇒ x(t); convergence will be proved in Chapter 4.

First, forD(x(t), s) = m ∈ (−∞, 0], the upward rates are

λ
(k)
− (m, x(t)) = λ1, and λ

(j)
− (m, x(t)) = µ1,2z1,2(t) + µ2,2z2,2(t) + θ2q2(t), (3.3.1)

corresponding, first, to a class-1 arrival and, second, to a departure from the class-2 queue,

caused by a type-2 agent service completion (of either customer type) or by a class-2 cus-

tomer abandonment. Similarly, the downward rates are

µ
(k)
− (m, x(t)) = µ1,1z1,1(t) + θ1q1(t) and µ

(j)
− (m, x(t)) = λ2, (3.3.2)

corresponding, first, to a departure from the class-1 customer queue, caused by a class-1

agent service completion or by a class-1 customer abandonment, and, second, to a class-2

arrival.

Next, forD(x(t), s) = m ∈ (0,∞), we have upward rates

λ
(k)
+ (m, x(t)) = λ1 and λ

(j)
+ (m, x(t)) = θ2q2(t), (3.3.3)
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corresponding, first, to a class-1 arrival and, second, to a departure from the class-2 cus-

tomer queue caused by a class-2 customer abandonment. The downward rates are

µ
(k)
+ (m, x(t)) = µ1,1z1,1(t) + µ1,2z1,2(t) + µ2,2z2,2(t) + θ1q1(t) and

µ
(j)
+ (m, x(t)) = λ2,

(3.3.4)

corresponding, first, to a departure from the class-1 customer queue, caused by (i) a type-1

agent service completion, (ii) a type-2 agent service completion (of either customer type),

or (iii) by a class-1 customer abandonment and, second, to a class-2 arrival.

3.3.2 Representing the FTSMCDt as a QBD

Further analysis is simplified by exploiting matrix geometric methods, as in [52]. In partic-

ular, we represent the integer-valued FTSMCDt ≡ {D(x(t), s) : s ≥ 0} just constructed

as a homogeneous continuous-time QBD, as in Definition 1.3.1and§6.4 of [52]. To do

so, we must re-order the states appropriately. We order the states so that the infinitesimal

generator matrixQ can be written in block-tridiagonal form, as in Definition 1.3.1 and

(6.19) of [52] (imitating the shape of a generator matrix of abirth-and-death process). In

particular, we write

Q ≡




B A0 0 0 . . .

A2 A1 A0 0 . . .

0 A2 A1 A0 . . .

0 0 A2 A1 . . .
...

...
...

...




(3.3.5)

where the four component submatricesB,A0, A1 andA2 are all2m× 2m submatrices for

m ≡ max {j, k}. In particular, These2m × 2m matricesB,A0, A1 andA2 in turn can be
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written in block-triangular form composed of fourm×m submatrices, i.e.,

B ≡


 A+

1 Bµ

Bλ A−1


 and Ai ≡


 A+

i 0

0 A−i


 (3.3.6)

for i = 0, 1, 2. (All matrices are also functions ofx(t).)

To achieve this representation, we need to re-order the states into levels. The main

idea is to represent transitions above the boundary and below the boundary within common

blocks. LetL(n) denote leveln, n = 0, 1, 2, . . . We assign original statesφ(n) to positive

integersn according to the mapping:

φ(2nm+ i) ≡ nm+ i and φ((2n+ 1)m+ i) ≡ −nm− i+ 1, 1 ≤ i ≤ m. (3.3.7)

Then we order the states in levels as follows

L(0) ≡ {1, 2, 3, 4, . . .m, 0,−1,−2, . . . ,−(m− 1)},

L(1) ≡ {m+ 1, m+ 2, . . . , 2m,−m,−(m+ 1), . . . ,−(2m− 1)}, . . .

With this representation, the generator-matrixQ can be written in the form (3.3.5) above,

whereA1 groups all the transitions within a level,A0 groups the transitions from levelL(n)

to levelL(n + 1) andA2 groups all transitions from levelL(n) to levelL(n − 1). Matrix

B groups the transitions within the boundary levelL(0), and is thus different thanA1.

To illustrate, consider an example withr = 0.4, so that we can choosej = 2 andk = 5,
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yieldingm = 5. The states are ordered in levels as follows

L(0) = {1, 2, 3, 4, 5, 0,−1,−2,−3,−4},

L(1) = {6, 7, 8, 9, 10,−5,−6,−7,−8,−9},

L(2) = {11, 12, 13, 14, 15,−10,−11,−12,−13,−14}, . . .

Then the submatricesBµ, Bλ, A+
i andA−i , which form the block matricesB andAi,

i = 0, 1, 2, have the form in (3.3.9) with

σ+ = λ
(5)
+ + λ

(2)
+ + µ

(5)
+ + µ

(2)
+ and σ− = λ

(5)
− + λ

(2)
− + µ

(5)
− + µ

(2)
− . (3.3.8)

(We solve a full numerical example with these matrices in§3.8.3.)

Henceforth in this chapter, we refer toDt as the QBD, because this is the only QBD

under consideration. However, we will consider other QBD’sin Chapter 4. To summa-

rize, both the FTSMC and the QBD are alternative representations of the original FTSP

(exploiting the assumption thatr = j/k for positive integersj andk without common

factor).

3.3.3 Positive Recurrence

We now determine when the FTSPDt is positive recurrent, so that the AP holds. For

that purpose, we employ the theory in§7 of [52], modified to the continuous-time QBD.

To apply the theory, we construct the aggregate matricesA ≡ A0 + A1 + A2, A+ ≡

A+
0 + A+

1 + A+
2 andA− ≡ A−0 + A−1 + A−2 . We first observe that the aggregate matrix

A is reducible, so we need to consider the component matricesA+ andA−, which both

are irreducible CTMC infinitesimal generators in their own right. Let ν+ andν− be the
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Bµ =




0 µ
(2)
+ 0 0 µ

(5)
+

µ
(2)
+ 0 0 µ

(5)
+ 0

0 0 µ
(5)
+ 0 0

0 µ
(5)
+ 0 0 0

µ
(5)
+ 0 0 0 0




Bλ =




0 λ
(2)
− 0 0 λ

(5)
−

λ
(2)
− 0 0 λ

(5)
− 0

0 0 λ
(5)
− 0 0

0 λ
(5)
− 0 0 0

λ
(5)
− 0 0 0 0




A+
0 =




λ
(5)
+ 0 0 0 0

0 λ
(5)
+ 0 0 0

0 0 λ
(5)
+ 0 0

λ
(2)
+ 0 0 λ

(5)
+ 0

0 λ
(2)
+ 0 0 λ

(5)
+




A−0 =




µ
(5)
− 0 0 0 0

0 µ
(5)
− 0 0 0

0 0 µ
(5)
− 0 0

µ
(2)
− 0 0 µ

(5)
− 0

0 µ
(2)
− 0 0 µ

(5)
−




A+
1 =




−σ+ 0 λ
(2)
+ 0 0

0 −σ+ 0 λ
(2)
+ 0

µ
(2)
+ 0 −σ+ 0 λ

(2)
+

0 µ
(2)
+ 0 −σ+ 0

0 0 µ
(2)
+ 0 −σ+




A−1 =




−σ− 0 µ
(2)
− 0 0

0 −σ− 0 µ
(2)
− 0

λ
(2)
− 0 −σ− 0 µ

(2)
−

0 λ
(2)
− 0 −σ− 0

0 0 λ
(2)
− 0 −σ−




A+
2 =




µ
(5)
+ 0 0 µ

(2)
+ 0

0 µ
(5)
+ 0 0 µ

(2)
+

0 0 µ
(5)
+ 0 0

0 0 0 µ
(5)
+ 0

0 0 0 0 µ
(5)
+




A−2 =




λ
(5)
− 0 0 λ

(2)
− 0

0 λ
(5)
− 0 0 λ

(2)
−

0 0 λ
(5)
− 0 0

0 0 0 λ
(5)
− 0

0 0 0 0 λ
(5)
−




(3.3.9)
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unique stationary probability vectors ofA+ andA−, respectively, e.g., withν+A+ = 0 and

ν+1 = 1. The theory concludes that our QBD is positive recurrent if and only if

ν+A+
0 1 < ν+A+

2 1 and ν−A−0 1 < ν−A−2 1. (3.3.10)

In our application it is easy to see that bothν+ andν− are the uniform probability vector,

attaching probability1/m to each of them states.

Let δ+ andδ− be the drift in the positive and negative region, respectively; i.e., let

δ+(x(t)) ≡ j
(
λ
(j)
+ (x(t))− µ

(j)
+ (x(t))

)
+ k

(
λ
(k)
+ (x(t))− µ

(k)
+ (x(t))

)

δ−(x(t)) ≡ j
(
λ
(j)
− (x(t))− µ

(j)
− (x(t))

)
+ k

(
λ
(k)
− (x(t))− µ

(k)
− (x(t))

)
.

(3.3.11)

By our construction of the rates above, we always haveδ−(x(t)) > δ+(x(t)). We immedi-

ately deduce a simple criterion for the QBDDt to be positive recurrent from (3.3.10):

Theorem 3.3.1.The QBDDt is positive recurrent if and only if

δ−(x(t)) > 0 > δ+(x(t)). (3.3.12)

If the QBDDt is positive recurrent, then the AP takes place, andπ1,2(x(t)) can be com-

puted, as shown in§3.3.4 below. If, instead, we have net upward drift, i.e., ifδ−(x(t)) >

δ+(x(t)) ≥ 0, then the CTMC is either null-recurrent or transient; in either case,π1,2(x(t)) =

1. If, instead, we have net downward drift, i.e., if0 ≥ δ−(x(t)) > δ+(x(t)), then the CTMC

is again either null-recurrent or transient; in either case, π1,2(x(t)) = 0.

3.3.4 Computingπ1,2

In this framework, the stationary vector of the QBD can be expressed asα ≡ {αn : n ≥

0} ≡ {αn,j : n ≥ 0, 1 ≤ j ≤ m}, whereαn ≡ (α+
n , α

−
n ) for eachn, with α+

n andα−n both
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being1×m vectors. Then the desired probabilityπ1,2 can be expressed as

π1,2 =
∞∑

n=0

m∑

j=1

α+
n,j =

∞∑

n=0

α+
n1 =

∞∑

n=0

αn1+, (3.3.13)

where1 denotes am × 1 column vector with all entries1, while 1+ represents a2m × 1

column vector, withm 1′s followed bym 0′s.

By Theorem 6.4.1 and Lemma 6.4.3 of [52], the steady-state distribution has the matrix-

geometric form

αn = α0R
n, (3.3.14)

whereR is the2m × 2m rate matrix. Since the spectral radius of the rate matrixR is

strictly less than1 (Corollary 6.2.4 of [52]), we have

∞∑

n=0

Rn = (I − R)−1.

Also, by Lemma 6.3.1 of [52], the boundary probability vector α0 is the unique solution to

the system

α0(B +RA2) = 0 and α1 = α0(I − R)−11 = 1. (3.3.15)

Finally, given the above, and using (3.3.13), we see that thedesired quantityπ1,2 can be

represented as

π1,2 = α0(I −R)−11+, (3.3.16)

whereR is the2m × 2m rate matrixandα0 is the1 × 2m vector of stationaryboundary

probabilities. The rate-matrixR is the minimal nonnegative solutions to the quadratic

matrix equation

A0 +RA1 +R2A2 = 0,
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and can be found efficiently by existing algorithms, as in [52] (see§3.8). In addition,

important topological properties ofR are known, and will be shown to hold in our case.

With the QBD representation, we can determine when the FTSPDt is positive recur-

rent, for a givenx(t), (using (3.3.12)) and then numerically calculateπ1,2. This allows us

to numerically solve the ODE (3.2.11), as in§3.8. Moreover, we will use the representation

(3.3.16), and results about the rate matrixR, to conclude topological properties ofπ1,2.

3.4 Existence and Uniqueness of Solutions

We now start to analyze the ODE and IVP introduced in§3.2.4. In this section we show that

a unique solution exists to the IVP (3.2.13) for every initial point in the state space, at least

on some initial interval. In subsequent sections we extend this result, and give sufficient

conditions for a unique solution to exist for allt ≥ 0. To apply existence and uniqueness

results from ODE theory, we need the functionΨ in (3.2.12) to be (locally) Lipschitz

continuous. However,Ψ is not even continuous on the full state-spaceS ≡ [0,∞)2×[0, m2]

with elementsx ≡ (q1, q2, z1,2). (Herex denotes a possible value of the functionx; we use

the notation interchangeably; it should be clear from the context. Recall that the ODE is

autonomous, so that there is no time argument, i.e.,Ψ(x(t), t) = Ψ(x(t)).) To overcome

this difficulty, we divide the state-spaceS into three regions, and show thatΨ is indeed

locally Lipschitz continuous in each of these regions.

3.4.1 Properties ofΨ

The ODE inherits essential structure from the queueing system with the FQR control. For

the queueing systems, the instantaneous sharing is in a different direction when the (cen-

tered) queue-difference processDn(t) in (3.2.4) is above0 or below0. The ODE has sim-

ilar structure, but a special role is played by the boundary (where equality holds), which
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is where all averaging takes place. In particular, the ODE has different behavior when the

(fluid-scale, un-centered) queue differenceq1 − rq2 is aboveκ, equal toκ or belowκ. We

refer to the middle region as theboundary.

Thus we divide the state spaceS ≡ [0,∞)2× [0, m2] ≡ {(q1, q2, z1,2)} of the ODE into

three regions:

S
b ≡ {q1 − rq2 = κ}, S

+ ≡ {q1 − rq2 > κ}, S
− ≡ {q1 − rq2 < κ}, (3.4.1)

with S = Sb ∪ S+ ∪ S−.

The boundary subsetSb is a hyperplane in the state spaceS, and is therefore a closed

subset. It is the subset ofS in which SSC and the AP are taking place (in fluid scale). InSb

the functionπ1,2 can assume its full range of values,0 ≤ π1,2(x) ≤ 1.

The regionS+ above the boundary is an open subset ofS. For allx ∈ S+, π1,2(x) = 1.

The regionS− below the boundary is also an open subset ofS. For allx ∈ S−, π1,2(x) = 0.

It is important to keep in mind that, in order forS− to be a proper subspace ofS, both

service pools must be constantly full (in the fluid limit). Thus, if x ∈ S−, thenz1,1 = m1

andz1,2 + z2,2 = m2 (but q1 andq2 are allowed to be equal to zero).

It is immediate that the functionΨ in (3.2.12) is Lipschitz continuous onS+ andS−,

becauseπ1,2(x) = 1 whenx ∈ S+, andπ1,2(x) = 0 whenx ∈ S−, so thatΨ is linear in

each region. However,Ψ is not linear onSb, so we must work harder there.

To analyzeΨ onSb, we exploit properties of the QBD introduced in§3.3. First observe

that, if 0 < π1,2(x(t)) < 1 for s ≤ t ≤ u, thenx(t) ∈ Sb for t ∈ [s, u], i.e., SSC holds on

[s, u]. Recall that, forx ∈ S, δ+(x) andδ−(x) are the QBD drift rates in (3.3.11). LetA be

the set of allx ∈ Sb for which the QBD is positive recurrent, as given in (3.3.12); i.e., let

A ≡ {x ∈ S
b | δ−(x) > 0 > δ+(x)}. (3.4.2)
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From the continuity of the QBD drift-rates in (3.3.11), if follows thatA is an open and

connected subset ofSb. Hence,A can be regarded as an open connected subset ofR
+
2

(sinceSb is homoeomorphic toR+ × [0, m2]).

If x(t) ∈ A for t ∈ [s, u), then we say thatstrong SSCholds on that interval. Ifx(t) ∈ A

for all t ≥ 0, then we say that strong SSC holds globally.

Definition 3.4.1. (local Lipschitz continuity) A functionf : Rn → Rm is locally Lipschitz

continuous if for everyv0 ∈ Rn there exists a neighborhoodU of v0 such thatf restricted

to U is Lipschitz continuous; i.e., there exists a constantK ≡ K(U) such that‖f(v1) −

f(v2)‖ ≤ K‖v1 − v2‖ for everyv1, v2 ∈ U .

Theorem 3.4.1.The functionΨ in (3.2.12)is locally Lipschitz continuous onA.

Proof: The key component of the functionΨ isπ1,2. We will look atπ1,2, and thus the QBD,

as a function of the variablex ∈ A. By the definition of the matricesA0, A1 andA2 in

(3.3.6) (see also the example in§3.3.2) and the definitions of the rates in (3.3.1)-(3.3.4), the

matricesAi, i = 0, 1, 2, are twice differentiable (as functions ofx) at eachx ∈ A. It follows

from Theorem 2.3 in He [34] that the rate matrixR in (3.3.14), which is the minimal

nonnegative solution to the quadratic matrix equationA0+RA1+R2A2 = 0, is also twice

differentiable at eachx ∈ A. In particular, the derivativeR′ exists and is continuous inA.

It follows from the normalizing expression in (3.3.15) and the differentiability ofR, thatα0

is also differentiable. Hence, from (3.3.16), we see thatπ1,2 is differentiable at eachx ∈ A,

with

π′1,2 = α′0(I − R)−11+ + α0(I − R)−1R′(I − R)−11+.

By differentiating (3.3.15), we have

α′0(I − R)−11+ α0(I −R)−1R′(I −R)−11 = 0,
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so thatα′0 is continuous. The continuity ofR′ andα′0 implies that the derivativeπ′1,2 is

continuous onA, which in turn implies that the derivativeΨ′ is continuous onA. That in

turn implies thatΨ is locally Lipschitz continuous onA, as claimed. For this last step, we

use the fact that a function mapping a convex compact subset of Rm to Rn is Lipschitz on

that domain if it has a bounded derivative. Since we can always work with balls inRm

(which are convex with compact closure), that in turn implies that a function mapping an

open subset ofRm to Rn is locally Lipschitz whenever it has a bounded derivative oneach

ball in the domain; e.g., see Lemma 3.2 of [45]. Finally, since a continuous function on

a compact set is bounded,Ψ satisfies this property. HenceΨ is indeed locally Lipschitz

continuous.

3.4.2 Solution to the ODE

The local Lipschitz continuity ofΨ allows us to apply the classical Picard-Lindelöf theorem

(extended to locally Lipschitz functions) to deduce the desired existence and uniqueness of

solutions to the IVP (3.2.13); e.g., see Theorem 2.2 of Teschl [68].

Theorem 3.4.2.(local existence and uniqueness) If w0 ∈ A, then there exists a unique

solutionx : [0, δ) → A to theIVP (3.2.13)for someδ > 0.

Proof: By the classical Picard-Lindelöf theorem, Theorem 2.2 of Teschl [68] or Theorem

3.1 in [45], and Theorem 3.4.1, there existsδ1 > 0 such that there exists a unique solution

to the ODE on the interval[0, δ1), provided thatx(t) ∈ A for t ∈ [0, δ1). Sincew0 is

contained in the open setA and the functionx and the driftsδ− andδ+ are continuous

functions, there necessarily existsδ with 0 < δ ≤ δ1 such thatx(t) ∈ A for all t ∈ [0, δ).

We now give sufficient conditions for the existence of a unique solution to the IVP

(3.2.13) over the entire halfline[0,∞). There are two issues: (i) extending the existence and
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uniqueness result above, given that the solution falls inA, and (ii) showing that a solution

necessarily stays withinA. To address the first issue, we exploit boundedness. In particular,

we prove that a solution to the IVP (3.2.13) is bounded, so that every fluid solution is

contained in a compact subset ofS. We use the following notation:a ∨ b ≡ max{a, b}.

Theorem 3.4.3.(boundedness) Every solution to theIVP (3.2.13)is bounded. In particu-

lar, the following upper bounds for the fluid queues hold:

qi(t) ≤ qi(0) ∨ λi/θi t ≥ 0, i = 1, 2. (3.4.3)

Proof: For the boundedness, it is clear that0 ≤ z1,2 ≤ m2 andqi ≥ 0 in S. Hence, we only

need to prove the upper bounds (3.4.3). Fori = 1, 2, let ui(t) be the function describing

the queue-length process (of queuei) in a modified system with no service processes (so

that all the fluid output is due to abandonment). The queue-length process in the modified

system evolves according to the ODE

u̇i(t) = λi − θiui(t), t ≥ 0,

whose solution is

ui(t) =
λi
θi

+

(
ui(0)−

λi
θi

)
e−θ1t, t ≥ 0.

It follows thatui(t) ≤ ui(0) ∨ λi/θi and, whenui(0) = qi(0), the the right-hand side in

(3.4.3) is an upper bound forui(t). We now show that this is also a bound forqi(t). For

that purpose, define the auxiliary functionfi(t) ≡ qi(t) − ui(t), t ≥ 0, and observe that

fi(0) = 0 andḟi(0) < 0. Hence,f is decreasing at0 with f(t) < f(0) for all t ∈ [0, δ) for

someδ > 0. This implies thatqi(t) < ui(t) for all t ∈ [0, δ).

We now want to show thatqi(t) ≤ ui(t) for all t ≥ 0. For a proof by contradiction,
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assume that there exists somet0 > 0 such thatqi(t0) > ui(t0), and let

t1 ≡ sup{t < t0 : qi(t) = ui(t)}, t2 ≡ inf{t > t0 : qi(t) = ui(t)}.

By the contradictory assumption and the continuity ofq andu, we have0 < t1 < t0 < t2.

(t2 may be infinite.) Then

qi(t) > ui(t) for all t1 < t < t2. (3.4.4)

It follows from the mean-value theorem that there exists some t3 ∈ (t1, t0) such that

ḟi(t3) =
f(t0)− f(t1)

t0 − t1
=

f(t0)

t0 − t1
> 0.

Hence,q̇i(t3) > u̇i(t3). For i = 1, this translates to

λ1 − µ1,1m1 − π1,2(x(t3)) [z1,2(t3)µ1,2 + z2,2(t3)µ2,2]− θ1q1(t3) > λ1 − θ1u1(t3).

Thus,

θ1(q1(t3)− u1(t3)) < −µ1,1m1 − π1,2(x(t3)) [z1,2(t3)µ1,2 + z2,2(t3)µ2,2] < 0,

so thatq1(t3) < u1(t3), contradicting (3.4.4). A similar argument holds forq2.

Theorem 3.4.4.(global existence and uniqueness) Letx be the unique solution to theIVP

(3.2.13)on an interval[0, δ), established by Theorem3.4.2. If x(δ) ∈ A, then the solution

can be extended to an interval[0, δ′), δ′ > δ, with the solution again being unique. If it is

known that the solution can never leaveA, thenδ′ = ∞; i.e., there exists a unique solution

to theIVP (3.2.13)on [0,∞).
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In the proof of Theorem 3.4.4 we make use of the next lemma. Forits proof see Theo-

rem 3.3 in [45].

Lemma 3.4.1. Consider anODE ẋ = f(x) in a domainU in Rn, wheref is locally

Lipschitz. LetK be a compact subset ofU . If every solution of theODE is contained inK,

then there exists a unique solution to theODE on the entire halfline[0,∞).

proof of Theorem 3.4.4: By Theorem 3.4.1,Ψ is locally Lipschitz continuous, and by

Theorem 3.4.3, a solution to the IVP (3.2.13) is bounded. It follows from Lemma 3.4.1 that

there exists a unique solution to (3.2.13) for allt ≥ 0.

In Section§3.6 we give sufficient conditions for the solution of the IVP (3.2.13) to lie

entirely inA, which by Theorem 3.4.4 will imply existence and uniquenessof a solution

over the entire halfline[0,∞). We also go further to provide an a posteriori demonstration

of existence and uniqueness of a solution over the entire halfline [0,∞) when these suffi-

cient conditions do not hold: In§3.6.2, we show how being contained inA for all t > 0

can be inferred from theinitial behaviorof the solution, which is what we can achieve nu-

merically. We then can apply Theorem 3.4.2 to conclude that there exists a unique solution

to the IVP (3.2.13) for allt ≥ 0.

Remark 3.4.1. Theorems 3.4.1-3.4.4 also hold for solutions to the IVP (3.2.13) inS− and

S+. Indeed, they are elementary, becauseΨ is Lipschitz continuous, sinceπ1,2 is constant

in these regions. The boundedness used in the proof of Theorem 3.4.4, and proved in

Theorem 3.4.3, applies in these two regions as well.

3.5 Fluid Stationarity

Our initial analysis of the overloaded X model in Chapter 2 was using a steady state (or

stationary) fluid analysis. That is, we assumed that there exists a unique stationary pointx∗
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and thatx(t) → x∗ as t → ∞ for all initial statesx(0), and gave a heuristic derivation

of the limit x∗. In this section we provide mathematical justification. We first give a

formal definition of fluid stationarity and prove the existence and uniqueness of a stationary

point x∗ for the ODE (3.2.12). We then give conditions under which thefluid solution

x ≡ {x(t) : t ≥ 0} converges to stationarity ast → ∞. In §3.6, we show that it does so

exponentially fast.

Definition 3.5.1. (stationary point for the fluid)We say thatx∗ is a stationary point for the

ODE (or fluid model) if x(t) = x∗ for all t ≥ 0 whenx(0) = x∗. That is,x∗ is a stationary

point if Ψ(x∗) = 0 for Ψ in (3.2.11)and (3.2.12). If x(t) = x∗, then we say that the fluid

solution is in steady state at timet.

We now make some important assumptions, which we will use to show that there exists

a unique stationary point for the ODE. For that purpose, letqai be the length of fluid-queue

i and letsai be the amount of spare service capacity in service-pooli, in steady state, when

there is no sharing,i = 1, 2. The quantitiesqai and sai are well known, since they are

the steady state quantities of the fluid model for the Erlang-A model (M/M/mi + M)

with arrival-rateλi, service-rateµi,i and abandonment-rateθi; see Theorem 2.3 in [79],

especially equation (2.19). In particular,

qai ≡ (λi − µi,imi)
+

θi
and sai ≡

(
mi −

λi
µi,i

)+

, i = 1, 2, (3.5.1)

where(x)+ ≡ max{x, 0}. It is easy to see thatqai s
a
i = 0, i = 1, 2.

A sufficient condition for the ODE (3.2.12) to be well defined (so that the solution is

in S, possibly after an initial transient) is to havesa1 = sa2 = 0, i.e., there is no spare

service capacity in either pool in their individual steady states. However, ifsa2 > 0, the

solution can still be inS after an initial transient, if enough class-1 fluid is processed in

pool 2. To have the solution be eventually inS, we require thatθ1(qa1 − κ) ≥ µ1,2s
a
2.
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This condition ensures that service pool2 is also full of fluid when sharing is taking place,

i.e., z1,2(t) + z2,2(t) = m2 for all t ≥ 0 (assuming that pool2 is full at time0). To see

why, note that when service-pool2 has spare service capacity (sa2 > 0), sharing will be

activated ifqa1 > κ. Now, the maximum amount of class-1 fluid that pool2 can process,

while still processing all of the class-2 fluid (so thatq2 is kept at zero), isµ1,2s
a
2. hence,

µ1,2s
a
2 is the minimal amount of class-1 fluid that should flow to pool2. On the other hand,

θ1q
a
1 = λ1−µ1,1m1 is equal to the “extra” class-1 fluid that flows to the system, i.e., all the

class-1 fluid that pool1 cannot process. Some of this “extra” class-1 fluid might abandon

(if q1 > 0). The minimal amount of class-1 fluid that abandons isθ1κ (butκ can be equal

to zero). We thus require that all the class-1 fluid, that is not served in pool1, minus the

minimal amount of class-1 fluid that abandons, is larger thanµ1,2s
a
2. With this requirement,

pool 2 is assured to be full, assuming that it is initialized full. (If pool 2 is not initialized

full, then it will fill up after some finite time period; see§3.7.)

From the above, we see that in order to have both service poolsfull all the time, we

must have eithersa1 = sa2 = 0, or, if sa2 > 0, θ1(qa1 − κ) ≥ µ1,2s
a
2. We summarize these

conditions in the next assumptionwhich is assumed to hold henceforth in this chapter.

Assumption A. (system overload, with class1 more overloaded)

Exactly one of the following must hold:

(I) θ1(q
a
1 − κ) ≥ µ1,2s

a
2.

(II) qa1 ≤ κ andsa1 = sa2 = 0.

In words, Condition(I) of the Assumption A guarantees that if there is spare service

capacity in pool2, then there is enough class-1 fluid to have both service pools full. Con-

dition (II) guarantees that when there is no sharing of customers, both pools are full (with

their own class fluid only), due to the arrival rates being larger than the total service ca-

pacity of each class. If Condition(II) holds, then FQR-T prevents sharing, and the two
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classes are independent. In this case, we can decompose the system into two independent

Erlang-A models (operating in the ED regime), and analyze them separately, as was done

in [79].

It is significant that Assumption A involves only the parameters of the system, and

requires no knowledge on the specific solution to the IVP (3.2.13). We will show that

when this assumption holds, there exists a unique stationary point inS for every solution to

(3.2.12).

We will use a different version of this assumption in Chapter4, where we consider only

limits in A. Since we will want the system to be genuinely overloaded, Condition (I) will

be slightly strengthen by assuming the the inequality is strong. See Assumption 1 in§4.3.

3.5.1 Uniqueness of the Stationary Point

By definition, a stationary pointx∗ ∈ S is such thatΨ(x∗) = 0. From (3.2.12), we see

that this gives a system of three equations with three unknowns, namely,q∗1 , q∗2 andz∗1,2.

The apparent fourth variableπ∗1,2 ≡ π1,2(x
∗) is a function of the other three variables and

its value is determined byx∗. In principle, the three equations inΨ(x) = 0 can be solved

directly to find all the roots ofΨ. However,π∗1,2 is a complicated function ofx∗ having the

complicated closed-form expression in (3.3.13) and (3.3.16).

Theorem 3.5.1 below states thatif there exists a stationary point for the fluid ODE

(3.2.12), then this point is unique, and must have the specified form. The uniqueness of

x∗ is proved by treatingπ∗1,2 as a fourth variable, and adding a fourth equation to the three

equationsΨ(x) = 0. However, it does not prove that a stationary point exists. In general,

the solutionπ∗1,2 we get from the system of four equations may not equal toπ1,2(x
∗), for

the functionπ1,2 defined in (3.2.9). The existence of a stationary point is more involved,

and is proved later; See Corollary 3.5.6.

The proof of existence is immediate from the proof of uniqueness whenπ1,2(x∗) is
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known in advance to be0 or 1, with the value determined. That occurs everywhere except

the regionA; it occurs in the two regionsS+ andS−, but it also occurs inSb − A. Since

the QBD is not positive recurrent inSb − A, it follows thatπ1,2(x∗) can only assume one

of the values,0 or 1, achieving the same value as in the neighboring regionS+ or S−. (We

omit detailed demonstration.) But we will have to work harder in A.

We now focus on uniqueness. Althoughπ∗1,2 is treated as a variable, we still impose

conditions on it so that it can be a legitimate solution to (3.2.9). In particular, ifq∗1−rq∗2 > κ

then we letπ∗1,2 = 1; if q∗1 − rq∗2 < κ, then we letπ∗1,2 = 0. Equation (3.5.4) below shows

that0 ≤ π∗1,2 ≤ 1 wheneverq∗1 − rq∗2 = κ, i.e., wheneverx∗ ∈ Sb.

Fora, b ∈ R, recall thata ∨ b ≡ max{a, b} and leta ∧ b ≡ min{a, b}. Let

z ≡ θ2(λ1 −m1µ1,1)− rθ1(λ2 −m2µ2,2)− θ1θ2κ

rθ1µ2,2 + θ2µ1,2
. (3.5.2)

Theorem 3.5.1.(uniqueness of the stationary point) There can be at most one stationary

pointx∗ ≡ (q∗1, q
∗
2, z
∗
1,2) for the IVP(3.2.13), which forz in (3.5.2)must take the form

z∗1,2 = 0 ∨ z ∧m2, q∗1 =
λ1 −m1µ1,1 − µ1,2z

∗
1,2

θ1
, q∗2 =

λ2 − µ2,2(m2 − z∗1,2)

θ2
.

(3.5.3)

Moreover,

π∗1,2 =
µ1,2z

∗
1,2

µ1,2z∗1,2 + (m2 − z∗1,2)µ2,2
. (3.5.4)

Proof: We start with (3.5.4). This expression is easily derived from the third equation in

(3.2.12), by equatinġz1,2(t) to zero. Observe that ifz∗1,2 = m2 thenπ∗1,2 in (3.5.4) is equal

to 1, and if z∗1,2 = 0 thenπ∗1,2 = 0. Now, by plugging the value ofπ∗1,2 in the ODE’s for

q̇1(t) andq̇2(t) in (3.2.12) we get the expressions ofq∗1 andq∗2 in (3.5.3). We now have the

two equations for the stationary queues, but there are threeunknowns:z∗1,2, q
∗
1 andq∗2. We
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introduce a third equation to resolve this difficulty.

Consider the following three equations with the three unknowns: z, q1(z) andq2(z).

(hereq1 andq2 are treated as functions of the variablez, not to be confused with the fluid

solution which is a function of time.)

q1(z) =
λ1 − µ1,1m1 − µ1,2z

θ1
, q2(z) =

λ2 − µ2,2(m2 − z)

θ2
, κ = q1(z)− rq2(z).

(3.5.5)

Notice thatq1(z) is decreasing withz, whereasq2(z) is increasing withz. Thus, there exists

a unique solution to these three equations, which hasz as in (3.5.2). We can recoverx∗

from the solution to (3.5.5), and by doing so show thatx∗ is unique and is always in one of

the three regionsS−, S+ or Sb (so thatx∗ ∈ S).

Let (q1(z), q2(z), z) be the unique solution to (3.5.5). First assume thatz > m2, which

implies thatq2(z) > 0, and, by the third equation,q1(z) > κ ≥ 0. By replacingz with m2,

q1(·) is increased andq2(·) is decreased (but is still positive), so thatq1(m2)− rq2(m2) > κ

(and, trivially,q1(m2) > κ, q2(m2) > 0). This implies thatx∗ ≡ (q1(m2), q2(m2), m2) ∈

S+ and, if it is indeed a solution toΨ(x) = 0, thenx∗ is the unique stationary point for the

ODE.

Now assume that the unique solution to (3.5.5) hasz < 0. By replacingz with 0 we

haveq1(0) < q1(z) andq2(0) > q2(z), which imply thatq1(0) − rq2(0) < κ. In that case

there is no sharing, and by Condition(II) of Assumption A, the pointx∗ ≡ (q1(0), q2(0), 0)

is in S−. Once again, ifx∗ is indeed a solution toΨ(x) = 0, thenx∗ is the unique stationary

point.

Finally, assume that the solutionx(z) ≡ (q1(z), q2(z), z) to (3.5.5) has0 ≤ z ≤ m2.

To conclude thatx(z) is in Sb we need to show thatq(z), q2(z) ≥ 0, so thatq∗1 = q1(z)

andq∗2 = q2(z) are legitimate queue-length solutions. We now show that is the case under
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Assumption A.

Let Sa
2 ≡ m2 − λ2/µ2,2. Note that, ifSa

2 ≥ 0, thenSa
2 = sa2, for sa2 in (4.2.8). We start

by rewritingq1(z) andq2(z) in (3.5.5) as

q1(z) = qa1 −
µ1,2

θ1
z, q2(z) =

µ2,2

θ2
(z − Sa

2 ). (3.5.6)

Now, it follows from Assumption A that

κ ≤ qa1 −
µ1,2

θ1
sa2 ≤ qa1 −

µ1,2

θ1
Sa
2 , (3.5.7)

where the second inequality follows trivially, sinceSa
2 ≤ sa2. From the third equation of

(3.5.5),κ = q1(z)− rq2(z). Combining this with (3.5.6), we see that

κ = q1(z)− rq2(z) = qa1 −
µ1,2

θ1
z − r

µ2,2

θ2
(z − Sa

2 ). (3.5.8)

Combining (3.5.7) and (3.5.8), we get

qa1 −
µ1,2

θ1
z − r

µ2,2

θ2
(z − Sa

2 ) ≤ qa1 −
µ1,2

θ1
Sa
2 ,

which is equivalent to

0 ≤
(
µ1,2

θ1
+ r

µ2,2

θ2

)
(z − Sa

2 ).

This, together with the fact that the solution hasz ≥ 0, implies thatz ≥ max{0, Sa
2} = sa2.

It follows from (3.5.6) thatq2(z) ≥ 0 and, by using the third equation in (3.5.5) again,

q1(z) = rq2(z) + κ ≥ κ ≥ 0.

An immediate consequence of the proof of Theorem 3.5.1 is that, in order to find the

candidate stationary pointx∗, one has to solve the three equations in (3.5.5). If the (unique)

solution hasz < 0, thenx∗ ∈ S− andz∗1,2 = 0. If z > m2 thenx∗ ∈ S+ andz∗1,2 =
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m2. Otherwise,x∗ ∈ S
b with 0 ≤ z∗1,2 ≤ m2. The queue lengths have always the same

expressions, and their values depend only on the value ofz. The next corollary summarizes

the valuesx∗ may take, depending on its region.

Corollary 3.5.2. Letx∗ = (q∗1, q
∗
2, z
∗
1,2) be the point defined in Theorem 3.5.1.

1. If x∗ ∈ Sb, then, forz defined in(3.5.2),

z∗1,2 = z =
θ1θ2(q

a
1 − κ)− rθ1(λ2 − µ2,2m2)

rθ1µ2,2 + θ2µ1,2

=





θ1θ2(qa1−rq
a
2−κ)

rθ1µ2,2+θ2µ1,2
, if qa2 ≥ 0, sa2 = 0.

θ1θ2(qa1+rµ2,2sa2/θ2−κ)

rθ1µ2,2+θ2µ1,2
, if qa2 = 0, sa2 > 0.

q∗1 =
λ1 −m1µ1,1 − z∗1,2µ1,2

θ1
, q∗2 =

λ2 − (m2 − z∗1,2)µ2,2

θ2
.

2. If x∗ = S+, then

z∗1,2 = m2, q∗1 =
λ1 −m1µ1,1 −m2µ1,2

θ1
, q∗2 =

λ2
θ2
.

3. If x∗ ∈ S−, then

z∗1,2 = 0, q∗1 =
λ1 −m1µ1,1

θ1
, q∗2 =

λ2 −m2µ2,2

θ2
.

Proof: If x∗ ∈ Sb, then the solution to (3.5.5) will have0 ≤ z ≤ m2, where the exact value

of x∗ is readily seen to be the one in(i). If x∗ ∈ S+, thenq∗1 − rq∗2 > κ, so thatπ∗1,2 = 1.

Pluggingπ∗1,2 = 1 in the ODE forz1,2(t) in (3.2.12), we geṫz1,2(t) = z2,2(t)µ2,2. Since at

stationarityż1,2(t) = 0, it follows thatz∗2,2 = 0, which implies thatz∗1,2 = m2. Plugging

this value ofz∗1,2, together withπ∗1,2 = 1 whenq̇i(t) = 0, i = 1, 2, we get the values ofq∗1

andq∗2 as in(ii).
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Finally, if x∗ ∈ S
−, i.e., if q∗1 − rq∗2 < κ, thenπ∗1,2 = 0, so that, by plugging this value

of π∗1,2 in the ODE forz1,2(t) in (3.2.12), we see thatż1,2(t) = µ1,2z1,2(t). Equating to zero,

to get the value at stationarity, we see thatz∗1,2 = 0. Pluggingπ∗1,2 = 0 andz∗1,2 = 0 in the

ODE for q1(t) andq2(t), and equating these to zero, we get the values in(iii).

If x∗ ∈ S+, as in(ii), then the system does not have enough service capacity to keep

the weighted difference between the two queues atκ, even when all agents are working

with class1. In this case, the only output from queue2 is due to abandonment, since no

class-2 fluid is being served (in steady state). Queue2 is then equivalent to anM/M/∞

system with service rateθ2 and arrival rateλ2. On the other hand, queue1 is equivalent to

an overloaded inverted-V model: a system in which one class, having one queue, is served

by two different service pools.

As we remarked at the beginning of this subsection, from the proofs of Theorem 3.5.1

and Corollary 3.5.2, and from the expression ofπ∗ in (3.5.4), it is clear thatx∗ is a stationary

point for the ODE (3.2.12) whenx∗ is in S+ or S−. In that caseπ1,2(x∗) = π∗1,2 (equals1 in

S+ and equals0 in S−). That same conclusion applies whenx∗ is in Sb − A, once we have

verified thatπ1,2(x∗) = π∗1,2. In these cases,x∗ is the unique stationary point to the ODE.

The problem of existence is only when the suspected stationary-pointx∗ is in A.

The next corollary gives necessary and sufficient conditions forx∗ to be in each region.

It shows that the region ofx∗ can be determined from rate considerations alone.

Corollary 3.5.3. Letx∗ be as in(3.5.3). Then

1. x∗ ∈ S
b if and only if

µ1,2s
a
2

θ1
∨ rqa2 ≤ qa1 − κ ≤ rλ2

θ2
+
µ1,2m2

θ1
; (3.5.9)

x∗ ∈ A if and only if both inequalities are strict.
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2. x∗ ∈ S
+ if and only if qa1 − κ > rλ2

θ2
+

µ1,2m2

θ1
.

3. x∗ ∈ S− if and only if rqa2 > qa1 − κ.

Proof: We prove(i) only. The proofs for(ii) and (iii) are similar. First assume that

x∗ ∈ Sb. Sincez∗1,2 ≥ 0, It follows from the expression forz∗1,2 in (i) of Corollary 3.5.2 that

if qa2 ≥ 0 thenqa1 − κ ≥ rqa2 . If sa2 > 0 thenqa1 − κ ≥ µ1,2s
a
2/θ1 by Assumption A. For the

other inequality we use the fact that

z∗1,2 =
θ1θ2(q

a
1 − κ)− rθ1(λ2 − µ2,2m2)

rθ1µ2,2 + θ2µ1,2
≤ m2,

which implies the right-hand inequality in (3.5.9).

Now Assume that (3.5.9) holds. It follows from the right-hand-side (RHS) inequality

and the expression ofz in (3.5.2) that

z ≡ θ1θ2(q
a
1 − κ)− rθ1(λ2 − µ2,2m2)

rθ1µ2,2 + θ2µ1,2

≤ θ1θ2(rλ2/θ2 + µ1,2m2/θ1)− rθ1(λ2 − µ2,2m2)

rθ1µ2,2 + θ2µ1,2
= m2.

From the left-hand inequality in (3.5.9), we see that, ifsa2 = 0 (and necessarilyqa2 ≥ 0 =

sa2), then

z ≥ θ1θ2rq
a
2 − rθ1(λ2 − µ2,2m2)

rθ1µ2,2 + θ2µ1,2
= 0.

If sa2 > 0 (andqa2 = 0), then

z ≥ θ2µ1,2s
a
2 − rθ1(λ2 − µ2,2λ2)

rθ1µ2,2 + θ2µ1,2

=
θ2µ1,2s

a
2 + rθ1µ2,2s

a
2

rθ1µ2,2 + θ2µ1,2

= sa2.

Thus, if (3.5.9) holds, thensa2 ≤ z ≤ m2. This was shown to to imply thatx∗ ∈ Sb in

the proof of Theorem 3.5.1. (In fact, we have a stronger result, since we havez ≥ sa2.

This is due to the requirement thatqa1 − κ ≥ µ1,2s
a
2/θ1, which is exactly Condition(I) in
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Assumption A.)

We can show that the inequalities in (3.5.9) are strict if andonly if x∗ ∈ A by first

observing that the inequalities are strict if and only if0 < z∗ < m2, and then directly

calculate the QBD drift rates at the pointx∗. This is done in§3.6.2; see (3.6.5). It then

follows that (3.3.12) holds atx∗ if and only if 0 < z∗ < m2.

Alternatively, in Corollary (3.5.6) we show thatπ∗1,2 in (3.5.4) is indeed the value of

(3.2.9) at the pointx∗. It is easy to see that0 < π∗1,2 < 1 in (3.5.4) if and only if0 < z∗ <

m2.

Remark 3.5.1. It follows from Corollary 3.5.3 that in applicationsA, is the most likely

region for the stationary point when the system is overloaded. This is because we expect

the arrival rates to be about10 − 50% larger than planned, during an overload incident.

Typically, a much higher overload is needed in order for the stationary point to be inS+.

Consider the following example: There are100 servers in each pool, serving their own

class at ratesµ1,1 = µ2,2 = 1. Type-2 servers serve class-1 customers at rateµ1,2 = 0.8.

Also, θ1 = θ2 = 0.3, r = 0.8 andκ = 0. Suppose that class2 is not overloaded with

λ2 = 90. Then, for the stationary point to be inS+, we need to haveλ1 > µ1,1m1 +

µ1,2m2 + θ1rλ2/θ2 = 252, i.e., the class-1 arrival rate is252% larger than the total service

rate of pool1. If λ2 > 90, especially if pool2 is also overloaded, thenλ1 needs to be even

larger than that.

3.5.2 Existence of a Stationary Point and Stability

We have just established uniqueness of the stationary pointin S, and characterized it. In the

process, we have also established existence inS − A. Now we will establish existence of

the stationary point inA. However, we want to do more. Having a unique stationary point

does not imply that a fluid solution necessarily converges tothis point ast → ∞. It does
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not even guarantee that a solution to the IVP (3.2.13) is asymptotically stable in the sense

that, if ‖x(0)− x∗‖ < ǫ, thenx(t) → x∗ ast→ ∞, no matter how smallǫ is. In fact, there

is not even a guarantee thatx(t) will remain in theǫ-neighborhood ofx∗ for all t ≥ 0. We

will establish all of these properties in Theorem 3.5.4 below by showing thatx∗ in §3.5.1

is globally asymptotically stable, as defined below:

Definition 3.5.2. (global asymptotic stability) A pointx∗ is said to be globally asymptoti-

cally stable if it is a stationary point and if, for any initial statex(0) and anyǫ > 0, there

exists a timeT ≡ T (x(0), ǫ) ≥ 0 such that

‖x(t)− x∗‖ < ǫ, for all t ≥ T,

Note that our definition of global asymptotic stability goesbeyond simple convergence

by also requiring that the limit be a stationary point. (In general, it is possible to have

convergence without the limit being a stationary point.)

The next theorem concludes that, ifx(0) andx∗ in (3.5.3) are both in one of the regions

S−, S+ or A, and if the fluid solutionx lies entirely in that same region, thenx∗ is a

globally asymptotically stable point for the ODE (3.2.12);i.e.,x∗ is a stationary point and

x(t) → x∗ ast→ ∞. (So far, We are unable to establish global asymptotic stability for x∗

in the boundary regionSb− →.)

Theorem 3.5.4.(global asymptotic stability ofx∗) If the solution to(3.2.13)lies entirely in

one of the regionsS+, S− or A, thenx∗ in Theorem3.5.1is globally asymptotically stable.

The proof of Theorem 3.5.4 relies on results from nonlinear-control theory for deter-

ministic dynamical systems, specifically, Lyapunov stability theory; for background, see

Chapter 4 of Khalil [45]. LetE be an open and connected subset ofRn containing the

origin. We use standard vector notation to denote the inner product of vectorsa, b ∈ Rn,

i.e.,a · b =
∑n

i=1 aibi.
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Definition 3.5.3. (Lie derivative) For a continuously differentiable functionV : E → R,

and a functionΨ : E → Rn, the Lie derivative ofV alongΨ is defined by

V̇ (x) ≡ ∂V

∂x
Ψ(x) = ∇V ·Ψ(x),

where∇V ≡ ( ∂V
∂x1
, . . . , ∂V

∂xn
) is the gradient ofV .

Definition 3.5.4. (Lyapunov-function candidate) A continuously differentiable functionV :

E → R is a Lyapunov-function candidate if:

1. V (0) = 0

2. V (x) > 0 for all x in E − {0}

In proving Theorem 3.5.4 we use the following theorem, whichis Theorem 4.2 pg. 124

in [45]:

Theorem 3.5.5.(global asymptotic stability for nonlinear ODE)Letx = 0 be a stationary

point of ẋ = Ψ(x), Ψ : E → Rn, and letV : Rn
+ → R be a Lyapunov-function candidate.

If

1. V (x) → ∞ as||x|| → ∞ and

2. V̇ (x) < 0 for all x 6= 0,

thenx = 0 is globally asymptotically stable as in Definition 3.5.2.

Notice that, under the conditions of Theorem 3.5.5, the Lyapunov-function candidate

V provides a form of monotonicity: We necessarily haveV (0) = 0 andV (x(t)) strictly

decreasing int for x(t) 6= 0. To elaborate, we introduce the notion of aV -ball, which we

will apply further in§3.6.2. We say thatβV (α) is theα V -ball with center atx∗ and radius

α if

βV (α) ≡ {x ∈ Rn : ‖V (x)− V (x∗)‖ ≤ α}. (3.5.10)
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If x(t0) ∈ βV (α) for someα ≥ 0 andt0 ≥ 0, thenx(t) ∈ βV (α) for all t ≥ t0. Thus,

with the Lyapunov-function approach, we showboth thatx∗ is a stationary point and that

there is convergencex(t) → x∗ ast → ∞ for all initial valuesx(0). We also establish this

stronger “V-monotonicity.”

proof of Theorem 3.5.4: Let x ≡ {x(t) : t ≥ 0} be the unique solution to (3.2.13), and

assume thatx lies entirely in only one of the regionsS−, S+ or A. Let x∗ ≡ (q∗1, q
∗
2, z
∗
1,2)

be the stationary point for the system (3.2.11), and assume thatx∗ is in the same region as

x. Sincex∗ 6= 0, we perform a change of variables and define a new system whoseunique

stationary point isx = 0. To this end, lety = x − x∗ so thatẏ = ẋ = Ψ(x). Hence,

Ψ(x) = Ψ(y + x∗) ≡ g(y) and we have thatg(0) = Ψ(0 + x∗) = Ψ(x∗) = 0. That is, if

x∗ is a stationary point for the original systeṁx = Ψ(x), then the stationary point for the

new system,̇y = g(y), is y∗ = 0. We distinguish between two cases:(i)µ1,2 > µ2,2 and

(ii)µ1,2 ≤ µ2,2.

(i) First, if µ1,2 > µ2,2, then chooseV1(x) ≡ x1 + x2 and apply its Lie derivative along

g(y) = Ψ(y + x∗) wherey + x∗ = (q1(t) + q∗1, q2(t) + q∗2, z1,2(t) + z∗1,2) andx∗ is given in

(3.5.3). By the definition of the Lie derivative,V̇1(y) is equal to the inner product

V̇1(y) = (1, 1, 0) · (q̇1(t), q̇2(t), ż1,2(t))′ = q̇1(t) + q̇2(t),

for q̇1, q̇2 andż1,2 in (3.2.12), after the change of variables. Letz̃1,2(t) ≡ z1,2(t)+z
∗. Then,
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for x∗ = (q∗1, q
∗
2, z
∗
1,2) as in (3.5.3)

V̇1(y) = λ1 −m1µ1,1 − π1,2(y(t))[z̃1,2(t)µ1,2 + (m2 − z̃1,2(t))µ2,2]− θ1(q1(t) + q∗1)

+ λ2 − (1− π1,2(y(t)))[(m2 − z̃1,2(t))µ2,2 + z̃1,2(t)µ1,2]− θ2(q2(t) + q∗)

= λ1 + λ2 −m1µ1,1 −m2µ2,2 + z1,2(t)µ2,2 + z∗µ2,2 − z1,2(t)µ1,2 − z∗1,2µ1,2

− θ1q1(t)− θ1q
∗
1 − θ2q2(t)− θ2q

∗
2

= −θ1q1(t)− θ2q2(t)− z1,2(t)(µ1,2 − µ2,2).

Thus,V̇1(y) < 0 for all y ∈ R
3 unlessy = 0.

(ii) Whenµ1,2 ≤ µ2,2, there exists aB ≥ 1 such thatµ2,2 = Bµ1,2. We next show

that for anyC > B the candidate-functionV2(x) ≡ Cx1 + x2 + (C − 1)x3 is a Lyapunov

function. The Lie derivative ofV2(x) for the modified systemg(y) is

V̇2(y) = (C, 1, C − 1) · (q̇1(t), q̇2(t), ż1,2(t)) = Cq̇1(t) + q̇2(t) + (C − 1)ż1,2(t).

Hence,

V̇2(y) = C [λ1 −m1µ1,1 − π1,2(y(t))(z̃1,2(t)µ1,2 + (m2 − z̃1,2(t))µ2,2)]− θ1(q1(t) + q∗1)

+ λ2 − (1− π1,2(y(t)))(z̃1,2(t)µ1,2 + (m2 − z̃1,2(t)µ2,2))− θ2(q2(t) + q∗2)

+ (C − 1) [π1,2(y(t))(m2 − z̃1,2(t))µ2,2 − (1− π1,2(y(t)))z̃1,2(t)µ1,2]

= −Cθ1q1(t)− θ2q2(t)− z1,2(t)(Cµ1,2 − µ2,2),

so thatV̇2(y) < 0 for all y 6= 0.

By Theorem 3.5.5,y∗ = 0 is globally asymptotically stable for the modified system

g(y). Hence,x∗ is globally asymptotically stable for the original systemΨ(x). That is, for

every initial valuex(0) we have thatx(t) → x∗, provided thatx is in the same region (S+,

S− orA) for all t ≥ 0.
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We summarize the existence and uniqueness result of the stationary point in the next

corollary.

Corollary 3.5.6. (existence and uniqueness of a stationary point)Under Assumption A,

there exists a unique stationary pointx∗ in S for the ODE in(3.2.11)and (3.2.12), with x∗

defined in(3.5.3). As a consequence, we haveπ1,2(x∗) = π∗1,2 for π1,2 in (3.2.9)andπ∗1,2 in

(3.5.4).

Proof: Uniqueness of a stationary point for the ODE in (3.2.12) was fully treated in§3.5.1,

so it suffices to consider only existence. We already observed after the proof of Corollary

3.5.2 that both existence and uniqueness are immediate ifx∗ is in S − A. The existence

of the stationary pointx∗ ∈ A follows from Theorem 3.5.4 provided that there exists a

solution lying entirely inA. However, we can choose to takex(0) = x∗ in A, in which

case,x(t) = x∗ for all t ≥ 0, so that extra condition is satisfied.

3.6 Conditions for State-Space Collapse

Both our result establishing global existence and uniqueness of a solutionx to the IVP

(3.2.13) (Theorem 3.4.4) and our result establishing global asymptotic stability of the sta-

tionary pointx∗ to the ODE (3.2.11) (Theorem 3.5.4) require that the solution x lies in the

same region for allt ≥ 0. As before, we are mostly interested in regionA, where the AP

is operating, and which is the most likely region for the stationary pointx∗ to be (during

overloads). In this section we give ways of verifying thatx lies entirely inA, given that

x(0) andx∗ are both inA. In §3.7 we provide conditions for the solution to eventually

reachA after an initial transient. The results here are intended toapply after this initial

transient has concluded. (It is then reasonable to considerx(0) as well asx∗ as being inA.)

We start by giving sufficient conditions for global strong SSC, i.e., havingx ∈ A on

[0,∞). Afterwards, for the cases in which these sufficient conditions do not hold, we
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provide a method to infer strong SSC by solving the ODE (3.2.12) up to some finite time

T (which is shown to be not very large).

3.6.1 Sufficient Conditions for Strong SSC

We now give sufficient conditions for global strong SSC. These conditions depend only on

the initial pointx(0) and the basic parameters of the system.

Theorem 3.6.1.(sufficient conditions for global strong SSC) Let ν ≡ µ1,2 ∧ µ2,2, and

suppose thatx(0) ∈ A. Also assume that

q2(0) ≤ λ2/θ2 and q1(0) ≤ (λ1 −m1µ1,1)/θ1. (3.6.1)

If, in addition, the following inequalities are satisfied, then the solution to the IVP(3.2.13)

is inA for all t:

(i) λ1 < νm2 +m1µ1,1 and

(ii) λ2 < νm2 (3.6.2)

Remark 3.6.1.The rate conditions in (3.6.2) are intuitive, at least whenµ1,2 = µ2,2. Under

condition(i), there is enough service capacity in both service pools to serve all of the class-

1 input. Thus, a situation in whichq1 − rq2 > κ can not be sustained for long, since ifq1

grows above the boundary, pool2 can allocate more service capacity in order to “pull”

queue1 back to the boundary. Similarly, under condition (ii), there is enough service

capacity in pool2 (which is the only one serving class2 in our settings) to “pull” queue2

back to the boundary whenever it grows above it, so thatq1 − rq2 < κ is not sustainable

either. Observe that Condition(i) is relatively weak, since it allowsλ1 to be quite large

compared to the total service capacity of pool1, i.e., class1 can be highly overloaded. On
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the other hand, Condition(ii) is more restrictive, and whenµ2,2 > µ1,2 is likely not to

hold in applications. However, ifµ2,2 ≤ µ1,2 (equality of the rates is often assumed), then

Condition(ii) simply states that class2 is not overloaded.

proof of Theorem 3.6.1: We start by showing, under Condition(i), that δ+(x(t)) in

(3.3.11) is strictly negative for eacht. For a fixedt

δ+(x(t)) ≡ j
(
λ
(j)
+ (t)− µ

(j)
+ (t)

)
+ k

(
λ
(k)
+ (t)− µ

(k)
+ (t)

)
< 0

if and only if

(µ2,2 − µ1,2)z1,2(t)−m2µ2,2 < −(λ1 −m1µ1,1) + r(λ2 − θ2q2(t)) + θ1q1(t). (3.6.3)

If µ2,2 > µ1,2, then the left-hand side (LHS) of (3.6.3) is maximized atz1,2(t) = m2, and

is equal to−µ1,2m2. If µ2,2 < µ1,2, the the LHS is maximized atz1,2(t) = 0, and is equal

to−µ2,2m2. Whenµ2,2 = µ1,2 the LHS is equal to−µ2,2m2 = −µ1,2m2. Overall, the LHS

of (3.6.3) is smaller than or equal to−νm2.

Sinceq2(0) ≤ λ2/θ2, we conclude, using the bound in (3.4.3), thatθ2q2(t) ≤ λ2 for all

t ≥ 0. This, together with the fact thatq1(t) ≥ 0 for all t, implies that the RHS of (3.6.3) is

larger than or equal to−(λ1 −m1µ1,1), so that

(µ2,2 − µ1,2)z1,2(t)− µ2,2m2 ≤ −νm2

< −(λ1 −m1µ1,1) ≤ −(λ1 −m1µ1,1) + r(λ2 − θ2q2(t)) + θ1q1(t)

where the second inequality is due to condition(i).

To show that condition(ii) is sufficient to haveδ−(x(t)) > 0 for all t, fix t ≥ 0 and
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note that, forδ−(x(t)) in (3.3.11), we have

δ−(x(t)) ≡ j
(
λ
(j)
− (t)− µ

(j)
− (t)

)
+ k

(
λ
(k)
− (t)− µ

(k)
− (t)

)
> 0

if and only if

r(µ1,2 − µ2,2)z1,2(t) + rµ2,2m2 > −(λ1 −m1µ1,1) + r(λ2 − θ2q2(t)) + θ1q1(t). (3.6.4)

It is easy to see that the LHS of (3.6.4) has a minimum value ofr(µ1,2 ∧ µ2,2)m2 ≡ rνm2.

By essentially the same arguments as in Theorem 3.4.3 we can show thatq1(t) ≤ q1(0) ∨

(λ1 − m1µ1,1)/θ1. Since we assume thatq1(0) ≤ (λ1 − m1µ1,1)/θ1, we have the bound

q1(t) ≤ (λ1 −m1µ1,1)/θ1 for all t ≥ 0. With this bound, we see that the RHS of (3.6.4) is

smaller than or equal torλ2. Overall, we have

r(µ1,2 − µ2,2)z1,2(t) + rµ2,2m2 ≥ rνm2 > rλ2

≥ −(λ1 −m1µ1,1) + r(λ2 − θ2q2(t)) + θ1q1(t),

where the second inequality is due to Condition(ii).

Since (3.3.12) holds for allt ≥ 0, we also have0 < π1,2(t) < 1 for all t. Hence, every

solution to the IVP in (3.2.13) must lie entirely inA.

Combining Theorems 3.4.4, 3.5.4 and 3.6.1, we have the following corollary providing

sufficient conditions for all good results discussed so far:

Corollary 3.6.2. If (3.5.9)holds with strict inequalities,x(0) ∈ A and the four inequalities

in Theorem3.6.1hold, then(i) there exists a unique solutionx to the IVP(3.2.13)which

lies entirely inA and (ii) there exists a unique stationary pointx∗ to the ODE(3.2.12)

which is globally asymptotically stable. That stationary point x∗ is given in Corollary

3.5.3.
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3.6.2 Verifying Eventual Convergence to Stationarity

It is reasonable to assume that, if we look at the system afteran initial transient over[0, T ],

thenx(T ) and the unique stationary pointx∗ will be in the same region, and the fluid

solutionx(t) will converge tox∗ ast → ∞. Even ifx leaves the region for some period

of time, we expect that, after some transient period, it willreturn to the region wherex∗

is, stay there and converge tox∗. However, it remains to prove in full generality that there

necessarily exists a timeT after which the solution will never leave a region.

However, for every individual IVP, we may be able to infer that x(t) will converge to

x∗ by numerically solving the IVP over an initial interval[0, T ] and observing that, after

some initial transient (which has passed),x(t) is indeed in the setA and is close tox∗.

Specifically, we will show that there existα > 0 andT ≡ T (α), such that global strong

SSC can be inferred once‖x(T )− x∗‖ < α.

To achieve that goal, we make use of the Lyapunov functionV and, more specifically,

βV (α), theα V -ball with center atx∗ and radiusα in (3.5.10). We will exploit the fact that

the solutionx cannot leave aV -ball once it enters it. Thus we seek anα > 0 such that

βV (α) ⊆→. Oncex enters thisβV (α), it can never leave, so the functionx remains inA

thereafter.

To find an appropriate radiusα, we introduce the drift rates at stationarity,δ∗+ ≡ δ+(x
∗)

andδ∗− ≡ δ−(x
∗). It follows from the expressions in (3.3.11) that

δ∗+ ≡ δ+(x
∗) = −µ2,2(r + 1)(m2 − z∗1,2) and δ∗− ≡ δ−(x

∗) = µ1,2(r + 1)z∗1,2. (3.6.5)

Thus, if0 < z∗1,2 < m2, then the positive recurrence condition (3.3.12) holds at the station-

ary pointx∗. (This agrees with (3.5.4) which has0 < π∗1,2 < 1 if and only if0 < z∗1,2 < m2.)

In the next theorem we give explicit expressions forα. Observe that for reasonable

rates, such as will hold in applications,α is quite large (which is what we want, because we
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will then be able to infer thatx lies entirely inA with only modest computation). In fact,

in the numerical example considered in§3.8.3 we show that, typically in applications,α is

so large, that we can infer thatx lies entirely inA without even solving the IVP! That is,

the initial condition is already in the V-ballβV (α).

Theorem 3.6.3.Suppose thatx∗ ∈ A and letξ ≡ min{|δ∗+|, δ∗−}.

1. Whenµ2,2 ≥ µ1,2, letα = ξ/rθ2

2. Whenµ2,2 < µ1,2, letα = ξ/ς, whereς ≡ µ1,2 − µ2,2 + θ1 + rθ2 > 0.

In both cases, if there existsT ≥ 0 such thatx(T ) ∈ βV (α), then{x(t) : t ≥ T} lies en-

tirely in A, so thatx∗ in (i) of Corollary 3.5.2 is a globally asymptotically stable stationary

point.

Proof: To find a properα for theV -ball βV (α), we once again use the conditions (3.6.3)

and (3.6.4). We first show how to findα for the caseµ2,2 = Bµ1,2 for someB ≥ 1, i.e.,

whenµ1,2 ≤ µ2,2. Recall (proof of Theorem 3.5.4) that in this case,V2(x) = Cx1 + x2 +

(C−1)x3 is a Lyapunov function for anyC > B. Also, the Lyapunov function was defined

for the modified system in which the origin was the stationarypoint.

Let x∗ = (q∗1, q
∗
2, z
∗
1,2) be the stationary point inA. First assume that, at some timeT ,

V2(x(T )) = ǫ1, i.e.,Cq1(T )+q2(T )+(C−1)z1,2(T ) = ǫ1. If x(t) ∈ βV2
(ǫ1) for all t > T ,

then it must hold that

q∗1 −
ǫ1
C
< q1(t) < q1 +

ǫ1
C
, q∗2 − ǫ1 < q2(t) < q∗2 + ǫ1 and

z∗1,2 −
ǫ1

C − 1
< z1,2(t) < z∗1,2 +

ǫ1
C − 1

, t ≥ T.
(3.6.6)

To make sureδ+(x(t)) < 0, we use (3.6.3), reorganizing the terms. We need to have

(µ2,2 − µ1,2)z1,2(t) + rθ2q2(t)− θ1q1(t) < −(λ1 − µ1,1m1) + rλ2 + µ2,2m2.
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By (3.6.6), the above inequality holds if

(µ2,2 − µ1,2)

(
z∗1,2 +

ǫ1
C − 1

)
+ rθ2(q

∗
2 + ǫ1)− θ1

(
q∗1 −

ǫ1
C

)
< −(λ1 − µ1,1m1) + rλ2 + µ2,2m2.

Plugging in the expressions forq∗1 , q∗2 andz∗1,2, we see that we need to find anǫ1 > 0 such

that

(µ2,2 − µ1,2)
ǫ1

C − 1
+ rθ2ǫ1 + θ1

ǫ1
C
< µ2,2(r + 1)(m2 − z∗1,2).

We can takeC as large as needed, so that the only term that matters on the LHS isrθ2ǫ1.

Hence, we need to have

ǫ1 <
µ2,2(r + 1)(m2 − z∗1,2)

rθ2
=

|δ∗+|
rθ2

.

Similarly, to make sure thatδ−(x(t)) > 0, we use (3.6.4), reorganizing the terms. We need

to have

r(µ1,2 − µ2,2)z1,2(t) + rθ2q2(t)− θ1q1(t) > −(λ1 − µ1,1m1) + r(λ2 − µ2,2m2).

Using (3.6.6) again (with a differentǫ2), we see that it suffices to show that

r(µ1,2 − µ2,2)

(
z∗1,2 +

ǫ2
C − 1

)
+ rθ2(q

∗
2 − ǫ2)− θ1

(
q∗1 +

ǫ2
C

)

> −(λ1 − µ1,1m1) + r(λ2 − µ2,2m2).

Once again, plugging in the values ofq∗1 , q∗2 andz∗1,2, and takingC as large as needed, we

can chooseǫ2 > 0 such that

ǫ2 <
µ1,2(r + 1)z∗1,2

rθ2
=

δ∗−
rθ2

.
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Hence, we can takeα as in(i).

For the second case, whenµ1,2 > µ2,2, we use the Lyapunov functionV1(x) = x1 + x2.

Using similar reasoning as above, we get

ǫ1 <
µ2,2(r + 1)(m2 − z∗1,2)

µ1,2 − µ2,2 + θ1 + rθ2
=

|δ∗+|
ς

and ǫ2 <
µ1,2(r + 1)z∗1,2

µ1,2 − µ2,2 + θ1 + rθ2
=
δ∗−
ς
.

Hence, in this case we can takeα in (ii).

3.6.3 Exponential Stability

In this section we will establish exponential stability, i.e., we will show that the solution

converges to the stationary point exponentially fast. We dothis for two reasons: first, to

help justify using the stationary point for performance approximations and, second, to show

that it should not require a lengthy calculation to verify that the solution will remain within

the setA and converge to the stationary pointx∗.

In the previous section, we have shown that for a system with asteady statex∗ in A,

we can run the algorithm, starting at an arbitrary initial point x(0), until x ≡ (q1, q2, z1,2)

falls in theV -ball βV (α) in (3.5.10) for anα identified in Theorem 3.6.3. It is easy to see

that if z∗1,2 is not too close to0 or m2, thenα is relatively large, so that numerical issues

do not rise. However, we want to know that the timeT at which the solution enters this

α-neighborhood ofx∗ should not be too large.

Definition 3.6.1. (exponential stability) A stationary pointx∗ is said to be(globally)

exponentially stable if there exist two real constantsϑ, β > 0 such that

‖x(t)− x∗‖ ≤ ϑ‖x(0)− x∗‖e−βt,

for all t ≥ 0 and for allx(0), where‖ · ‖ is a norm onRn.
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To show thatx∗ in (3.5.3) is exponentially stable, we use Theorem 3.4 on p. 82 of

Marquez [50], which we state here for completeness.

Theorem 3.6.4. (exponential stability of the origin) Suppose that all the conditions of

Theorem 3.5.5 are satisfied. In addition, assume that there exist positive constantsK1,K2,

K3 andp such that

K1‖x‖p ≤ V (x) ≤ K2‖x‖p

V̇ (x) ≤ −K3‖x‖p.

Then the origin is exponentially stable, and

‖x(t)‖ ≤ ‖x(0)‖ (K2/K1)
1/p e−(K3/2K2)t for all t and x(0).

We now state our application of the general theorem. We will use theL1 norm:‖x‖ =

|x1|+ |x2|+ |x3| for x ∈ R3.

Theorem 3.6.5.(exponential stability ofx∗) If the entire trajectory of the solution to the

IVP (3.2.13)is in A, thenx∗ in (3.5.3)is exponentially stable, and the following hold:

1. If µ1,2 > µ2,2, then

‖x(t)− x∗‖ ≤ ‖x(0)− x∗‖e−(K3/2)t for all t and x(0),

where

K3 ≡ max{θ1, θ2, µ1,2 − µ2,2}. (3.6.7)

2. If µ2,2 = Bµ1,2, B ≥ 1, then for anyC > B

‖x(t)− x∗‖ ≤ ‖x(0)− x∗‖(C/K1)e
−(K4/2)t for all t and x(0),
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whereK1 ≡ min{1, C − 1} andK4 ≡ max{Cθ1, θ2, (Cµ1,2 − µ2,2)}.

Proof: We consider the two cases in turn:

(i) If µ1,2 > µ2,2, thenV1(x) ≡ x1 + x2, x ≥ 0, was shown to be a Lyapunov function

in Theorem 3.5.5 with a strictly negative Lie derivative. Thus, sincex ≥ 0, we can take

K1 = K2 = 1 andp = 1. As V̇1(x) = −θ1q1(t) − θ2q2(t) − (µ1,2 − µ2,2)z1,2(t), we can

takeK3 in (3.6.7), and the result follows from Theorem 3.6.4.

(ii) If µ1,2 ≤ µ2,2, then we use the Lyapunov functionV2(x) = Cx1 + x2 + (C − 1)x3.

ThenK1‖x‖ ≤ V2(x) < C‖x‖ for K1 ≡ min{1, C − 1}. From Theorem 3.5.5 we know

thatV̇2(x) = −Cθ1q1(t)− θ2q2(t)− (Cµ1,2 − µ2,2)z1,2(t), so thatV̇2(x) ≤ −K4‖x‖.

If x(0) andx∗ are inS− or S+, then the same methods can be applied to verify whether

x lies entirely in the same region, and thus converges tox∗. These methods, together with

the fast rate of convergence, suggest that ifx(0) andx∗ are both in the same region, thenx

will converge tox∗, and will do so exponentially fast. As mentioned in the beginning of the

subsection, we cannot prove this in full generality. There should be convergence for any

initial state, even outsideS, but that requires formulating ODE’s for other regions, which

we turn to next. In fact, as we explain in Remark 3.7.1 in the next section, we need to add

another feature to make it possible to have convergence to the stationary point for all initial

conditions.

3.7 Transient Behavior Before HittingS

Recall that our model is designed to respond to unexpected overloads. We assume that the

two classes operate independently until a time at which the arrival rates change, and the

system becomes overloaded. Let0 be the time that the arrival rates change. We thus think
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of a system in steady state at time0 when the arrival rates change, with

q1(0) = q2(0) = z1,2(0) = z2,1(0) = 0. (3.7.1)

In particular,q1(0) ≤ κ, and no sharing is taking place. A well-operated system tends to

have a critically loaded fluid limit, yielding steady-statevaluesz1,1(0) = m1 andz2,2(0) =

m2, but we could also have an underloaded steady state, withz1,1(0) < m1 and/orz2,2(0) <

m2 as well.

The ODE in (3.2.11)-(3.2.12) can be regarded as the fluid limit of a sequence of over-

loaded queueing models. Class1 was assumed to be overloaded due to the arrival rate being

larger than the total service rate of service pool1, while class2 was overloaded either be-

cause its arrival rate was also too large (but less so than class1), or because pool2 was

helping class-1 customers. For the ODE, the system overload assumption translates into

havingz1,1(t) = m1 andz1,2(t) + z2,2(t) = m2 for all t, so that the state space for the fluid

limit was taken to beS. (The spaceS was defined in (3.4.1) in§3.4, but the assumption

that the service pools are both full was introduced at the beginning of §3.2.2.) However, if

eitherz1,1(0) < m1 or z2,2(0) < m2, then the initial state is not inS, so we cannot use the

ODE (3.2.11) to describe the system. There is a transient period [0, tS) during which the

two service pools fill up, but the system is not yet overloaded.

If sharing is eventually going to take place (i.e., ifx∗ is in eitherA or S+), then with

initial conditions as in (3.7.1), we should certainly hitSb. Sharing will begin only at a time

T such thatq1(T )− rq2(T ) = κ. In this section we show that, if indeedx∗ ∈ A ∪ S
+, then

T <∞, where

T ≡ inf{t ≥ 0 : x(t) ∈ Sb}. (3.7.2)

The transient period of the fluid system can be divided into two distinct periods: The

first transient period, on the interval[0, T ), lasts until the fluid limit hitsSb. The second
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transient period is the one starting at the hitting timeT , and is described by the ODE

(3.2.12). This period was analyzed in the previous sections. The first transient period is

described by different ODE’s, depending on the state of the system. These ODE’s, for the

initial condition in (3.7.1), are given in the proof of Theorem 3.7.1 below.

We shall prove thatT < ∞ under the extra assumption that at no time during[0, T )

is z2,1 > 0. The assumption can be verified directly by solving the fluid model of the first

transient period. We discuss this condition after the proofof Theorem 3.7.1.

Theorem 3.7.1. If x∗ ∈ A ∪ S+, if (3.7.1)holds and ifz2,1(t) ≡ 0 for all t ≥ 0, then

T <∞, for T in (3.7.2).

Proof: We start by developing the ODE to describe the system before hitting S. As before,

we do not consider the original queueing model and prove convergence to the appropriate

fluid limit, but instead we develop the ODE directly. We first consider the case insa2 > 0

(so thatqa2 = 0), i.e., class2 experiences no overload by itself (before pool2 starts serving

class-1 fluid). First, there is an initial period in which the pools are being filled with fluid.

It is easy to see that as long as neither pool is full, the pool-content functionszi,i(t) behave

as the fluid approximations for the number in system at timet in anM/M/∞ queueing

model with arrival rateλi and service rateµi,i, i = 1, 2; e.g., see [57] (where it assumed

thatλ = µ, so thatλ/µ = 1). Therefore, the system evolution is described by the pair of

ODE’s

ż1,1(t) = λ1 − µ1,1z1,1(t), z1,1(0) = ζ1

ż2,2(t) = λ2 − µ2,2z2,2(t), z2,2(0) = ζ2,

and the unique solution to each ODE is

zi,i(t) =
λi
µi,i

+

(
ζi −

λi
µi,i

)
e−µi,it, t ≥ 0, i = 1, 2.
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These ODE’s describe the dynamics of the two classes until one of the pools is full, i.e.,

until the time

t1 ≡ min
i=1,2

inf{t ≥ 0 : zi,i(t) = mi}. (3.7.3)

Since we assume thatsa2 > 0, t1 is the time at whichz1,1(t) = m1, and at this time we need

to start consideringq1. Clearly,q1 evolves independently of class2 until q1(t) = κ (when

sharing is initialized). Let

t2 ≡ inf{t ≥ t1 : q1(t) = κ}. (3.7.4)

Recall thatκ may be equal to0, in which caset1 = t2. If t2 > t1, then q1(t), t ∈

[t1, t2), evolves as the fluid approximation for the queue-length process in an Erlang-A

model operating in the ED MS-HT regime, as in [79]. The ODE describing the evolution

of q1 is

q̇1(t) = λ1 − µ1,1m1 − θ1q1(t), t1 ≤ t < t2, with q1(t1) = 0, (3.7.5)

and its unique solution is

q1(t) =
λ1 − µ1,1m1

θ1

(
1− e−θ1(t−t1)

)
, t1 ≤ t < t2.

Now, sinceq1(t2) = κ andq2(t2) = 0, class-1 fluid starts flowing to service pool2, so that

z1,2 starts increasing. There is a timet3 such that, fort ∈ [t2, t3), q1(t) = κ , q2(t) = 0 and

all the excess class-1 fluid, that is not lost due to abandonment, is flowing to pool2. Hence,

z1,2 satisfies the ODE

ż1,2(t) = (λ1 − µ1,1m1 − θ1κ)− µ1,2z1,2(t), t2 ≤ t < t3, with z1,2(t2) = 0,
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whose unique solution is

z1,2(t) =
λ1 − µ1,1m1 − θ1κ

µ1,2

(
1− e−µ1,2(t−t2)

)
, t2 ≤ t < t3.

Hence,t3 ≡ inf{t ≥ t2 : z1,2(t) + z2,2(t) = m2}, so that at timet3 both service pools are

full, with q1(t3) = κ, q2(t3) = 0 andq1(t3)− rq2(t3) = κ. It follows thatt3 is the time at

which the fluid model hits the spaceSb, and the first transient period is over, i.e.,t3 = T

for T in (3.7.2).

Now we consider the second case in whichqa2 > 0. In this case there are different

scenarios: In the first scenario, pool2 can be filled before pool1, so thatt1 = inf{t ≥

0 : z2,2 = m2}, for t1 in (3.7.3). In that caseq2 begins to increase at timet1, evolving

according to the ODE of the overloaded Erlang-A model

q̇2(t) = λ2 − µ2,2m2 − θ2q2(t).

However, by the assumption of the theorem, we have ruled out the case in whichq1(t) −

r2,1q2(t) = κ2,1, so that no class-2 fluid will flow to pool 1. Hence, from the beginning

(time0), z1,1 increases until timet′1 ≥ t1 at whichz1,1 = m1. Thenq1 increases, satisfying

(3.7.5) withq1(t′1) = 0. By the assumption onx∗, and following Corollary 3.5.3, there

exists a timeT <∞ such thatq1(T )− rq2(T ) = κ. This is becauserq2(t) ≤ rqa2 < qa1 −κ

for all t ≤ T . On the other hand, it follows trivially from the solution to(3.7.5), thatqa1 is

the globally asymptotically stable point of (3.7.5). Hence, for everyǫ > 0, there existstǫ

such thatq1(t) > qa1 − ǫ for all t ≥ tǫ. (This is because, by the initial conditions,q1(t) ≤ qa1

for all t). Thus, we can findǫ > 0 such that

rqa2 < qa1 − ǫ− κ < q1(t)− κ for all t ≥ tǫ. (3.7.6)
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The second scenario of the second case has pool1 filled first at timet1, so thatq1 starts

increasing according to (3.7.5). Ifq1 reachesκ beforeq2 starts increasing, then we have the

same behavior as whensa2 > 0. However, if at timet2 in (3.7.4)q2 > 0, then the two queues

will continue increasing independently until timeT . Once again, (3.7.6) can be shown to

hold, so thatT <∞.

We can easily calculate the exact value ofx(T ) and use it to calculate the QBD drift

ratesδ+(x(T )) and δ−(x(T )) to find whether the positive-recurrence condition (3.3.12)

holds atT , so thatx(T ) ∈ A.

Remark 3.7.1. (sharing in the wrong direction) In Theorem 3.7.1 we assumed that we

never havez2,1 > 0. The reason is that, ifz2,1 ever does become positive, then the fluid

x never hits the regionS. To see that this is so, suppose that for some timet4 sharing is

initialized, with class-2 fluid flowing to service pool1. Thenz2,1 is increasing until a time

t5 at whichq1(t5)− rq2(t5) = κ, and the AP begins to operate. At that time,z2,1 will start

decreasing according to the ODE

ż2,1(t) = −µ2,1z2,1(t), t ≥ t5,

whose unique solution is

z2,1(t) = z2,1(t5)e
−µ2,1(t−t5), t ≥ t5. (3.7.7)

Hencez2,1 remains strictly positive for allt ≥ t5, andS is never hit.

Of course, the fluid state should be approaching a state inS ast increases. However, if

there is such a limit point, then that limit point itself typically will notbe a stationary point,

because ifx did start at that limit point, then it will have to continue tomove toward the

final stationary pointx∗.
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More generally, the failure ofz2,1 to actually reach0 in finite time has practical impli-

cations for the FQR-T control in the original queueing system. It suggests that it should be

beneficial to introduce lower positive thresholds forz1,2 andz2,1, below which we relax the

one-way sharing restriction. It remains to examine the system performance in response to

such more complex transient behavior.

For the cases covered by Theorem 3.7.1, the system evolutionover the entire halfline

[0,∞) is a continuous “soldering” of the different ODE’s, but at the soldering pointsti,

the functions under consideration are typically not differentiable. Hence, there is no single

ODE that captures the full dynamics of the system. To see why,consider the case in which

sa2 > 0 andκ > 0. Then, fort < t1, q1(t) = 0 andq̇1 = 0, but fort1 ≤ t < t2, q1(t) evolves

according to (3.7.5), which typically has a strictly positive derivative att1. Thus the left

and right derivatives att1 are not equal. Similar arguments hold for all the other soldering

points.

We observe that all the fluid approximations used in the proofof Theorem 3.7.1 can be

shown to hold as fluid limits of a sequence of scaled queueing processes. In fact, these MS-

HT fluid limits are much easier to establish than the MS-HT convergence to the fluid limit

described by (3.2.11), since they do not include the AP. As a consequence, their limiting

ODE’s are continuous in their full state spaces. In addition, the ODE’s describing the fluid

limits have unique closed-form solutions.

3.8 A Numerical Algorithm to Solve the IVP

In this section we provide a numerical algorithm for solvingthe IVP (3.2.13). To the

best of our knowledge, there are no other algorithms available to solve such an IVP. The

difficulty, of course, is that the ODE is driven by the stochastic FTSC processDt. Having

an efficient algorithm for solving the IVP clearly is vital for having the fluid approximation
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be a useful tool for applications, but the algorithm is also important for other reasons. First,

establishing convergence by the method in§3.6.2 (when the sufficient conditions for global

stability in §3.6.1 do not hold) depends on calculating the solution up to afinite timeT ,

where we an observe that the solution is close enough to the stationary pointx∗, for which

an explicit expression is given in§3.5. Second, the ability to solve the IVP provides a

powerful demonstration of the AP, and a verification of its correctness, because we can

compare it to simulation results. The close agreement with simulation also shows that the

overall approximation is effective; see the numerical example below and the comparisons

between the fluid solutions to simulation results in [59].

3.8.1 Computingπ1,2(x) at a point x

In §3.3.2 we saw that our representation of the FTSPDt as a QBD was very helpful for

characterizing positive recurrence and the setA where the AP prevails. This QBD structure

also plays a key role in our numerical algorithm. The QBD structure allows us to use estab-

lished efficient numerical algorithms to solve for the steady state of the QBD to compute

π1,2(x), for any givenx ≡ x(t) ∈ A.

We start with a givenx ∈ A, so that averaging is taking place. As before, we assume

that class1 is overloaded, and that service pool2 is helping class1. From (3.3.16) it is

clear that we must start with computing the rate matrixR ≡ R(x). (To simplify notation,

we drop the argumentx with the understanding that all matrices, and the vectorα0 are

functions ofx.)

We exploit the well-developed theory for QBD processes in Latouche and Ramaswami

[52]. By Proposition 6.4.2 of [52], the matrixR is related to two other matrices,G andU ,

via

G = (−U)−1A2, U = A1 + A0G and R = A0(−U)−1. (3.8.1)
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In addition, the matricesG andR are the minimal nonnegative solutions to the quadratic

matrix equations

A2 + A1G + A0G
2 = 0 and A0 +RA1 +R2A2 = 0. (3.8.2)

Hence, if can compute the matrixG, then the rate matrixR can be found via (3.8.1). Once

R is known, we use (3.3.15) to computeα0. With α0 andR in hand,π1,2(x) is easily

computed via (3.3.16).

It remains to compute the matrixG. In §8 of [52], three different numerical algorithms

to calculateG are provided. We chose to use thelogarithmic reduction algorithmin §8.4,

modified to the continuous case, as in§8.7, in [52]. As reviewed there, this algorithm is

quadratically convergent (as opposed to the linear rate of convergence of the other two

algorithms), and is numerically well behaved. These two properties are important for us,

since we need to compute the matrixR(x) for thousands of pointsx when we numerically

solve the IVP (3.2.13). From our experience with this algorithm, it takes fewer than ten

iterations to achieve a10−6 precision (when calculatingG).

3.8.2 Computing the Solutionx

To compute the solution{x(t) : 0 ≤ t ≤ T}, we combine the forward Euler method for

solving an ODE with the algorithm to solve forπ1,2(x(t)) described above. Specifically,

we start with a specified initial valuex(0), a step-sizeh and number of iterationsn, such

thatnh = T . First, assume thatz1,1(0) = m1 andz1,2(0) + z2,2(0) = m2, so thatx(0) ∈ S.

If D̄(0) ≡ (q1(0)− κ)− rq2(0) > 0 thenπ1,2(x(0)) = 1. If D̄(0) < 0 thenπ1,2(x(0)) = 0

and if D̄(0) = 0 then we check to see whether (3.3.12) holds. If it does, thenx(0) ∈ A and

we calculateπ1,2(x(0)) as described above. Ifx(0) ∈ Sb − A then we can still determine

the value ofπ1,2(x(0)) in the following way: If δ−(x(t)) = 0 > δ+(x(t)), then we let
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π1,2(x(t)) = 0; if insteadδ−(x(t)) > 0 = δ+(x(t)), then we letπ1,2(x(t)) = 1. As long

as we the calculated solution remains within one of the regionsA, S+ or S−, we know that

we are calculating the unique solution to the IVP, by virtue of Theorem 3.4.4 and Remark

3.4.1. We do not yet have such a supporting theoretical result in Sb − A, but numerical

experience indicates that this method is effective.

Givenx(0) andπ1,2(x(0)) we can calculateΨ(x(0)) explicitly, and perform the Euler

step

x(h) = x(0) + hΨ(x(0)).

We then use the same procedure to findx(2h), x(3h), . . .x(nh),

x((k + 1)h) = x(kh) + hΨ(x(kh)), 0 ≤ k ≤ n, (3.8.3)

wherex(kh) is given from the previous iteration, andΨ(x(kh)) can be computed once

π1,2(x(kh)) is found.

If z1,1(0) < m1 or z1,2(0)+z2,2(0) < m2, so thatx(0) /∈ S, we use the appropriate fluid

model for the alternative region, as specified in§3.7, where at each Euler step we check to

see which fluid model should be applied.

We have chosen to use the forward Euler algorithm, although it is known to have an

error proportional to the step sizeh, and to be relatively numerically unstable at times. We

have two reasons for doing so: First, the Euler method is the simplest numerical method

for solving ODE’s. Thus, one can immediately observe the main structure of the algorithm.

It is also very easy to see how to apply more sophisticated algorithms, such as general lin-

ear methods, which have a smaller error, and can be more numerically stable. The only

adjustment needed, is to replace the Euler step in (3.8.3) bythe different method. At any

iteration,π1,2 is computed as in§3.8.1. Moreover, as can be seen the numerical example
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below,π1,2 is almost constant throughout (starting at the timex hits the setA). This sug-

gests that the solution behaves very much like a simple exponential function (strengthening

the result of§3.6.3), which is very smooth and stable. Hence, we have no problem with

numerical stability with the Euler method.

In the numerical example in§3.8 we took the ratior = 0.8 = 4/5, so that all the

matrices, used in the computations forπ1,2, are of size10×10. It took less than10 seconds

for the algorithm to terminate (using a relatively slow,1 GB memory, laptop). The same

example, but withr = 20/25, so that the matrices are now50× 50, took less than a minute

to terminate. Moreover, the answers to both trials were exactly the same, up to the7th

digit. In both cases, we performed5000 Euler steps (each of sizeh = 0.01, so that the

termination time isT = 50). It is easily seen thatπ1,2 had to be calculated for over4500

different points, starting at the timeπ1,2 becomes positive (see Figure 3.2 in the following

example).

The validity of the solution can be verified by comparing it tosimulation results. See

the example below. See also Chapter 2 for comprehensive verifications via simulation

experiments. However, there are two features of the numerical solution itself that strongly

suggest its validity. First, we can check whether the solution converges to the stationary

pointx∗, which can be computed explicitly using (3.5.3). An even stronger verification of

the solution’s correctness is the fact that the two queues keep at the ratior, even though

this relation between the two queues is not forced explicitly by the algorithm (it is only

used to calculateπ1,2. Hence it appears implicitly in the ODE via the expression for π1,2).

Specifically, the fact that the SSC equation,q1(t) − rq2(t) = κ, holds for allt from the

moment the solution hitsS, is a strong evidence thatπ1,2(t) (and, consequently,x(t)) is

computed correctly; See Figure 3.1.
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3.8.3 A Numerical Example

Below are figures produced by a Matlab code implementing the algorithm above. In addi-

tion, we added the sample paths of the stochastic processesQ1 andZ1,2, on top of the trajec-

tories of the solution to their fluid counterpartsq1 andz1,2. These sample paths were created

by a single simulation run. The model is the same one introduced in§3.3.2 with component

rate matrices in (3.3.9). The model parameters arem1 = m2 = 1000,λ1 = 1300,λ2 = 900,

µ1,1 = µ2,2 = 1, µ1,2 = µ2,1 = 0.8 andθ1 = θ2 = 0.3. We takeκ = 0 andr = 0.8. We

chose to take a relatively large system (n = 1000), so that the stochastic fluctuations do

not to hide the general structure of the simulated sample paths. The time-dependent mean

values follow the fluid solutions very closely, as can be confirmed by considering multiple

replications; see [59] for more comparisons with simulations. There it is shown that even

for surprisingly small systems (e.g., with25 agents in each pool) the mean values are well

approximated by the fluid.

We ran the algorithm and the simulation for50 time units. Since we used an Euler

step of sizeh = 0.01, we performed5000 Euler iterations, but in each Euler iteration we

performed several iterations to calculate the matrixG in (3.8.1), which is used to calculate

the instantaneous steady-state probabilityπ1,2. The QBD matrices for this example with

r = 0.8 appear in (3.3.9).

Figures 3.1-3.4 show the curves of the ratio between the queues (as a function oft,

i.e., the actual ratio between the queues through time),π1,2, q1 together withQ1, andz1,2

together withZ1,2, for a system initializing empty. After a short period in which the pools

fill up, q1(t) starts to grow, and immediately then fluid (customers) starts flowing to pool2,

causingz1,2(t) to grow. At this initial time period, the stochastic processes and their fluid

approximations are almost indistinguishable.

In Figure 3.1 we see that onceSb is hit, the ratio between the queues is kept at the
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target ratio0.8. As discussed before, this is an evidence for the validity ofthe numerical

solution, and a strong demonstration of the AP. In Figure 3.2we see that initially, while

q1 = 0, π1,2 = 0. This lasts untilz2,2(t) + z1,2(t) = m2, at which time the spaceS is

hit (specifically,Sb), and the averaging begins. It is interesting that onceSb is hit, π1,2

becomes almost a constant, even before the system reaches steady state. This explains why

the curves ofq1, q2 andz1,2 resemble the curves of exponential functions, and strengthens

the results of§3.6.3. (Observe that ifπ1,2(x(t)) is replaced by a constant in the ode (3.2.12),

then its solution is easily seen to be an exponential function.)

When the algorithm terminated, the value ofx(tn) wasq1(tn) = 363.9, q2(tn) = 455.0

andz1,2(tn) = 238.5. Also, π1,2(tn) = 0.2. Calculating the value ofx∗ = (q∗1, q
∗
2, z
∗
1,2)

(using (3.5.3)) we havex∗ = (366.7, 459.5, 237.5). Pluggingz∗1,2 in (3.5.4), we getπ∗1,2 =

0.2. As we mentioned before, these steady-state values also suggest that the algorithm is

achieving the correct solution to the ODE.
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Figure 3.1: ratio between the queues.
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Figure 3.2:π1,2 calculated at each itera-
tion.

Note that in this example, the sufficient conditions for strong SSC in§3.6.1 do not hold.

Specifically, condition(ii) in Theorem 3.6.1 does not hold sinceλ2 = 900 > νm2 = 800,

for ν ≡ µ1,2 ∧ µ2,2. Observe that Condition(i) in that theorem does hold, sinceλ1 =

1300 < νm2 + µ1,1m1 = 1800; See Remark 3.6.1.

However, this example shows how useful the results of§3.6.2 are. By Theorem 3.6.3

we haveα = ξ/rθ2, whereξ ≡ |δ∗+|∧δ∗−. With the value ofz∗1,2 computed above, it follows
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Figure 3.3: trajectory ofq1 together with
a simulated sample path ofQ1.
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Figure 3.4: trajectory ofz1,2 together
with a simulated sample path ofZ1,2.

thatξ = δ∗− = 342, so thatα = 1425. This means thatx(t), t ≥ T , whereT is the time

the solution hitsA, is known to lie entirely inA without even solving the algorithm. That

is becausex(T ) = (0, 0, 100) ∈ βV (α), andβV (α) ⊂→. (Recall that the solution hitsSb

whenz1,2 + z2,2 = m2. In our example it is easy to see thatz2,2(T ) = λ2 = 900, so that

z1,2(T ) = 100. Sinceκ = 0, we also haveq1(T ) = q2(T ) = 0. We can calculateδ−(x(T ))

andδ+(x(T )), to conclude thatx(T ) ∈ A.)

3.9 Conclusions and Further Research

In this chapter we analyzed the deterministic ODE (3.2.11)-(3.2.12), arising as the MS-HT

fluid limit of the overloaded X call-center model operating under the FQR-T control. In

addition to being an interesting mathematical object in itsown right, the ODE analyzed in

this chapter is a vital link between Chapter 2 and the convergence proofs in Chapter 4.

We showed that the existence of a unique solution to the IVP (3.2.13) depends heavily

on the characterization of the functionΨ in (3.2.11) and its topological properties. These

properties, in turn, depend on the state space ofΨ, and the regions of the state space in

whichΨ is continuous. These regions are further characterized by the probabilistic prop-

erties of the family of FTSC processes{Dt : t ≥ 0}. The existence of a global unique

solution further depends on other properties of the solution, specifically, its stability. Since
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the proof of convergence depends on the uniqueness of the solution to the IVP, this chapter

prepares the way for Chapter 4.

The connection to Chapter 2 is clear: First, we prove that thestationary pointx∗, which

was developed heuristically in Chapter 2 using flow-balancearguments, and was claimed

to be the stationary point of (3.2.12) in [59], using reasonings similar to those in§3.5, is

indeed the unique stationary point for the fluid. Moreover, we provided mild conditions

assuring the convergence of the solution tox∗. We also showed that the convergence tox∗

is exponentially fast, further justifying the steady-state analysis in Chapter 2.

To fully connect to the model considered in Chapter 2, in§3.7 we considered the system

at the time when the arrival rates change. At that time, denoted by0, the system will typi-

cally be underloaded, so that the state space should not beS. After the change, we assume

that the arrival rates are larger than the total service rateof the two pools. Specifically,

we assumed Assumption A in§3.5. We then considered the first transient period[0, T ),

whereT is the time at whichSb is hit. Using alternative fluid models (ODE’s), we showed

that T < ∞, under the conditions of Theorem 3.7.1. The solutions to thefluid models

during the first transient period are all exponential functions, so that this period also passes

exponentially fast.

Finally, we developed an efficient algorithm to solve the IVP(3.2.13), based on the

matrix geometric method. This algorithm solves the different fluid models described in

§3.7, and combines these solutions with the solution to (3.2.12) once the setA, where the

AP takes place, is hit.

Our main results in this chapter were based on classical results from ODE theory,

specifically the Picard-Lindelöf theorem establishing the existence and uniqueness of solu-

tions to IVP’s, and the theory of QBD processes. Since the functionΨ appearing in (3.2.11)

is not continuous inS, and not Lipschitz continuous inSb −A, we could not apply this the-

orem for solutions that are not known to be confined to one region. We do not yet have a
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proof that a global solution to the IVP exists in general, or that a solution passing through

Sb − A is unique in that region.

It also remains to generalize Theorem 3.7.1, and include thecase in whichz2,1 becomes

positive during the first transient period. We do make the following conjecture:

Conjecture 3.9.1.Make Assumption A as usual and introduce lower thresholds asin Re-

mark3.7.1. If the appropriate ODE is defined for each relevant region, as in the proof of

Theorem3.7.1, thenx(t) → x∗ ast → ∞, wherex∗ ∈ S, for any initial statex(0), in S or

not.

It also remains to consider more complicated dynamics than provided by a single

change in the arrival rates. The numerical algorithm applies more generally, but it remains

to establish mathematical results and examine the performance. For example, it remains to

consider a second overload incident happening before the system has recovered from the

first one.

3.10 Miscellany

3.10.1 More on the Algorithm

In this section we elaborate further on the algorithm introduced in§3.8. Let{tm : m =

0, 1, 2, . . . , n} be the Euler steps, withtm+1 − tm = h. In our experiments we found

h = 0.01 to be a good candidate for the step size since it is small enough to minimize

numerical errors, while the number of iterations needed forthe ODE to reach its stationary

point, is just a few thousands. Hence the algorithm takes only a few seconds to terminate.

Let D̄(t) ≡ q1(t)−rq2(t), denote the weighted difference between the two fluid queues.

The discretization of the ODE in the numerical algorithm means that if, at stepk − 1,
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D̄(tk−1) /∈ S
b but is close to it, then̄D(tk) may miss the boundary, even though the (con-

tinuous) ODE is at the boundary at timetk. For that reason, ifκ − h < D̄(tk) < κ + h,

then we forcex(tk) to be inSb, by takingD̄(tk) = κ. Once we havēD(tk) = κ we de-

cide whether to keep staying on the boundary for the next Euler step, by checking whether

(3.3.12) holds. According to the relation between the QBD drift rates at timetk, we decide

whether we should apply the AP, in order to findπ1,2(tk), or rather setπ1,2(tk) to zero or

one.

At any step in the algorithm, we must also decide which ODE to use. That depends on

the state of the system at each time, as described in§3.7. If the fluid state is not inS, as in

the initial period of the example in§3.8 and the example below, then we use the appropriate

fluid model, as given in the proof of Theorem 3.7.1.

3.10.2 An Example withx∗ ∈ S+

We now consider the same example as in§3.8.3, except now we increase the arrival rate

for class1 substantially, so thatx∗ ∈ S+. In particular, we letλ1 = 3000 instead of

1300. Once again, the system is initialized empty. That means that the fluid solution in

S is moving between the two regionsSb andS+. In particular, the solution first hitsSb

(specifically,Sb −A), as was proved in Theorem 3.7.1, but it stays there for a short amount

of time, and then crosses toS+.

We see howz2,2 starts increasing up to the timeT in whichz1,2(T )+ z2,2(T ) = m2. At

this timez2,2(T ) starts decreasing, and is replaced by class-1 fluid. Since no class-2 fluid is

flowing to either of the service pool, all the class-2 fluid output is due to abandonment. We

can also observe thatz2,2 eventually hits0, even thoughz2,2 satisfies the equation (3.7.7).

This is due to the numerical errors, as described in§3.7.

In steady-state we haveq∗2 = λ2/θ2 = 900/0.3 = 3000 andq∗1 = (λ1 − m1µ1,1 −

m2µ1,2)/θ2 = 4000, as in Corollary 3.5.2(ii).
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Figure 3.5:z1,2 whenλ1 exceeds the sys-
tem’s capacity.
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Figure 3.6:z2,2 whenλ1 exceeds the sys-
tem’s capacity.
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Figure 3.7:q2 whenλ1 exceeds the sys-
tem’s capacity.
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Figure 3.8:q1 whenλ1 exceeds the sys-
tem’s capacity.



Chapter 4

Convergence to the Fluid Limit via the

Averaging Principle

4.1 Overview

In this chapter we will prove that the solution to the ODE in Chapter 3 is indeed the MS-HT

fluid limit of the overloaded X model; see Theorem 4.6.1; and see§4.3 for the key assump-

tions. In doing so, we will also prove theaveraging principle(AP) which in turn will pro-

vide a strong version ofstate-space collapse(SSC) for the two-dimensional queue process

and the server-assignment processes; for the SSC results, see Theorems 4.4.1, 4.4.2, 4.5.6

and 4.7.1. To streamline the reading, some of the more technical proofs appear separately

in the next chapter.

We now consider theX model during the overload incident only, once sharing has

begun; that will be captured by our main Assumptions 1 and 3 in§4.3. As a consequence,

the model is stationary but the evolution is transient. Because of customer abandonment,

the stochastic models will all be stable, approaching proper steady-state distributions. We

will be proving a MS-HT limit for the system processes.

151
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Convergence to the fluid limit will be established in roughlythree steps: (i) representing

the sequence of systems (§4.4), (ii) proving that the sequence considered isC-tight (§4.8.1),

and (iii) uniquely characterizing the limit (Chapter 3 and much of the rest of§4.3-§4.8, and

Chapter 5).

The first representation step in§4.4 starts out in the usual way, involving rate-1 Pois-

son processes and martingales, as reviewed in [57]. However, the SSC in Theorem 4.4.1

requires a delicate analysis of the unscaled sequence; see§4.7, especially Lemma 4.7.4.

The second tightness step in§4.8.1 is routine, but the final characterization step is chal-

lenging. These last two steps are part of the standard compactness approach to proving

stochastic-process limits; see [13], [25], [57] and§11.6 in [78]. As reviewed in [25] and

[57], uniquely characterizing the limit is usually the mostchallenging part of the proof,

but it is especially so here. Characterizing the limit is difficult because the FQR-T con-

trol is driven by a queue-difference process which is not being scaled and hence does not

converge to a deterministic quantity with spatial scaling.However, the driving process op-

erates in a different time scale than the fluid-scaled processes, asymptotically achieving a

(time-dependent) steady state at each instant of time, yielding the AP.

As was shown in Chapter 3, the AP and the FTSP also complicate the analysis of the

limiting ODE. First, it requires that the steady state of a continuous-time Markov chain

(CTMC), whose distribution depends on the solution to the ODE, be computed at every

instant of time. (As explained in Chapter 3, this argument may seem circular at first, since

the distribution of the FTSP is determined by the solution tothe ODE, while the evolu-

tion of the solution to the ODE is determined by the behavior of the FTSP. However, the

separation of time scales explains why this construction isconsistent.) The second compli-

cation is that the AP produces a singularity region in the state space, causing the ODE to

be discontinuous in its full state space. Hence, both the convergence to the MS-HT fluid

limit, and the analysis of the solution to the ODE depend heavily on the state space of the



CHAPTER 4. CONVERGENCE VIA THE AP 153

ODE, which is characterized in terms of the FTSP. For that reason, many of the results in

Chapter 3 are needed for proving convergence, and we summarize the essential results in

§4.5 below.

There is now a substantial literature on fluid limits for queueing models, some of which

is reviewed in [78]. For recent work on many-server queues, see [40, 44]. Because of the

separation of time scales here, our work is in the spirit of fluid limits for networks of many-

server queues in [8, 9], but again the specifics are quite different. Their separation of time

scales justifies using a pointwise stationary approximation asymptotically, as in [51, 77].

4.2 Preliminaries

We briefly specify some of the notation we will be using.

4.2.1 Many-Server Heavy-Traffic (MS-HT) Scaling

We now add the subscript6 to the processX, describing the X system, to emphasize that

the original stochastic system under FQR-T is a six-dimensionalcontinuous time Markov

chain(CTMC), i.e.,

X6(t) ≡ (Qi(t), Zi,j(t); i, j = 1, 2), t ≥ 0 (4.2.1)

To develop the fluid limit, we consider a sequence of X systems, {Xn
6 : n ≥ 1} defined as

in (4.2.1), indexed byn (denoted by superscript), with arrival rates and number of servers

growing proportionally ton, i.e.,

λ̄ni ≡ λni
n

→ λi and m̄n
i ≡ mn

i

n
→ mi as n→ ∞, (4.2.2)
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and the service and abandonment rates held fixed. We then define the associated fluid-

scaled stochastic processes

Q̄n
i (t) ≡

Qn
i (t)

n
and Z̄n

i,j(t) ≡
Zn

i,j(t)

n
, i, j = 1, 2, t ≥ 0,

X̄n
6 (t) ≡ (Q̄n

i (t), Z̄
n
i,j(t) : i, j = 1, 2), t ≥ 0. (4.2.3)

In this framework, with additional regularity conditions,we will prove thatX̄n
6 ⇒ x6 in an

appropriate framework (see§4.2.2), wherex6 is a deterministic continuous function.

We now return to the description of our systems. For each systemn, there are thresholds

kn1,2 andkn2,1, scaled as suggested in Chapter 2:

kni,j
n

→ 0 and
kni,j√
n
→ ∞ as n→ ∞, i, j = 1, 2. (4.2.4)

The first scaling byn is chosen to make the thresholds asymptotically negligiblein MS-

HT fluid scaling, so they have no asymptotic impact on the steady-state cost. The second

scaling by
√
n is chosen to make the thresholds asymptotically infinite in MS-HT diffusion

scaling, so that asymptotically the thresholds will not be exceeded under normal loading.

It is significant that MS-HT scaling shows that we should be able to simultaneously satisfy

both conflicting objectives in large systems.

We will also consider shifting thresholdsκni,j, satisfying

κni,j
n

→ κi,j ≥ 0 asn→ ∞, i, j = 1, 2. (4.2.5)

These shifting thresholds can be of ordern, i.e.,κi,j > 0, if a version of FQR-T, theshifted

FQR-Tcontrol, is employed. Shifted FQR-T is designed to keep the relation between the

queues atQ1 ≈ r1,2Q2 + κ1,2, or Q1 ≈ r2,1Q2 + κ2,1, which is the optimal relation in
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the stationary fluid model for the important class of separable quadratic cost functions; See

§2.7. These shifting constants can also stand for the thresholdskni,j, i, j = 1, 2, if we choose

not to drop them once sharing is initialized (for the reasonsdescribed in§3.1.2). In that

case, the scale ofκni,j is as in (4.2.4). If the thresholds are dropped and the relation between

the queues is a fixed ratio, thenκni,j = 0 for all n ≥ 1, i, j = 1, 2. To summarize, we

considerκni,j = O(n), but without specifying their exact scale.

As before, let

Dn
1,2(t) ≡ (Qn

1 (t)− κn1,2)− r1,2Q
n
2 (t), t ≥ 0, (4.2.6)

and recall that FQR using the processDn
1,2 in (4.2.6): ifDn

1,2(t) > 0, then every newly

available agent (in either pool) takes his new customer fromthe head of the class-1 queue.

If Dn
1,2(t) ≤ 0, then every newly available agent takes his new customer from the head of

his own queue.

Let

ρni ≡ λni
µi,imn

i

, and ρi ≡ lim
n→∞

ρni =
λi

µi,imi
, i = 1, 2. (4.2.7)

Thenρni is the traffic intensity of classi to pool i, andρi can be thought of as its fluid

counterpart.

Our results depend on the system being overloaded, where, without loss of generality,

we assume that class1 is more overloaded than class2. However, in our case, a system can

be overloaded even if one of the classes2 is not overloaded by itself. We have the following

quantities:

qai ≡ (λi − µi,imi)
+

θi
and sai ≡

(
mi −

λi
µi,i

)+

, i = 1, 2, (4.2.8)

where(x)+ ≡ max{x, 0}. It is easy to see thatqai s
a
i = 0, i = 1, 2.
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4.2.2 Conventions About Notation

We use the usualR, Z andN notation for the real numbers, integers and nonnegative in-

tegers, respectively. LetRk denote allk-dimensional vectors with components inR. For

a subintervalI of [0,∞), let Dk(I) ≡ D(I,Rk) be the space of all right-continuousRk

valued functions onI with limits from the left everywhere, endowed with the familiar Sko-

rohodJ1 topology. We letdJ1 denote the metric onDk(I). Since we will be considering

continuous limits, the topology is equivalent to uniform convergence on compact subinter-

vals ofI. Let Ck be the subset of continuous functions inDk. Let e be the identity function

in D ≡ D1, i.e.,e(t) = t, t ∈ I. The function0 ∈ D will be denoted simply by0, when the

context is clear, or by0e. Let⇒ denote convergence in distribution.

We use the familiar big-O and small-o notations for deterministic functions: For two

real functionsf andg, we write

f(x) = O(g(x)) whenever lim sup
x→∞

|f(x)/g(x)| <∞,

f(x) = o(g(x)) whenever lim sup
x→∞

|f(x)/g(x)| = 0.

The same notation is used for sequences, replacingx with n ∈ N.

For a ∈ R, let (a)+ ≡ max{0, a} and (a)− ≡ max{0,−a}. For a functionx :

[0,∞) → R and0 < t <∞, let

‖x‖t ≡ sup
0≤s≤t

|x(s)|.

Let Y ≡ {Y (t) : t ≥ 0} be a stochastic process, and letf : [0,∞) → [0,∞) be a

deterministic function. We say thatY isOP (f(t)), and writeY = OP (f), if ‖Y ‖t/f(t) is
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stochastically bounded(SB), i.e., if

lim
a→∞

lim sup
t→∞

P

(‖Y ‖t
f(t)

> a

)
= 0.

We say thatY is oP (f(t)) if ‖Y ‖t/f(t) converges in probability (and thus, in distribution)

to 0, i.e., if
‖Y ‖t
f(t)

⇒ 0 as t→ ∞.

If f(t) ≡ 1, thenY = OP (1) if it is SB, andY = oP (1) if ‖Y ‖t ⇒ 0. We defineOP (f(n))

andoP (f(n)) in a similar way, but with the domain off beingN, i.e.,f : N → [0,∞).

For a sequence{Y n : n ≥ 1} (of stochastic processes, random variables or real num-

bers) we denote its fluid-scaled version byȲn ≡ Y n/n. The fluid limit of stochastic pro-

cesses̄Y n is denoted bȳY . The diffusion-scaled sequence of stochastic processes, centered

about their fluid limit, is denoted bŷY ≡ (Y n − nȲ )/
√
n, and its limit by Ŷ . We let

Y̆ n ≡ Y n/
√
n be the

√
n-scaled processes without the centering about the fluid limit.

4.3 The Main Assumptions

We now specify the three main assumptions: Assumptions 1, 2 and 3 below.These three

assumptions are assumed to hold henceforth.

First, we have the two assumptions already made, (4.2.2) and(4.2.5). Our first new

assumption is on the asymptotic behavior of the rates; it specifies the essential form of

the overload. For the statement, recall the definitions in (4.2.2), (4.2.5) and (4.2.8), which

describe the asymptotic behavior of the rates.

Assumption 1. (system overload, with class1 more overloaded)

The rates in the overload are such that the limiting rates satisfy
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(1) θ1(q
a
1 − κ) > µ1,2s

a
2.

(2) qa1 − κ > rqa2 .

Condition(1) in Assumption 1 ensures that class1 is asymptotically overloaded, even

after receiving help from pool2. To see why, first observe that, sincesa2 ≥ 0, qa1 > κ ≥

0, so thatλ1 > µ1,1m1 andρ1 > 1. Hence, class1 is overloaded. Next observe that

µ1,2s
a
2 = µ1,2(1 − ρ2)

+, and that(1 − ρ2)
+ is the amount of (steady-state fluid) extra

service capacity in pool2, if it were to serve only class-2 customers. Thus, Condition(1)

in Assumption 1 implies that enough class-1 customers are routed to pool2 to ensure that

pool 2 is overloaded when sharing is taking place. This conclusionwill be demonstrated

in §4.7. Note that Condition(1) in Assumption 1 is slightly stronger than Condition(I)

of Assumption A in Chapter 3. because here there is a strong inequality instead of a weak

inequality.

Condition(2) in Assumption 1 ensures that class1 is more overloaded than class2 if

class2 is also overloaded. This condition helps ensure that there is no incentive for pool1

to help pool2, so that we can assume thatZn
2,1 remains at0.

We now expand upon the centering constants.

Assumption 2. (centering constants)

For the sequence{κn : n ∈ N} of centering constants, we require that

(1) κn ≥ 0 for all n andκn/n→ κ, where0 ≤ κ <∞.

(2) If κ = 0, then in addition we require thatκn → c1 andκn/ logn → c2 asn → ∞,

where0 ≤ ci ≤ ∞ for i = 1, 2.

In Assumption 2, the first condition is the standard scaling for the centering constants.

If κ = 0, then we have FQR after sharing has been activated by passingthe thresholds; if
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κ 6= 0, then we have shifted FQR after sharing has been activated bypassing the thresholds.

From the perspective of the centering constants alone, it would suffice to considerκn = nκ.

However, we have imposed additional conditions for the caseκ = 0. We did this so that

we could consider the FQR-T control with the original thresholds retained. As discussed in

§4.2.1, we want those thresholds to beo(n) but large compared toO(
√
n); e.g., we might

haveκn = np for 1/2 < p < 1. The regularity conditions involving scaling bylogn is for

results in§4.7 showing that the idleness is at mostO(logn).

Our third assumption is about the initial conditions. We require that a fluid-scale limit

exists at time0, where the limitx(0) satisfies the initial conditions required for the existence

of a unique solution to the ODE, established in Chapter 3. TheODE and the FSTP will be

reviewed here in§4.5. Specifically, Assumption 3 refers to the setA defined in (4.5.16) and

expressed in (4.5.22). We will be explaining Assumption 3 inthe next two sections. For

the statement, recall the definition of the six-dimensionalfluid-scaled process̄Xn
6 in (4.2.3)

and letX̄n ≡ (Q̄n
1 , Q̄

n
2 , Z̄

n
1,2) be the associated three-dimensional process. (In§4.4 we show

that it suffices to consider̄Xn.) We also need to separately specify initial conditions forthe

queue-difference processes in (4.2.6). We assume the queue-difference processes start in

some fixed state.

Assumption 3. (initial conditions)

For eachn ≥ 1, Zn
1,1(0) = mn

1 , Zn
2,1 = 0, Qn

1 (0) ≥ κn, Zn
1,2(0) + Zn

2,2(0) = mn
2 and

Dn
1,2(0) ≡ Qn

1 (0)− r1,2Q
n
2 (0) = j for some fixedj. In addition,

X̄n(0) ⇒ x(0) ∈ A as n→ ∞,

with x(0) being a deterministic element ofR3.

If the system is initialized not inA, then other fluid models hold during the initial period
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beforeA is hit; See§3.7. In this chapter we want to concentrate on time intervalson which

the averaging principle is operating. The conditionx(0) ∈ A implies thatq1(0) ≥ κ, and

that sharing is taking place (or at least initializing) at time0, and that both service pools are

full.

4.4 Representation ofXn
6

The statements of our asymptotic results are easier to understand if we first exhibit the

representation ofXn
6 that we will use in our proof.

4.4.1 Starting with Rate-1 Poisson Processes

Let An
i (t) count the number of class-i customer arrivals, letSn

i,j(t) count the number of

serivce completions of class-i customers by agents in poolj, and letUn
i (t) count the num-

ber of class-i customers to abandon from queue, all in modeln during the time interval

[0, t]. Following common practice, as reviewed in§2 of [57], we represent these processes

in terms of mutually independent rate-1 Poisson processes. We represent the counting pro-

cessesAn
i , Sn

i,j andUn
i as

An
i (t) ≡ Na

i (λ
n
i t),

Sn
i,j(t) ≡ N s

i,j

(
µi,j

∫ t

0

Zn
i,j(s) ds

)
,

Un
i (t) ≡ Nu

i

(
θi

∫ t

0

Qn
i (s) ds

)
, t ≥ 0,

(4.4.1)

whereNa
i ,N s

i,j andNu
i for i = 1, 2; j = 1, 2 are eight mutually independent rate-1 Poisson

processes.
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The evolution ofXn
6 in (4.2.3) is somewhat complicated because, at each service-

completion epocht, we need to know whetherDn
1,2(t) is strictly positive or not, and whether

there are any class-i customers in service-poolj, i = 1, 2, i 6= j. For example, fixn and

consider a timet > 0 in which a type-2 server becomes available and thatDn
1,2(t) > 0.

Then the newly available server should take a customer from the head of queue1. How-

ever, if at the same timeZn
2,1(t) > 0 then, according to the one-way sharing rule, he cannot

take customers from queue1. Hence, we need to be able to know at each timet ≥ 0

whetherZn
i,j(t) > 0. In addition, some customers may arrive to find idleness in their class

service pool, so that they go immediately into service.

4.4.2 Simplification via SSC

However, since the system is assumed to be overloaded, it is reasonable to expect that the

idleness process in the two service pools is asymptoticallynegligible in diffusion (and thus

in fluid) scale. That means thatZn
1,1(t) + Zn

2,1(t) ≈ mn
2 andZn

2,2(t) + Zn
1,2(t) ≈ mn

2 for all

t > 0, provided that those approximations hold att = 0. Also, since we assume that class1

is more overloaded than class2, it is reasonable to expect thatZn
1,2 becomes positive before

the thresholdkn2,1 is crossed (for largen), so thatZn
2,1(t) = 0, at least on some initial interval

[0, τ ], τ > 0. If that is true, thenZn
1,1(t) ≈ mn

1 andZn
2,2(t) ≈ mn

2 − Zn
1,2(t), t ∈ [0, τ ]. The

approximation signs will be replaced with equality with both diffusion and fluid scaling,

producing a SSC result. Specifically, the dimension of the service process reduces from

four to one in the limit with diffusion scaling. That will be proved in Theorem 4.7.1 below.

We now state a result which will allow us to represent the system in a relatively simple

form, building on the SSC for the service process just explained (and which will be proved

in §4.7). Recall thatXn
6 has been defined in§4.2.1, the assumptions in§4.3 are in force,

dJ1 denotes the standard SkorohodJ1 metric andY̆ n ≡ Y n/
√
n for anyY n ∈ Dk.
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Theorem 4.4.1.(Representation via SSC) Asn → ∞, dJ1(X̆
n
6 , X̆

n,∗) ⇒ 0 in D6, where

Xn,∗ ≡ Xn
6 ≡ (Qn

1 , Q
n
2 , Z

n
1,1, Z

n
2,1, Z

n
1,2, Z

n
2,2) under the extra condition thatZn

1,1 = mn
1 ,

Zn
2,1 = 0 andZn

1,2 + Zn
2,2 = mn

2 , withXn ≡ (Qn
1 , Q

n
2 , Z

n
1,2) being represented via

Zn
1,2(t) ≡ Zn

1,2(0) +

∫ t

0

1{Dn
1,2(s)>0} dS

n
2,2(t)−

∫ t

0

1{Dn
1,2(s)≤0}

dSn
1,2(t)

= Zn
1,2(0) +N s

2,2

(
µ2,2

∫ t

0

1{Dn
1,2(s)>0}(m

n
2 − Zn

1,2)(s) ds

)

−N s
1,2

(
µ1,2

∫ t

0

1{Dn
1,2(s)≤0}

Zn
1,2(s) ds

)
, t ≥ 0,

(4.4.2)

Qn
1 (t) ≡ Qn

1 (0) + An
1 (t)−

∫ t

0

1{Dn
1,2(s)>0} dS

n(t)

−
∫ t

0

1{Dn
1,2(s)≤0}

dSn
1,1(t)− Un

1 (t)

= Qn
1 (0) +Na

1 (λ
n
1 t)−N s

1,1(µ1,1Z
n
1,1t)

−N s
1,2

(
µ1,2

∫ t

0

1{Dn
1,2(s)>0}Z

n
1,2(s)) ds

)

−N s
2,2

(
µ2,2

∫ t

0

1{Dn
1,2(s)>0}(m

n
2 − Zn

1,2(s)) ds

)

−Nu
1

(
θ1

∫ t

0

Qn
1 (s) ds

)
, t ≥ 0,

(4.4.3)

Qn
2 (t) ≡ Qn

2 (0) + An
2 (t)−

∫ t

0

1{Dn
1,2(s)≤0}

dSn
2,2(t)

−
∫ t

0

1{Dn
1,2(s)≤0}

dSn
1,2(t)− Un

2 (t) t ≥ 0

= Qn
2 (0) +Na

2 (λ
n
2 t)

−N s
2,2

(
µ2,2

∫ t

0

1{Dn
1,2(s)≤0}

(mn
2 − Zn

1,2(s)) ds

)

−N s
1,2

(
µ1,2

∫ t

0

1{Dn
1,2(s)≤0}

Zn
1,2(s) ds

)

−Nu
2

(
θ2

∫ t

0

Qn
2 (s) ds

)
, t ≥ 0.

(4.4.4)
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With a slight abuse of notation, henceforth we useXn ≡ (Qn
1 , Q

n
2 , Z

n
1,2) to refer to

both its direct representation inD3 and (by virtue of Theorem 4.4.1) the essentially three-

dimensional processXn,∗ in D6.

Theorem 4.4.1 is achieved as a corollary of Theorem 4.7.1, which will be stated and

proved in§4.7. Without it, we could not write the representation (4.4.2)-(4.4.4). In fact, if

we do not know thatZn
2,1 is asymptotically negligible, then the evolution ofXn

6 becomes

intractable. Specifically, the system may oscillate between different directions of sharing,

with Zn
1,2 being positive at some instances, andZn

2,1 being positive at other instances. The

system may also get “stuck” withZn
2,1(t) > 0 andZn

1,2(t) = 0 for all t > t0, for some

t0 > 0, even though we want to have sharing in the other direction. (See Lemma 4.7.2

below. If at somet0 ≥ 0 we have thatz2,1(t0) > 0 thenz2,1(t) > 0 for all t > t0, where

z2,1 is the fluid limit of Z̄2,1.) These situations are ruled out by Theorem 4.7.1 and Theorem

4.4.1.

4.4.3 Simplification via Martingales

We now obtain further simplification using the familiar martingale representation, again

see [57]. Consider the representation ofXn in (4.4.2) - (4.4.4) above, and let

Mn,a
i (t) ≡ Na

i (λ
n
i t)− λni t,

Mn,u
i (t) ≡ Nu

i

(
θi

∫ t

0

Qn
i (s)) ds

)
− θi

∫ t

0

Qn
i (s) ds,

Mn,s
i,2 (t) ≡ N s

i,2(J
n
i,2(t))− Jn

i,2(t),

(4.4.5)

whereJn
i,2(t) are the compensators of the Poisson-processesN s

i,2(t) in (4.4.2)-(4.4.4),i =

1, 2, e.g.,

Jn
1,2(t) ≡ µ1,2

∫ t

0

1{Dn
1,2(s)<0}Z

n
1,2(s) ds.



CHAPTER 4. CONVERGENCE VIA THE AP 164

The quantities in (4.4.5) can be shown to be martingales (with respect to an appropriate

filtration); See [57]. However, we will not use any martingale property, and call those

terms martingales for convenience.

The following lemma follows easily from the FSLLN for Poisson processes and the

C-tightness to be established in Theorem 4.8.1:

Lemma 4.4.1.(fluid limit for the martingale terms) Asn→ ∞,

n−1(Mn,a
1 ,Mn,a

2 ,Mn,u
1 ,Mn,u

2 ,Mn,s
1,2 ,M

n,s
2,2 ) ⇒ 0 in D6.

Proof: By Lemma 4.8.1, the sequence{X̄n
6 : n ≥ 1} is tight inD. Thus any subsequence

has a convergent subsequence. By the proof of Lemma 4.8.1, the sequences{Jn
i,j/n} are

alsoC-tight, so that{Jn
i,j/n}, i = 1, 2, all converge along a converging subsequence as

well. Consider a converging subsequence{Xn} and its limit X̄, which is continuous by

Lemma 4.8.1. Then the claim of the lemma follows for the converging subsequence from

the FSLLN for Poisson processes and the continuity of the composition map at continuous

limits, e.g., Theorem 13.2.1 in [78]. In this case, the limitof each fluid-scaled martingale

is the zero function0e ∈ D, regardless of the converging subsequence we consider, andis

thus unique. Hence we have completed the proof.

We can thus obtain an alternative martingale representation for X̄n. In particular, we

can let

M̄n ≡ X̄n − C̄n, (4.4.6)

whereX̄n is defined in (4.4.2)-(4.4.4) and, with an abuse of notation,C̄n ≡ (Q̄n
1 , Q̄

n
2 , Z̄

n
1,2)
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for

Z̄n
1,2(t) ≡ Z̄n

1,2(0) + µ2,2

∫ t

0

1{Dn
1,2(s)>0}(m̄

n
2 − Z̄n

1,2(s)) ds

− µ1,2

∫ t

0

1{Dn
1,2(s)≤0}

Z̄n
1,2(s) ds,

Q̄n
1 (t) ≡ Q̄n

1 (0) + λ̄n1 t− m̄n
1 t− µ1,2

∫ t

0

1{Dn
1,2(s)>0}Z̄

n
1,2(s)) ds

− µ2,2

∫ t

0

1{Dn
1,2(s)>0}(m̄

n
2 − Z̄n

1,2(s)) ds− θ1

∫ t

0

Q̄n
1 (s) ds,

Q̄n
2 (t) ≡ Q̄n

2 (0) + λ̄n2 t− µ2,2

∫ t

0

1{Dn
1,2(s)≤0}

(m̄n
2 − Z̄n

1,2(s)) ds

− µ1,2

∫ t

0

1{Dn
1,2(s)≤0}

Z̄n
1,2(s) ds− θ2

∫ t

0

Q̄n
2 (s)) ds.

(4.4.7)

(We have used the same notation(Q̄n
1 , Q̄

n
2 , Z̄

n
1,2) in the definition of the different procsses

X̄n in (4.4.2)-(4.4.4) and̄Cn in (4.4.7) above. The following result shows that this anomaly

causes no problem. Recall thatdJ1 denotes the standardJ1 metric.

Theorem 4.4.2.Asn → ∞, M̄n ⇒ 0, so thatdJ1(X̄
n, C̄n) ⇒ 0 in D3 asn → ∞, where

X̄n is defined in(4.4.2)-(4.4.4)andC̄n is defined in(4.4.7).

Proof: Since the weak limit of the centered fluid-scaled Poisson processes in (4.4.5) is the

(continuous)0 function, the sum of any two or more of those processes also converges to

0 ≡ 0e in D, by the continuity of addition at continuous limits, and is thereforeoP (1).

Hence we getM̄n ⇒ 0 asn → ∞ directly from Lemma 4.4.1, from which the remaining

convergence follows directly.

As a consequence of Theorem 4.4.2, henceforth we can focus onC̄n in (4.4.7) instead of

X̄n in (4.4.2)-(4.4.4). We will do so, but redefininḡXn: We letX̄n ≡ C̄n; i.e., henceforth

we letX̄n ≡ (Q̄n
1 , Q̄

n
2 , Z̄

n
1,2) in (4.4.7).

Theorem 4.4.2 reduces the expression ofX̄n to the random rates of the Poisson pro-

cesses, and reveals the basic structure of the limiting ODE in (4.5.13). Due to Theorem
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4.4.1, the representation in (4.4.7) is equivalent to the representation of the six-dimensional

processX̄n
6 , forXn

6 in (4.2.3). Hence, proving that̄Xn converges to a unique deterministic

limit, will imply the convergence ofX̄n
6 to a limit in a three-dimensional hyperplane of

D6, which is homeomorphic toD3. It is thus enough to work with the three-dimensional

process in (4.4.7). Given Theorems 4.4.1 and 4.4.2, we will show that

X̄n ≡ (Q̄n
1 , Q̄

n
2 , Z̄

n
1,2) ⇒ x ≡ (q1, q2, z1,2) in D3([0, δ]) as n→ ∞

for someδ > 0, wherex is a deterministic element ofC3, with x(t) ∈ A for all t ∈ [0, δ].

4.5 The FTSP and the ODE

Even though Theorems 4.4.1 and 4.4.2 allow us to consider only the three-dimensional

processXn in (4.4.7), we still must cope with the indicator functions in the integrands in

(4.4.7), which appear because of the FQR routing. Thus, the key to a successful analysis

of Xn is understanding the behavior of the stochastic queue-difference processDn
1,2 ≡

(Qn
1 − κn) − r1,2Q

n
2 in (4.2.6) when some, but not all, type-2 servers are helping class-1

customers, and the system is overloaded in the sense of Assumption 1.

In Chapter 3 we presented and analyzed a three dimensional ODE (which we refer

to simply as “the ODE” since it is the only ODE under consideration). This ODE was

conjectured to arise as the limit of the fluid-scaled versionof Xn in (4.4.2)-(4.4.4). In this

chapter we will prove that conjecture. Specifically, we willshow thatX̄n indeed converges

weakly to the solution of that three-dimensional ODE, so that the fluid limit of X̄n and the

solution to the ODE coincide. However,the ODE is well defined and its solution exists as

an element ofC3, regardless of any convergence results.

Since an understanding of the ODE, its state space and its solution is required in order
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to characterize the fluid limit, we begin by defining the ODE (motivated by the sequence

X̄n). In doing so, we will be reviewing Chapter 3; see Chapter 3 for a complete analysis of

the ODE. Recall that the ODE is driven by a stochastic process, whose local steady-state

distributions govern the evolution of the solution to the ODE. We thus start by defining

the driving process, which we call the FTSP. To understand the FTSP, we need to better

understand the queue-difference process.

4.5.1 The Drift Rates of the Queue-Difference Processes

In this subsection we specify the transition rates of the queue-difference process{Dn
1,2(t) :

t ≥ 0} in (4.2.6) at any timet0 conditional onXn(t0) = Γn, where sharing is taking place;

i.e., we consider the transition rates of the process

Dn ≡ Dn(Γn) ≡ {Dn(Γn, t) : t ≥ t0} ≡ {Dn
1,2(X

n(t0), t) : t ≥ t0} (4.5.1)

at time t0 conditional onXn(t0) = Γn, whereΓn is a deterministic state, under the

assumption that sharing is taking place. (We will explain when sharing will be taking

place in the following subsections.) The initial difference at timet0 isDn
1,2(X

n(t0), t0) =

Qn
1 (t0) − r1,2Q

n
2 (t0), where(Qn

1 (t0), Q
n
2 (t0)) is part ofXn

6 (t0). To be well defined, the

stateΓn should be for the full CTMCXn
6 . The transition rates are independent of timet0

for any given process stateΓn. However, because of§4.4, it suffices to focus on the three-

dimensional process̄Xn. In other words, we can think ofΓn as a state ofXn, i.e., a vector

in N2 × [0, mn
2 ]. Thus the transition rates in (4.5.2)-(4.5.5) below, underthis simplifying

assumption, are asymptotically correct witho(n) terms asn→ ∞ (which we omit).

To simplify analysis, we will work with an integer state space. Thus we assume that

the shifting thresholdsκn1,2 in (4.2.6) are integers and thatr1,2 is rational, in particular,

r1,2 = j/k for positive integersj andk. We then look at queue differences measured in
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units of1/k. Hence, we have transitions of±j and±k instead of the original values of±1

and±r.

WhenDn(Γn, t0) = m ≤ 0, let the transition rates beλ(j)− (n,m,Γn), λ(k)− (n,m,Γn),

µ
(j)
− (n,m,Γn) and µ(k)

− (n,m,Γn) for transitions of+j, +k, −j and −k, respectively.

WhenDn(Γn, t0) = m > 0, let the transition rates beλ(j)+ (n,m,Γn), λ(k)+ (n,m,Γn),

µ
(j)
+ (n,m,Γn) andµ(k)

+ (n,m,Γn) for transitions of+j, +k, −j and−k, respectively.

First, forDn(Γn, t0) = m ≤ 0 with Γn ≡ (Qn
1 , Q

n
2 , Z

n
1,2), the upward rates are

λ
(k)
− (n,m,Γn) ≡ λn1 , and

λ
(j)
− (n,m,Γn) ≡ µ1,2Z

n
1,2 + µ2,2(m

n
2 − Zn

1,2) + θ2Q
n
2 ,

(4.5.2)

corresponding, first, to a class-1 arrival and, second, to a departure from the class-2 queue,

caused by a type-2 agent service completion (of either customer type) or by a class-2 cus-

tomer abandonment. Similarly, the downward rates are

µ
(k)
− (n,m,Γn) ≡ µ1,1m

n
1 + θ1Q

n
1 and µ

(j)
− (n,m,Γn) ≡ λn2 , (4.5.3)

corresponding, first, to a departure from the class-1 customer queue, caused by a class-1

agent service completion or by a class-1 customer abandonment, and, second, to a class-2

arrival.

Next, forDn(Γn, t0) = m ∈ (0,∞), we have upward rates

λ
(k)
+ (n,m,Γn) ≡ λn1 and λ

(j)
+ (n,m,Γn) ≡ θ2Q

n
2 , (4.5.4)
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corresponding, first, to a class-1 arrival and, second, to a departure from the class-2 cus-

tomer queue caused by a class-2 customer abandonment. The downward rates are

µ
(k)
+ (n,m,Γn) ≡ µ1,1m

n
1 + µ1,2Z

n
1,2 + µ2,2(m

n
2 − Zn

1,2) + θ1Q
n
1 and

µ
(j)
+ (n,m,Γn) ≡ λn2 ,

(4.5.5)

corresponding, first, to a departure from the class-1 customer queue, caused by (i) a type-1

agent service completion, (ii) a type-2 agent service completion (of either customer type),

or (iii) by a class-1 customer abandonment and, second, to a class-2 arrival.

Using these transition rates, we can define thedrift ratesforDn(Xn(t), t) ≡ Dn(Γn, t),

conditional uponXn(t) = Γn. Let these drift rates in the regions(0,∞) and(−∞, 0] be

denoted byδn+(X
n(t)) andδn−(X

n(t)), respectively, Combining (4.5.20) and (4.5.2)-(4.5.5),

we obtain

δn+(X
n(t)) ≡ j[λn1 − µ1,1m

n
1 + (µ2,2 − µ1,2)Z

n
1,2(t)− µ2,2m

n
2 (t)− θ1Q

n
1 (t)]

− k[λn2 − θ2Q
n
2 (t)],

δn−(X
n(t)) ≡ j[λn1 − µ1,1m

n
1 − θ1Q

n
1 (t)]

− k[λn2 + (µ2,2 − µ1,2)Z
n
1,2(t)− µ2,2m

n
2 − θ2Q

n
2 (t)].

(4.5.6)

In order to have sharing, we will want to haveδn+(Γ
n) < 0 < δn−(Γ

n).

4.5.2 The FSTP

The FTSP can perhaps be best understood as being the limit of afamily of time-expanded

queue-difference processes, defined for eachn ≥ 1 by

Dn
e (Γ

n, s) ≡ Dn
1,2(t0 + s/n), s ≥ 0. (4.5.7)
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where we condition onXn(t0) = Γn for some deterministic vectorΓn assuming possible

values ofXn(t0) ≡ (Qn
1 (t0), Q

n
2 (t0), Z

n
1,2(t0)). (The timet0 is an arbitrary initial time.) We

chooseΓn so that sharing will occur (or will occur eventually forn large enough). Since

we divides in (4.5.7) byn, we are effectively dividing the rates byn. We are applying a

“microscope” to “expand time” and look at the behavior afterthe initial time more closely.

That is in contrast to the usual time contraction with conventional HT limits. See [75] for a

previous limit using time expansion. We will explain the limit in detail in§4.5.6 below.

With that in mind, we see that the FTSP should have the same state space asDn
1,2. When

we relate the FTSP to the expanded queue-difference processin §4.5.6 below, we will also

relate the initial differences, which so far are unspecifiedhere. Since we already converted

to an integer state space, the FTSP will be a continuous-timeMarkov chain (CTMC) onZ.

With that convention, the FTSP{D(γ, s) : s ≥ 0} has transition rates among the integers

determined at any times (in the newly introduced “infinitesimal” time scale) by bothits

current stateD(γ, s) ≡ m and the vectorγ. The vectorγ is a possible state of the fluid

modelx(t) ≡ (q1(t), q2(t), z1,2(t)) at some timet, where averaging may take place. Thus

γ ∈ [0,∞)2 × [0, m2]. Specifically,γ can be any vector in the subsetA defined in (4.5.16)

below.

Given the current statem, we let the rates of the FTSPD as a function ofγ be the

limit of the rates ofDn(Γn, ·) divided byn, where the rates ofDn(Γn, ·) are themselves a

function of the current stateDn(Γn, 0) = m with Γn/n → γ asn → ∞. SinceΓn/n →

γ asn → ∞, there will be sharing in all systems for alln sufficiently large. (For the

corresponding rates of the queue-difference processDn(Γn, ·) itself, see (4.5.2)-(4.5.5).)

Since the drift rates ofDn(Γn, t) in (4.5.6) are linear functions of the stateXn(t), we

have

δn+(X
n(t)) ⇒ δ+(X̄(t)) and δn−(X

n(t)) ⇒ δ−(X̄(t)) (4.5.8)
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wheneverX̄n(t) ⇒ X̄(t) in R, which we will have (for allt along a convergent subse-

quence, because along that subsequence we haveX̄n ⇒ X̄ in D3 as a consequence of

tightness).

Directly, we let the FTSP{D(γ, s) : s ≥ 0} be a CTMC with transition ratesλ(j)− (m, γ),

λ
(k)
− (m, γ), µ(j)

− (m, γ) andµ(k)
− (m, γ) for transitions of+j, +k, −j and−k, respectively,

whenD(γ, s) = m ≤ 0. Similarly, let the transition rates beλ(j)+ (m, γ), λ(k)+ (m, γ),

µ
(j)
+ (m, γ) andµ(k)

+ (m, γ) for transitions of+j,+k,−j and−k, respectively, whenD(γ, s) =

m > 0.

Paralleling the definitions in (4.5.2)-(4.5.5), we define the transition rates forD(γ) as

follows: First, forD(γ, s) = m ∈ (−∞, 0] with γ ≡ (q1, q2, z1,2), the upward rates are

λ
(k)
− (m, γ) ≡ λ1, and

λ
(j)
− (m, γ) ≡ µ1,2z1,2 + µ2,2(m2 − z1,2) + θ2q2.

(4.5.9)

Similarly, the downward rates are

µ
(k)
− (m, γ) ≡ µ1,1m1 + θ1q1 and µ

(j)
− (m, γ) ≡ λ2 (4.5.10)

Next, forD(γ, s) = m ∈ (0,∞), we have upward rates

λ
(k)
+ (m, γ) ≡ λ1 and λ

(j)
+ (m, γ) ≡ θ2q2. (4.5.11)

The downward rates are

µ
(k)
+ (m, γ) ≡ µ1,1m1 + µ1,2z1,2 + µ2,2(m2 − z1,2) + θ1q1 and

µ
(j)
+ (m, γ) ≡ λ2.

(4.5.12)
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4.5.3 The ODE

We can now present the three-dimensional ODE in terms of the FTSPD. Let ẋ ≡ (q̇1, q̇2, ż1,2),

whereẋ(t) is the derivative evaluated at timet, and

q̇1(t) ≡ λ1 −m1µ1,1 − π1,2(x(t)) [z1,2(t)µ1,2 + z2,2(t)µ2,2]− θ1q1(t)

q̇2(t) ≡ λ2 − (1− π1,2(x(t))) [z2,2(t)µ2,2 + z1,2(t)µ1,2]− θ2q2(t)

ż1,2(t) ≡ π1,2(x(t))z2,2(t)µ2,2 − (1− π1,2(x(t)))z1,2(t)µ1,2,

(4.5.13)

with π1,2(x(t)) ≡ P (D(x(t),∞) > 0) for eacht ≥ 0, whereD(x(t),∞) has the limiting

steady-state distribution ass→ ∞ of the FTSPD(γ, s) for γ = x(t).

Equivalently, we have the following integral representation of the ODE in (4.5.13):

z1,2(t) ≡ z1,2(0) + µ2,2

∫ t

0

π1,2(x(s))(m2 − z1,2(s)) ds

− µ1,2

∫ t

0

(1− π1,2(x(s)))z1,2(s) ds,

q1(t) ≡ q1(0) + λ1t−m1t− µ1,2

∫ t

0

π1,2(x(s))z1,2(s)) ds

− µ2,2

∫ t

0

π1,2(x(s))(m2 − z1,2(s)) ds− θ1

∫ t

0

q1(s) ds,

q2(t) ≡ q2(0) + λ2t− µ2,2

∫ t

0

(1− π1,2(x(s)))(m2 − z1,2(s)) ds

− µ1,2

∫ t

0

(1− π1,2(x(s)))z1,2(s) ds− θ2

∫ t

0

q2(s)) ds.

(4.5.14)

The integral representation is closely related to the integral representation of̄Xn ≡ (Q̄n
1 , Q̄

n
2 , Z̄

n
1,2)

in (4.4.7);X̄n has been replaced byx and the indicators1Dn
1,2(s)>0 have been replaced by

π1,2(x(s)).

Sinceγ = x(t), the relevant FTSP at timet depends on the solution of the ODE at time

t, x(t). Since the right side of the ODE hasπ1,2(x(t)), the evolution of the ODE beyondt
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in turn depends on the FTSP, specifically, upon the steady-state distribution of that FTSP.

Givenx(t) for somet > 0, we can determine the FTSP{D(x(t), s) : s ≥ 0}. Given that

FTSP, we can determine the steady-state quantityπ1,2(x(t)). Thenπ1,2(x(t)) appears on

the right side of the ODE in (4.5.13), determining the futureof the ODE. We provided an

efficient algorithm to solve this ODE coupled with the FTSP inChapter 3. The efficiency

is based on the QBD structure discussed in§4.5.5.

4.5.4 The State Space of the ODE

Since the ODE in (4.5.13) is driven by the family of FTSPD(γ, ·) (just as the stochastic

systems are driven by the processDn
1,2), we divide the state space of the fluid limit ac-

cording to the relation that holds betweenq1 andq2, and the behavior of the FTSP in the

different regions.

Denote byS the state space of the ODE. That is,S ≡ [0,∞)2 × [0, m2] ≡ {γ ≡

(q1, q2, z1,2)}, and let

S
b ≡ {q1 − rq2 = κ}, S

+ ≡ {q1 − rq2 > κ}, S
− ≡ {q1 − rq2 < κ}, (4.5.15)

with S = Sb ∪ S+ ∪ S−.

The regionS+ above the boundary is an open subset ofS. For allγ ∈ S
+, π1,2(γ) = 1.

The regionS− below the boundary is also an open subset ofS. For allγ ∈ S−, π1,2(γ) = 0.

The boundary subsetSb is a hyperplane in the state spaceS, and is therefore a closed

subset. It is the subset ofS in which the AP is taking place, and the functionπ1,2 can

assume its full range of values,0 ≤ π1,2(γ) ≤ 1, γ ∈ Sb. Let A ⊂ Sb be the set in which

D(x, ·) is positive recurrent. We have0 < π1,2(γ) < 1 if and only if γ ∈ A. Thus, for each

γ ∈ Sb, we define

A ≡ {γ ∈ S
b : 0 < π1,2(γ) < 1}. (4.5.16)
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4.5.5 The Fundamental QBD structure

Characterizing the setA in (4.5.16) is essential to our analysis. Our analysis is simplified

by exploiting matrix geometric methods, as in [52]. In particular, we represent the integer-

valued FTSPD ≡ {D(γ, s) : s ≥ 0} constructed above as a homogeneous continuous-time

QBD, as in Definition 1.3.1 and§6.4 of [52]. To do so, we re-order the states appropriately.

We order the states so that the infinitesimal generator matrix Q can be written in block-

tridiagonal form, as in Definition 1.3.1 and (6.19) of [52] (imitating the shape of a generator

matrix of a birth-and-death process). In particular, for each three-dimensional stateγ, we

write

Q ≡ Q(γ) ≡




B A0 0 0 . . .

A2 A1 A0 0 . . .

0 A2 A1 A0 . . .

0 0 A2 A1 . . .
...

...
...

...




(4.5.17)

where the four component submatricesB,A0, A1 andA2 are all2m× 2m submatrices for

m ≡ max {j, k} (and are also functions ofγ). These2m× 2m matricesB,A0, A1 andA2

in turn can be written in block-triangular form composed of fourm×m submatrices, i.e.,

B ≡


 A+

1 Bµ

Bλ A−1


 and Ai ≡


 A+

i 0

0 A−i


 (4.5.18)

for i = 0, 1, 2. (All these matrices are also functions ofγ.)

To achieve this representation, we need to re-order the states into levels. The main idea

is to represent transitions above0 and below0 within common blocks. LetL(n) denote

leveln, n = 0, 1, 2, . . . We assign original statesφ(n) to positive integersn according to
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the mapping:

φ(2nm+ i) ≡ nm+ i and

φ((2n+ 1)m+ i) ≡ −nm− i+ 1, 1 ≤ i ≤ m.
(4.5.19)

Then we order the states in levels as follows

L(0) ≡ {1, 2, 3, 4, . . .m, 0,−1,−2, . . . ,−(m− 1)},

L(1) ≡ {m+ 1, m+ 2, . . . , 2m,−m,−(m+ 1), . . . ,−(2m− 1)}, . . .

With this representation, the generator-matrixQ can be written in the form (4.5.17) above,

whereA1 groups all the transitions within a level,A0 groups the transitions from levelL(n)

to levelL(n + 1) andA2 groups all transitions from levelL(n) to levelL(n − 1). Matrix

B groups the transitions within the boundary levelL(0), and is thus different thanA1. An

example is given in§4.5.5.

QBD’s having a generator matrixQ of the form (4.5.17)-(4.5.18) will be repeatedly

constructed in our proofs. We thus refer to the QBD structure, represented by the generator

matrixQ as specified by (4.5.18) as thefundamental QBD.

To determine when the AP holds, we need to be able to determinewhen the FTSPD is

positive recurrent. Fortunately, QBD theory allows us to determine that easily for eachγ,

as explained in Chapter 3 and summarized below.

Let δ+ andδ− be the drift of the QBD in the positive and negative region, respectively

(see§3.3.3. See [52] for the general theory); i.e., let

δ+(γ) ≡ j
(
λ
(j)
+ (γ)− µ

(j)
+ (γ)

)
+ k

(
λ
(k)
+ (γ)− µ

(k)
+ (γ)

)
,

δ−(γ) ≡ j
(
λ
(j)
− (γ)− µ

(j)
− (γ)

)
+ k

(
λ
(k)
− (γ)− µ

(k)
− (γ)

)
.

(4.5.20)
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By our construction of the rates above, it holds thatδ−(γ) > δ+(γ) for everyγ ∈ S. Below

we repeat Theorem 3.3.1 with the modified notation:

Theorem 4.5.1.The QBD representing the FTSP{D(γ, s) : s ≥ 0} is positive recurrent if

and only if

δ−(γ) > 0 > δ+(γ). (4.5.21)

For everyγ ∈ R3, the setA in (4.5.16) where the AP is operating, is the same set in

which (4.5.21) holds, i.e.,

A ≡ {γ ∈ S : δ−(γ) > 0 > δ+(γ)}. (4.5.22)

From the continuity of the QBD drift-rates in (4.5.20), if follows thatA is an open and

connected subset ofSb. Hence,A can be regarded as an open connected subset ofR
+
2 (since

S
b is homoeomorphic toR+ × [0, m2]). Our proofs (here and in Chapter 3) rely on the fact

that if x(s) ∈ A, then for someh > 0, x(u) ∈ A, 0 < u < h. In particular, ifx(0) ∈ A,

then there exists aδ > 0 such that{x(t) : 0 ≤ t < δ} ⊂ A, as stated in Theorem 3.4.2,

which we repeat below:

Theorem 4.5.2.If x(0) ∈ A, then there exists a unique solutionx ∈ C3([0, δ)) to the fluid

ODE (4.5.13)for someδ > 0.

We will initially work on an interval[0, δ), δ > 0, over which we can guarantee that

the AP and Theorem 4.5.2 hold. After the convergence is established, this interval can be

extended, typically all the way to∞; see§3.6. However, the extension of the initial interval

[0, δ) depends only on the solution to the ODE. Thus, it suffices to prove the convergence

over[0, δ) no matter how smallδ is. We will characterize aδ > 0 in §4.8.3. For the rest of

the discussion, assume thatδ > 0 is known.
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4.5.6 The FTSP Arising as a Limit

We now present some results in which the FTSPD ≡ {D(γ, s) : s ≥ 0} arises as a limit.

These results connect the queue difference processDn ≡ {Dn
1,2(t) : t ≥ 0} defined in

(4.2.6) and (4.5.1) and the time-expanded queue-difference processesDn
e in (4.5.7) to the

FTSP defined above. These results help explain the main theorem.

We first formalize the separation of time scales using the time-expanded queue-difference

processesDn
e defined in (4.5.7). The following result “explains” the AP, but does not com-

plete the proof of the FWLLN. We prove this theorem in§5.1.

Theorem 4.5.3.If Γn/n → γ andDn(Γn, 0) ⇒ D(γ, 0) in R asn → ∞, whereγ ∈ A,

then

{Dn
e (Γ

n, s) : s ≥ 0} ⇒ {D(γ, s) : s ≥ 0} in D as n→ ∞, (4.5.23)

whereDn
e is the time-expanded queue-difference process in(4.5.7)andD is the FTSP;

i.e., we have convergence of the sequence of time-inhomogeneous CTMC’s to a limiting

time-homogeneous CTMC.

Of course, we are actually interested in the queue-difference processes. We will obtain

the following result in Corollary 4.8.5. Recall the definition of stochastic boundedness (SB)

in §4.2.2.

Theorem 4.5.4.Over an appropriate interval,[0, δ), the sequence of stochastic processes

{{Dn
1,2(t) : 0 ≤ t ≤ δ} : n ≥ 1} is SB inD, so that the sequence of random variables

{Dn
1,2(t) : n ≥ 1} is SB inR for eacht, 0 ≤ t ≤ δ.

Nevertheless, one implication of Theorem 4.5.3 is that, asn increases,Dn
1,2 fluctuates

“too much” in the neighborhood of every pointt ∈ [0, δ) for the sequence of stochastic

processes{{Dn
1,2(t) : 0 ≤ t ≤ δ} : n ≥ 1} to beD-tight. If the sequence were tight, then
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it would have a convergent subsequence. IfDn
1,2 were to converge on[0, δ) to a process in

D along that subsequence, then the limiting process must haveat most finitely many dis-

continuities exceeding any constantǫ > 0, see e.g., Lemma 1 on p. 122 of [13]. However,

for every neighborhood of anyt ∈ [0, δ], there would necessarily be infinitely many jumps

of size1 in the limit asn → ∞. Moreover, everyt would have to be a discontinuity point

of the limit, but there can be only countably many discontinuities. Hence, the limit process

could not be an element ofD. Hence tightness does not hold.

However, we do obtain a proper limit for the sequence of random variables{Dn
1,2(t) :

n ≥ 1} in R for each fixedt by exploiting the AP. After we prove Theorem 4.6.1, we

will establish the following pointwise AP result, which helps explain the AP. See [77] for

a similar result. We prove this theorem in§5.1 after proving Theorem 4.5.3.

Theorem 4.5.5.(pointwise AP) Fix t ∈ [0, δ). Asn → ∞,Dn
1,2(t) ⇒ D(x(t),∞) in R as

n → ∞, wherex(t) is the solution to the ODE at timet andD(x(t),∞) has the limiting

steady-state distribution of the FTSPD(γ, s) for γ = x(t).

Remark 4.5.1. Even though the limit ofX̄n turns out to be deterministic, Theorems 4.5.3

and 4.5.5 imply that the processDn
1,2 does not become deterministic asn → ∞. Given

Theorems 4.5.3 and 4.5.5, we see that indeedthe deterministic ODE is driven by a stochas-

tic process. More precisely, the evolution of the (deterministic) solution to the ODE over

[0, δ) is governed by a stochastic process, although the ODE describing that evolution is it-

self deterministic, depending on the time-dependent steady-state distribution of the FTSP’s.

The limiting ODE and its solution are deterministic becausetwo kinds of averaging

phenomena taking place simultaneously: The first is the typical strong-law type of averag-

ing, which is achieved by the spatial fluid scaling. The second, more interesting one, is the

AP, providing instantaneous long-run averaging through the separation of time scales in the

fluid limit.



CHAPTER 4. CONVERGENCE VIA THE AP 179

As an immediate consequence of Theorem 4.5.4, we obtain the following SSC result.

Corollary 4.5.1. (SSC of the queue process) Asn→ ∞,

c−1n ((Qn
1 − κn)− r1,2Q

n
2 ) ⇒ 0 in D([0, δ))

for any sequence{cn : n ≥ 1} satisfyingcn → ∞ asn→ ∞.

Corollary 4.5.1 shows that the two-dimensional scaled queue process is effectively a

one-dimensional process asn → ∞. Combining Theorem 4.4.1 and Corollary 4.5.1 gives

the following SSC result, which reduces the dimension of theprocess from the original

six dimension, to only two when we consider the fluid-scaled or diffusion-scaled versions

of the processXn
6 in (4.2.3). In particular, asymptotically, the six-dimensional process

X̄n
6 ∈ D6 actually exists in a two-dimensional hyperplane ofD6, which is homeomorphic

toD2 over the interval[0, δ). ForD3 ≡ {(a1, a2, a3) : a1, a2, a3 ∈ D}, X̄n
3 is asymptotically

an element of the two-dimensional hyperplane{(a1, r1,2a1 + κ, a3) : a1, a3 ∈ D} of D3.

Recall that for a sequence of processes{Y n} in D, Y̆ n ≡ Y n/
√
n.

Theorem 4.5.6.(Complete SSC) Asn → ∞, dJ1(X̆
n
6 , X̆

n
2 ) ⇒ 0 in D6([0, δ)) asn → ∞,

whereXn
2 ≡ (Qn

1 , r1,2Q
n
1 + κn, Zn

1,2).

Remark 4.5.2. The SSC result in Theorem 4.4.1 is stated forD6 ≡ D6([0,∞)), while the

SSC in Corollary 4.5.1, and thus also Theorem 4.5.6, holds onD6([0, δ)). However, the

SSC result in Corollary 4.5.1 and Theorem 4.5.6 can be extended as long as the solution

to the ODE is inA, since the SSC of the queue process is implied by the AP. (Thiswill

become clear in the proofs.) As we mentioned above, the solution to the ODE is typically

in A for all t ≥ 0.
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4.6 The FWLLN

In this chapter we will establish a FWLLN for scaled versionsof the vector stochastic

process(Xn
6 , Y

n
8 ), where

Xn
6 ≡ (Qn

i , Z
n
i,j) ∈ D6 and Y n

8 ≡ (An
i , S

n
i,j, U

n
i ) ∈ D8, i, j = 1, 2, (4.6.1)

For the FWLLN, we focus on the scaled vector process

(X̄n
6 , Ȳ

n
8 ) ≡ n−1(Xn

6 , Y
n
8 ), (4.6.2)

for Xn
6 andY n

8 in (4.6.1). Recall that Assumptions 1-3 are in force.

Theorem 4.6.1.(FWLLN) There existsδ > 0 such that

(X̄n
6 , Ȳ

n
8 ) ⇒ (x, y) in D14([0, δ)) as n→ ∞, (4.6.3)

where(x, y) is a deterministic element ofC14([0, δ)) with

x ≡ (qi, zi,j) and y ≡ (ai, si,j, ui), i = 1, 2; j = 1, 2; (4.6.4)

z2,1 = s2,1 = m1−z1,1 = m2−z2,2−z1,2 = 0e and(q1, q2, z1,2) being the unique solution to

the three-dimensional ODE in(4.5.13). The remaining limit functiony is defined in terms

of x:

ai(t) ≡ λit, si,j(t) ≡ µi,j

∫ t

0

zi,j(s) ds,

ui(t) ≡ θi

∫ t

0

qi(s) ds for t ≥ 0, i = 1, 2; j = 1, 2. (4.6.5)
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The time interval[0, δ) can be expanded to the largest interval(typically [0,∞)) such that

there exists a unique solution to the ODE in(4.5.13).

Theorem 4.6.1 established convergence over some interval[0, δ). Theorem 4.6.1 con-

cludes by stating that the interval can be extended wheneverthe solution to the ODE can be

extended. Ensuring convergence over[0, δ) will usually imply convergence over an interval

[0, T ), for someT ≫ δ, often evenT = ∞. First, the convergence over[0, δ) implies that

the SSC results in the next section,§4.7, hold globally - see the explanation right above

Lemma 4.7.3. Second, once the convergence is established, and the unique solution to the

ODE (4.5.13) is known to exist (Theorem 4.5.2), we can use theresults in§3.6, to infer

whether we can extend the convergence to the whole halfline[0,∞) by analyzing the limit-

ing ODE itself, and not the stochastic sequenceXn. In particular, the solution to the ODE

(4.5.13) can be extended to the entire halfline[0,∞) by showing thatx(t) ∈ A for all t ≥ 0.

Often, this can be done without even solving the ODE; see Theorem 3.4.4 and§3.6.

By Theorem 4.5.6, it is enough to present the fluid limit of(Q̄n
1 , Z̄

n
1,2), since each queue

determines the other in the limit. Nevertheless, in Theorem4.6.1 we presented the fluid

limit for both queues. We did so, because the three-dimensional framework applies in

other regions. For example, in Chapter 3 we analyzed that same ODE in all three regions.

More importantly, even in our settings, when Assumption 3 holds and the solution is in

A over [0, δ), it is helpful to solve the fluid equations without explicitly forcing the SSC

relation between the queues. Having the solution satisfying q1(t)− r1,2q2(t) = κ strongly

indicates that the numerical solution to the fluid ODE is correct; See the last paragraph in

§2.9.2.

The rest of this chapter is devoted to the proof of Theorem 4.6.1. Most proofs of sup-

porting theorems and lemmas appear in Chapter 5 (in order of appearance in this chapter).
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4.7 SSC for the Service Process

In this section we establish state-space collapse (SSC) forthe service process

Zn ≡ (Zn
1,1, Z

n
1,2, Z

n
2,1, Z

n
2,2);

i.e., we show that we can consider the process(mn
1 , Z

n
1,2, 0, m

n
2 −Zn

1,2) instead ofZn in dif-

fusion scale (and thus, in fluid scale). Thus, the relevant dimension of the stochastic service

process is one instead of four. We accomplish this goal by showing thatZn
2,1 is asymptoti-

cally null and that the idleness in each pool is asymptotically negligible in diffusion scale

(in preparation for a future FCLT refinement of the FWLLN here).

Unlike our main convergence result - Theorem 4.6.1 - which isproved on an initial

interval, the SSC of the service process holds globally on[0,∞) for FQR-T, given As-

sumptions 1-3. However, here we do not yet show that a limit ofZ̄n
1,2 asn → ∞ exists.

We only show that, when analyzingZn, it is sufficient to considerZn
1,2, prove that its fluid-

scaled and diffusion-scaled versions converge and then characterize the limits. That will be

done for the fluid-scaled case in the next section (and Chapter 5).

Here is the SSC result to be established in this section. Notethat it directly implies

Theorem 4.4.1.

Theorem 4.7.1.(global SSC of the service process) Asn→ ∞,

n−1/2(mn
1 − Zn

1,1 − Zn
2,1, Z

n
2,1, m

n
2 − Zn

1,2 − Zn
2,2) ⇒ (0, 0, 0) in D3.

Let In1 ≡ mn
1 − Zn

1,1 − Zn
2,1 andIn2 ≡ mn

2 − Zn
1,2 − Zn

2,2 be the idleness processes in

service pools1 and2, respectively, and let

Īnj ≡ Inj /n and Înj ≡ Inj /
√
n, j = 1, 2. (4.7.1)
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Theorem 4.7.1 will be proved in two steps. First, we show thatZn
2,1 ⇒ 0; second, we show

that În1 andÎn2 are asymptotically negligible. By the first step,In1 = mn
1 − Zn

1,1 + oP (1), so

that we can disregard theoP (1) term in the second step.

So far, we know only that the initial state converges by Assumption 3. We do not yet

have convergence results for any of the stochastic processes we consider. Hence, the results

in this section will be established by(i) determining bounding stochastic processes (using

sample-path stochastic order) for which the limits are known or easy to establish, and(ii)

using extreme-value theory for the bounding processes to justify our claims. The bounding

processes established in step(i) will have a QBD form (or anM/M/1 form, which can

also be viewed as a trivial QBD). Hence we start by establishing extreme-value limits for

homogeneous QBD processes.

4.7.1 Extreme-Value Limits for QBD Processes

We are unaware of any established extreme-value limits for QBD processes, so we establish

the following result here. Recall that a QBD has states(i, j), wherei is the level andj is the

phase. If we only consider the level we get the level process;it is an elementary function

of a QBD. The proof of this theorem, like most others. appearsin Chapter 5.

Theorem 4.7.2.(extreme value for QBD) If L is the level process of a positive recurrent

(homogeneous) QBD process(with a finite number of phases), then there existsc > 0 such

that

lim
t→∞

P (‖L‖t/ log t > c) = 0.

Both the statement and the proof of Theorem 4.7.2 are complicated by the discreteness

of the integer-valued processL. The proof is also somewhat complicated by the continuity

of time. It is well known that the stationary distribution ofthe QBD level is asymptotically

geometric, e.g., see§9.1 in [52]. Hence, we are unambiguously in the light-tailedcase,



CHAPTER 4. CONVERGENCE VIA THE AP 184

but we do not have the conventional convergence in law to the Gumbel distribution if we

subtract byc log t instead of divide. Indeed, there do not exist scaling functionsa(t) and

b(t) such thata(t)(‖L‖t − b(t)) converges in law to a proper limit ast→ ∞; see Sections

1.5 and 1.7 of [53]. Even though the conventional extreme-value limit cannot hold, Theo-

rem 4.7.2 evidently is not in best possible form. First, we should have‖L‖t/ log t ⇒ c for

a specific constantc (which is easy to identify); second, we should have tightness of the

family {‖L‖t − c log t : t ≥ 1} for that same constantc; e.g., see Example C.2.6 of [3] and

Problem 4.2 of [7], but our weaker implication of such results suffices for the application

here and has a relatively simple proof; see§5.2.

4.7.2 Basic Stochastic-Order Bounds

As we mentioned before, the proofs will involve stochastic-order bounds, using sample-

path stochastic order, involving coupling; see [74], Ch. 4 of [54] and §2.6 of [56]. We

briefly discuss those bounds for a sequence of stochastic processes{Y n : n ∈ N}. We will

bound the processY n, for eachn ≥ 1, by a processY n
b ; i.e., for eachn, we will establish

conditions under which it is possible to construct stochastic processes̃Y n
b andỸ n on a com-

mon probability space, with̃Y n
b having the same distribution asY n

b , Ỹ n having the same

distribution asY n, and every sample path of̃Y n
b lies below (or above) the corresponding

sample path of̃Y n. We will then writeY n
b ≤st (≥st)Y

n. However, we will not introduce

this “tilde” notation; Instead, we will use the original notationY n andY n
b . As a first step,

we will directly give both processes,Y n andY n
b identical arrival processes, the Poisson

arrival processes specified forY n. We will then show that the remaining construction is

possible by increasing (decreasing) the departure rates sothat, wheneverY n = Y n
b , any

departure inY n also leads to a departure inY n
b . That is justified by having the conditional

departure rates, given the full histories of the systems up to timet, be ordered.
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The stochastic-order bounds will be of the form

Y n(t) = Y n(0) +

k∑

i=1

Ni

(∫ t

0

Jn
i (s) ds

)
, t ≥ 0, (4.7.2)

whereNi, i = 1, 2, . . . , k, denote independent rate-1 Poisson processes, andJn
i is a

stochastic process that serves as a random time change of thePoisson processNi. If we

are concerned with the fluid limit ofY n, then we next divide both sides of (4.7.2) byn,

subtract and then add backJn
i to get the representation

Ȳ n(t) ≡ Y n(t)/n = Ȳ n(0) + n−1
∫ t

0

Jn
i (s) ds

+ n−1
k∑

i=1

[
Ni

(∫ t

0

Jn
i (s) ds

)
−
∫ t

0

Jn
i (s) ds

]
.

(4.7.3)

The third step is to apply a version of the continuous mappingtheorem to (4.7.3) (The

purpose of the bounds is to be able to use the continuous mapping theorem, which can not

be used onXn.) However, to avoid unnecessary repetitions, we will not write the second

step (4.7.3) and write only the representation as in (4.7.2), with the understanding that the

continuous mapping theorem is actually applied to the version of Ȳ n in (4.7.3).

We now construct lower and upper stochastic-order bounds for the queues, that will be

repeatedly used in following proofs, including in the proofof the AP. Throughout,Na
i ,N s

i,j

andNu
i , i, j = 1, 2, denote independent rate-1 Poisson processes.

We start with the boundXn
a ≡ (Qn

1,a, Q
n
2,a, Z

n
a ) in whichQn

1,a ≥st Q
n
1 , Qn

2,a ≤st Q
n
2

andZn
a ≤st Z

n
1,2. For later use, we will consider the evolution of{Xn

a (t) : t ≥ y} for any

y ≥ 0. To construct{Xn
a (t) : t ≥ y} for a fixedy ≥ 0, we initialize withXn

a (y) = Xn(y),

and act as if all newly available pool-2 servers (after timey) take their next customers from

the head of pool2, even ifQn
2,a(t) ≤ 0 (we allow the queues to become negative), so that

queue1 is served by pool-1 servers only. Then, for anyy ≥ 0 andt ≥ y, Xn
a (t) can be
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represented via

Qn
1,a(t) = Qn

1,a(y) +Na
1 (λ

n
1 t)−N s

1,1(µ1,1m
n
1 t)

−Nu
1

(
θ1

∫ t

0

(Qn
1,a(s) ∨ 0) ds

)
,

Qn
2,a(t) = Qn

2,a(y) +Na
2 (λ

n
2 t)−N s

1,2

(
µ1,2

∫ t

0

Zn
a (s) ds

)

−N s
2,2

(
µ2,2

∫ t

0

(mn
2 − Zn

a (s)) ds

)

−Nu
2

(
θ2

∫ t

0

(Qn
2,a(s) ∨ 0) ds

)
,

Zn
a (t) = Zn

a (y)−N s
1,2

(
µ1,2

∫ t

0

Zn
a (s) ds

)
.

(4.7.4)

Observe thatZn
a is non-increasing, and will eventually reach0. By our construction,

Zn
a (y) = Zn

1,2(y), whereZn
1,2(y) is the number of pool-2 servers helping class-1 customers.

Starting at timey, every server takes his new customers from queue2, so that the downward

drift of Qn
2,a may become negative. Since we have no reflection,Qn

2,a itself may become

negative, and if the downward drift is greater than the upward one, it will drift to −∞ as

t→ ∞. However, the above bounds will be used to boundXn on small intervals[y, y+ ǫ),

over which they will be meaningful. Note that the operators inside the integrants ofNu
i

ensure that there is no abandonment whenQn
i,a < 0, i = 1, 2.

Next, we construct the bounding systemXn
b ≡ (Qn

1,b, Q
n
2,b, Z

n
b ), havingQn

1,b ≤st Q
n
1 ,

Qn
2,b ≥st Q

n
2 andZn

b ≥st Z
n
1,2. Once again, for eachy ≥ 0, we consider the evolution the

process{Xn
b (t) : t ≥ y}. First, we initialize withXn

b (y) = Xn(y), n ≥ 1. We now act as

if every newly available server at timet ≥ y takes his next customer from queue1, even if

Qn
1,b(t) ≤ 0. (Once again, we allow the queues to become negative, although in this case,

Qn
2,b(t) ≥ 0 for all t andn.) Then, for any fixedy ≥ 0 andt ≥ y, Xn

b can be represented
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via

Qn
1,b(t) = Qn

1,b(y) +Na
1 (λ

n
1 t)−N s

1,1(µ1,1m
n
1 t)−N s

1,2

(
µ1,2

∫ t

0

Zn
b (s)

)

−Nu
1

(
θ1

∫ t

0

(Qn
1,b(s) ∨ 0) ds

)
,

Qn
2,b = Qn

2,b(y) +Na
2 (λ

n
2 t)−Nu

2

(
θ2

∫ t

0

Qn
2,b(s) ds

)
,

Zn
b (t) = Zn

b (y) +N s
2,2

(
µ2,2

∫ t

0

(mn
2 − Zn

b (s)) ds

)
,

(4.7.5)

Observe thatZn
b is nondecreasing, and will eventually reachmn

2 . Thus, the downwards

drift of Qn
1,b might eventually become larger than the upwards drift, which means thatQn

1,b

may drift to−∞ (ast → ∞). Again, these bounds will be used over short intervals over

which they will be meaningful.

By a simple application of the continuous mapping theorem wecan prove the next

lemma:

Lemma 4.7.1.For y ≥ 0 consider the processes{Xn
a (t) : t ≥ y} in (4.7.4)and{Xn

b (t) :

t ≥ y} in (4.7.5), for which the following holds for alln ≥ 1:

(−Qn
1,a, Q

n
2,a, Z

n
a ) ≤st (−Qn

1 , Q
n
2 , Z

n
1,2) ≤st (−Qn

1,b, Q
n
2,b, Z

n
b ).

Also assume that̄Xn
a (y) ≡ Xn

a (y)/n⇒ Xa(y) andX̄n
b (y) ⇒ Xb(y) in R asn→ ∞. Then

{X̄n
a (t) : t ≥ y} ⇒ {Xa(t) : t ≥ y} and{X̄n

b (t) : t ≥ y} ⇒ {Xb(t) : t ≥ y} inD3 asn→

∞, whereXa andXb are defined as follows: Fort ≥ y, Xa(t) ≡ (Q1,a(t), Q2,a(t), Za(t))
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satisfies the following integral equation

Q1,a(t) = Q1,a(y) + λ1t− µ1,1m1t− θ1

∫ t

0

(Q1,a(s) ∨ 0) ds,

Q2,a(t) = Q2,a(y) + λ2t− µ1,2

∫ t

0

Za(s) ds− µ2,2

∫ t

0

(m2 − Za(s)) ds

− θ2

∫ t

0

(Q2,a(s) ∨ 0) ds,

Za(t) = Za(y) + µ2,2m2t− µ2,2

∫ t

0

Za(s) ds,

(4.7.6)

andXb(t) ≡ (Q1,b(t), Q2,b(t), Zb(t)) satisfies the integral equation

Q1,b(t) = Q1,b(y) + λ1t− µ1,1m1t− µ1,2

∫ t

0

Zb(s) ds

− θ1

∫ t

0

(Q1,b(s) ∨ 0) ds,

Q2,b(t) = Q2,b(y) + λ2t− θ2

∫ t

0

Q2,b(s) ds,

Zb(t) = Zb(y) + µ2,2m2t− µ2,2

∫ t

0

Zb(s) ds,

(4.7.7)

Proof: By the continuous mapping theorem, applied to the integral representation, The-

orem 4.1 in [57],Z̄n
a ≡ Zn

a /n and Z̄n
b ≡ Zn

b /n converge to the processesZa andZb

with continuous sample paths. We can then apply Theorem 4.1 in [57] again, to conclude

that the fluid-scaled queue lengths,Q̄n
i,a ≡ Qn

i,a/n andQ̄n
i,b ≡ Qn

i,b/n, i = 1, 2, converge

as well. (Note thath(s) ≡ θ(s ∨ 0) is Lipschitz continuous, as required for the integral

representation to be continuous.)

Note that the condition̄Xn
a (y) ⇒ Xa(y) andX̄n

b (y) ⇒ Xb(y) in R asn→ ∞ holds for

y = 0 with Xa(0) = Xb(0) = x(0), wherex(0) is deterministic, by Assumption 3 and our

construction (since we takeXn
a (0) = Xn

b (0) = Xn(0)). In that case, and wheneverXa(y)

andXb(y) are deterministic, the limitsXa andXb are deterministic functions. Indeed, we
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anticipate that the limitsXa andXb will be deterministic, but we use the more general form

in our proof of Lemma 4.8.11, exploiting convergence along subsequences, where we do

not yet know that the limit is deterministic.

4.7.3 TheZn
2,1 Process

We now treatZn
2,1, proving that it is asymptotically globally (for allt ≥ 0) null in distribu-

tion. This conclusion forZn
2,1 holds without any scaling.

Theorem 4.7.3.(global one-way sharing) Zn
2,1 ⇒ 0 in D asn→ ∞.

The proof of Theorem 4.7.3 relies on three lemmas, which we state now. The proofs

of these lemmas and Theorem 4.7.3 appear in 5.2. The first lemma proves a special case

which implies Theorem 4.7.3. The other two lemmas prove a local version of the theorem,

i.e., that‖Zn
2,1‖τ ⇒ 0 asn→ ∞ for someτ > 0. In the proof of Theorem 4.7.3 we extend

the local result to the full halfline[0,∞).

Our first lemma treats the simplest case.

Lemma 4.7.2.If z1,2(0) > 0, then, for allT > 0, P (inf0≤t≤T Z̄n
1,2(t) > 0) → 1 asn→ ∞.

As a consequence,Zn
2,1 ⇒ 0 asn→ ∞.

Given Lemma 4.7.2, it remains to consider only the casez1,2(0) = 0. Hence, we

assume thatz1,2(0) = 0 for the rest of this section. Here is the outline of the proof:The

SSC statement forZn
2,1 will first be proved locally on an interval[0, τ ], for someτ > 0.

Then, we can use later results, proving thatZ̄n
1,2(t) ⇒ z1,2(t) asn → ∞ on [0, δ] for some

δ ≤ τ , to extended the local SSC statement to a global one. That is,our proof follows

three steps: (1) We first prove that‖Zn
2,1‖τ ⇒ 0, for someτ > 0. (2) For someδ satisfying

0 < δ ≤ τ , we can use the local result established in the first step, to prove Theorem 4.6.1,

and deduce that thedeterministicfluid limit z1,2(t) of Z̄n
1,2(t) exists over[0, δ]. (3) Finally,
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we show thatz1,2(t0) > 0 for somet0, 0 < t0 < δ ≤ τ , so that Lemma 4.7.2 can be

applied to extend the local statement in step (1) to a global one.We emphasize at the outset

that the extension to a global statement is not circular, since the convergence of thēZn
1,2

process over[0, δ] (established in Theorem 4.6.1) uses only the local SSC result (since we

takeδ ≤ τ ).

The next two lemmas establish step (1) described above, namely thatZn
2,1 ⇒ 0 on an

interval[0, τ ].

Lemma 4.7.3. If either (i) κ > 0 or (ii ) r1,2 > r2,1 and q1(0) > 0, then there existsτ ,

0 < τ ≤ ∞, such that

lim
n→∞

P

(
sup
t∈[0,τ ]

Dn
2,1(t) ≤ 0

)
= 1,

so that‖Zn
2,1‖τ ⇒ 0 asn→ ∞.

The proof of Lemma 4.7.3 relies on a fluid argument. That fluid reasoning fails when

κ = 0 andr2,1 = r1,2 ≡ r or whenκ = 0 andq1(0) = 0, since thenq1(0) − r1,2q2(0) =

q1(0) − r2,1q2(0). In these cases we will rely on the thresholdkn2,1, and construct a finer

sample-path stochastic-order bound for the stochastic system.

When we consider the stochastic sequence{Xn}, we need to haverQn
2 (t) − Qn

1 (t) >

kn2,1 in order to initialize sharing, with pool1 helping class2. It is thus clear that we

need to consider the stochastic fluctuations of the weightedqueue-length processesDn
2,1,

and show that the probability of the thresholdkn2,1 being crossed over an initial interval

[0, τ ] converges to0 asn → ∞. Arguments relying solely on the fluid-scaled processes

(which are of orderOP (n)) are too crude, and cannot reveal whetherkn2,1 is exceeded on an

interval, sincekn2,1 is taken to beo(n). We treat that case in the next lemma by appealing to

the extreme-value result established in Theorem 4.7.2.

Remark 4.7.1. Recall that the two initial thresholdskn1,2 andkn2,1 are designed to prevent

sharing when the two classes are not overloaded, and are thuschosen to satisfykni,j/
√
n→
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∞ asn → ∞. Once sharing starts, with pool2 helping queue1, kn1,2 may be dropped

(unless shifted-FQR is employed, in which casekn1,2 = κn = O(n)), but kn2,1 is kept, in

order to prevent sharing in the other direction. In the proofof the next lemma, Lemma

4.7.4, we will see that when sharing is taking place, it is enough to havekn2,1/ logn → ∞

asn → ∞. This suggests that, once sharing starts, we can replace theoriginal threshold

kn2,1, with a new and smaller threshold, which satisfieskn2,1/ logn→ ∞ asn→ ∞.

In the next lemma we treat the cases not treated in Lemma 4.7.3. In addition toz1,2(0) =

0, we assume thatκ = 0 and thatq1(0)− r2,1q2(0) = 0. This latter assumption implies that

eitherq1(0) = 0 (so thatq2(0) = 0 as well), or, ifq1(0) > 0, then necessarilyr1,2 = r2,1.

Lemma 4.7.4.Assume thatκ = 0 and thatkn2,1/ logn→ ∞ asn → ∞. Also assume that

q1(0) − r2,1q2(0) = 0 (wherer2,1 is a rational number). Then there existsτ , 0 < τ ≤ ∞,

such that

lim
n→∞

P

(
sup
t∈[0,τ ]

Dn
2,1(t) < kn2,1

)
= 1.

Hence,‖Zn
2,1‖τ ⇒ 0 asn→ ∞.

Lemmas 4.7.3 and 4.7.4 prove that, for someτ > 0, ‖Zn
2,1‖τ ⇒ 0 asn → ∞. We will

use this local result in the proof of Theorem 4.6.1, which shows that, for some0 < δ ≤ τ ,

{X̄n(t) : 0 ≤ t ≤ δ} ⇒ {x(t) : 0 ≤ t ≤ δ}, wherex is deterministic. In particular,

Z̄n
1,2(t) ⇒ z1,2(t) over [0, δ], wherez1,2(t) is deterministic. Recall that Theorem 4.6.1

relies only on the local version of Theorem 4.7.3 established already.

Remark 4.7.2. The conclusion of Lemma 4.7.2 reveals a disadvantage of the one-way

sharing rule for very large systems. The lemma concludes that, for largen, if for some

ǫ > 0 andt0 ≥ 0 Zn
1,2(t0) > ǫn, thenZn

1,2(t) is very likely not to reach0 for a long time,

thus preventing sharing in the opposite direction, even if that would prove beneficial to do

so at a later time, e.g., because there is a new overload incident in the opposite direction.
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In practice, we thus may want to relax the one-way sharing rule. One way of relaxing

the one-way sharing rule is by dropping it entirely, and relying only on the thresholds

kn1,2 andkn2,1 to prevent sharing in both directions simultaneously (at least until the arrival

rates change again). Another modification is to introduce lower thresholds on the service

processes, denoted bysni,j, i 6= j, such that pool2 is allowed to start helping class1 at time

t if Dn
2,1 > kn2,1 andZn

1,2(t) < sn1,2, and similarly in the other direction.

We do not analyze either of these modified controls In this chapter. We observe that

a global result stating thatZn
2,1 ⇒ 0 asn → ∞ will be much harder to show, because

we cannot use the reasoning in Lemma 4.7.2. Specifically, showing thatZn
1,2 becomes

positive in fluid scale and never empties, does not imply thatZn
2,1 ⇒ 0, since sharing may

be allowed at timet even ifZn
1,2(t) > 0. Nevertheless, Lemmas 4.7.3 and 4.7.4 still hold,

so thatZn
2,1(t) = 0 for all t ∈ [0, τ) for someτ > 0 and alln large enough. Since the

convergence to the fluid limit in Theorem 4.6.1 is initially established for an interval[0, δ),

we can decreaseδ if necessary, so thatδ ≤ τ . Once convergence of the fluid limit to its

stationary point is established (using the results in§2.7), we have that the fluid cannot leave

A, andz2,1 is guaranteed to remain zero throughout.

4.7.4 The Idleness Processes

We next address the two idleness processes. We will use the standard concept of stochastic

boundedness, extended to stochastic processes, which was defined in§4.2.2.

Theorem 4.7.4.For j = 1, 2, Inj / logn is SB, which implies that̂Inj ⇒ 0 asn→ ∞.

Remark 4.7.3.The proof Theorem 4.7.4 uses the result in the previous subsection, namely

thatZn
2,1 ⇒ 0 asn → ∞. Hence, the statement of the theorem should first be shown to

hold on[0, τ ], for τ in Lemmas 4.7.3 and 4.7.4. Once the local result is shown to hold, it is

used to prove Theorem 4.6.1, so that the convergence ofX̄n to the deterministic fluid limit
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x is established over an interval[0, δ], for some0 < δ ≤ τ . In the proof of Theorem 4.7.3

this was shown to imply thatZn
2,1 ⇒ 0 asn → ∞ over the entire halfline[0,∞). We can

thus extend the proof of Theorem 4.7.4 to the entire halfline as well. For that reason, the

statement of the theorem refers to the global result and its proof also assumes thatZn
2,1 is

asymptotically null globally.

4.8 Proofs of the Main Theorem

We now come to the proof of Theorem 4.6.1. There are eight subsections here. In§4.8.1 we

establish tightness. In§4.8.2 we establish explicit stochastic bounds on all the processes,

which control the total rate of transitions. In§4.8.3 we identify an interval[0, δ) over

which the frozen difference processes are positive recurrent, asymptotically. In§4.8.4 we

state a continuity result for QBD’s that we will apply. In§4.8.5 we establish stochastic-

process bounds. In§4.8.6 we establish bounds for the integrals over small subintervals. In

§4.8.7 we complete the proof of Theorem 4.6.1, exploiting thepreparation in the previous

subsections. The string of inequalities in (5.5.37) in 5.5.5 shows what is needed. Finally,

in §5.1.2 we prove Theorem 4.5.5. Most of the proofs for this section appear in§5.5.

4.8.1 Tightness

We start by establishing tightness.

Lemma 4.8.1.The sequence{(X̄n
6 , Ȳ

n
8 ) : n ≥ 1} in (4.6.2)is C-tight inD14.

For background on tightness, see [13, 57, 78]. We recall a fewkey facts: Tightness of

a sequence ofk-dimensional stochastic processes inDk is equivalent to tightness of all the

one-dimensional component stochastic processes inD. For a sequence of random elements

of Dk, C-tightness impliesD-tightness and that the limits of all convergent subsequences
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must be inCk; see Theorem 15.5 of the first 1968 edition of [13]. Thus it suffices to verify

conditions (6.3) and (6.4) of Theorem 11.6.3 of [78]. Hence,it suffices to prove SB of the

sequence of stochastic processes evaluated at time0 and appropriately control the oscilla-

tions, using the modulus of continuity onC. We obtain the stochastic boundedness at time

0 immediately from Assumption 3 in§4.3. We show that we can control the oscillations in

our proof of Lemma 4.8.1. The resulting tightness implies that the sequence of stochastic

processes is SB. We give an alternative proof of SB in§4.8.2, which yields explicit bounds

on the limit processes.

Since the sequence{(X̄n
6 , Ȳ

n
8 ) : n ≥ 1} in (4.6.2) isC-tight by Lemma 4.8.1, every

subsequence has a further subsequence which converges to a continuous limit. We conclude

this section by applying the modulus-of-continuity inequalities established in the proof of

Lemma 4.8.1 to deduce additional smoothness properties of the limits of all converging

subsequence.

Lemma 4.8.2.If (X̄6, Ȳ8) is the limit of a subsequence of{(X̄n
6 , Ȳ

n
8 ) : n ≥ 1} in D14, then

each component inD, sayX̄i, has bounded modulus of continuity; i.e., for eachT > 0,

there exists a constantc > 0 such that

w(X̄i, ζ, T ) ≤ cζ w.p.1 (4.8.1)

for all ζ > 0. Hence(X̄6, Ȳ8) is Lipschitz continuous w.p.1.

In closing this subsection, we remark that we cannot employ these bounds on the mod-

ulus of continuity to directly deduce that the limit(X̄6, Ȳ8) is either differentiable or deter-

ministic. For example, a nonlinear piecewise-linear function with bounded slope is Lips-

chitz continuous without being differentiable, and the random functionAt, t ≥ 0, where

A is a bounded (non-deterministic) random variable satisfies(4.8.1) without itself being

deterministic.
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TheC-tightness result in Lemma 4.8.1 implies that every subsequence of the sequence

{(X̄n
6 , Ȳ

n
8 ) : n ≥ 1} in (4.6.1) has a further converging subsequence inD14, whose limit

is in the function spaceC14. However, by Theorem 4.7.1, it suffices to focus onX̄n in

D3, where the limits of the subsequences will be inC3. To establish the convergence of

the sequencēXn, we must show that every converging subsequence converges to the same

(unique) limit. We thus need to characterize the limit of anyconverging subsequence,

show that it is deterministic and that it satisfies the ODE (4.5.13) of Theorem 4.6.1. The

existence and uniqueness of the solution to the ODE over an interval[0, δ), for someδ > 0,

is stated in Theorem 4.5.2. Thisδ can be increased as long as the solutionx to the limiting

ODE 4.5.13 remains inA. In this section we will characterize an initial interval[0, δ] for

which the solution is ensured to be inA. Since we will be using the results of§4.7, we can

decreaseδ if necessary, so thatδ ≤ τ , for τ defined in Lemmas 4.7.3 and 4.7.4.

4.8.2 Explicit Stochastic Bounds

In this section we establish some explicit stochastic bounds on the sequence{(X̄n
6 , Ȳ

n
8 ) :

n ≥ 1} in (4.6.1) and (4.6.2). These bounds complement the material in §4.8.1 and will be

used to control the transition rates of the queue-difference stochastic processesDn
1,2.

To treatȲ n
8 , we use the inequalities

Sn
i,j(t) ≤ N s

i,j

(
µi,jm

n
j t
)
,

Qn
i (t) ≤ Qn

i (0) + An
i (t),

Un
i (t) ≤ Nu

i (θi[Q
n
i (0)t+ An

i (t)t]) , t ≥ 0.

(4.8.2)

We apply the FWLLN for the Poisson process with (4.8.2) and Assumption 3 to obtain

the following lemma.
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Lemma 4.8.3. Ȳ n
8 ≤ Ȳ n

bd, whereȲ n
bd ⇒ ybd in D8, with

ybd(t) ≡ (λ1t, λ2t, µ1,1m1t, 0, µ1,2m2t, µ2,2m2t,

θ1[q1(0)t+ λ1t
2], θ2[q2(0)t+ λ2t

2]
)

in R8.
(4.8.3)

We now turn toX̄n
6 . SinceZ̄n

i,j ≤ n−1mn
j → mj asn → ∞, the agent occupancy pro-

cesses̄Zn
i,j present no problem. LetQn

Σ ≡ Qn
1 +Qn

2 be the stochastic process representing

the total number of customers waiting in queue in our stochastic model indexed byn. It is

easy to see that we can boundQn
Σ above stochastically byQn

bd, whereQn
bd is defined to be

the number in system in anM/M/∞ model with arrival rateλn ≡ λn1 + λn2 and individual

service rateθ ≡ θ1 ∧ θ2 ≡ min {θ1, θ2}. The upper bound is created by simply removing

all the servers in the original model, and only allowing departure by abandonment.

For the following comparison result we use the same sample-path stochastic-order con-

struction as in§4.7.

Lemma 4.8.4. If Qn
Σ(0) ≤st Q

n
bd(0) in R, thenQn

Σ ≤st Q
n
bd in D.

It is well known that, ifQn
bd(0) = 0, thenQn

bd(t) has a Poisson distribution with a finite

mean for eacht ≥ 0. Moreover, it is easy to establish a FSLLN and a FWLLN forQn
bd; we

state the FWLLN.

Lemma 4.8.5. If Q̄n
bd(0) ⇒ qbd(0) in R w.p.1, whereqbd(0) is deterministic, then we have

the FWLLN

Q̄n
bd ⇒ qbd in D as n→ ∞, (4.8.4)

whereqbd evolves deterministically according to the ODĖqbd(t) = λ− θqbd(t), starting at

qbd(0). Thus

qbd(t) ≤ q∗bd ≡ qbd(0) ∨ (λ/θ) for all t ≥ 0. (4.8.5)
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Proof: LetNa andN s be independent rate-1 Poisson processes. Then,

Qn
bd(t) = Qn

bd(0) +Na(λnt)−N s

(
θ

∫ t

0

Qn
bd(s) ds

)
.

Applying the continuous mapping theorem for the integral representation, Theorem 4.1 in

[57], we have that̄Qn
bd ⇒ qbd in D asn→ ∞, whereqbd satisfies the ODE in the statement

of the lemma. The solution to this ODE is easily seen to beq(t) = λ/θ+(q(0)−λ/θ)e−θt,

from which (4.8.5) follows.

Lemma 4.8.5 implies that the sequence{Q̄n
bd : n ≥ 1} is C-tight in D whenever there

is convergence of the initial conditions. Together with Lemma 4.8.4, that implies the fol-

lowing result.

Corollary 4.8.1. The sequence{Q̄n
Σ : n ≥ 1} is SB inD. For eacht > 0, The limit of any

converging subsequence of{‖Q̄n
Σ‖t : n ≥ 1}, wheren→ ∞, is almost surely contained in

the bounded interval[0, (q1(0) + q2(0)) ∨ (λ/θ)].

Proof: We use Assumption 3 to ensure that there is convergence of theinitial conditions:

X̄n(0) ⇒ x(0) in R6 asn → ∞, wherex(0) is deterministic. We can then let the initial

conditions in Lemma 4.8.5 beqbd(0) ≡ q1(0) + q2(0). Hence, we get

Q̄n
bd ⇒ qbd in D as n→ ∞ for qbd(0) ≡ q1(0) + q2(0).

That FWLLN for Q̄n
bd implies that{Q̄n

bd} is SB, which in turn implies that{Q̄n
Σ} is SB.

Moreover, we get the final conclusion of Corollary 4.8.1.

We now have the following strengthening of the SB conclusionthat can be deduced

from Lemma 4.8.1.

Corollary 4.8.2. The sequence{(X̄n
6 , Ȳ

n
8 ) : n ≥ 1} in (4.6.1)and(4.6.2)is SB inD14. For

eacht > 0, the limit of any convergent subsequence of the sequence{‖(X̄n
6 , Ȳ

n
8 )‖t : n ≥ 1}



CHAPTER 4. CONVERGENCE VIA THE AP 198

is contained in a compact subset ofR14.

We also want to control the changes in the queue-length processes over intervals. For

that purpose, letT n(t) be the total number of transitions of the process(X̄n
6 , Ȳ

n
8 ) in the

time interval(0, t].

Lemma 4.8.6.For 0 ≤ t < t+ u with u > 0,

sup
t≤s≤t+u

{|Qn
1 (s)−Qn

1 (t)|+ |Qn
2(s)−Qn

2 (t)|} ≤ T n(t + u)− T n(t) ≤st T
n
b (u), (4.8.6)

where{T n
b (t) : t ≥ 0} is a Poisson process with ratecn , cn/n→ c, with

c ≡ λ1 + λ2 + µ1,1m1 + (µ1,2 ∨ µ2,2)m2 + (θ1 ∨ θ2)
(
(q1(0) + q2(0)) ∨

(
λ1 + λ2
θ1 ∨ θ2

))
.

(4.8.7)

As a consequence,n−1T n
b ⇒ Tb in D asn → ∞, whereTb(t) ≡ ct, t ≥ 0, for c in (4.8.7).

Thus, for any(t, u, c̃, ǫ) with 0 ≤ t < t+ u, c̃ > c andǫ > 0, there existsn0 ≡ n0(t, u, c̃, ǫ)

such that

P (T n(t+ u)− T n(t) > c̃nu) ≤ ǫ for all n ≥ n0. (4.8.8)

Proof: Apply Lemma 4.8.3 to bound the rate of arrivals and service completions. Apply

Corollary 4.8.2 to bound the total queue content, then multiply by θ1 ∨ θ2 to bound the rate

of abandonments.

4.8.3 Positive Recurrence of the Frozen Difference Process

We defined the transition rates of the queue-difference process in (4.5.1). We assumed that

Xn(t0) = Γn whereΓn is some fixed deterministic state where sharing is taking place,

and specified the transition rates at timet0. We now consider theconstant-rate QBDwith

those transition rates. We also extend the definition by letting Γn be a random variable,
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where it is understood thatΓn only determines the constant transition rates, and does not

otherwise affect the future evolution of the stochastic process. LetDn
f (Γ

n) ≡ {Dn
f (Γ

n, t) :

t ≥ 0} denote this process. (Sincet0 plays no role in (4.5.1), we take it to be0.) We use

the subscriptf because we refer to this constant-rate QBD as thefrozen queue-difference

process, thinking of the constant transition rates being achieved because the state has been

frozen at the stateΓn. (As in §4.5.1 the now-constant transition rates in (4.5.2)-(4.5.5) are

asymptotically correct asn→ ∞ with extrao(n) terms, which we omit.)

We will frequently apply this constant-rate QBD withΓn being a state of some pro-

cess, such asXn(t). We then writeDn
f (X

n(t)) ≡ {Dn
f (X

n(t), s) : s ≥ 0}, where it is

understood thatDn
f (X

n(t))
d
= Dn

f (Γ
n) under the condition thatΓn d

= Xn(t).

It is important that this frozen difference processDn
f (Γ

n) can be directly identified with

a version of the FSTP, because both are QBD’s with the same structure. Indeed, the frozen-

difference process can be defined as a version of the FTSP withspecial state and basic

model parametersλi andmj, and transformed time. In order to express the relationship,

we indicate the dependence upon the arrival rates and numberof servers. In particular,

{Dn
f (λ

n
i , m

n
j ,Γ

n, s) : s ≥ 0} d
= {D(λni /n,m

n
j /n,Γn/n, ns) : s ≥ 0}, (4.8.9)

with the understanding that the initial differences coincide, i.e.,

D(λni /n,m
n
j /n,Γn/n, 0) ≡ Dn

f (λ
n
i , m

n
j ,Γ

n, 0) ≡ Qn
1 (0)− r1,2Q

n
2 (0), (4.8.10)

where(Qn
1 , Q

n
2 ) is part of the stateΓn. This can be checked by verifying that the constant

transition rates are indeed identical for the two processes, referring to (4.5.2)-(4.5.5) and

(4.5.9)-(4.5.12). Sinceλni /n → λi, i = 1, 2 andmn
j /n → mj , j = 1, 2, by virtue of

the MS-HT scaling in (4.2.2), we will have the transition rates ofD(λni /n,m
n
j /n,Γn/n, ·)

converge to those ofD(γ) ≡ D(λi, mj, γ, ·) wheneverΓn/n → γ. Of course, (4.8.9)
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should not be surprising, because we defined the FTSP in termsof the queue-difference

process by a limit that asymptotically reverses (4.8.9): The transition rates ofD(γ) were

defined to be the limit of the transition rates ofDn(Γn)/n whenΓ/n→ γ.

Since the processDn
f (X

n(t0), t) has the same QBD structure as the FTSPD, a ver-

sion of Theorem 4.5.1 holds, i.e., for a given fixedXn(t0), the frozen difference process

{Dn
f (X

n(t0), t) : t ≥ 0} is positive recurrent if and only if

δn+(X
n(t0)) < 0 < δn−(X

n(t0)). (4.8.11)

In this subsection we find aξ > 0, such that the frozen processDn
f (X

n(t), ·) is positive

recurrent for allt ∈ [0, ξ) with probability converging to1 asn → ∞. We do not actually

use this result in the following, but the result is interesting and the proof illustrates the

technique we will use in a relatively simple setting.

For ξ > 0 andη > 0, letBn(ξ, η) be the following subset of the underlying probability

space:

Bn(ξ, η) ≡ { sup
t∈[0,ξ]

δn+(X
n(t)) < −η and inf

t∈[0,δ]
δn−(X

n(t)) > η}. (4.8.12)

OnBn(ξ, η), the process{Dn
f (X

n(t), s) : s ≥ 0} is positive recurrent for allt ∈ [0, ξ].

Lemma 4.8.7.There existξ > 0 andη > 0 such thatP (Bn(ξ, η)) → 1 asn → ∞, where

Bn(ξ, η) is the subset in(4.8.12), on which the process{Dn
f (X

n(t), s) : s ≥ 0} is positive

recurrent for allt ∈ [0, ξ].

4.8.4 Continuity of the FTSP QBD

In the remaining proof, we will ultimately reduce everything down to the behavior of the

FTSP QBDD. First, we intend to analyze the inhomogeneous queue-difference processes
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Dn(Γn) in terms of associated homogeneous (constant-rate) processesDn
f (Γ

n) introduced

in §4.8.3, obtained by freezing the transition rates at the transition rates in the initial state

Γn. In (4.8.9) above, we showed that the frozen-difference processes can be represented

directly in terms of the FTSP, by transforming the model parameters(λi, mj) and the fixed

initial stateγ and scaling time. In the following subsections, we will appropriately bound

the queue-difference processesDn(Γn) above and below by associated frozen-queue dif-

ference processes, and then transform them into versions ofthe FTSPD. For the rest of

the proof, we will exploit a continuity property possessed by this family of QBD processes.

We will be applying this to the FTSPD.

To set the stage, we review basic properties of the QBD process. From the transition

rates defined in (4.5.9)-(4.5.12), we see that there are only8 different transition rates over-

all. The generatorQ in (4.5.17) is based on the four basic2m × 2m matricesB, A0, A1,

andA2, involving the8 transition rates. By Theorem 6.4.1 and Lemma 6.4.3 of [52], when

the QBD is positive recurrent, the FTSP steady-state probability vector has the matrix-

geometric formαn = α0R
n, whereαn andα0 are1× 2m probability vectors andR is the

2m × 2m rate matrix, which is the minimal nonnegative solutions to the quadratic matrix

equationA0 + RA1 + R2A2 = 0, and can be found efficiently by existing algorithms,

as in [52]; See Chapter 3 for applications in our settings. Ifthe drift condition (4.5.21)

holds, then the spectral radius ofR is strictly less than1 and the QBD is positive recur-

rent (Corollary 6.2.4 of [52]). As a consequence, we have
∑∞

n=0R
n = (I − R)−1. Also,

by Lemma 6.3.1 of [52], the boundary probability vectorα0 is the unique solution to the

systemα0(B +RA2) = 0 andα1 = α0(I − R)−11 = 1.

Like any irreducible positive recurrent CTMC, the positiverecurrent QBD is regenera-

tive, with successive visits to any state constituting an embedded renewal process. As usual

for QBD’s (see [52]), we can choose to analyze the system directly in continuous time or in

discrete time by applying uniformization, where we generate all potential transitions from
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a single Poisson process with a rate exceeding the total transition rate out of any state. In

continuous time we focus on the interval between successivevisits to the regenerative state;

in discrete time we focus on the number of Poisson transitions between successive visits to

the regenerative state.

Let τ be the return time and letN be the number of Poisson transitions (with specified

Poisson rate). Because of the QBD structure, the return timeτ has a moment generating

function (mgf)φτ (θ) ≡ E[eθτ ], for which there exists a critical valueθ∗ > 0 such that

φτ (θ) < ∞ for θ < θ∗ andφτ (θ) = ∞ for θ > θ∗, while the number of transitions,N , has

the generating function (gf)ψN (z) ≡ E[zN ], for which there exists a radius of convergence

z∗ with 0 < z∗ < 1 such thatψN(z) <∞ for z < z∗ andψN(z) = ∞ for z > z∗.

Moreover, the mgfφτ (θ) and gfψN(z) can be expressed directly in terms of the finite

QBD defining matrices. It is easier to do so if we choose a regenerative state, says∗, in the

boundary region (corresponding to the matrixB in (4.5.17)). To illustrate, we discuss the

gf. With s∗ in the boundary level, in addition to the transitions withinthe boundary level

and up to the next level from the boundary, we only need consider the number of transitions,

plus starting and ending states, from any level above the boundary down one level. Because

of the QBD structure, these key downward first passage times are the same for each level

above the boundary, and are given by the probabilitiesGi,j[k] and the associated matrix

generating functionG(z) on p. 148 of [52]. GivenG(z), it is not difficult to write an

expression for the generating functionψNn(z), just as in the familiar BD case; e.g., see

§4.3 of [52].

We will be interested in thecumulative process

C(t) ≡
∫ t

0

(f(D(s))−E[f(D(∞))]) ds t ≥ 0, (4.8.13)

for the special functionf(x) ≡ 1{x≥0}. Cumulative processes associated with regenerative
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processes obey CLT’s and FCLT’s, depending upon assumptions about the basic cycle ran-

dom variablesτ and
∫ τ

0
f(D(s)) ds, where we assume for this definition thatD(0) = s∗;

see§VI.3 of [7] and [28]. From [14], we have the following CLT witha Berry-Esseen

bound on the rate of convergence (stated in continuous time,unlike [14]): For any bounded

measurable functionf , there existst0 such that

|E[f(C(t))/
√
t]−E[f(N(0, σ2))]| ≤ K√

t
for all t > t0, (4.8.14)

where

σ2 ≡ E

[(∫ τ

0

f(D(s))− E[f(D(∞))] ds

)2
]
, (4.8.15)

again assuming for this definition thatD(0) = s∗. The constantK depends on the function

f and the third absolute moments of the basic cycle variables defined above, plus the first

moments of the corresponding cycle variables in the initialcycle if the process does not

start in the chosen regenerative state.

There is significant simplification in our case, because the functionf in (4.8.14) is an

indicator function. Hence, we have the simple domination:

∫ τ

0

|f(D(s)| ds =
∫ τ

0

f(D(s)) ds ≤ τ w.p.1 (4.8.16)

As a consequence, boundedness of absolute moments of both cycle variables reduces to the

moments of the return times themselves, which are controlled by the mgf.

We will exploit the following continuity result for QBD’s.
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Lemma 4.8.8. (continuity of QBD’s) Consider a sequence of irreducible, positive recur-

rent QBD’s having the structure of the fundamental QBD in§4.5.5, with generator ma-

trices {Qn : n ≥ 1} of the form(4.5.17). If Qn → Q asn → ∞, where the positive-

recurrence drift condition(4.5.21)holds forQ, then there existsn0 such that the positive-

recurrence drift condition(4.5.21)holds forQn for n ≥ n0. For n ≥ n0, the quantities

(R, α0, α, φτ , θ
∗, ψN , z

∗, σ2, K) indexed byn are well defined forQn, whereσ2 andK are

given in (4.8.14)and (4.8.15), and converge asn → ∞ to the corresponding quantities

associated with the QBD with generator matrixQ.

Proof: First, continuity ofR, α0 andα follows from the stronger differentiability in an

open neighborhood of anyγ ∈ A, which was shown to hold in the proof of Theorem 5.1 in

Chapter 3, building on Theorem 2.3 in [34]. The continuity ofσ2 follows from the explicit

representation in (4.8.15) above (which corresponds to thesolution of Poisson’s equation).

We use the QBD structure to show that the basic cycle variables τ and
∫ τ

0
f(D(s)) ds are

continuous function ofQ, in the sense of convergence in distributions (or convergence of

mgf’s and gf’s) and then for convergence of all desired moments, exploiting (4.8.16) and

the mgf ofτ to get the required uniform integrability. Finally, we get the continuity ofK

from [14] and the continuity of the third absolute moments ofthe basic cycle variables,

again exploiting the uniform integrability. We will have convergence of the characteristic

functions used in [14]. However, we do not get an explicit expression for the constants

K.

We use the continuity of the steady-state distributionα in (5.5.33) in§5.5.5. In addition,

we use the following corollary to Lemma 4.8.8 in (5.5.32) in§5.5.5.

Corollary 4.8.3. If (λni , m
n
j , γn) → (λi, mj, γ) for our FTSP QBD’s, where(4.5.21)holds
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for (λi, mj, γ), then for allǫ > 0 there existt0 andn0 such that

P

(
|1
t

∫ t

0

1{D(λn
i ,m

n
j ,γn,s)>0} ds− P (D(λi, mj, γ,∞) > 0)| > ǫ

)
< ǫ

for all t ≥ t0 andn ≥ n0.

Proof: First apply Lemma 4.8.8 for the steady-state probability vector α, to findn0 such

that |P (D(λni , m
n
j , γn,∞) > 0)| − P (D(λi, mj, γ,∞) > 0)| < ǫ/2 for all n ≥ n0. By the

triangle inequality, henceforth it suffices to work withP (D(λni , m
n
j , γn,∞) > 0) in place

of P (D(λi, mj , γ,∞) > 0) in the statement to be proved. By (4.8.14), for anyM , there

existst0 such that for allt ≥ t0,

P

(
|1
t

∫ t

0

1{D(λn
i ,m

n
j ,γn,s)>0} ds− P (D(λni , m

n
j , γn,∞) > 0)| > M√

t

)

< P (|N(0, σ2(λni , m
n
j , γn))| > M) +

K(λni , m
n
j , γn)√
t

.

(4.8.17)

Next, chooseM so thatP (|N(0, σ2(λi, mj , γ))| > M) < ǫ/2. Then, invoking Lemma

4.8.8, increasen0 andt0 if necessary so that|σ2(λni , m
n
j , γn))−σ2(λi, mj , γ))| and|K(λni , m

n
j , γn)−

K(λi, mj, γ)| are sufficiently small so that the right side of (4.8.17) is less thanǫ/2 for all

n ≥ n0 andt ≥ t0. If necessary, increaset0 andn0 so thatM/
√
t0 < ǫ/2. With those

choices, the objective is achieved.

4.8.5 Process Bounds

Our next step is to find aξ > 0 for which we can uniformly bound the frozen difference

processes{Dn
f (X

n(t), ·)} and the queue-difference processes{Dn
1,2(t)} for all t ∈ [0, ξ],

with two QBD’s - one from above and the other from below. We thus translate the unifor-

mity of the bounds on the drifts, established in Lemma 4.8.7,to a uniformity of bounds

on the family of process{Dn
f (X

n(t), ·)} for t ∈ [0, ξ]. Having two bounding QBD’s will
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eventually allow us to use a sandwiching argument. Now, instead of sample path stochastic

order, we use rate order, denoted byX1 ≤r X2, by which we mean that, from every integer

state and for every possible state that can be reached from that state in a single transition,

both (i) the transition rates up in CTMCX1 are less than or equal to the corresponding

transition rates up in CTMCX2, and (ii) the transition rates down in CTMCX1 are greater

than or equal to the corresponding transition rates down in CTMC X2.

Lemma 4.8.9.There existξ > 0 andη > 0, random vectorsXn
M andXn

m, and a sequence

of sets{Bn(ξ, η) : n ≥ 1} in the underlying probability space withP (Bn(ξ, η)) → 1 as

n→ ∞, such that, for0 ≤ t ≤ ξ,

Dn
f (X

n
m, ·) ≤r Dn

f (X
n(t), ·) ≤r D

n
f (X

n
M , ·),

Dn
f (X

n
m, ·) ≤r Dn

1,2(t) ≤r D
n
f (X

n
M , ·), (4.8.18)

where the bounding processesDn
f (X

n
M , ·) andDn

f (X
n
m, ·), and thus also the interior pro-

cessesDn
f (X

n(t), ·), satisfy(4.8.12)onBn(ξ, η), n ≥ 1, and are thus positive recurrent.

Whenr1,2 = 1, rate order directly implies the stronger sample path stochastic order, but

not more generally, because the upper (lower) process can jump down below (up above) the

lower (upper) process when the lower process is at state0 or below, while the upper process

is just above state0. Nevertheless, we can obtain the following stochastic order bound,

involving a finite gap. However, there is no gap whenr1,2 = 1 because thenj = k = 1.

Corollary 4.8.4. Let ζ ≡ (j ∨ k) − 1. Under the conditions of Lemma4.8.9, there exist

ξ > 0 andη > 0, random vectorsXn
M andXn

m, and a sequence of sets{Bn(ξ, η) : n ≥ 1}

in the underlying probability space withP (Bn(ξ, η)) → 1 asn→ ∞, such that, whenever

Dn
f (X

n
m, 0)− ζ ≤st Dn

f (X
n(0), 0) ≤st D

n
f (X

n
M , 0) + ζ,

Dn
f (X

n
m, 0)− ζ ≤st Dn

1,2(0) ≤st D
n
f (X

n
M , 0) + ζ, (4.8.19)
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in R,

Dn
f (X

n
m, ·)− ζ ≤st Dn

f (X
n(t), ·) ≤st D

n
f (X

n
M , ·) + ζ,

Dn
f (X

n
m, t)− ζ ≤st Dn

1,2(t) ≤st D
n
f (X

n
M , t) + ζ, (4.8.20)

in D([0, ξ])), where the bounding processesDn
f (X

n
M , ·) and Dn

f (X
n
m, ·), and thus also

Dn
f (X

n(t), ·), satisfy(4.8.12)onBn(ξ, η), n ≥ 1, and are thus positive recurrent.

Proof: We can do the standard sample path construction: Provided that the processes are

on the same side of state 0 in the CTMC representation, we can make all the processes jump

up by the same amount whenever the lower one jumps up, and makeall the processes jump

down by the same amount whenever the upper one jumps down. However, there is a diffi-

culty when the processes are near the state 0 in the CTMC representation (which involves

the matrixB for the QBD). When the upper process is above0 and the lower process is at

or below0, the lower process can jump over the upper process by at most(j ∨ k)− 1, and

the upper process can jump below the lower process by this same amount. But the total

discrepancy cannot exceed(j ∨ k) − 1, because of the rate order. Whenever the desired

order is switched, e.g., whenever the processes are orderedDn
f (X

n
M , t) ≤ Dn

f (X
n
m, t), no

further discrepancies can be introduced.

As an immediate corollary to Corollary 4.8.4, we can deduce stochastic boundedness

(SB) asn→ ∞. The following corollary implies Theorem 4.5.4.

Corollary 4.8.5. For n ≥ 1, let Sn be the set of all processes{Dn
1,2(t) : 0 ≤ t ≤ ξ} and

{Dn
f (X

n(t), s) : 0 ≤ s ≤ ξ} for 0 ≤ t ≤ ξ with ξ from Corollary4.8.4. (The setsSn form

an uncountably infinite subset of the spaceD([0, ξ]).) Suppose that condition(4.8.19)is

satisfied. Then the sequence{Sn : n ≥ 1} is SB. Consequently, the sequence of processes

{{Dn
1,2(t) : 0 ≤ t ≤ ξ} : n ≥ 1} is SB inD([0, ξ]), so that the sequence{Dn

1,2(t) : n ≥ 1}

is SB inR for eacht with 0 ≤ t ≤ ξ.
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Proof: By letting n → ∞ in Corollary 4.8.5, we are able to exploit the stochastic order

bound in (4.8.20), where the bounds are positive recurrent,satisfying (4.8.12).

We will later show that the conclusions of Corollary 4.8.5 hold when ξ is replaced

by δ, where[0, δ) is the interval over which there exists a unique solution to the ODE in

A. Together with Theorem 4.5.3, Corollary 4.8.5 proves that the sequence of processes

{{Dn
1,2(t) : 0 ≤ t ≤ ξ} : n ≥ 1} is SB but not tight inD([0, ξ]); the oscillations are too

rapid.

4.8.6 Special Construction to Bound the Integrals

The comparisons in Lemma 4.8.9 and Corollary 4.8.4 are important, but they are not di-

rectly adequate for our purpose. The sample-path stochastic order bound works fine for the

special case ofr1,2 = 1, but not more generally, because of the gapζ . However, we now

show that an actual gap will only be present rarely, if we choose the interval lengthξ small

enough andn big enough. We use the construction in the previous section,exploiting the

fact that we have rate order, where the bounding rates can be made arbitrarily close to each

other by choosing the interval lengthξ suitably small.

However, we must specify the initial conditions for all the difference processes under

consideration. Consistent with Assumption 3, we assume that

Dn
1,2(0) = Dn

f (X
n
m, 0) = Dn

f (X
n
M , 0) = Dn

f (X
n(t), 0) = j (4.8.21)

for some fixedj, for all t, 0 ≤ t ≤ ξ.

Lemma 4.8.10.Assume that condition(4.8.21)holds. For anyǫ > 0, there existξ > 0 and

η > 0, random vectorsXn
M andXn

m, associated QBD processes{Dn
f (X

n
M , s) : s ≥ 0} and

{Dn
f (X

n
m, s) : s ≥ 0} (with constant transition rates), and a sequence of sets{Bn(ξ, η) :

n ≥ 1} in the underlying probability space withP (Bn(ξ, η)) → 1 asn → ∞, such that,
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on the setBn(ξ, η),

δn+(X
n
m) < −η and δn−(X

n
m) > η,

δn+(X
n
M) < −η and δn−(X

n
M) > η (4.8.22)

(so that the bounding processesDn
f (X

n
m, ·) andDn

f (X
n
M , ·), and thus alsoDn

f (X
n(t), ·),

are positive recurrent) and, for0 ≤ t ≤ ξ, (also onBn(ξ, η))

1

ξ

∫ ξ

0

1{Dn
f
(Xn

m,s)>0} ds− ǫ ≤ 1

ξ

∫ ξ

0

1{Dn
f
(Xn(t),s)>0} ds

≤ 1

ξ

∫ ξ

0

1{Dn
f
(Xn

M
,s)>0} ds+ ǫ

1

ξ

∫ ξ

0

1{Dn
f
(Xn

m,s)>0} ds− ǫ ≤ 1

ξ

∫ ξ

0

1{Dn
1,2(s)>0} ds

≤ 1

ξ

∫ ξ

0

1{Dn
f
(Xn

M
,s)>0} ds+ ǫ.

(4.8.23)

4.8.7 Proof of Theorem 4.6.1

By the tightness established in Lemma 4.8.1, we know that every subsequence of{X̄n :

n ∈ N} has a further subsequence converging weakly inD3. We will be considering a

converging subsequence with limit̄X, but without changing the indexing notation. (We

understand thatn runs through a subsequence.) It suffices to show that the limit X̄ is

deterministic and satisfies the ODE in (4.5.13) or, equivalently, the integral representation

in (4.5.14).

By Theorems 4.4.1 and 4.4.2, which draws on§4.7, it suffices to focus on the integral

representation for̄Xn in (4.4.7). Many of the terms converge directly to their counterparts

in (4.5.14) because of the assumed MS-HT scaling in§4.2.1 and the convergencēXn ⇒ X̄

through the subsequence obtained from the tightness. Indeed, the only exceptions are the

integral terms involving the indicator functions. However, these integral terms are easily
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seen to be tight as well, as a conseuence of the tightness of the sequences{Z̄n
i,j : n ≥ 1}

established in§4.8.1. Hence, we can consider a subsequence of our original converging

subsequence in which all these integral terms converge to proper limits as well. Hence we

have the integral representation in (4.4.7) converge to thesystem

Z̄1,2(t) = z1,2(0) + µ2,2Īz,1(t)− µ1,2Īz,2(t)

Q̄1(t) = q1(0) + λ̄1t− m̄1t− µ1,2Īq,1,1(t)

− µ2,2Īq,1,2(t)− θ1

∫ t

0

Q̄1(s) ds,

Q̄2(t) = q2(0) + λ̄2t− µ2,2Īq,2,1(t)

− µ1,2Īq,2,2(t)− θ2

∫ t

0

Q̄2(s)) ds.

(4.8.24)

We have exploited the assumed convergence of the initial conditions in Assumption 3 to

replaceX̄(0) by x(0) in (4.8.24). In more detail, for one integral term we have

{{
∫ t

0

1{Dn
1,2(s)>0}Z̄

n
1,2(s) ds : t ≥ 0} : n ≥ 1} ⇒ {Īq,1,2(t) : t ≥ 0} in D

through the final converging subsequence.

At this point, it suffices to identify the limit of each integral term with the corresponding

term in the integral representation in (4.5.14). That will uniquely characterize the limit

over an initial interval[0, δ) because, by Theorem 4.5.2, there exists a unique solution

to the ODE over an initial interval[0, δ). Since each of these integrals can be treated in

essentially the same way, we henceforth focus only on the term Īq,1,2(t). Thus, it suffices

to show that

Īq,1,2(t) =

∫ t

0

π1,2(X̄(s))Z̄1,2(s)) ds (4.8.25)

for eacht. (It suffices to look at only any onet.) From a differential perspective, it suffices
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to show that

Īq,1,2(t+ ξ)− Īq,1,2(t) = π1,2(X̄(t))Z̄1,2(t)ξ + o(ξ) as ξ → 0. (4.8.26)

We achieve that goal by applying Lemma 4.8.11 below.

Recall that[0, δ) is the interval where the ODE has a unique solution. It is initially

reduced to satisfy the requirements of§4.7, but then can be increased once a smaller interval

has been treated. However, here we reduceδ again if necessary, so thatδ < ξ for ξ in

Lemmas 4.8.7, 4.8.9 and 4.8.10. After Lemma 4.8.11 and Theorem 4.6.1 have been proved

for this reducedδ, δ can be further increased to the point where the existence of aunique

solution to the ODE has been determined. Below we will be introducing a newξ less than

this newδ.

Lemma 4.8.11.(convergence of the integral terms) For any ǫ > 0 andt with 0 ≤ t < δ,

with δ specified above, there existsξ ≡ ξ(ǫ, δ, t) with 0 < ξ < δ − t andn0 such that

P

(
|1
ξ

∫ t+ξ

t

1{Dn
1,2(s)>0}Z̄

n
1,2(s) ds− π1,2(X̄(t))Z̄1,2(t)| > ǫ

)
< ǫ (4.8.27)

for all n ≥ n0.



Chapter 5

Remaining Proofs in Chapter 4

This chapter is dedicated the remaining proofs in Chapter 4,and consists of five sections.

The material is presented in the order of the associated material in Chapter 4. Section 5.1

contains the proofs of Theorems 4.5.3 and 4.5.5 in§4.5. Section 5.2 contains the proofs

for theorems and lemmas establishing SSC for the service processes in§4.7. Sections 5.3

and 5.4 contain supplementary material for§4.7. In particular, Section 5.3 displays the

bounding QBD used in the proof of Lemma 4.7.4, while Section 5.4 provides more on the

idleness processes, going beyond Theorem 4.7.4 in§4.7.

Section 5.5 contains the proofs for the theorems and lemmas completing the proof of

Theorem 4.6.1 in§4.8. Section 5.5 has four subsections, corresponding to thesubsections

of §4.8 where the results are located.

5.1 Remaining Proofs in Section 4.5

In this section we provide the two remaining proof in§4.5: We prove Theorems 4.5.3 and

4.5.5.

212
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5.1.1 Proof of Theorem 4.5.3

We first establish the claimed convergence of processes in (4.5.23). For anyγ ∈ A, the

limiting FTSP{D(γ, s) : s ≥ 0} is a CTMC with bounded constant transition rates, as

specified in§4.5.2. (In this section we view the FTSP as a CTMC rather than as a QBD

process.) Hence, the FTSP can make only finitely many transitions in any bounded interval.

Moreover, there are only four possible transitions from anystate, and there are only two

possible forms for these transitions, depending upon whetherD(γ, s) > 0 orD(γ, s) ≤ 0.

Thus, the FTSP is a well-defined random element ofD. In this framework of integer-

valued processes, convergence inD is equivalent to convergence of the finite-dimensional

distributions (fidi’s).

The converging processes{Dn
e (Γ

n, s) : s ≥ 0} defined in (4.5.7) are more compli-

cated, having time-dependent transition rates, but they have essentially the same struc-

ture. For eachn ands, these processes also have only four possible transitions from any

state, and there are only two possible forms for these transitions, depending upon whether

Dn
e (Γ

n, s) > 0 or Dn
e (Γ

n, s) ≤ 0. By assumption, the initial conditions converge. Since

Γn/n → γ asn → ∞, and because of the special time scaling in (4.5.7), we have uniform

convergence of the time-varying transition rates ofDn
e (Γ

n, s) > 0 to the constant transition

rates of the FTSP over the interval[0, t]. Hence, we have convergence of the fidi’s, and thus

convergence inD.

We now elaborate on the way this last step can be formalized. That can be done cleanly

using a uniformization framework, as in Theorem 3.1 of [51],in which all transitions of

{Dn
e (Γ

n, s) : s ≥ 0} are generated from a single Poisson process with constant rate. How-

ever, there is a complication, because in general the transition rates are not unbounded

above. One approach to this problem is to use adaptive uniformization as in [55] and ref-

erences cited therein. However, by Corollary 4.8.1, the scaled total queue contentn−1Qn
Σ
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is stochastically bounded above by a processn−1Qn
bd, which converges in law to the de-

terministic finite boundqbd(t) ≤ q∗bd given in (4.8.5). Hence,Dn
e (Γ

n, ·) is asymptotically

equivalent to a process with uniformly bounded transition rates. (For a direct stochastic

bound on the number of transitions over a subinterval, see Lemma 4.8.6.) Hence, without

loss of generality, we work with the asymptotically equivalent processes that do have uni-

formly bounded transition rates. However, we do not introduce new notation; instead we

simply act as ifn−1Qn
Σ is bounded above and the transition rates of{Dn

e (Γ
n, s) : s ≥ 0}

are bounded above. Hence, we just apply standard uniformization.

Given the Poisson process with a fixed rate, which exceeds thetransition rate out of any

state, all potential transitions are the transition epochsof the Poisson process. The actual

transitions at the transition epochs of the Poisson processoccur according to a discrete-time

Markov chain (DTMC). However, in our nonstationary context, the DTMC is nonstationary

as well. In particular, as in [51], we can express the time-dependent transition function as

P
(n)
i,j (t) ≡ P (Dn

e (Γ
n, t) = j|Dn

e (Γ
n, 0) = i)

=
∞∑

k=0

e−ηt(ηt)k

k!

∫
· · ·
∫

0≤s1<s2<···<sk≤t

(
k∏

l=1

P (n)
η (sl))i,j

k!

tk
ds1 · · ·dsk,

(5.1.1)

whereη is an upper bound on the total transition rate out of each state for all n ≥ 1, and

P
(n)
η (s) ≡ I + Q(n)(s)/η is the discrete-time markov chain transition matrix at times,

based on the infinitesimal generator matrixQ(n)(s) at times.

Thus, for any given time interval[0, t] andǫ > 0, we can find an integerν such that

the total number of transitions of all of the processes{Dn
e (Γ

n, s) : s ≥ 0} over [0, t]

is at mostν with probability 1 − ǫ. This will apply to all processes under discussion.

Moreover, the occurrence of thoseν transitions is distributed over[0, t] according toν i.i.d.

uniformly random variables, using the classical property of the Poisson process. We can

thus take the numberν and the locations of the transitions as fixed, independent ofn. We
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are then left with the product ofν DTMC transition matrices at time-varying locations,

as shown in (5.1.1). These transition matrices here are infinite matrices, but each has at

most5 positive entries in each row. For any givenν and initial state, we can only reach a

finite number of states. So, at this point, these transition matrices actually are equivalent

to finite matrices. Moreover, these transition matrices converge to the common limiting

transition matrix corresponding to the FTSP, uniformly. Hence, we can uniformly bound

the difference between the product of theseν matrices and the corresponding product for

the FTSP, independent of their time-varying locations. In that way, we can bound the total

error by an arbitrarily small quantity by choosing firstν and thenn to be suitably large.

5.1.2 Proof of Theorem 4.5.5

By Corollary 4.8.5, the sequence of random variables{Dn
1,2(t) : n ≥ 1} is SB. Since SB

is equivalent to tightness inR, every subsequence has a converging subsequence. We show

that every such converging subsequence must converge to therandom variableD(x(t),∞),

which has the steady-state distribution of the FTSPD determined by the fluid statex(t) at

time t. That implies that the entire sequence must converge, so that completes the proof.

To characterize the limit of a convergent subsequence, we exploit the continuity of, first,

x(t) and, second,D(x(t),∞), exploiting Lemma 4.8.8. With these properties, we obtain

the following lemma, which relates the FTSP at finite times toits steady-state distribution.

Lemma 5.1.1.For anyt0 with 0 ≤ t0 < δ, whereδ is chosen to ensure that the ODE has a

unique solutionx with x(t) ∈ A for all t ∈ [0, δ), and anyǫ > 0, there existss0 andζ > 0

such thatt0 + ζ < δ and

D(x(t0),∞)− ǫ ≤st D(x(t), s) ≤st D(x(t0),∞) + ǫ in R (5.1.2)

for all s ≥ s0 and all t ∈ (t0 − ζ, t0 + ζ).
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Proof: As stated above, Lemma 4.8.8 establishes continuity int of the distributions of

the steady-state variablesD(x(t),∞) of the FTSPD. It also establishes continuity for the

distribution of the return time to a fixed regeneration state. Thus, we can establish uniform

(geometric) rate of convergence to the steady state distribution ass → ∞ (uniform in t

neart0) by exploiting a coupling construction, as in Lemma VII.2.9of [7]. The proof there

provides explicit expressions to provide uniform bounds onthe rate of convergence fort in

a small neighborhood of anyt0.

Next, by Theorem 4.6.1,̄Xn ⇒ x in D([0, δ)) asn → ∞, wherex is a deterministic

continuous function withx(t) ∈ A for all t ∈ [0, δ). (We do not apply Theorem 4.5.5 in the

proof of Theorem 4.6.1.) Then we can apply Theorem 4.5.3, just proved above, to obtain

Dn
1,2(X

n(t), t+ s0/n) = Dn
e (X

n(t), s0) ⇒ D(x(t), s0) as n→ ∞. (5.1.3)

From the proof of Theorem 4.5.3 we can conclude the convergence is uniform fort in a

neighborhood oft0. Hence we can apply Lemma 5.1.1 to conclude that there existsn0 such

that

D(x(t0),∞)− 2ǫ ≤st D
n
1,2(X

n(t), t+ s0/n) ≤st D(x(t0),∞) + 2ǫ in R (5.1.4)

for all t ∈ (t0 − ζ, t0 + ζ) provided thatn ≥ n0. Hence, the limit of the convergent

subsequence of{Dn
1,2(t0)} must beD(x(t0),∞), as claimed.

In closing, we remark that a minor variant of Lemma 4.8.11 (proved in the same way)

establishes the weaker limit for local averages:

lim
ξ↓0

lim
n→∞

1

ξ

∫ t+ξ

t

1{Dn
1,2(s)≤k}

ds→ P (D(x(t),∞) ≤ k) for all k, (5.1.5)

but (5.1.5) and tightness alone are evidently insufficient to establish the desired result.
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5.2 Remaining Proofs in Section 4.7

Proof of Theorem 4.7.2: Our proof is based on regenerative structure. The intervals

between successive visits to the state(0, j) constitute an embedded renewal process for

the QBD. Since the QBD is positive recurrent, these cycles have finite mean. Given the

regenerative structure, our proof is based on the observation that, if the processL were

continuous real-valued with an exponential tail, instead of integer valued with a geometric

tail, then we could establish the conventional convergencein law of ‖L‖t − c log t to the

Gumbel distribution, which implies our conclusion. Hence,we bound the processL above

w.p.1 by another processLb that is continuous real-valued with an exponential tail and

which inherits the regenerative structure ofL.

We first construct the bounding processLb and then afterwards explain the rest of the

reasoning. To start, choose a phase determining a specific regenerative structure for the

level processL. let Si be the epoch cyclei ends,i ≥ −1, with S−1 ≡ 0, and letL(n)

be the set of states in leveln. For each cyclei, we generate an independent exponential

random variableXi and take the maximum betweenL(t) andXi for all Si−1 ≤ t < Si

such thatL(t) /∈ L(0); i.e., letting{Xi : i ≥ 0} be an i.i.d. sequence of exponential

random variables independent ofL and lettingC(t) be the cycle in progress at timet,

Lb(t) ≡ L(t) ∨ XC(t)1{L(t)/∈L(0)}. Clearly,Lb inherits the regenerative structure ofL and

satisfiesL ≤ Lb almost surely. Moreover, by the assumed independence, for eachx > 0

andt ≥ 0,

P (Lb(t) > x) = P (L(t) > x) + P (X > x)− P (L(t) > x)P (X > x),

whereX is an exponential random variable distributed asXi that is independent ofL(t).

We now consider the stationary version ofL, which makesLb stationary as well. We let

the desired constantc be the mean of the exponential random variablesXi. If we makec
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sufficiently large, then we clearly haveP (Lb(t) > x) ∼ e−x/c asx → ∞, because the first

and third terms become asymptotically negligible asx → ∞. (We choosec to makeL(t)

asymptotically negligible compared toX.)

It now remains to establish the conventional extreme-valuelimit for the bounding pro-

cessLb. For that, we exploit the exponential tail of the stationarydistribution, just estab-

lished, and regenerative structure. There are two approaches to extreme-value limits for

regenerative processes, which are intimately related, as shown by Rootzén [63]. One is

based on stationary processes, while the other is based on the cycle maxima, i.e., the maxi-

mum values achieved in successive regenerative cycles. First, if we consider the stationary

version, then we can apply classical extreme-value limits for stationary processes as in [53].

The regenerative structure implies that the mixing condition in [53] is satisfied; see Section

4 of [63].

However, the classical theory in [53] and the analysis in [63] applies to sequences of

random variables as opposed to continuous-time processes.In general, the established re-

sults for stationary sequences in [53] do not extend to stationary continuous-time processes.

That is demonstrated by extreme-value limits for positive recurrent diffusion processes in

[15, 23]. Proposition 3.1, Corollary 3.2 and Theorem 3.7 of [15] show that, in general, the

extreme-value limit is not determined by the stationary distribution of the process.

However, continuous time presents no difficulty in our setting, because the QBD is con-

stant between successive transitions, and the transitionsoccur in an asymptotically regular

way. It suffices to look at the embedded discrete-time process at transition epochs. That is

a standard discrete-time Markov chain associated with the continuous-time Markov chain

represented as a QBD. LetN(t) denote the number of transitions over the interval[0, t].

ThenLb(t) = Ld(N(t)), whereLd(n) is the embedded discrete-time process associated

with Lb. SinceN(t)/t → c′ > 0 w.p.1 ast → ∞ for some constantc′ > 0, the results

directly established for the discrete-time processDd are inherited with minor modification
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by Lb. Indeed, the maximum over random indices already arises when relating extremes

for regenerative sequences to extremes of i.i.d. sequences; see p. 372 and Theorem 3.1

of [63]. In fact, there is a substantial literature on extremes with a random index, e.g., see

Proposition 4.20 and (4.53) of [61] and also [64]. Hence, forthe QBD we can initially work

in discrete time, to be consistent with [53, 63]. After doingso, we obtain extreme-value

limits in both discrete and continuous time, which are essentially equivalent.

So far, we have established an extreme-value limit for the stationary version ofLb, but

our processLb is actually not a stationary process. So it is natural to apply the second

approach based on cycle maxima, which is given in [63, 6] and Section VI.4 of [7]. We

would get the same extreme-value limit for the given versionof Lb as the stationary ver-

sion if the cycle maximum has an exponential tail. Moreover,this reasoning would apply

directly to continuous time as well as discrete time. However, Rootzén [63] has connected

the two approaches (see p. 380 of [63]), showing that all the versions of the regenerative

process have the same extreme-value limit. Hence, the givenversion of the processLb

has the same extreme-value limit as the stationary version,already discussed. Moreover,

as a consequence, the cycle maximum has an exponential tail if and only if the stationary

distribution has an exponential tail. Hence, we do not need to consider the cycle maximum

directly.

Remark 5.2.1.(an alternative proof) An alternative proof of Theorem 4.7.2 would be based

on a direct demonstration that the cycle maximum ofL has a geometric tail. That alternative

reasoning has the advantage that it applies directly in continuous time; see [6] and Section

VI.4 of [7]. However, we are unaware of such a result in the literature. Evidently, it can

be derived from the known behavior of the first passage times between levels. By Theorem

8.2.2 of [52], the probability of moving from level0 to levelk+1 before returning to level

0 is asymptotically geometric ask → ∞. However, the return to level0 may not be in

the same phase as the initial phase. Hence, we must consider the random evolution within
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level0 until we either hit the initial phase or leave level0, and then the random number of

those returns until we do return to level0 in the same phase as the initial phase. Evidently

that will not alter the geometric tail, but that remains to beshown.

In fact, if we show that the cycle maximum has a geometric tail, then we need not

construct the bounding processLb. Instead, we can directly apply the extreme-value the-

orem for regenerative processes with geometric tail, Theorem 6 in [4] or Problem 4.2 on

p. 185 of [7], from which our conclusion would follow. In particular, it is well known that

the maximum queue length over a busy cycle in anM/M/1 is asymptotically geometric.

We can thus use Theorem 6, and, more directly, the example on p. 112 in [4], for the

extreme-value bound for theM/M/1 queue-length process, which we apply in the proof

of Theorem 4.7.4.

Proof of Lemma 4.7.2: By Assumption 3, the conditionz1,2(0) > 0 implies thatP (Zn
1,2(0) >

0) → 1 asn → ∞. Clearly, for everyn ≥ 1, Zn
1,2 is stochastically bounded from below,

in sample-path stochastic order, by a processZn
b which hasZn

b (0) = Zn
1,2(0), has only

departures and no new arrivals, i.e.,Zn
1,2 ≥st Z

n
b for all n ≥ 1 andt ≥ 0, where

Zn
b (t) = Zn

b (0)−N s
1,2

(
µ1,2

∫ t

0

Zn
b (s) ds

)
,

with N s
1,2 being a rate-1 Poisson process.

Given the FSLLN for the Poisson processN s
1,2, by applying the continuous mapping

theorem, we haveZn
b /n⇒ zb in D, asn→ ∞, where

zb(t) = zb(0)− µ1,2

∫ t

0

zb(s) ds, t ≥ 0.

It follows thatzb(t) ≥ zb(0)e
−µ1,2t, so thatzb(t) > 0 for all t ≥ 0. ThusP (inf0≤s≤t Zn

b (s) >

0) → 1 asn→ ∞. The stochastic order bound implies that the same is true forZn
1,2, which
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proves the first claim of the lemma. The second claim thatZn
2,1 ⇒ 0 asn → ∞ follows

from the first together with the one-way sharing rule.

Proof of Lemma 4.7.3: When either of the conditions (i) or (ii) holds,d2,1(0) < 0,

whered2,1(t) ≡ r2,1q2(t)− q1(t), t ≥ 0. Under condition (i), by Assumption 3,−d2,1(0) ≥

d1,2(0) ≡ q1(0) − r1,2q2(0) = κ. If κ = 0 and Condition (ii) holds, thend2,1(0) <

r1,2q2(0)− q1(0) = κ = 0.

We will construct a sample-path stochastic-order bound from above forDn
2,1, and show

that this bounding process is asymptotically strictly negative on an interval[0, τ ], for some

τ > 0. To stochastically boundDn
2,1, we consider a sequence of systems{Xn

b : n ≥ 1} in

(4.7.5) initialized at time0 with Xn
b (0) ≡ Xn(0), n ≥ 1. Thus,Qn

i,b(0) = Qn
i (0), and both

service pools start full with only their own customers. (Recall that we are considering the

caseZn
1,2(0) = 0 for all n large enough.)

LetDn
b ≡ r2,1Q

n
2,b − Qn

1,b be the weighted difference process inXn
b . By construction,

Qn
1,b ≤st Q

n
1 andQn

2,b ≥st Q
n
2 , so thatDn

b ≥st D
n
2,1. Now, as was shown in§4.7.2,X̄n

b ⇒ xb

asn → ∞, for xb in (4.7.7). Hence,̄Dn
b ≡ Dn

b /n ⇒ db ≡ r2,1q2,b − q1,b asn → ∞, with

db(0) < 0.

The limit processq1,b(t) may eventually become negative ast increases, at which point

it becomes meaningless as a stochastic-order bound forq1. However, the continuity ofq1,b,

together with the initial condition,q1,b(0) > 0, implies that we can find a timeτ1 > 0, such

thatq1,b(t) > 0 for all t ∈ [0, τ1]. Similarly, the continuity ofdb implies that there exists

τb > 0, whereτb ≡ inf{t ≥ 0 : db(t) = 0}. Then, forτnb ≡ inf{t ≥ 0 : Dn
b (t) ≥ 0},

by applying a version of Theorem 13.6.4 in [78], the continuous mapping theorem gives

τnb ⇒ τb. Now, for τn ≡ inf{t ≥ 0 : Dn
2,1(t) ≥ 0} we have thatτn ≥st τ

n
b . Taking

τ ≡ τ1 ∧ τb gives the first claim of the statement.
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The second claim of the statement follows from the first, together with the initial con-

dition in Assumption 3, namely, thatZn
2,1(0) = 0 for all n.

Proof of Lemma 4.7.4: We will prove the lemma by constructing a QBD process that

serves as a stochastic-order bound for the processDn
2,1 over some interval[0, τ ]. The claims

will then follow from an application of the extreme-value limit in Theorem 4.7.2. As a first

step, we define the following processes:

For s ≥ 0, let Xn
∗ (s) ≡ (Qn

1,a(s), Q
n
2,a(s), Z

n
b (s)), whereQn

i,a, i = 1, 2, are defined

in (4.7.4) andZn
b is defined in (4.7.5). For a fixeds > 0 and a fixedXn

∗ (s), define the

following processes:

Qn
1,∗(X

n
∗ (s), t) = Qn

1,a(0) +Na
1 (λ

n
1 t)−N s

1,1(µ1,1m
n
1 t)−N s

1,2 (µ1,2Z
n
b (s)t)

−Nu
1

(
θ1(Q

n
1,a(s) ∨ 0)t

)
,

Qn
2,∗(X

n
∗ (s), t) = Qn

2,a(0) +Na
2 (λ

n
2 t)−N s

2,2(µ2,2(m
n
2 − Zn

b (s))t)

−Nu
2

(
θ2(Q

n
2,a(s) ∨ 0)t

)
,

where, as before,Na
i , N s

i,j andNu
i , i, j = 1, 2, are independent rate-1 Poisson processes.

Then the process

Dn
∗ (X

n
∗ (s), t) ≡ r2,1Q

n
2,∗(X

n
∗ (s), t)− (Qn

1,∗(X
n
∗ (s), t)− κn)− inf

0≤u≤t
Dn
∗ (X

n
∗ (s), u)

conditional onXn
∗ (s), is a continuous-time Markov chain as a function of the time argu-

mentt. (That is becauseXn
∗ is constructed independently ofDn

∗ .) The key observation here

is that the conditional processDn
∗ (givenXn

∗ (s)), can be analyzed as a QBD, just as in§2.4.

In particular, ifr2,1 = j/k, wherej, k are positive integers with no common divisors, then

the process̃Dn
∗ ≡ jQn

2,∗ − kQn
1,∗ is a CTMC with state space in the nonnegative integers,

and can be represented as a QBD; See§5.3. Moreover, the process̃Dn
∗ is positive recurrent
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if and only ifDn
∗ is.

Our next objective is to replace the family of processes{D̃n
∗ (X

n
∗ (s), t) : t ≥ 0} (there

is a different process for eachXn
∗ (s)) with one positive-recurrent QBD which will bound

Dn
2,1 from above over an entire interval[0, τ ], for someτ > 0, and then translate the scaling

by n in Xn
∗ to a scaling byn of the time argumentt. More specifically, we continue the

proof in two steps: in the first step we find a positive recurrent QBDDn
∗ (X

n
m, t), such that

Dn
∗ (X

n
m, ·) ≥st D

n
∗ (X

n
∗ (s), ·) for all s ∈ [0, τ ]. In the second step, the bounding process

Dn
∗ (X

n
m, ·) is shown to be equal in distribution to a rate-1 QBD on the interval[0, anτ ], for

some{an} such thatan/n→ 1 asn→ ∞. The second step allows us to employ Theorem

4.7.2 and show that the probability that the thresholdkn2,1 is crossed over[0, τ ] converges

to 0 asn→ ∞.

However, before we find a QBD that uniformly bounds all the processesDn
∗ (X

n
∗ (s), ·),

for all s ∈ [0, τ ], we need to find alls ≥ 0 for whichDn
∗ (X

n
∗ (s), ·) is positive recurrent.

That will allow us to characterizeτ . As mentioned above,Dn
∗ is positive recurrent if and

only if D̃n
∗ is positive recurrent. We thus analyze the family of processes{{D̃n

∗ (X
n
∗ (s), t) :

t ≥ 0} : s ≥ 0}. (For every fixeds ≥ 0 andXn
∗ (s) we have a whole process̃Dn

∗ with time

argumentt.)

GivenXn
∗ (s), the process{D̃n

∗ (X
n
∗ (s), t) : t ≥ 0} has upward jumps of sizej with

rateλ̂j(Xn
∗ (s)) ≡ λn2 , and downward jumps of sizej (away from the boundary) with rate

µ̂j(X
n
∗ (s)) ≡ µ2,2(m

n
2 − Zn

b (s)) + θ2Q
n
2,a(s). It has upward jumps of sizek with rate

λ̂k(X
n
∗ (s)) ≡ µ1,1m

n
1 +µ1,2Z

n
b (s)+θ1Q

n
1,a(s), and downwards jumps of sizek (away from

the boundary) with ratêµk(X
n
∗ (s)) ≡ λn1 . Now, by Theorem 7.2.3 in [52], for a given

Xn
∗ (s), D̃

n
∗ (X

n
∗ (s), ·) is positive recurrent if and only if̃δ∗(Xn

∗ (s)) < 0, where

δ̃∗(X
n
∗ (s)) ≡ j(λ̂j(X

n
∗ (s))− µ̂j(X

n
∗ (s))) + k(λ̂k(X

n
∗ (s))− µ̂k(X

n
∗ (s))).
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SinceX̄n
∗ ≡ Xn

∗ /n ⇒ x∗ ≡ (q1,a, q2,a, zb), for zb in (4.7.7) andqi,a, i = 1, 2 in

(4.7.6), we can define for everys ≥ 0 the functionŝλj(x∗(s)), µ̂j(x∗(s)), λ̂k(x∗(s)) and

µ̂k(x∗(s)) to be the limits of̂λj(Xn
∗ (s))/n, µ̂j(X

n
∗ (s))/n, λ̂k(Xn

∗ (s))/n andµ̂k(X
n
∗ (s))/n,

respectively, asn→ ∞.

By the linearity ofδ̃∗ and the continuity of the addition mapping when the limits are

continuous, e.g. Theorem 12.7.1 in [78], we have thatδ̃∗(X
n
∗ (s))/n⇒ δ̃∗(x∗(s)), where

δ̃∗(x∗(s)) ≡ j(λ̂j(x∗(s))− µ̂j(x∗(s))) + k(λ̂k(x∗(s))− µ̂k(x∗(s))).

Note that, by our construction ofXn
∗ , x(0) = x∗(0) (that is becauseXn

a (0) = Xn
b (0) =

Xn(0) for all n ≥ 1). It is easy to see that, ifr2,1 = r1,2 (recall also thatz1,2(0) = 0), then

δ̃∗(x∗(0)) = −δ−(x(0)) for δ−(x(0)) in (4.5.20). Since, by Assumption 3,δ−(x(0)) > 0, it

holds that̃δ∗(x∗(0)) < 0.

If r2,1 < r1,2, then necessarilyq1(0) = q2(0) = 0 (see the explanation before the

statement of the lemma). In that case we have thatδ̃∗(x∗(0)) = jθ1(λ1−µ1,1m1)+ k(λ2−

µ2,2m2), so that̃δ∗(x∗(0)) < 0 if and only if θ1(λ1 − µ1,1m1) + r2,1(λ2 − µ2,2m2) < 0. To

see that this inequality must hold, observe that withq1(0) = q2(0) = z1,2(0) = 0, and by

Assumption 3,

δ−(x(0)) = θ1(λ1 − µ1,1m1)− r1,2(λ2 − µ2,2m2) > 0,

which implies thatλ2 > µ2,2m2, since by Assumption 1,qa1 ≡ λ1 − µ1,1m1 > 0. It follows

from the latter inequality and the fact thatr2,1 < r1,2, that δ̃∗(x∗(0)) < 0. To summarize,

δ̃∗(x∗(0)) < 0 in both cases considered in the statement of the lemma.
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Sincex∗ andδ̃∗(x∗) are continuous functions, we can findτ > 0 such that

sup
s∈[0,τ ]

δ̃∗(x∗(s)) < 0.

Hence, there existsη1 > 0 such that

P

(
sup
s∈[0,τ ]

δ̃n∗ (X
n
∗ (s)) < −η1

)
→ 1 as n→ ∞.

That is, for someτ > 0 there exists a sequence of sets{Bn : n ∈ N} satisfyingP (Bn) → 1

asn → ∞, such that the process{Dn
∗ (X

n
∗ (s), t) : t ≥ 0} is positive recurrent for all

s ∈ [0, τ ] and for every sample path ofXn
∗ contained inBn.

We now construct a single bounding QBD process that boundsD̃n
∗ (X

n
∗ (s), ·) for all

s ∈ [0, τ ]. For that purpose, letXn
m ≡ (Qn

1,m, Q
n
2,m, Z

n
m), where

Qn
1,m ≡ ‖Qn

1,a‖τ , Qn
2,m ≡ inf

0≤t≤τ
Qn

2,a(t) and Zn
m ≡ ‖Zn

b ‖τ .

Applying the continuous mapping theorem for the supremum function, e.g., Theorem

12.11.7 in [78], we have that̄Xn
m ≡ Xn

m/n ⇒ xm ≡ (q1,m, q2,m, zm), with q1,m ≡ ‖q1,a‖τ ,

q2,m ≡ inf0≤t≤τ q2,a(t) and zm ≡ ‖zb‖τ .

LetD∗(t) ≡ r2,1Q2,∗(t)−Q1,∗(t)− inf0≤u≤tD∗(u), where

Q1,∗(t) = q1,a(0) +Na
1 (λ1t)−N s

1,1(µ1,1m1t)−N s
1,2 (µ1,2zmt)−Nu

1 (θ1q1,mt) ,

Q2,∗(t) = q2,a(0) +Na
2 (λ2t)−N s

2,2(µ2,2(m2 − zm)t)−Nu
2 (θ2q2,mt) .

By our choice ofxm, the QBDD∗ is positive recurrent. Observe that for every sequence

of sample paths{Xn
m : n ∈ N}, the scaling inDn

∗ (X
n
m, ·) is equivalent to scaling time

by a factor of orderO(n) in D∗. That is, for everyT > 0, and every sample path ofXn
m
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contained in the setsBn defined above{Dn
∗ (X

n
m, t) : 0 ≤ t ≤ T} d

= {D∗(ant) : 0 ≤ t ≤

T}, with an/n→ 1 asn→ ∞.

Let M∗(t) ≡ sups∈[0,t]D∗(s) denote the running maximum of the positive recurrent

QBDD∗. It follows from Theorem 4.7.2 that there existsc > 0 such that

lim
n→∞

P (‖Dn
2,1‖τ/ logn > c) ≤ lim

n→∞
P (‖M∗‖anτ/ logn > c) = 0.

The claim of the lemma then follows from the assumption thatkn2,1/ logn→ ∞ asn→ ∞.

Proof of Theorem 4.7.3: By Lemma 4.7.2, we only need to consider the casez1,2(0) = 0.

By Lemmas 4.7.3 and 4.7.4, there existsτ > 0 such that

lim
n→∞

P
(
‖Dn

2,1‖τ < kn2,1
)
= 1.

Hence, the claim of the theorem will follow from Lemma 4.7.2 and Theorem 4.6.1 if we

show that for somet0 satisfying0 < t0 ≤ δ ≤ τ it holds thatz1,2(t0) > 0, wherez1,2 is

the (deterministic) fluid limit ofZ̄n
1,2 asn → ∞ (shown to exist in the proof of Theorem

4.6.1 on[0, δ]). We will actually show a somewhat stronger result, namely,that for any

0 < ǫ ≤ δ there existst0 < ǫ such thatz1,2(t0) > 0. We prove that by assuming the

contradictory statement: for some0 < ǫ ≤ δ and for allt ∈ [0, ǫ], z1,2(t) = 0.

Since, by our contradictory assumption,z1,2(t) = 0 over [0, ǫ], we have thatZn
1,2 =

oP (n). Recall also thatZn
2,1 = oP (1) over [0, ǫ] (sinceǫ ≤ τ , andτ is chosen according to

Lemmas 4.7.3 and 4.7.4). Define the processes

Ln
1 ≡ Qn

1 + Zn
1,1 + Zn

1,2 −mn
1 and Ln

2 ≡ Qn
2 + Zn

2,1 + Zn
2,2 −mn

2 , (5.2.1)
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representing the excess number in system for each class. Note that(Ln
i )

+ = Qn
i , i = 1, 2.

Then,

Ln
i (t) = Ln

i (0) +Na
i (λ

n
i t)−N s

i,i

(
µi,i

∫ t

0

(Ln
i (s) ∧ 0) ds

)

−Nu
i

(
θi

∫ t

0

(Ln
i (s) ∨ 0) ds

)
+ oP (n), i = 1, 2

(5.2.2)

for 0 ≤ t ≤ δ asn→ ∞, whereNa
i ,N s

i,i andNu
i are independent rate-1 Poisson processes.

TheoP (n) terms are replacing the (random-time changed) Poisson processes related toZn
1,2

andZn
2,1, which can be disregarded when we consider the fluid limits of(5.2.2).

Letting L̄n
i ≡ Ln

i /n, i = 1, 2, and applying the continuous mapping theorem for the

integral representation function in (5.2.2), Theorem 4.1 in [57], (see also Theorem 7.1 and

its proof in [57]), we have that(L̄n
1 , L̄

n
2 ) ⇒ (L̄1, L̄2) asn→ ∞, where, fori = 1, 2,

L̄i(t) = L̄i(0) + (λi − µi,imi)t−
∫ t

0

[µi,i(L̄i(s) ∧ 0) + θi(L̃i(s) ∨ 0)] ds,

so that

L̄′i(t) ≡
d

dt
L̄i(t) = (λi − µi,imi)− µi,i(L̄i(t) ∧ 0)− θi(L̃i(t) ∨ 0).

(We denote the fluid limit of̄Ln
i by L̄i, i = 1, 2, instead of our usual lower-case letters

notation in order to avoid confusion.)

It is easy to see thatqi = (L̄i(t))
+, i = 1, 2, whereqi is the fluid limit of Q̄n

i . Now,

by Assumption 3, both pools are full at time0, so thatLi(0) ≥ 0. Moreover, fori = 1, 2,

L̄e
i ≡ (λi−µi,i)/θi is an equilibrium point of the ODĒL′i, in the sense that, if̄Li(t0) = L̄e

i ,

thenL̄i(t) = L̄e
i for all t ≥ t0. (That is,L̄e

i is a fixed point of the solution to the ODE.)

It also follows from the derivative of̄Li that L̄i is strictly increasing ifL̄i(0) < L̄e
i , and

strictly decreasing if̄Li(0) > L̄e
i , i = 1, 2.

Recall thatρ1 > 1, so thatλ1 − µ1,1m1 > 0. Together with the initial condition,
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L1(0) ≥ 0, we see that, in that case,L̄1(t) ≥ 0 for all t ≥ 0. First assume thatρ2 ≥ 1 .

Then, by similar arguments,̄L2(t) ≥ 0 for all t ≥ 0. In that case, we can replacēLi with

qi, i = 1, 2, and write

q1(t) = q1(0)− (λ1 − µ1,1m1)t− θ1

∫ t

0

q1(s) ds,

q2(t) = q2(0)− (λ2 − µ2,2m2)t− θ2

∫ t

0

q2(s) ds, t ∈ [0, ǫ],

so that, fort ∈ [0, ǫ],

d1,2(t) = qa1 + (q1(0)− qa1)e
−θ1t − r

(
qa2 + (q2(0)− qa2)e

−θ2t
)

= (qa1 − rqa2) + (q1(0)− qa1)e
−θ1t − r(q2(0)− qa2)e

−θ2t.
(5.2.3)

andd1,2(0) = κ.

It is easy to see that

d′1,2(t) ≡
d

dt
d1,2(t) = −θ1(q1(0)− qa1)e

−θ1t + rθ2(q2(0)− qa2)e
−θ2t.

Hence,d′1,2(0) = λ1 − µ1,1m1 − θ1q1(0) − r(λ2 − µ2,2) + rθ2q2(0). If follows from

(4.5.20) and the assumptionz1,2(0) = 0, that d′1,2(0) = δ−(x(0)). By Assumption 3,

x(0) ∈ A, so thatd′1,2(0) > 0, andd1,2 is strictly increasing at0. Now, sinced1,2(0) = κ,

we can findt1 ∈ (0, ǫ], such thatd1,2(t) > κ for all 0 < t < t1. This implies that

P (inf0<t≤t1 D
n
1,2(t) > 0) → 1 asn→ ∞.

It follows from the representation ofZn
1,2 in (4.4.2) that for anyt ∈ [0, t1],

Z̄n
1,2(t) =

N s
2,2 (µ2,2m

n
2 t)

n
+ oP (1). (5.2.4)

The oP (1) term follows from our assumption that̄Zn
1,2(t) ⇒ 0 asn → ∞. However,



CHAPTER 5. REMAINING PROOFS 229

by the FSLLN for Poisson processes, the fluid limitz1,2 of Z̄n in 5.2.4 satisfiesz1,2(t) =

µ2,2m2t > 0 for every0 < t ≤ t1. We thus get a contradiction to our assumption that

z(t) = 0 for all t ∈ [0, ǫ].

For the caseρ2 < 1 the argument above still goes through, but we need to distinguish

between two cases:̄L2 = 0 and L̄2 > 0. In both cases̄L2 is strictly decreasing. In the

first case, this implies that̄L2 is negative for everyt > 0. It follows immediately that

q1(t) − rq2(t) > κ for everyt > 0. If L̄2(0) > 0, then necessarilȳL1(0) > 0, and we can

replaceL̄i with qi, i = 1, 2, on an initial interval (beforēL2 becomes negative). We then

use the arguments used in the caseρ2 ≥ 1 above.

Proof of Theorem 4.7.4: We will start working with the processesLn
1 andLn

2 defined

in (5.2.1) (but recall that, by Theorem 4.7.3Zn
2,1 ⇒ 0, and in particularẐn

2,1 ⇒ 0). For

eachn ≥ 1, we will bound the two-dimensional process(Ln
1 , L

n
2 ) below in sample-path

stochastic order by another two-dimensional process(Ln
1,b, L

n
2,b).

We construct the lower-bound process(Ln
1,b, L

n
2,b) by increasing the departure rates in

both processesLn
1 andLn

2 , making it so that each goes down at least as fast, regardlessof

the state of the other. First, we place reflecting upper barriers on the two queues. This

is tantamount to making the death rate infinite in these states and all higher states. We

place the reflecting upper barrier onLn
1 atκn, whereκn ≥ 0; we place the reflecting upper

barrier onLn
2 at 0. With the upper barrier atκn, the departure rate ofLn

1 is bounded above

by µ1,1m
n
1 + θ1κ

n + µ1,2Z
n
1,2(t), based on assuming that pool1 is fully busy serving class

1 (sinceµ2,1Z
n
2,1(t) = op(1) we ignore it), thatLn

1 is at its upper barrier, and thatZn
1,2(t)

agents from pool2 are currently busy serving class1 in the original system. Second, with

the upper barrier at0, the departure rate ofLn
2 is bounded above byµ2,2m

n
2 − µ1,2Z

n
1,2(t),

based on assuming that pool2 is fully busy withZn
1,2(t) agents from pool2 currently busy

serving class1, and thatLn
2 is at its upper barrier0. Thus, we giveLn

1,b andLn
2,b these
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bounding rates at all times.

Of course, as constructed, the evolution of(Ln
1,b, L

n
2,b) depends on the processZn

1,2

associated with the original system, which poses a problem for further analysis. However,

we can avoid this difficulty by looking at a special linear combination of the processes.

Specifically, let

Un ≡ µ2,2(L
n
1 − κn) + µ1,2L

n
2 and Un

b ≡ µ2,2(L
n
1,b − κn) + µ1,2L

n
2,b. (5.2.5)

By the established sample-path stochastic order(Ln
1 , L

n
2 ) ≥st (Ln

1,b, L
n
2,b) and the mono-

tonicity of the linear map in (5.2.5), we get the associated sample-path stochastic order

Un ≥st U
n
b . Moreover, the stochastic processUn

b is independent of the processZn
1,2, be-

cause of the particular linear combination we have chosen for the one-dimensional pro-

cessesUn andUn
b in (5.2.5). We have chosen that linear combination so that the number of

pool-2 agents working on class1 does not matter.

Now observe that the lower-bound stochastic processUn
b is a BD process on the set of

all integers in(−∞, 0]. The BD process will have both constant birth rateλnb = µ2,2λ
n
1 +

µ1,2λ
n
2 and by the definitions above, the stochastic processUn

b has death rate

µn
b ≡ µ2,2(µ1,1m

n
1 + θ1κ

n + µ1,2Z
n
1,2(t))

+µ1,2(µ2,2m
n
2 − µ2,2Z

n
1,2(t)))

= µ2,2(µ1,1m
n
1 + θ1κ

n) + µ1,2µ2,2m
n
2 . (5.2.6)

As a consequence, for eachn ≥ 1, the drift inUn
b is

δnb ≡ λnb − µn
b = µ2,2(λ

n
1 −mn

1µ1,1 − θ1κ
n)

+µ1,2(λ
n
2 −mn

2µ2,2). (5.2.7)
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Hence, after scaling, we getδnb /n→ δ, where

δb ≡ µ2,2(λ1 −m1µ1,1 − θ1κ) + µ1,2(λ2 −m2µ2,2) > 0, (5.2.8)

with the inequality following from Assumption 1.

Now we observe that−Un
b is equivalent to the number in system in a stableM/M/1

queueing model with traffic intensityρn∗ → ρ∗ < 1. Let Q∗ be the number-in-system

process in anM/M/1 system having arrival rate equal toλ∗ ≡ µ2,2(m1µ1,1 + θ1κ) +

µ1,2m2µ2,2, service rateµ∗ ≡ µ2,2λ1+µ1,2λ2 and traffic intensityρ∗ ≡ λ∗/µ∗ < 1. Observe

that the scaling inUn
b is tantamount to accelerating time by a factor of orderO(n) in Q∗.

That is,{−Un
b (t) : t ≥ 0} can be represented as{Q∗(cnt) : t ≥ 0}, wherecn/n → 1 as

n→ ∞.

LetM∗(t) ≡ ‖Q∗‖t. We can now apply the extreme-value result in Theorem 4.7.2 for

theM/M/1 queue above (since anM/M/1 is trivially a QBD) to conclude thatM∗(t) =

OP (log(t)). This implies thatUn
b / log(n) is SB.

From the way that the reflecting upper barriers were constructed, we know at the outset

thatLn
1,b(t) ≤ κn andLn

2,b(t) ≤ 0. Hence, we must have both(κn − Ln
1,b)

+ and(−Ln
2,b)

+

nonnegative. Combining this observation with the result that (Un
b )/ logn is SB, we deduce

first that both(κn − Ln
1,b)

+/ logn and(−Ln
2,b)

+/ logn are SB, so that bothIn1 / logn and

In2 / logn are SB as well.

5.3 The Bounding QBD in Lemma 4.7.4

In this section we add some more supporting detail to§4.7. In particular, we now describe

how to present the process̃Dn
∗ ≡ jQn

∗ − kQn
∗ in the proof of Lemma 4.7.4 as a QBD for

eachn. To that end, letm ≡ j ∨ k. We divide the state spaceN ≡ {0, 1, 2, . . .} into level
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of sizem: Denoting leveli byL(i), we have

L(0) = (0, 1, . . . , m− 1)

L(1) = (m,m+ 1, . . . , 2m− 1) etc.

The states inL(0) are called the boundary states. Then the generator matrixQ(n) of the

processD̃n
∗ has the QBD form

Q(n) ≡




B(n) A
(n)
0 0 0 . . .

A
(n)
2 A

(n)
1 A

(n)
0 0 . . .

0 A
(n)
2 A

(n)
1 A

(n)
0 . . .

0 0 A
(n)
2 A

(n)
1 . . .

...
...

...
...




.

(All matrices are functions ofXn
∗ . However, to simplify notation, we drop the argument

Xn
∗ , and similarly in the example below.)

For example, ifj = 2 andk = 3, then

B(n) =




−σn 0 λ̂n2

µ̂n
Σ −σn 0

µ̂n
Σ 0 −σn


 , A

(n)
0 =




λ̂n3 0 0

λ̂n2 λ̂n3 0

0 λ̂n2 λ̂n3


 ,

A
(n)
1 =




−σn 0 λ̂n2

0 −σn 0

µ̂n
2 0 −σn


 , A

(n)
2 =




µ̂n
3 µ̂n

2 0

0 µ̂n
3 µ̂n

2

0 0 µ̂n
2


 ,

whereµ̂n
Σ ≡ µ̂n

3 + µ̂n
2 andσn ≡ µ̂n

Σ + λ̂n2 + λ̂n3 .

LetA(n) ≡ A
(n)
0 +A

(n)
1 +A

(n)
2 . ThenA(n) is an irreducible CTMC infinitesimal generator
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matrix. It is easy to see that its unique stationary probability vector,ν(n), is the uniform

probability vector, attaching probability1/m to each of them states. Then by Theorem

7.2.3 in [52], the QBD is positive recurrent if and only if

νA
(n)
0 1 < νA

(n)
2 1,

where1 is the vector of all1’s. This translates to the stability condition given in the proof

of Lemma 4.7.4.

5.4 More on the Idleness Processes

In this section we present additional results about the idleness processes, going beyond

Theorem 4.7.4. We treat pools1 and2 in the following subsections.

5.4.1 The Idleness Process in Pool1

We now show how to analyze the idleness in pool1 without paying attention to what hap-

pens in pool2. This provides a more elementary derivation of the results for In1 in Theorem

4.7.4.

We start by showing thatQn
1 is never “too much” belowκn if κn is large enough, where

“large enough” in our setting isκn/ log(n) → ∞ asn→ ∞. Since the thresholds in FQR-

T are of order greater thanO(
√
n), this includes the case in which the thresholds are kept

throughout (i.e., they are not dropped once they are crossed, so thatκn = kn1,2), and the

case in whichκn is the centering constant used in shifted FQR-T, whereκn/n→ κ > 0.

For t ∈ R+, let ⌊t⌋ be the integer part oft, i.e., the largest integer smaller thant. Let

ρ∗ ≡
µ1,1m1 + θ1κ

λ1
< 1, (5.4.1)
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where the inequality follows from Assumption 1.

We define the difference-process

En
1 ≡ κn −Qn

1 . (5.4.2)

We will focus on the positive part:(En
1 )

+(t) ≡ max {En
1 (t), 0}.

Lemma 5.4.1. If κn/ log(n) → ∞ asn→ ∞, then(En
1 )

+/ log(n) is SB.

Proof: To prove the statement, we will use a stochastic bound argument for Qn
1 . Specif-

ically, we will boundQn
1 from below in sample-path stochastic order by the queue-length

process of anM/M/mn
1/κ

n +M system having a finite buffer of sizeκn, arrival rateλn1 ,

service rateµ1,1 and abandonment rateθ1. This stochastic-order lower bound forQn
1 allows

us to consider the service process in pool1 alone, ignoring pool2. The idea is thatQn
1 is

the smallest possible (stochastically), when there are always available servers in pool2 to

ensure that queue1 never goes aboveκn. In that case,Qn
1 is equivalent to the queue-length

process in theM/M/mn
1/κ

n +M model.

In the bounding system, every arriving customer who findsκn customers waiting in

queue is blocked and lost. LetQn
b andZn

b (the subscriptb is for blocking) denote the

number of customers in queue and the number of customers in service, respectively, in the

M/M/mn
1/κ

n +M system. LetQ̄n
b andZ̄n

b denote the associated sequence of fluid-scaled

processes. Also let the initial condition beQn
b (0) = min{κn, Qn

1 (0)} andZn
b (0) = Zn

1,2(0)

for all n. From the definition ofQn
b (0) and Assumption 3, we see thatQn

b (0) = κn for all

n. Hence,Q̄n
b (0) → κ andZ̄n

b (0) → zb(0) = z1,2(0) asn→ ∞.

We can bound the processQn
1 from below byQn

b in the sense of sample-path stochastic

order; i.e., for eachn, it is possible to construct stochastic processesQ̃n
b andQ̃n

1 on a com-

mon probability space, with̃Qn
b having the same distribution asQn

b , Q̃n
1 having the same

distribution asQn
1 , and every sample path of̃Qn

b lies below the corresponding sample path
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of Q̃n
1 . The stochastic bound is constructed directly by generating the same arrival pro-

cesses to both systems. We let departures from service coincide in both systems whenever

Zn
b = Zn

1,1. Similarly, we let abandonments fromQn
1 coincide with abandonments fromQn

b

whenever both queues are equal. The argument follows the reasonings in Theorems 6 and

9 in [74].

As explained above,Qn
b (0) = κn for all n. Consider the (nonnegative) difference

processEn
b ≡ κn − Qn

b . Similar to our construction of the bounding process above,we

can boundEn
b from above, in sample-path stochastic order, by anM/M/1 system having

arrival rateµ1,1m
n
1 + θ1κ

n and service rateλn1 , i.e., denoting sample-path stochastic order

by≤st, for eachn and for allt ≥ 0, we have

En
b (t) ≤st Q

n
∗ (t) = Na

∗

(
(µ1,1m

n
1 + θ1κ

n)t

)
−N s

∗

(
λn
∫ t

0

1{Qn
∗
(s)>0} ds

)
, (5.4.3)

whereNa
∗ andN s

∗ are two independent rate-1 Poisson processes, andQn
∗ is the number-in-

system process in thenth M/M/1 system (customers in queue and in service).

LetQ∗ be the number-in-system process in anM/M/1 system having arrival rate equal

to µ1,1m1 + θ1κ and service rateλ1, so thatρ∗ in (5.4.1) is the traffic intensity toQ∗, and

ρ∗ < 1. Observe that the effect of increasing the size of theM/M/mn
1/κ

n +M system

and its arrival rate (by increasingmn
1 , κn andλn1 ) is tantamount to accelerating time by a

factor of orderO(n) in Q∗. That is,{En
b (t) : t ≥ 0} is stochastically bounded from above

(in sample-path stochastic order) by{Q∗(cnt) : t ≥ 0}, wherecn/n → 1 asn → ∞, for

everyt ≥ 0. We can now apply extreme-value theory for theM/M/1 queue. In particular,

if we let M∗(t) ≡ max{Q∗(s) : 0 ≤ s < t}, then‖En
b ‖t is bounded from above, in the

sample-path stochastic-order sense, by the processM∗(cnt).

Since the queue length is discrete, with a geometric stationary distribution, a standard

extreme-value limit does not exist. Nevertheless, we can bound thelim sup above; in
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particular, it follows from Theorem 6 in [4] and the example following it, (see also Problem

4.2 pg. 185 of [7]), that, forc = [(µ1,1m1 − θ1κ)(1− ρ∗)]
−1 > 0,

lim
x→∞

lim sup
t→∞

P (M∗(t)− a log(t) + b(t) > x)

= 1− lim
x→∞

lim inf
t→∞

P (M∗(t)− a log(t) + b(t) ≤ x)

≤ 1− lim
x→∞

e−ρ
x−1
∗ /c = 0,

where

a ≡ 1

− log(ρ∗)
, b(t) ≡ log(t)− log⌊t⌋ − log(1− ρ∗)

− log(ρ∗)

andb(t) → − log(1− ρ∗)/ log(ρ∗) ast→ ∞. The last inequality is the result in [4].

Hence,M∗(t) = OP (log(t)). Since‖En
b ‖T is stochastically smaller thanM∗(cnT ),

wherecn/n→ 1, we have that‖En
b ‖T/ log(n) is stochastically bounded for allT > 0. The

desired result then follows from the fact that(En
1 )

+ is itself stochastically smaller thanEn
b .

From the fact that(En
1 )

+, is at most of orderOP (log(n)) whenκn/ log(n) → ∞, we

deduce that, asymptotically, there are always customers waiting in the class-1 queue. The

following corollary is immediate:

Corollary 5.4.1. Under the conditions of Lemma5.4.1, for anyT > 0,

lim
n→∞

P

(
inf

0≤t≤T
Qn

1 (t) > 0

)
= 1, so that lim

n→∞
P

(
sup

0≤t≤T
In1 (t) > 0

)
= 0.

We now treat the case in whichκn/ log(n) → c, wherec <∞, which is the only other

case withκ ≥ 0 by virtue of 2. Since the order of size of the thresholds in FQR-T is greater

thanO(
√
n), we are mainly concerned with the case in which the thresholds are dropped

once they are crossed, and FQR is employed. That is, the main case isκn = 0 for all n.
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Proposition 5.4.1. If κn/ log(n) → c, where0 ≤ c <∞, thenIn1 / log(n) is SB.

Proof: The proof is similar to the proof of Lemma 5.4.1. If we prove the result for any

bounded sequence, then the result will follow trivially forany unbounded sequence. We

thus assume that0 ≤ κn ≤ M < ∞. We use the same sample-path stochastic-order

M/M/1-boundQn
∗ in (5.4.3) to boundIn1 , only now we replaceκn withM in the represen-

tation (5.4.3). SinceM becomes negligible relative to the scaling byn asn increases, the

traffic intensity for the processQ∗, defined in the proof of Lemma 5.4.1, isρ∗ = µ1,1m1/λ1,

so thatρ∗ < 1 by 1. Hence, the boundM∗ in the proof of Lemma 5.4.1, applies toIn1 .

We can combine Corollary 5.4.1 and Proposition 5.4.1. To that end, we define the

process

Ln
1 ≡ Qn

1 + Zn
1,1 −mn

1 . (5.4.4)

Observe that(Ln
1 )

+ ≡ Qn
1 and(Ln

1 )
− ≡ In1 , so thatIn1 ≤ (κn − Ln

1 )
+ w.p. 1.

Corollary 5.4.2. The sequence(κn − Ln
1 )

+/ log(n) is SB. Hence,In1 / log(n) is SB.

5.4.2 The Idleness Process in Pool2

We now turn to the pool-2 idleness process. We establish a stronger property away from

the time origin.

Proposition 5.4.2.For all ǫ andT satisfying0 < ǫ < T <∞,

P ( sup
ǫ≤t≤T

In2 (t) > 0) → 0 as n→ ∞.

Proof: Much of the argument here repeats the proof of Theorem 4.7.4.For the first state-

ment, we will create a stochastic lower bound and show that itsatisfies the statement. We

will exploit a linear combination of processes associated with the two queues. For that
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purpose, we define the process

Ln
2 ≡ Qn

2 + Zn
1,2 + Zn

2,2 −mn
2 , (5.4.5)

representing the excess number in system for class2. Then letUn be the linear combination

of the processesLn
i , i = 1, 2, defined in (5.4.4) and (5.4.5):

Un ≡ µ2,2(L
n
1 − κn) + µ1,2L

n
2 . (5.4.6)

As we will explain below, this provides a one-dimensional view that can be regarded as

independent of the customer assignments for pool2.

Because of our FQR (or shifted FQR) routing rule,Ln
1 (t) > κn implies thatLn

2 (t) ≥ 0.

If Un(t) > 0, then necessarily we must have eitherLn
1 (t) > κn or Ln

2 (t) > 0, and so

eitherQn
1 (t) > κn or Qn

2 (t) > 0. If either of those events holds, then necessarily we

must haveIn2 (t) = 0. Hence, we will show thatP (Bn) → 1 asn → ∞, whereBn ≡

{supǫ≤t≤T U
n(t) > 0}.

Just as in the proof of Lemma 5.4.1, we will bound the processUn in (5.4.6) below

in sample-path stochastic order by another process,Un
b , a one-dimensional birth-and-death

(BD) process. As a first step, we giveUn
b the same Poisson arrival processes as the original

system has. Thus,Un
b has constant birth rateλnb ≡ µ2,2λ

n
1 + µ1,2λ

n
2 .

We next bound the pair of processes(Ln
1 , L

n
2 ) below in sample-path stochastic order by

another two-dimensional process(Ln
1,b, L

n
2,b). We construct the lower-bound process(Ln

1,b, L
n
2,b)

by increasing the departure rates in both processesLn
1 andLn

2 , making it so that each goes

down at least as fast, regardless of the state of the other. First, we place reflecting upper

barriers on the two queues. This is tantamount to making the death rate infinite in these

states and all higher states. We place the reflecting upper barrier onLn
1 atκn+ǫ1n; we place

the reflecting upper barrier onLn
2 atǫ1n. With the upper barrier atǫ1n, the departure rate of
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Ln
1 is bounded above byµ1,1m

n
1 + θ1κ

n + θ1ǫ1n+µ1,2Z
n
1,2(t), based on assuming that pool

1 is fully busy serving class1, thatLn
1 is at its upper barrier, and thatZn

1,2(t) agents from

pool 2 are currently busy serving class1 in the original system. Second, with the upper

barrier atǫ1n, the departure rate ofLn
2 is bounded above byµ2,2m

n
2 + θ2ǫ1n− µ1,2Z

n
1,2(t),

based on assuming that pool2 is fully busy withZn
1,2(t) agents from pool2 currently busy

serving class1, and thatLn
2 is at its upper barrierǫ1n. Thus, we giveLn

1,b andLn
2,b these

bounding rates at all times

Of course, as constructed, the evolution of(Ln
1,b, L

n
2,b) depends on the processZn

1,2

associated with the original system. However, we can avoid this difficulty by looking at the

special linear combination in (5.2.5); i.e., we define the associated process

Un
b ≡ µ2,2(L

n
1,b − κn) + µ1,2L

n
2,b. (5.4.7)

By the sample-path stochastic order(Ln
1 , L

n
2 ) ≥st (L

n
1,b, L

n
2,b), we get the associated sample-

path stochastic orderUn ≥st U
n
b . Moreover, the stochastic processUn

b is independent

of the processZn
1,2, because of the particular linear combination we have chosen for the

one-dimensional processesUn andUn
b in (5.2.5) and (5.4.7). We have chosen that linear

combination so that the number of pool-2 agents working on class1 does not matter.

Now observe that the lower-bound stochastic processUn
b is a BD process on the set of

all integers in(−∞, (µ2,2 + µ1,2)ǫ1n]. The BD process will have both constant birth rate

λnb defined above and constant death rateµn
b . The important point is that we will chooseǫ1

so small that the constant driftδn ≡ λnb − µn
b is strictly positive for all suitably largen. To

achieve the positive drift below, we will rely heavily on theoverload assumption, 1.
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By the definitions above, the stochastic processUn
b has death rate

µn
b ≡ µ2,2(µ1,1m

n
1 + θ1κ

n + θ1ǫ1n+ µ1,2Z
n
1,2(t))

+µ1,2(µ2,2m
n
2 + θ2ǫ1n− µ2,2Z

n
1,2(t)))

= µ2,2(µ1,1m
n
1 + θ1κ

n) + µ1,2µ2,2m
n
2 + (µ2,2θ1 + µ1,2θ2)ǫ1n. (5.4.8)

As a consequence, for eachn ≥ 1, the drift inUn
b is

δnb ≡ λnb − µn
b = µ2,2(λ

n
1 −mn

1µ1,1 − θ1κ
n)

+µ1,2(λ
n
2 −mn

2µ2,2) + (µ2,2θ1 + µ1,2θ2)ǫ1n. (5.4.9)

Hence, after scaling, we getδnb /n→ δ, where

δb ≡ µ2,2(λ1 −m1µ1,1 − θ1κ) + µ1,2(λ2 −m2µ2,2) + (µ2,2θ1 + µ1,2θ2)ǫ1. (5.4.10)

By 1, we see that we would haveδb > 0 if ǫ1 = 0. However, because of the strict inequality

in 1, we can always chooseǫ1 sufficiently small, so thatδb > 0, and we do that.

Now we can establish a FWLLN forUn
b . Such a FWLLN is elementary since the BD

process has constant birth and death rates with positive drift. After exploiting the fact that

we start atLn
1 (0) = κn andLn

2 (0) = 0, so thatUn
b (0) = Un(0) = 0, we see that

Ūn
b ⇒ ub in D as n→ ∞, (5.4.11)

where

Ūn
b (t) ≡ Un

b (t)/n and ub(t) ≡ δbt ∧ ǫ1 for t ≥ 0, (5.4.12)

with ub(0) = 0.
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As a consequence, we deduce that, for anyǫ andT with 0 < ǫ < T <∞,

P ( inf
ǫ≤t≤T

Un(t) > 0) → 1 as n→ ∞. (5.4.13)

Next, we recall that on the subset in the underlying probability space for whichinfǫ≤t≤T Un(t) >

0, we must have, for eacht, that eitherQn
1 (t) > κn or Qn

2 (t) > 0. However, either one

of these inequalities implies thatIn2 (t) = 0. Thus the idleness must be0 throughout the

interval[ǫ, T ]. Hence we have established the proposition.

5.5 Remaining Proofs in Section 4.8

5.5.1 Remaining Proofs in§4.8.1

Proof of Lemma 4.8.1: For background on tightness, see [13, 57, 78]. We recall a few

key facts: Tightness of a sequence ofk-dimensional stochastic processes inDk is equiv-

alent to tightness of all the one-dimensional component stochastic processes inD. For a

sequence of random elements ofDk, C-tightness impliesD-tightness and that the limits

of all convergent subsequences must be inCk; see Theorem 15.5 of the first 1968 edition

of [13]. Thus it suffices to verify conditions (6.3) and (6.4)of Theorem 11.6.3 of [78].

Hence, it suffices to prove SB of the sequence of stochastic processes evaluated at time0

and appropriately control the oscillations, using the modulus of continuity onC. We obtain

the stochastic boundedness at time0 immediately from Assumption 3 in§4.3. We show

that we can control the oscillations below. The resulting tightness implies that the sequence

of stochastic processes is SB.

We now show how to control the oscillations. For that purpose, let w(x, ζ, T ) is the
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modulus of continuity of the functionx ∈ D, i.e.,

w(x, ζ, T ) ≡ sup {|x(t2)− x(t1)| : 0 ≤ t1 ≤ t2 ≤ T, |t2 − t1| ≤ ζ}.

Using the representations (4.4.1)-(4.4.4), fort2 > t1 ≥ 0 we have

∣∣Q̄n
1 (t2)− Q̄n

1 (t1)
∣∣ ≤ An

1 (t2)− An
1 (t1)

n
+

∫ t2
t1

1{Dn(s)>0} dS
n(s)

n

+

∫ t2
t1

1{Dn(s)≤0} dS
n
1,1

n
+
Un
1 (t2)− Un

1 (t1)

n
,

Hence, for anyζ > 0 andT > 0,

w(Qn
1/n, ζ, T ) ≤ w(An

1/n, ζ, T ) + w(Sn/n, ζ, T ) + w(Sn
1,1/n, ζ, T )

+w(Un
1 /n, ζ, T ). (5.5.1)

Then observe that we can bound the oscillations of the service processesSn
i,j by the oscil-

lations in the scaled Poisson processN s
i,j(n·). In particular, by (4.4.1),

w(Sn
i,j/n, ζ, T ) ≤ w(N s

i,j(nµi,jmj ·)/n, ζ, T ) ≤ w(N s
i,j(n·)/n, cζ, T ) (5.5.2)

for some constantc > 0. Next for the abandonment processUn
i , we use the elementary

bounds

Qn
i (t) ≤ Qn

i (0) + An
i (t),

|Un
i (t2)− Un

i (t1)| = |Ni(θi

∫ t2

t1

Qn
i (s) ds|

≤ |Ni(nθ(Q̄
n
i (0) + Ān

i (T )(t2 − t1))|. (5.5.3)

Let qbd ≡ 2(qi(0)+T ), whereQ̄n
i (0) ⇒ qi(0) by Assumption 3, and letBn be the following
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subset of the underlying probability space:

Bn ≡ {Q̄n
i (0) + Ān

i (T ) ≤ qbd}.

ThenP (Bn) → 1 asn→ ∞ and, on the setBn, we have

w(Un
i /n, ζ, T ) ≤ w(Nu

i (nqbd·)/n, ζ, T ) ≤ w(Nu
i (n·)/n, cζ, T ) (5.5.4)

for some constantc > 0.

Thus, there exists a constantc > 0 such that, for anyη > 0, there existsn0 andζ > 0

such that, for alln ≥ n0, P (Bn) > 1− η/2 and onBn

w(Qn
i /n, ζ, T ) ≤ w(Na

i (n·)/n, cζ, T ) + 2

2∑

i=1

2∑

j=1

w(N s
i,j(n·)/n, cζ, T )

+w(Nu
i (n·)/n, cζ, T ). (5.5.5)

However, by the FWLLN for the Poisson processes, we know thatwe can control all these

moduli of continuity on the right. Thus we deduce that, for every ǫ > 0 andη > 0, there

existsζ > 0 andn0 such that

P (w(Qn
i /n, ζ, T ) ≥ ǫ) ≤ η for all n ≥ n0.

Hence, we have shown that the sequence{Q̄n
i } is tight.

We now turn to the sequence{Z̄n
1,2}. Let An

1,2(t) denote the total number of class-1

arrivals up to timet, who will eventually be served by type-2 servers in systemn. Let

Ān
1,2 ≡ An

1,2/n andS̄n
1,2(t) ≡ Sn

1,2(t)/n, for Sn
1,2(t) in (4.4.1). Since

Zn
1,2(t) = Zn

1,2(0) + An
1,2(t)− Sn

1,2(t),



CHAPTER 5. REMAINING PROOFS 244

we have

|Z̄n
1,2(t2)− Z̄n

1,2(t1)| ≤ Ān
1,2(t2)− Ān

1,2(t1) + S̄n
1,2(t2)− S̄n

1,2(t1).

However, forAn
1 in (4.4.1),

An
1,2(t2)− An

1,2(t1) ≤ An
1 (t2)−An

1 (t1).

SinceĀn
1 ⇒ λ1e in D, the sequence{Ān

1} is tight. Together with (5.5.2), that implies that

the sequence{Z̄n
1,2} is tight as well. Finally, we observe that the tightness of{Ȳ n

8 } follows

from (5.5.2), (5.5.4) and the convergence ofĀn
i .

Proof of Lemma 4.8.2: Apply the bounds on the modulus of continuity involving Pois-

son processes in the proof of Lemma 4.8.1 above. For a PoissonprocessN , let N̂n ≡
√
n(N̄n − e), whereN̄n(t) ≡ N(nt)/n, t ≥ 0. By the triangle inequality, for eachn, ζ ,

andT ,

w(N̄n, ζ, T ) ≤ w(N̂n, ζ, T )√
n

+ w(e, ζ, T ) ⇒ ζ as n→ ∞.

Since,w(x, ζ, T ) is a continuous function ofx for each fixedζ andT , we can apply this

bound with the inequalities in the proof of Lemma 4.8.1 to deduce (4.8.1).

5.5.2 Remaining Proof in§4.8.3

Proof of Lemma 4.8.7: Consider the drift rates of the QBD-version ofDn
f in (4.5.6), and

observe that, by the linearity of the drift expressions and Assumption 3,δn+(X
n(0))/n ⇒

δ+(x(0)) andδn−(X
n(0))/n ⇒ δ−(x(0)) for δ+ andδ− in (4.5.20). Also by Assumption 3,
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x(0) ∈ A so that (4.5.21) holds. This implies that there existsη > 0 such that

lim
n→∞

P (δn+(X
n(0)) < −η and δn−(X

n(0)) > η) = 1,

i.e., (4.8.11) holds att = 0 with probability converging to1 asn→ ∞.

To prove the lemma, we bound the drifts in (4.5.6). We do that by bounding the change

in the components ofXn(t) in a short interval after time0. To do that, we use the stochastic-

order bounds in (4.7.4)-(4.7.5). Recall the rather specialordering obtained there:

(−Qn
1,a, Q

n
2,a, Z

n
a ) ≤st (−Qn

1 , Q
n
2 , Z

n
1,2) ≤st (−Qn

1,b, Q
n
2,b, Z

n
b ). (5.5.6)

In particular, we will find two processesXn
+ andXn

− in D, such that

δn+(X
n(t)) ≤st δ

n
+(X

n
+(t)), δn−(X

n(t)) ≥st δ
n
−(X

n
−(t)) (5.5.7)

and, for someδ > 0 andη > 0,

lim
n→∞

P

(
sup
t∈[0,ξ]

δn+(X
n
+(t)) < −η and inf

t∈[0,ξ]
δn−(X

n
−(0)) > η

)
= 1. (5.5.8)

To construct the processesXn
+ andXn

− with these properties, we use the bounding

processesXn
a andXn

b in (4.7.4) and (4.7.5) (appearing again in (5.5.6). Specifically, we let

Xn
+ ≡ (Qn

1,a, Q
n
2,b, Z

n
+) and Xn

− ≡ (Qn
1,b, Q

n
2,a, Z

n
−), (5.5.9)

respectively, whereZn
+ = Zn

b if µ2,2 ≥ µ1,2, andZn
+ = Zn

a otherwise. Zn
− = Zn

a if
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µ2,2 ≥ µ1,2, andZn
− = Zn

b otherwise. As a consequence, for eacht ≥ 0, the drifts satisfy

δn+(X
n
+(t)) ≡ j[λn1 − µ1,1m

n
1 − (µ1,2 − µ2,2)Z

n
+(t)− µ2,2m

n
2 − θ1Q

n
1,b(t)]

− k[λn2 − θ2Q
n
2,a(t)],

δn−(X
n
−(t)) ≡ j[λn1 − µ1,1m

n
1 − θ1Q

n
1,a(t)]

− k[λn2 − (µ1,2 − µ2,2)Z
n
−(t)− µ2,2m

n
2 − θ2Q

n
2,b(t)].

(5.5.10)

We have directly defined the processes in (5.5.9) to ensure that the inequalities in (5.5.7)

are satisfied.

Assume thatXn
+(0) = Xn

−(0) = Xn(0). By Assumption 3,X̄n(0) ⇒ x(0) asn → ∞,

so that the condition in Lemma 4.7.1 holds att = 0. Hence, by Lemma 4.7.1,̄Xn
+ ⇒ x+ ≡

(q1,b, q2,a, z+), wherez+ = za if µ2,2 ≥ µ1,2 andz+ = zb otherwise. Also,X̄n
− ⇒ x− ≡

(q1,a, q2,b, z−), wherez− = zb if µ2,2 ≥ µ1,2 andz− = za otherwise. Hence, by the linearity

of the functionsδn+ andδn−,

δn+(X
n
+)/n⇒ δ+(x+) and δn−(X

n
−)/n⇒ δ−(x−) in D asn→ ∞. (5.5.11)

Sincex+(0) = x−(0) = x(0) ∈ A, and by the continuity ofδ+(·) andδ−(·), we can

find ξ > 0 andη > 0, such thatδ+(x+(t)) < −η andδ−(x−(t)) > η. for all t ∈ [0, ξ]. That

implies that we have (5.5.8). Together with (5.5.7), that concludes the proof.
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5.5.3 Remaining Proof in§4.8.5

Proof of Lemma 4.8.9: We can apply essentially the same reasoning as in the proof of

Lemma 4.8.7. We only need to change the order. Now we aim to achieve:

δn+(X
n
m(t)) ≤ δn+(X

n(t)) ≤ δn+(X
n
M(t)), and

δn−(X
n
m(t)) ≤ δn−(X

n(t)) ≤ δn−(X
n
M(t))

(5.5.12)

instead of (5.5.7). Moreover, we will do so such that the two bounding QBD’s are positive

recurrent over some interval[0, ξ] on the setsBn whereP (Bn) → 1 asn → ∞. In other

words, we will use random vectorsXn
M andXn

m instead of full processes.

We again use the stochastic-order bounds in (4.7.4)-(4.7.5), with the ordering in (5.5.6).

To constructXn
M , let

Xn
M+ ≡ (Qn

1,M , Q
n
2,M , Z

n
M+) and Xn

M− ≡ (Qn
1,M , Q

n
2,M , Z

n
M−), (5.5.13)

where

Qn
1,M ≡ inf0≤t≤ξ Q

n
1,b(t) ∨ 0, Qn

2,M ≡ ‖Qn
2,b‖ξ,

Zn
M+ ≡ inf0≤t≤ξ Z

n
+(t), Zn

M− ≡ ‖Zn
−‖ξ,

(5.5.14)

with Zn
+(t) ≡ Zn

b andZn
−(t) ≡ Zn

a if µ2,2 ≥ µ1,2, andZn
+(t) ≡ Zn

a andZn
−(t) ≡ Zn

b

otherwise. Note that we can regard{Xn
M+(ξ) : ξ ≥ 0} as a stochastic process as a function

of ξ, but we work with the final valueXn
M+ ≡ Xn

M+(ξ), and similarly forXn
M−. Let

{Dn
f (X

n
M , s) : s ≥ 0} have the rates determined byXn

M− whenDn
f (X

n
M , s) ≤ 0, and the

rates determined byXn
M+ whenDn

f (X
n
M , s) > 0.

We do a similar construction forXn
m. Let

Xn
m+ ≡ (Qn

1,m, Q
n
2,m, Z

n
m+) and Xn

m− ≡ (Qn
1,m, Q

n
2,m, Z

n
m−), (5.5.15)
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where

Qn
1,m ≡ ‖Qn

1,a‖ξ, Qn
2,m ≡ inf0≤t≤ξ Q

n
2,b(t) ∨ 0,

Zn
m+ ≡ ‖Zn

+‖ξ, Zn
m− ≡ inf0≤t≤ξ Z

n
−(t).

(5.5.16)

with Zn
+(t) ≡ Zn

a andZn
−(t) ≡ Zn

b if µ2,2 ≥ µ1,2, andZn
+(t) ≡ Zn

b andZn
−(t) ≡ Zn

a

otherwise (the reverse of what is done in (5.5.14)). Let{Dn
f (X

n
m, s) : s ≥ 0} have the rates

fromXn
m− whenDn

f (X
n
m, s) ≤ 0, and the rates fromXn

m+ whenDn
f (X

n
m, s) > 0. By this

construction, we achieve the ordering in (4.8.18). We coverthe rates ofDn
1,2(t) too because

we can make the identification: the rates ofDn
1,2(t) givenXn(t) coincide with the rates of

Dn
f (X

n(t), ·).

It remains to find aξ such that both the processes{Dn
f (X

n
m, s) : s ≥ 0} and{Dn

f (X
n
M , s) :

s ≥ 0} are positive recurrent. To do so, we will use a minor modification of the reasoning

in the final step of the proof of Lemma 4.8.7. We use Lemma 4.7.1, which concludes that

the bounding processes as functions ofξ have fluid limits. By Lemma 4.7.1, we can con-

clude thatX̄n
m+ ≡ n−1Xn

m+ ⇒ x+m, X̄n
m− ≡ n−1Xn

m− ⇒ x−m, X̄n
M+ ≡ n−1Xn

M+ ⇒ x+M

andX̄n
M− ≡ n−1Xn

M− ⇒ x−M in D, wherexm+ , x−m, x+M andx−M are all continuous with

x+m(0) = xm−(0) = x+M(0) = x−M = x(0) ∈ A. Hence, we can findξ′ such thatxm(ξ) ∈ A

andxM (ξ) ∈ A for all ξ ∈ [0, ξ′]. Hence, we can chooseξ such that the constant vectors

xm ≡ xm(ξ) andxM ≡ xM(ξ) both arbitrarily close tox(0).

Finally, we use the linearity of the drift function to deducethe positive recurrence of

the processes depending uponn. As in (5.5.11), we have

δn−(X
n
m−)/n ⇒ δ−(x

−
m), δn+(X

n
m+)/n⇒ δ+(x

+
m),

δn−(X
n
M−)/n ⇒ δ−(x

−
M ), and δn+(X

n
M+)/n⇒ δ+(x

+
M). (5.5.17)

As a consequence, we can deduce the conclusion of the lemma.
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5.5.4 Remaining Proof in§4.8.6

Proof of Lemma 4.8.10: We start with the processesDn
f (X

n
m, ·) andDn

f (X
n
M , ·) already

constructed in§§4.8.5 and 5.5.3, with the understanding that the interval length ξ will in

general need to be redefined, now depending onǫ. Since the initial state has been frozen

in Dn
f (X

n
m, ·), Dn

f (X
n
M , ·) andDn

f (X
n(t), ·), these three processes are stationary CTMC’s

(have stationary transition rates), butDn
1,2(t) is a nonstationary CTMC. In the following

we construct modified versions of these processes, but so as not to alter their individual

distributions.. For the following, we regard all the processes as CTMC’s and use the natural

order on the integer state space (instead of the special order in the QBD structure).

As in the proof of Theorem 4.5.3, we can apply uniformization. As explained there,

without loss of generality, we can regard the transition rates inDn
1,2 as being uniformly

bounded. Thus, for for alln suiitably large, and for each process under consideration,we

can generate all potential transitions from constant-ratePoisson processes. Because of the

scaling byO(n) in (4.2.2), the Poisson processes for modeln can be given rateαn, n ≥ 1,

for some positive constantα. The constantα is chosen so that the rateαn exceeds the

maximum total transition rate out of any state for any of the processes for eachn ≥ 1.

Then the actual transitions of the process are governed by a DTMC. The Poisson process

generates potential transitions. When there is not a real transition, that is captured in the

DTMC by a transition from that state back to itself. By choosing the Poisson transition

rate sufficiently large, for every state in the state space, there is positive probability of a

one-step transition immediately back to that same state. Hence, the DTMC is aperiodic as

well as ireducible and positive recurrent. Note that the Poisson process captures the scaling

by n.

For the new construction, we use a regenerative approach, using the regenerative struc-

ture discussed in§4.8.4. Provided that the QBD’sDn
f (X

n
M , ·) andDn

f (X
n
m, ·) are positive
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recurrent, which will hold onBn(ξ, η) by virtue of the construction in§4.8.5, successive

visits to any fixed state constitute regenerative cycles forthese stationary CTMC’s with

constant transition rates. It is convenient to let the regenerative state, denoted bys∗, be

contained in the boundary of the QBD.

We use the common initial state, says∗. For simplicity, we initially assume that

Dn
f (X

n
m, 0) = Dn

f (X
n
M , 0) = Dn

f (X
n(t), 0) = Dn

1,2(0) = s∗, (5.5.18)

but we will later show that this initial condition is not needed; e.g., it can be replaced by

the SB condition imposed in Assumption 3. We then focus on successive visits to that fixed

state for the upper bound process.

For the new construction, we couple all four processes; i.e., we start by constructing

all the processes together, starting in their common initial state, based on the rate order

established in (4.8.18). That means that we use a single Poisson process with rateαn

to generate potential transitions for all the processes under consideration. We match the

actual transitions as much as possible in order to keep the processes evolving together as

much as possible. We will chooseξ to ensure that the transition probabilities differ by

only a negligible amount, so the processes will only rarely have different transitions during

a single regenerative cycle. Even though we cannot achieve full sample path stochastic

order for the stochastic processes over the full time interval, we can keep all the processes

together over each regenerative cycle, with high probability. (Recall that the number of

transitions in each regenerative cycle is of orderO(1), but the transitions are occurring at

rateO(n), so we arenotsucceeding in keeping the process paths identical over positive time

intervals, but that is not needed. Because we are concerned with the integrals in (4.8.23), it

suffices to have theproportionof time that the paths are identical be large. Also recall that

the inequalities in (4.8.23) need not hold w.p.1; we are onlyclaiming that the probability
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that they hold should converge to1 asn→ ∞.)

Our general idea is to construct an alternating renewal process for eachn, which in-

volves a sequence{(Un
1,k, U

n
2,k) : k ≥ 1} of i.i.d pairs of nonnegative random variables,

Un
1,k andUn

2,k. These variables measure times in the full process and so will beO(1/n).

The first random variableUn
1,k is the geometric random sum of the cycle lengths of all the

regenerative cycles where the processes all coincide, while the second intervalUn
2,k is a

subsequent interval on which the processes do not necessarily coincide. The second in-

terval ends when all processes are in the regenerative statetogether. We then repeat the

construction. We will make the first intervalUn
1,k much longer than the second interval

Un
2,k, ensuring that the proportion of time that the processes allagree is arbitrarily close to

1 (falling within the ǫ gaps in (4.8.23)). The cycles will haveO(1) transitions, but since

the transitions occur according to the Poisson process at rate αn, the cycle lengths are

asymptotically negligible, making the limiting proportions all that matters.

With the general strategy laid out, it now remains to show that we can make the first

intervalsUn
1,k suitably long and make the second intervalsUn

2,k relatively short. The con-

struction is more complicated for the second intervalUn
2,k. The second interval is made

up of two parts. The first part ofUn
2,k is the exceptional cycle on which the processes first

disagree. The second part ofUn
2,k starts at the end of that exceptional cycle, where the upper

process is in the regenerative state, but in general the other processes are not. At that point,

we change the construction. We useindependentPoisson processes, all with rateαn, to

generate the transitions in the four processes. This secondpart ends when all the processes

are simultaneously together in the regenerative state. We start over after the second interval

ends, i.e., afterwards we again use a single Poisson processto generate the transitions of all

processes, starting when they are all together in the regenerative state, and so forth. In this

way we produce the alternating renewal process structure.

We do a careful analysis to ensure that the second random variableUn
2,k is appropriately
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controlled, independent ofξ, and then we chooseξ suitably small to make the first interval

relatively long, so that the long-run proportion of time that the process is in the second

interval, which is
E[Un

2,k]

E[Un
1,k] + E[Un

2,k]
, (5.5.19)

is as small as desired. In fact, our construction will makeE[Un
1,k] ↑ ∞ asξ ↑ ∞, while

E[Un
2,k] ↓ 0 asξ ↑ ∞. Since the Poisson rateαn produces a time scaling of orderO(n), the

cycles are occurring more rapidly asn → ∞. In that way we can achieve the inequalities

in (4.8.23) with probabiity converging to1 asn → ∞. Since we are working with indi-

cator functions in (4.8.23), in computing the bound we allowthe worst case, in which the

indicator functions differ by1 throughout the second interval.

We now present the details. Let the random number of transitions in a regenerative

cycle for the upper bound processDn
f (X

n
M , ·) beNn. Since the events are occurring at

rate of orderO(n), we can use a version of the time-expanded queue-differenceprocess for

Dn
f (X

n
M , ·), as in (4.5.7). By Theorem 4.5.3, we haveNn ⇒ N asn → ∞, whereN is

the corresponding random number of transitions during a regenerative cycle for the FTSP

D(xM , ·), using the same designated regenerative state, whereX̄n
M ⇒ xM asn→ ∞, as in

§4.8.5. Moreover, because of the special QBD structure we also have additional regularity

properties.

Let pn be the probability mass function ofNn, i.e., pn(k) ≡ P (Nn = k). As in

§4.8.4, From the convergenceNn ⇒ N and the QBD structure of all processes, we know

that pn has a proper generating function (gf)ψNn(z) ≡ E
[
zN

n]
. Combining the QBD

and gf structure, we can conclude that there is an integerk0 such that we can bound the

probabilitiespn(k) above and below by

CLq̃
k ≤ pn(k) ≤ CUq

k for all k ≥ k0, (5.5.20)
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for positive constantsCL, CU , q̃ andq with 0 < q̃ < q < 1, independent ofn for n suit-

ably large. That implies associated uniform integrability, from which we obtain associated

convergence of means:E[Nn] → E[N ] asn→ ∞, and higher moments as well if desired.

We now focus on the event, sayAn, that any of the processes ever differ from the upper

bound process over a regenerative cycle of thenth upper bound process. In addition to the

upper bound process, it suffices to consider only the lower bound process, because the rate

order implies that we can construct the processes so that thelower bound process will differ

from the upper bound process at some transition whenever anyof the other intermediate

processes do, i.e., whenever the other processes do; i.e., wheneverDn
f (X

n(t), ·) orDn
1,2(·)

do.

Both the upper and lower bound processes are constant rate CTMC’s, with common

rates in the two regions(−∞, 0] and (0,∞). Thus there are only two different cases to

consider: the two processes are either both in the upper region or both in the lower region.

To simplify the analysis, it is convenient to modify the construction of the two processes

Dn
f (X

n
m, ·) andDn

f (X
n
M , ·) in order to make the probability that the two processes differ

at any transition be the same in both regions for allξ andn, and thus the same for all

transitions for allξ andn. That can be done by adjusting the bounds, while still keeping

the rate order and the asymptotic properties asξ ↓ 0. (For eachn, we can make the

difference in the total transition rate in each region the maximum of what it was originally

in each of the two regions. Clearly, the maximum difference also converges to0 asξ ↓ 0.)

That allows us to totally decouple the probability of a different transition at each transition

epoch from the evolution of the processes, and thus simplifies calculations of bounds.

With that modified construction in place, letW n
i = 1 if the lower bound process

Dn
f (X

n
m, ·) makes a different transition from the upper bound processDn

f (X
n
M , ·) at the

ith transition of the Poisson process, given that has not happened so far. Given our revised

construction above, we can assume that the sequence{W n
i : i ≥ 1} is a sequence of i.i.d



CHAPTER 5. REMAINING PROOFS 254

random variables withP (W n
i = 1) = φn, whereφn → φ asn→ ∞ andφ ↓ 0 asξ ↓ 0. To

see why, recall that, by Lemma 4.7.1,X̄n
M ⇒ xM andX̄n

m ⇒ xm in D6 asn → ∞, where

xM(0) = xm(0) = (x(0), x(0)). Hence, by takingξ small enough andn large enough,

we can makeX̄n
M andX̄n

m arbitrarily close for allt ∈ [0, ξ]. Consequently, the probability

that any of the processes differ at stepk ≥ 1 during a regenerative cycle, depends on the

number of transitions during a regenerative cycle being at leastk. Hence,

P (An) ≡ P (any processes differ) =
∞∑

k=1

φn(1− φn)
k−1

∞∑

j=k

pn(j)

≤
k0∑

k=1

φn(1− φn)
k−1 +

∞∑

k=k0+1

φn(1− φn)
k−1

∞∑

j=k

CUq
j

= φn

(
k0∑

k=1

(1− φn)
k−1 +

CUq

1− q

∞∑

k=k0+1

[(1− φn)q]
k−1

)

≤ C1φ

(5.5.21)

for a new constantC1, provided that(1 − φ)q < 1 andn is suitably large. The condition

(1−φ)q < 1 holds sinceq < 1, so that the overall probabilityP (An) can be made arbitrarily

small, by makingφ small enough by choosingξ suitably small andn suitably large.

The first intervalUn
1,k is the random sum ofV n

1,k i.i.d. exponential random variables,

each with mean1/nα (corresponding to the Poisson process with ratenα), whereV n
1,k

is the geometric random sum, with mean1/P (An), of the numbers of transitions in the

successive cycles, in which no transitions disagree. We nowgive an expression for a lower

bound for the means:

E[V n
1,k] =

E[Nn]

P (An)
≥ C2E[N ]

φ
for all suitably large n, (5.5.22)

whereC2 < 1/C1 for C1 in (5.5.21). We obtain the lower bound in (5.5.22) by applying
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the convergence of the meansE[Nn] → E[N ] asn→ ∞, indicated above. Thus,

E[Un
1,k] ≥

C2E[N ]

φnα
for all suitably large n, (5.5.23)

as well. The main point is that we can make these means in (5.5.22) and (5.5.23) large in

the relevant scale by makingφ suitably small, which we can achieve by the proper choice

of ξ.

We now want to show thatV n
2,k, the number of transitions of the Poisson process with

ratenα in the second intervalUn
2,k, can be suitably controlled. To go with (5.5.22), it

suffices to show thatV n
2,k is SB asn → ∞. Equivalently, it suffices to show thatnUn

2,k is

SB asn→ ∞. We will consider the two parts of this second interval in turn.

First consider the exceptional cycle. LetNn
e be the random number of transitions in

an exceptional regenerative cycle for the upper bound process. First,Nn
e is not distributed

the same asNn, because longer cycles are more likely to become exceptional cycles than

shorter ones, because they generate more opportunities fora difference. Nevertheless, we

can boundE[Nn
e ] above. To do so, we need to boundP (An) below, instead of above as in

(5.5.21). We can do so by using the lower bound for the probabilities pn(k) ≡ P (Nn = k)

in (5.5.20).

We can now bound the meanE[Nn
e ] above for alln suitably large. In particular,

E[Nn
e ] = E[Nn|An] =

E[Nn;An]

P (An)
. (5.5.24)
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We start with the numerator of (5.5.24):

E[Nn;An] =

∞∑

k=1

k∑

j=1

kP (N = k; processes first differ at transitionj)

=

∞∑

k=1

k∑

j=1

kP (Nn = k)φn(1− φn)
j−1 =

∞∑

k=1

kpn(k)φn
1− (1− φn)

k

φn

= E[Nn]− (1− φn)
∞∑

k=1

kpn(k)(1− φn)
k−1 = E[Nn]− zn

d

dz
ψNn(zn),

wherezn ≡ (1− φn).

Note that, by Abel’s Lemma (Lemma 5.1 pg. 64 in [41]),ψNn(zn) and, consequently,

d
dzn
ψNn(zn) are continuous from the left atzn = 1. Also,zn → 1 (from the left) asφn → 0.

Hence, the numerator of (5.5.24) converges to0 asφn → 0. We next show that the rate

of convergence to0 is the same as that of the denominator of (5.5.24), so that (5.5.24) is

bounded from above by a constant. By (5.5.21) and Fubini’s theorem,

P (An) =

∞∑

k=1

φn(1− φn)
k−1

∞∑

j=k

pn(j) =

∞∑

j=1

pn(j)

j∑

k=1

φn(1− φn)
k−1

=

∞∑

j=1

pn(j)[1− (1− φn)
j] = 1− ψNn(zn).

Applying L’Hôpital’s rule and Abel’s lemma, we see that thelimit of (5.5.24) asφn → 0 (by

takingn to infinity and thenξ to zero) is bounded from above by a constant. Specifically,

lim
zn↑1

d
dzn
ψNn(zn) + zn

d2

d2zn
ψNn(zn)

d
dzn
ψNn(zn)

=
E[Nn] + E[(Nn)2]

E[Nn]
≤ C3

for some constantC3. (Recall thatE[Nn] → E[N ] andE[(Nn)2] → E[N2] asn→ ∞ by

(5.5.20).)

For the next step, we will also want to bound the tail probabilities ofNn
e . By a minor
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variation of the argument in (5.5.24), we can show they are bounded by a random variable

with a geometric tail. Ifk1 ≥ k0, then

P (Nn
e ≥ k1) =

P (Nn ≥ k1;An]

P (An)
=

∑∞
k=k1

∑k
j=1 φn(1− φn)

j−1pn(k)
∑∞

k=1

∑k
j=1 φn(1− φn)j−1pn(k)

≤
∑∞

k=k1
[1− (1− φn)

k]CUq
k

∑∞
k=k0

[1− (1− φn)k]CLq̃k
≤ C4[(1− φ)q]k1 (5.5.25)

for a new constantC4 (depending uponk0), provided thatφ is close enough to0, which can

be ensured by makingξ small, and thatn is suitably large.

We now are ready to treat the second part of the second interval Un
2,k, focusing on the

number of transitionsV n
2,k. Our main idea now is to let the four processes evolve inde-

pendently with the transitions generated by independent Poisson processes. Thus, to be

concrete, letV n
2,k refer specifically to the number of transitions in the Poisson process gen-

erating the upper bound processDn
f (X

n
M , ·). To understand the essential point, we first con-

sider the relatively simple case in which there are four independent versions ofDn
f (X

n
M , ·)

starting together in the regenerative state. But now we generate the vector-valued four-tuple

of processes together using the superposition of four independent Poisson processes, which

is a Poisson process with rate4αn. At each transition epoch of this Poisson process, we let

the transition correspond to each of the four individual processes independently with proba-

bility 1/4. We thus construct the4 independent versions together. We can thus focus on the

vector-valued discrete-time Markov chain representing the transitions of all4 processes,

but each of these transitions corresponds to only one of the four Poisson processes, and

the four processes remain independent. Now letNn
c be the total number of transitions of

this Poisson process with rate4αn before the interval ends with all four processes together

again in the regenerative states∗.

Now observe that the intervals between successive visits ofall four processes to this
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regenerative state constitute a renewal process. In the long run, each process will be in the

regenerative state a proportionπn(s∗) of the time, for0 < πn(s∗) < 1; i.e.,πn(s∗) is the

steady-state probability of the regenerative state, says∗, i.e.,πn(s∗) = P (Dn
f (X

n
M ,∞) =

s∗), with 1/πn(s∗) being the mean interval between successive visits tos∗. Consequently,

in the long run, the four copies will all be in the states∗ together a proportionπn(s∗)4

of the time. Since successive return times tos∗ form a renewal process, the mean time

between successive returns of all four copies of the upper bound processDn
f (X

n
M , ·) to s∗

is 1/πn(s∗)4 for eachn.

By (i) the convergence of̄Xn
M ⇒ xM , (ii) the convergence of the transition rates

of {Dn
f (X

n
M , s) : s ≥ 0} defined in (4.5.2)-(4.5.5) to the transition rates of the FTSP

{D(xM , s) : s ≥ 0} defined in (4.5.9)-(4.5.12) asn→ ∞, which is justified by (4.8.9) and

the following discussion, and (iii) Lemma 4.8.8, we deduce thatπn(s∗) → π(s∗) asn →

∞, whereπ(s∗) is the steady-state probability of the FTSP, i.e.,π(s∗) = P (D(xM ,∞) =

s∗). Hence, for this special initial condition, we have established the boundE[Nn
c ] ≤

C7/π(s
∗)4 <∞ for C7 > 1 for all n suitably large (depending on our choice ofC7).

Of course, we do not actually have four copies of the upper bound process and the

four processes we do have are not all starting in the regenerative state. Hence we have to

do more. There is a further complication, because the processDn
1,2 is not a constant-rate

CTMC. However, we circumvent this difficulty by treatingall the independent processes

under consideration as independent copies of the upper bound processDn
f (X

n
M , ·), but with

different initial conditions. (This addresses the first difficulty.) In particular, we generate

four independent copies ofDn
f (X

n
M , ·) with the given initial conditions at the end of the

exceptional cycle. And, together with the three processes that are not actually the upper-

bound process, we also generate the other process using thatsamePoisson process. Hence

three of the four independent Poisson processes will be usedto generate two processes each.

We do those pairwise constructions as before, aiming to keepthe two processes as close
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together as possible, for each of the three pairs of processes. We have already described

how to analyze the probability of a difference occurring over successive transitions, which

can be (and will be) made negligible.

We will succeed in using the four independent copies ofDn
f (X

n
M , ·) constructed as

above if none of the three independent versionsDn
f (X

n
M , ·) serving for other processes

make a different transition from the original process over the interval under consideration.

Since we will be showing that the total interval is SB, the probability of a different transition

here can be made arbitrarily small as well. We will thus do theconstruction until the

four processes meet again in the regenerative state, but in doing so, we also keep track of

whether or not any of the interior processes make any different transitions. If there were no

differences in transitions for the interior processes, then the cycle has ended when all the

processes first reach the regenerative state at the same transition epoch.

For the moment, assume that no differences occur between thethree original processes

and the version ofDn
f (X

n
M , ·). Hence, we now focus on the different initial conditions

actually holding at the end of an exceptional cycle. To facilitate having these four indepen-

dent copies ofDn
f (X

n
M , ·) with different initial conditions reach the regenerative together as

soon as possible, we couple each process with the upper-bound process as soon as the two

processes are ever in the same state. From that hitting time forward, we let both processes

be the upper bound process, generated by its Poisson process. This leaves the distribution

of the individual processes unchanged. We now proceed untilall three independent copies

of Dn
f (X

n
M , ·) have coupled with the upper-bound processDn

f (X
n
M , ·) and the upper-bound

process (and thus all four) processes have reached the regenerative state.

We can bound this expected number of transitions until the four processes reach the

regeneration state together if we can bound the first hittingtime of s∗. That is so, because

we can bound the expected number of transitions for all four independent processes to

reach the regeneration state together, if at transitionk all four processes have visited state
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s∗ at least once in the lastk transitions. That makes the other three discrete-time processes

distributed as index shifted versions of the upper-bound DTMC.

e now want to bound the first passage time tos∗ for each of the processes not starting in

s∗. he first passage time can be controlled provided the initialcondition can be controlled.

e thus control the separation between the processes that canoccur during the rest of the

exceptional cycle, after the first non-identical transition. After the first non-identical tran-

sition, we focus on the upper bound process. We say that the exceptional cycle ends when

the upper bound process next hits the regenerative state. However, because of the non-

identical transitions, the other processes typically willnot hit the regenerative state at that

same transition epoch. It is evident that, as long as the processes stay together on the same

side of0, the probability of a second different transition during the cycle will be negligible.

However, we lose control when the processes are on differentsides of state0. Fortunately,

it suffices to use a crude bound on the maximum possible separation of the processes during

the exceptional cycle. We can suppose that the maximum possible separation is achieved at

each transition over the entire cycle. The worst case would have the separation increase by

K ≡ 2(j ∨ k) at every transition. (The two processes would have a transition at the same

time going the maximum possible distance away from each other.) Hence, since the total

number of transitions of the upper bound process in the exceptional cycle after the initial

non-identical transition isNn
e , then the other processes are in a state withinKNn

e states of

the regenerative state, where the upper bound processDn
f (X

n
M , ·) will be at the end of the

exceptional cycle. In (5.5.25) we have shown that this random bound on the initial differ-

ence has a geometric tail, so that the probability of large differences are controlled. Since

the first passage time (number of transitions) from any fixed state tos∗ has a generating

function, the number of transitions until all the processeshave hits∗ is SB. Consequently,

Nn
c is SB.

We now specify what we do if there are differences within the period considered above.
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If there were any differences (an event of small probability), then we repeat the construction

for the second part of the second interval using four independent versions ofDn
f (X

n
M , ·)

until the four processes are again together in the regenerative state. This second try will

produce a number of transitionsNn
c,2 different fromNn

c,1 ≡ Nn
c in the first try, but actually

somewhat more favorable (tending to be smaller) because theinitial conditions are more

favorable, with three of the four processes likely to be starting in the regenerative state

and the interior process differing at most by the gapζ , by virtue of Corollary 4.8.4. (By

the independence of the pairs, two or more differences will be asymptotically negligible

compared to a single difference.) So, if the second try is needed, we will be able to control

Nn
c,2 just as we can controlNn

c,1.

However, even the second try may be unsuccessful, because again we may find that

one or more of the three processes makes a transition different from its representation by

Dn
f (X

n
M , ·). Thus we may possibly need to repeat the second-try construction an indefinite

number of times until we get all four processes together in the regenerative state. However,

these successive repetitions will be independent copies ofthe second try, each with the

same initial conditions, yielding numbers of transitions again distributed asNn
c,2. Thus we

can representV n
2,k as the sum ofNn

c and an independent geometric random sum of i.i.d.

random variables distributed asNn
c , where the geometric probability can be made very

small by choosingξ small enough. Thus we can control all ofV n
2,k if we can controlNn

c ,

assuming that all four processes are four independent copies of the upper-bound process

Dn
f (X

n
M , ·), but with different initial conditions.

The final task is to show that the special initial conditions imposed in (5.5.18) are actu-

ally not needed. However, given the assumed condition (4.8.21), it suffices to assume that

statej is the specified regenerative state. Alternatively, we could add an extra initial pe-

riod at the beginning. During this initial period we generate all processes from a common

Poisson process and proceed until the upper bound process hits the designated regenerative
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state. If all processes stay together in the designated regenerative state, then we can pro-

ceed with the construction above. With high probability, all processes will move together

throughout this initial period. If that does not occur, we can have a subsequent interval of

the kindUn
2,k analyzed above, before we get to the regenerative state. A similar story will

hold if we generalize the initial conditions in a controlledway. That completes the proof.

5.5.5 Remaining Proof in§4.8.7

Proof of Lemma 4.8.11: First, letδ > 0, ǫ > 0 andt with 0 < t < δ be given, where

theδ is chosen so thatδ < ξ for ξ in Lemmas 4.8.7, 4.8.9 and 4.8.10. Below we will be

introducing a newξ less than thisδ.

We start by observing that versions of Lemmas 4.8.9 and 4.8.10 hold on an interval

[t, t + ξ], whereξ ≡ ξ(t) satisfies0 < ξ < δ − t. Before, we started with the conver-

genceX̄n(0) ⇒ x(0) in R3 at time0 based on Assumption 3. Now, instead, we base the

convergenceX̄n(t) ⇒ X̄(t) at timet on the convergence we have along the converging

subsequence. Since the processes are Markov processes, we can construct the processes

after timet, given only the value ofXn(t), independently of what happens on[0, t]. We

apply Lemma 4.8.7 to deduce thatP (X̄(t) ∈ A) = 1 (which is justified by our choice of

δ).

We now indicate how the proofs of Lemmas 4.8.9 and 4.8.10 needto be modified,

proceeding forward after timet. Let Xn,ξ
M ≡ (Xn,ξ

M+ , X
n,ξ
M−

) be defined similar toXn
M

in (5.5.13) andXn,ξ
m ≡ (Xn,ξ

m+ , X
n,ξ
m−) be defined similar to andXn

m in (5.5.15), but with

supremum and infimum taken over the interval[t, t + ξ] (instead of over the interval[0, ξ]

as before (where the constantsξ need not be the same for eacht; i.e.,ξ ≡ ξ(t)). Recall that

the associated bounding quantities are constructed from separate processes related toXn

only through their distributions. These too do not depend onthe evolution ofXn after time

t.
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Reasoning as before, by virtue of Lemma 4.7.1, the limitsxξM ≡ (xξM+ , x
ξ
M−) and

xξm ≡ (xξm+ , x
ξ
m−

) of X̄n,ξ
M and X̄n,ξ

m exist. (SinceX̄(t) so far is a random variable, so

arexξM and xξm. However, we can regard̄X(t) as a constant by conditioning upon it,

without affecting the evolution after timet, because of the Markov property.) In particular,

Applying the continuous mapping theorem for the supremum, Theorem 12.11.7 in [78], we

have thatXn,ξ
M+/n ⇒ xξM+ ≡ (qξ1,M , q

ξ
2,M , z

ξ
M+) andXn,ξ

M−/n ⇒ xξM− ≡ (qξ1,M , q
ξ
2,M , z

ξ
M−)

asn→ ∞, where

qξ1,M ≡ inft≤s≤t+ξ q
ξ
1(s) ∨ 0,

qξ2,M ≡ supt≤s≤t+ξ q2(s),

zM+ ≡





inft≤s≤t+ξ z1,2(s) µ1,2 ≤ µ2,2,

supt≤s≤t+ξ z1,2(s) µ1,2 ≥ µ2,2,

zM− ≡





inft≤s≤t+ξ z1,2(s) µ1,2 ≥ µ2,2,

supt≤s≤t+ξ z1,2(s) µ1,2 ≤ µ2,2,

(5.5.26)

Similarly,Xn,ξ
m+/n ⇒ xξm+ ≡ (qξ1,m, q

ξ
2,m, z

ξ
m+) andXn,ξ

m−/n ⇒ xξm− ≡ (qξ1,m, q
ξ
2,m, z

ξ
m−) as

n→ ∞, with

qξ1,m ≡ supt≤s≤t+ξ q1(s),

qξ2,m ≡ inft≤s≤t+ξ q2(s) ∨ 0,

zm+ ≡





inf t≤s≤t+ξ z1,2(s) µ1,2 ≥ µ2,2,

supt≤s≤t+ξ z1,2(s) µ1,2 ≤ µ2,2,

zm− ≡





inf t≤s≤t+ξ z1,2(s) µ1,2 ≤ µ2,2,

supt≤s≤t+ξ z1,2(s) µ1,2 ≥ µ2,2,

(5.5.27)

The two bounding frozen difference processes are{Dn
f (X

n,ξ
M , s) : s ≥ t} and{Dn

f (X
n,ξ
m , s) :

s ≥ t}. As a consequence of this construction, we can conclude thatthere existsξ > 0 and
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an integern1 such that the drift rates of these bounding processes satisfy both the inequali-

ties in (4.8.12) in order for them to be positive recurrent and the rate order in (4.8.18) with

probability at least1− ǫ/6 for all n ≥ n1.

We next apply Lemma 4.8.10 to conclude that there exists a newξ, taken no bigger

than the one created so far, such that the following variantsof the integral inequalities in

(4.8.23) hold with probability at least1− ǫ/6 as well:

1

ξ

∫ t+ξ

t

1{Dn
f
(Xn,ξ

m ,s)} ds−
ǫ

6m2
≤ 1

ξ

∫ t+ξ

t

1{Dn
1,2(s)>0} ds

≤ 1

ξ

∫ t+ξ

t

1{Dn
f
(Xn,ξ

M
,s)>0} ds+

ǫ

6m2

.

(5.5.28)

(We divide bym2 because we will be multiplying byz1,2(t).)

We now represent the bounding frozen queue-difference processes directly in terms of

the FTSP, using the relation (4.8.9):

{Dn
f (λ

n
i , m

n
j , X

n,ξ
m , t+ s) : s ≥ 0} d

= {D(λni /n,m
n
j /n,X

n,ξ
m /n, t+ sn) : s ≥ 0}

{Dn
f (λ

n
i , m

n
j , X

n,ξ
M , t+ s) : s ≥ 0} d

= {D(λni /n,m
n
j /n,X

n,ξ
M /n, t+ sn) : s ≥ 0}.

(5.5.29)

Upon making a change of variables, the bounding integrals in(5.5.28) become

1

ξ

∫ t+ξ

t

1{Dn
f
(λn

i ,m
n
j ,X

n,ξ
m ,s)>0} ds

d
=

1

nξ

∫ t+nξ

t

1{D(λn
i /n,m

n
j /n,X

n,ξ
m /n,s>0} ds

1

ξ

∫ t+ξ

t

1{Dn
f
(λn

i ,m
n
j ,X

n,ξ
M

,s)>0} ds
d
=

1

nξ

∫ t+nξ

t

1{D(λn
i /n,m

n
j /n,X

n,ξ
m /n,s)>0} ds.

(5.5.30)
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For each integerk, we have the iterated limits

lim
n→∞

lim
s→∞

P (D(λni /n,m
n
j /n,X

n,ξ
m /n, s) = k)

= lim
s→∞

lim
n→∞

P (D(λni /n,m
n
j /n,X

n,ξ
m /n, s) = k),

lim
n→∞

lim
s→∞

P (D(λni /n,m
n
j /n,X

n,ξ
M /n, s) = k)

= lim
s→∞

lim
n→∞

P (D(λni /n,m
n
j /n,X

n,ξ
M /n, s) = k),

(5.5.31)

where the first limit isP (D(xξm,∞) = k) ≡ P (D(λi, mj , x
ξ
m,∞) = k), while the second

isP (D(xξM ,∞) = k) ≡ P (D(λi, mj, x
ξ
M ,∞) = k).

By Corollary 4.8.3, we also have the associated double limitfor the averages over in-

tervals of lengthO(n) asn→ ∞

1

nξ

∫ t+nξ

t

1{D(λn
i /n,m

n
j /n,X

n,ξ
m /n,s)>0} ds⇒ P (D(λi, mj , x

ξ
m,∞) > 0) ≡ π1,2(x

ξ
m),

1

nξ

∫ t+nξ

t

1{D(λn
i /n,m

n
j /n,X

n,ξ
M

/n,s)>0} ds⇒ P (D(λi, mj , x
ξ
M ,∞) > 0) ≡ π1,2(x

ξ
M).

(5.5.32)

(It is significant that for eacht we have differentxξm andxξM . Recall that we are now

considering a fixedt.)

Invoking Lemma 4.8.8, chooseξ less than or equal to the previous value ofξ such that

|π1,2(xξm)− π1,2(X̄(t))| ≤ ǫ

6m2

. (5.5.33)
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For thatξ, applying (5.5.32), choosen2 ≥ n1 such that

P

(
| 1
nξ

∫ t+nξ

t

1{D(λn
i /n,m

n
j /n,X

n,ξ
m /n,s)>0} ds− π1,2(xm)| >

ǫ

6m2

)
<
ǫ

6

and P

(
| 1
nξ

∫ t+nξ

t

1{D(λn
i
/n,mn

j
/n,Xn,ξ

M
/n,s)>0} ds− π1,2(xM )| > ǫ

6m2

)
<
ǫ

6

(5.5.34)

for all n ≥ n2.

We now use the convergence along the subsequence over[0, t] together with the tight-

ness of the sequence of processes{X̄n : n ≥ 1} to controlZ̄n
1,2 in an interval after timet.

In particular, there existsξ less than or equal to the previous value andn3 ≥ n2 such that

P ( sup
u:t≤u≤t+ξ

{|X̄n(u)− X̄(t)|} > ǫ/6) < ǫ/6 for all n ≥ n3. (5.5.35)

For the current proof, we will use the consequence

P ( sup
u:t≤u≤t+ξ

{|Z̄n
1,2(u)− Z̄1,2(t)|} > ǫ/6) < ǫ/6 for all n ≥ n3. (5.5.36)

We now show the consequences of the selections above. We willdirectly consider only

the upper bound; the reasoning for the lower bound is essentially the same. Without loss

of generality, we takeǫ ≤ 1∧m2. From above, we have the following relations (explained

afterwards) holding with probability at least1 − ǫ (countingǫ/6 once each for (5.5.26),

(5.5.27), (5.5.28), (5.5.36) and twice for (5.5.34)):
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(a)

∫ t+ξ

t

1{Dn
1,2(s)>0}Z̄

n
1,2(s) ds ≤

(
Z̄1,2(t) +

ǫ

6

)∫ t+ξ

t

1{Dn
1,2(s)>0} ds

(b) ≤
(
Z̄1,2(t) +

ǫ

6

)(∫ t+ξ

t

1{Dn
f
(λn

i ,m
n
j ,X

n
M

,s)>0} ds+
ǫξ

6m2

)

(c)
d
=
(
Z̄1,2(t) +

ǫ

6

)(∫ ξ

0

1{D(λn
i /n,m

n
j /n,X

n,ξ
M

/n,t+sn)>0} ds+
ǫξ

6m2

)

(d)
d
=
(
Z̄1,2(t) +

ǫ

6

)
ξ

(
1

nξ

∫ nξ

0

1{D(λn
i /n,m

n
j /n,X

n,ξ
M

/n,t+s)>0} ds+
ǫ

6m2

)

(e) ≤
(
Z̄1,2(t) +

ǫ

6

)
ξ

(
π1,2(x

ξ
M ) +

2ǫ

6m2

)

(f) ≤
(
Z̄1,2(t) +

ǫ

6

)
ξ

(
π1,2(X̄(t)) +

3ǫ

6m2

)

(g) ≤ Z̄1,2(t)π1,2(X̄(t))ξ +
π1,2(X̄(t))

6
ǫξ +

1

2
ǫξ +

ξǫ2

12m2

(h) ≤ Z̄1,2(t)π1,2(X̄(t))ξ +
3

4
ǫξ

≤ (Z̄1,2(t)π1,2(X̄(t)) + ǫ)ξ for all n ≥ n0 ≡ n3.

(5.5.37)

We now explain the steps in (5.5.37): First, for (a) we replace Z̄n
1,2(s) by Z̄1,2(t) for

t ≤ s ≤ t + ξ by applying (5.5.36). For (b), we apply Lemma 4.8.10. For (c), we use

the alternative representation in terms of the FTSP in (5.5.29). For (d), we use the change

of variables in (5.5.30). For (e), we use (5.5.34), exploiting the convergence in (5.5.32).

For (f), we use (5.5.33). Step (g) is simple algebra, exploiting Z̄1,2(t) ≤ m2. Step (h) is

more algebra, exploitingπ1,2(X̄(t)) ≤ 1, andǫ ≤ 1 ∧m2. That completes the proof of the

lemma.



Chapter 6

Diffusion Refinements

In this chapter we use the fluid limit, together with the SSC result, to establish diffusion

limits when the system is overloaded and the fluid limit is inA. However, our results here

depend on Conjecture 6.2.1, which we did not prove yet. Essentially, Conjecture 6.2.1

strengthens the AP result to diffusion scale. We intend to prove this result in the future.

6.1 The Diffusion Limit

Let qs(t) be the sum of the two fluid-limit queues:qs(t) ≡ q1(t)+q2(t). Similarly, letQn
s (t)

be the total queue-length process in systemn. For simplicity of exposition, we assume that

the thresholds are dropped once crossed, so thatkn1,2 = κ = 0 for all n ≥ 1.

For t ≥ 0 we define the diffusion-scaled processes:

Q̂n
s (t) ≡

Qn
s (t)− nqs(t)√

n
; Ẑn

1,2(t) ≡
Zn

1,2(t)− nz1,2(t)√
n

;

Q̂n
1 (t) ≡

Qn
1 (t)− nq1(t)√

n
; Q̂2(t) ≡

Qn
2 (t)− nq2(t)√

n
.

(6.1.1)

268
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Let

p1 ≡
r

1 + r
, p2 ≡ 1− p1 =

1

1 + r
(6.1.2)

Theorem 6.1.1.LetT be such thatx(t) ∈ A over [0, T ). (Hence,T ≥ δ for δ in Theorem

4.6.1, and possiblyT = ∞.) Assume that

(
Q̂n

s (0), Ẑ
n
1,2(0)

)
⇒
(
Q̂s(0), Ẑ1,2(0)

)
in R2, as n→ ∞

and that Conjecture 6.2.1 holds. Then we have the joint convergence

(
Q̂n

s , Q̂
n
1 , Q̂

n
2 , Ẑ

n
1,2

)
⇒
(
Q̂s, p1Q̂s, p2Q̂s, Ẑ1,2

)
in D4([0, T )) asn→ ∞, (6.1.3)

where(Q̂s, Ẑ1,2) is the unique solution of the following two-dimensional stochastic integral

equation:

Q̂s(t) = Q̂s(0) + (µ2,2 − µ1,2)

∫ t

0

Ẑ1,2(s) ds− (p1θ1 + p2θ2)

∫ t

0

Q̂s(s) ds

+B1 (γ1(t)) ,

Ẑ1,2(t) = Ẑ1,2(0)−
∫ t

0

[(µ2,2 − µ1,2)π1,2(x(s)) + µ1,2] Ẑ1,2(s) ds+B2(γ2(t)),

(6.1.4)

where, fori = 1, 2, Bi are independent standard BM’s, andγi are the following strictly-

increasing time-scale functions:

γ1(t) ≡ (λ1 + λ2 +m1µ1,1 + µ2,2m2)t + (p1θ1 + p2θ2)

∫ t

0

qs(u) du

+ (µ1,2 − µ2,2)

∫ t

0

z1,2(u) du,

γ2(t) ≡
∫ t

0

(µ1,2 − (µ2,2 + µ1,2)π1,2(x(u))) z1,2(u) du+ µ2,2m2

∫ t

0

π1,2(x(u)) du,

(6.1.5)
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It is easy to see thatγ1 andγ2 are indeed strictly increasing since their derivatives are

positive;

γ̇1(t) = λ1 + λ2 +m1µ1,1 + µ2,2m2 + (p1θ1 + p2θ2)qs(t) + (µ1,2 − µ2,2)z1,2(t)

≥ λ1 + λ2 +m1µ1,1 + µ1,2z1,2(t) > 0,

where the first inequality is due to the fact thatqs(t) ≥ 0 and0 ≤ z1,2(t) ≤ m2 for all

t ≥ 0. Similarly, since0 < π1,2(x(t)) < 1 andz1,2(t) ≤ m2 for all t ≥ 0 we have

γ̇2(t) = µ1,2z1,2(t)− (µ2,2 + µ1,2)π1,2(x(t))z1,2(t) + µ2,2m2π1,2(x(t))

= µ1,2(1− π1,2(x(t)))z1,2(t) + µ2,2(m2 − z1,2(t))π1,2(x(t)) > 0.

The stochastic process(Q̂s, Ẑ1,2) is evidently difficult to analyze; Apart from being a

two-dimensional diffusion process, the time arguments of the Brownian-motion parts of

(Q̂s, Ẑ1,2) have no closed-form solutions. However, if we know that the fluid solution con-

verges to stationarity, then it does so exponentially fast,according to Theorem 2.7.4. Since

we are mainly interested in the steady state variance of the diffusion limits, it is reason-

able to initialize “close” to this fluid stationary point in order to simplify the expressions in

(6.1.4). We do this in the next corollary. We then further simplify the diffusion expressions.

(see also [59] for more discussion on diffusion approximations for this model. In particu-

lar, for simple heuristics which are shown to approximate the diffusion limits exceptionally

well.)

Corollary 6.1.1. If, in addition to the conditions of Theorem 6.1.1,x(0) = x∗ for x∗ in

(3.5.3)(so thatx is stationary, and henceT = ∞ in the statement of Theorem 6.1.1), then

γi(t) = ξit, i = 1, 2, for γi(t) in (6.1.5), where

ξ1 = 2(λ1 + λ2) and ξ2 =
2µ1,2µ2,2z

∗
1,2(m2 − z∗1,2)

µ1,2z∗1,2 + (m2 − z∗1,2)µ2,2
. (6.1.6)
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Then,Q̂s andẐ1,2 are the unique solutions to the following integral equation

Q̂s(t) = Q̂s(0) + (µ2,2 − µ1,2)

∫ t

0

Ẑ1,2(s) ds− (p1θ1 + p2θ2)

∫ t

0

Q̂s(s) ds

+
√
ξ1B1(t)

Ẑ1,2(t) = Ẑn
1,2(0)− ζ

∫ t

0

Ẑ1,2(s) ds+
√
ξ2B2(t),

(6.1.7)

whereB1 andB2 are independent standard BM’s and

ζ ≡
µ1,2µ2,2m2z

∗
1,2

µ1,2z∗1,2 + µ2,2(m2 − z∗1,2)
. (6.1.8)

Hence,Ẑ1,2 can be expressed separately, without referring toQ̂s, as a one-dimensional

Ornstein-Uhlenbeck(OU) process with steady-state distribution

Ẑ1,2(∞)
d
= N

(
0, 1−

z∗1,2
m2

)
.

Proof: By the definition of a stationary point, ifx(0) = x∗ thenx(t) = x∗ for all t > 0.

Thenqi(t) = q∗i andz1,2(t) = z∗1,2 andπ1,2(x(t)) = π∗1,2, for π∗1,2 in (3.5.4). The expressions

in (6.1.6) follow easily from the expressions in (6.1.5), byreplacing the time-dependent

fluid quantities by their stationary values, described in (3.5.3). Replacingπ1,2(x(t)) by the

expression forπ∗1,2 in (3.5.4), andz1,2(t) by z∗1,2, gives us the expression for̂Z1,2, which is

well-known to be the equation of an OU process with the specified steady-state distribution

(e.g., see pg. 218 of [42]).

Corollary 6.1.2. If, in addition to the assumptions of Theorem 6.1.1,µ2,2 = µ1,2 ≡ ν, then

the two diffusion-limit processeŝQs and Ẑ1,2 are independent one-dimensional processes
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which satisfy the following integral equations

Q̂s(t) = Q̂s(0)− η2

∫ t

0

Q̂s(s) ds+B1 (γ̃1(t)) ,

Ẑ1,2(t) = Ẑ1,2(0)− νz∗1,2

∫ t

0

Ẑ1,2(s) ds+B2 (γ̃2(t)) ,

(6.1.9)

where

γ̃1(t) ≡ 2(λ1 + λ2)t+

(
η1
η2

− qs(0)

)
e−η2t

γ̃2(t) ≡ ν

(
m2

∫ t

0

π1,2(x(u)) du+

∫ t

0

z1,2(u) du− 2

∫ t

0

π1,2(x(u))z1,2(u) du

)
.

(6.1.10)

η1 ≡ λ1 + λ2 −m1µ1,1 −m2ν, η2 ≡ p1θ1 + p2θ2, (6.1.11)

andB1 andB2 are independent standard BM’s.

Proof: It is immediate from the expressions ofQ̂s andẐ1,2 in (6.1.4) that whenµ1,2 = µ2,2

the two diffusion processes are independent. Now, sinceqi = piqs andµ1,2 = µ2,2, it

follows from (4.5.13) thaṫqs(t) satisfies the simple ordinary differential equation

q̇s(t) = (λ1 + λ2 −m1µ1,1 −m2µ2,2)− (p1θ1 + p2θ2)qs(t) ≡ η1 − η2qs(t),

whose solution is

qs(t) =
η1
η2

+

(
q(0)− η1

η2

)
e−η2t

for η1 andη2 in (6.1.11). Pluggingqs(t) in γ1(t) in (6.1.5) gives̃γ1(t).

The expressions of̃γ2(t) is immediate fromγ2(t) in (6.1.5) whenµ1,2 = µ2,2 = ν. Also

note that, in this case,ζ = νz∗1,2 for ζ in (6.1.8).

The following corollary is immediate from the expressions of Q̂s andẐ1,2 in (6.1.9).
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Note that whenµ1,2 = µ2,2 = ν thenπ∗ = z∗1,2/m2.

Corollary 6.1.3. If, in addition to the conditions of Corollary 6.1.2, the initial conditions

are such thatQ̂s(0) = q∗s and Ẑ1,2(0) = z∗1,2 (so thatπ1,2(x(t)) = π∗1,2), thenQ̂s and Ẑ1,2

are independent one-dimensional Ornstein-Uhlenbeck(OU) processes, i.e.,

Q̂s = q∗s − η2

∫ t

0

Q̂s(s) ds+
√

2(λ1 + λ2)B1(t)

Ẑ1,2 = z∗1,2 − νz∗1,2

∫ t

0

Ẑ1,2(s) ds+

√
2νz∗1,2

(
1−

z∗1,2
m2

)
B2(t),

for η2 in (6.1.11)andπ∗1,2 in (3.5.4), and whereB1 andB2 are independent standard BM’s.

The two OU processes have the following steady-state distributions:

Q̂s(∞)
d
= N

(
0 ,

(1 + r)(λ1 + λ2)

rθ1 + θ2

)
and Ẑ1,2(∞)

d
= N

(
0 , 1−

z∗1,2
m2

)
.

Equivalently,Ẑ1,2(∞)
d
= N

(
0 , 1− π∗1,2

)
.

Remark 6.1.1. (Equivalence with the single-class model.) If, in additionto the conditions

of Corollary 6.1.3, it also holds thatθ1 = θ2 ≡ θ, then the diffusion-limit procesŝQs is

the same as the limit obtained for theM/M/n +M model in the Efficiency Driven (ED)

regime, see [79]. That is,̂Qs is an Ornstein-Uhlenbeck process with infinitesimal mean

equal toθ and infinitesimal variance2λ ≡ 2(λ1 + λ2). Thus, its steady-state distribution is

normal with mean zero and varianceλ/θ.

Theorem 6.1.1 and its corollaries illustrate the strength of the AP. A direct implication

of the AP is SSC for both the fluid-scaled and the diffusion-scaled queue processes. But

the AP implies more than just SSC; As we have seen, thanks to the AP, we can analyze

the diffusion-scaled service-processẐ1,2(t) and its fluid counterpartz1,2(t). The AP also

implies thatẐ1,2(t) does not depend on the limiting diffusion queue processes. This may
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seem surprising at first, sinceZn
1,2(t) depends on the queuesQn

1 (t) andQn
2 (t) for eachn and

t, and in the fluid limit,z1,2(t) depends on the fluid-queuesq1(t) andq2(t), viaπ1,2(x(t)).

In particular, whenµ1,2 = µ2,2 (service rates are pool dependent), the diffusion-limit

queues are independent of the diffusion-limit service processesẐi,j, i, j = 1, 2. To see

why this result is implied by the averaging principle, observe that the indictor functions in

(6.2.6) below, which are functions of the two queues, are replaced by expressions involv-

ing π1,2(x(t)), which do not depend on the queues. (This may be a little confusing, but

π1,2(x(t)) is a function of the deterministic fluid-limit queues, and does not depend on the

actual queues.)

We can regard this result as a converse to SSC for the following reason: In our model,

SSC of the queues implies that the two-dimensional process(Q̂1, Q̂2), which is in general

in D2, exists in the one-dimensional hyperplaneQ̂1 = r1,2Q̂2. That is, the two queues are

strictly correlated, and behave as a one-dimensional process; The dimension of the state

space collapses to one.

On the other hand, Corollaries 6.1.2 and 6.1.3 and Remark 6.1.1 imply that the two-

dimensional process(Q̂s, Ẑ1,2) ∈ D2 can be decomposed into its two components. We get

a “separation” of the state spaceD2 as each process exists inD, independently of the other

process. (This illustrates why the condition that the ratesare pool dependent is sufficient to

maintain stability in [29] and [31] for the X model, and more generally, for models whose

routing graphs are cyclic.)

6.2 Proof of Theorem 6.1.1

We use the sample-path construction in§4.4 to construct martingale representations for

the stochastic processes, as in [57]. The martingale representation is constructed without

specifying any filtration, since we will not use any martingale property. We call this “the
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martingale representation” for convenience. To achieve this martingale representation, we

decompose the independent time-changed Poisson processesNa
i ,N s

i,2 andNu
i , i = 1, 2, in

the following way:

Mn
1,1(t) ≡ N s

1,1(m
n
1µ1,1t)−mn

1µ1,1t

Mn
i,2(t) ≡ N s

i,2

(
µi,2

∫ t

0

Zn
i,2(s)ds

)
− µi,2

∫ t

0

Zn
i,2(s)ds, i = 1, 2,

Mn
ai
(t) ≡ Na

i (λ
n
i t)− λni t, i = 1, 2,

Mn
ui
(t) ≡ Nu

i

(
θi

∫ t

0

Qn
i (s)ds

)
− θi

∫ t

0

Qn
i (s)ds, i = 1, 2.

(6.2.1)

The processes in (6.2.1) can be shown to be square-integrable martingales (with respect to

an appropriate filtration), and we thus refer to them as “martingales”.

Unlike in the fluid-limit proof, which was carried out using the compactness approach,

the diffusion limits will be proved using the continuous mapping approach. It is signifi-

cant that the the continuity of the integral representationbelow is due to the AP and SSC

established before.

Lemma 6.2.1. (Continuity of the two-dimensional integral representation) Consider the

two-dimensional integral representation

x1(t) = b1 + y1(t) + α2

∫ t

0

x2(s) ds+ α1

∫ t

0

x1(s) ds

x2(t) = b2 + y2(t) +

∫ t

0

g(s)x2(s) ds

(6.2.2)

whereg : R → R satisfiesg(0) = 0 and is Lipschitz continuous with a Lipschitz constant

cg. The integral representation(6.2.2)has a unique solution(x1, x2), so that the integral

representation constitutes a functionf : D2 × R2 → D2 mapping(x1, x2, b1, b2) into

(x1, x2) ≡ f(x1, x2, b1, b2). In addition, the functionf is a continuous mapping from
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D2 × R2 to D2. Moreover, ify2 is continuous thenx2 is continuous. If bothy1 andy2 are

continuous, thenx1 is also continuous.

Proof: By the conditions on the functiong we have for allT ≥ 0

‖g‖T ≤ g(0) + ‖g(u)− g(0)‖T ≤ g(0) + cgT = cgT.

Note thatx2 does not depend onx1, hence we can prove the lemma iteratively by first

showing that the functionf2 : D × R mapping(y2, b2) into x2 ≡ f2(y2, b2) is continuous,

and then use this result to show that the functionf1 : D2 × R mapping(y1, x2, b1) into

x1 ≡ f1(y1, x2, b1) is continuous.

To show thatf2 is continuous we use Theorem 2.11 in [67] withh(x2(u), u) ≡ g(u)x2(u).

Clearly, condition (1) in that theorem holds, sinceg(0) = 0, and it remains to show that

Condition (2) holds as well. For that purpose, chooseT > 0 and letλ be a homeomorphism

on [0, T ] with strictly positive derivativėλ. Then, for everyϕ1, ϕ2 ∈ D

∫ t

0

|g(u)ϕ1(u)− g(λ(u))ϕ2(λ(u))| du

≤
∫ t

0

|g(u)ϕ1(u)− g(u)ϕ2(λ(u))| du+
∫ t

0

|g(u)ϕ2(λ(u))− g(λ(u))ϕ2(λ(u))| du

≤ ‖g‖T
∫ t

0

|ϕ1(u)− ϕ2(λ(u))| du+ ‖ϕ2‖T
∫ t

0

|g(u)− g(λ(u))| du

≤ ‖g‖T
∫ t

0

|ϕ1(u)− ϕ2(λ(u))| du+ T‖ϕ2‖T‖g‖T‖λ− e‖T

= c1‖λ− e‖T + c2

∫ t

0

|ϕ1(u)− ϕ2(λ(u))| du.

wherec1 ≡ cgT
2‖ϕ2‖T andc2 ≡ ‖g‖T .

For x1 = f1(y1, x2, b1) we can apply Theorem 4.1 in [57] with inputy ≡ y1 +

α2

∫ t

0
x2(u) du. It follows from Theorem 2.11 in [67] that ify2 is continuous then so is

x2. If, in addition,y1 is continuous, theny is continuous and, by Theorem 4.1 in [57], so is
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x1.

Proof of Theorem 6.1.1: Following (4.4.3)–(4.4.4), we write the total queue-length pro-

cessQn
s (t) ≡ Qn

1 (t) + Qn
2 (t) using the martingale decomposition, as in [57]. Observe

that the indicator functions in the representation (4.4.3)and (4.4.4) do not appear in the

representation ofQn
s (t).

Qn
s (t) = Qn

s (0) +Na
1 (λ

n
1 t) +Na

2 (λ
n
2 t)−N s

1,1(m
n
1µ1,1t)

−N s
1,2

(
µ1,2

∫ t

0

Zn
1,2(s)) ds

)
−N s

2,2

(
µ2,2

∫ t

0

Zn
2,2(s) ds

)

−Nu
1

(
θ1

∫ t

0

Qn
1 (s) ds

)
−Nu

2

(
θ2

∫ t

0

Qn
2 (s) ds

)
, t ≥ 0

= Qn
s (0) + (λn1 + λn2 )t−mn

1µ1,1t− µ1,2

∫ t

0

Zn
1,2(s) ds− µ2,2

∫ t

0

Zn
2,2(s) ds

− θ1

∫ t

0

Qn
1 (s) ds− θ2

∫ t

0

Qn
2 (s) ds+Mn

s (t),

where

Mn
s (t) ≡

2∑

i=1

Mn
ai
(t)−

2∑

i=1

Mn
ui
(t)−

2∑

i=1

Mn
i,2(t)−Mn

1,1(t). (6.2.3)

From (4.5.13) it follows thatqs ≡ q1 + q2, the fluid counterpart ofQn
s , evolves according

to the integral equation:

qs(t) = qs(0) + (λ1 + λ2)t− µ1,1m1t− µ1,2

∫ t

0

z1,2(u) du− µ2,2

∫ t

0

z2,2(u) du

− θ1

∫ t

0

q1(u) du− θ2

∫ t

0

q2(u) du,
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so that, substitutingq1 with p1qs(u) andq2(u) with p2qs(u), we get

qs(t) = qs(0) + (λ1 + λ2)t− µ1,1m1t− µ2,2m2t

+ (µ2,2 − µ1,2)

∫ t

0

z1,2(u) du− (p1θ1 + p2θ2)

∫ t

0

qs(u) du

We get

Q̂n
s (t) = Q̂n

s (0) +
[(λn1 + λn2 )− n(λ1 + λ2)]t√

n
− µ1,1(m

n
1 − nm1)t√
n

−
µ1,2

∫ t

0
(Zn

1,2(s)− nz1,2(s)) ds√
n

−
µ2,2

∫ t

0
(Zn

2,2(s)− nz2,2(s)) ds√
n

− θ1
∫ t

0
(Qn

1 (s)− nq1(s)) ds√
n

− θ2
∫ t

0
(Qn

2 (s)− nq2(s)) ds√
n

+
Mn

s (t)√
n

.

Obviously, the second and third terms in the expression above converge to zero. Recall that,

by Theorem 4.7.1,n−1/2‖Zn
2,2−(mn

2 −Zn
1,2)‖ ⇒ 0 in D asn→ ∞ so thatz2,2 = m2−z1,2.

Also, (mn
2/n−m2) → 0 asn→ ∞ by assumption. Hence,

Q̂n
s = Q̂n

s (0) + (µ2,2 − µ1,2)

∫ t

0

Ẑn
1,2(s) ds

− θ1

∫ t

0

Q̂n
1 (s) ds− θ2

∫ t

0

Q̂n
2 (s) ds+ M̂n

s (t).

(6.2.4)

Define

Ŷ n
s (t) ≡ Q̂n

s (0) + (µ2,2 − µ1,2)

∫ t

0

Ẑn
1,2(s) ds− p1θ1

∫ t

0

Q̂n
s (s) ds

− p2θ2

∫ t

0

Q̂n
s (s) ds+ M̂n

s (t)

By applying the continuous-mapping theorem and the SSC result in Theorem 4.5.6, we
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have that‖Q̂n
s − Ŷ n

s ‖ ⇒ 0 in D asn→ ∞. Hence we can write

Q̂n
s (t) = Q̂n

s (0) + (µ2,2 − µ1,2)

∫ t

0

Ẑn
1,2(s) ds− (p1θ1 + p2θ2)

∫ t

0

Q̂n
s (s) ds

+ M̂n
s (t) + oP (1).

(6.2.5)

The next Lemma identifies the limit of the martingalêMn
s (t). It’s proof is given in the end

of this section.

Lemma 6.2.2.Under the conditions of Theorem 6.1.1,M̂n
s (t) ⇒ B(γ1(t)) inD asn→ ∞,

where{B(t) : t ≥ 0} is a standard brownian motion, andγ1(t) is defined in(6.1.5).

To finish the proof, we apply Lemma 6.2.1 to the integral representation ofQ̂n
s (t).

Assuming that̂Zn
1,2 ⇒ Ẑ1,2 (as will be shown next, building on Conjecture 6.2.1), we have

that (6.2.5) is a continuous mapping fromD to itself, and the convergence ofQn
s (t) to the

limit in (6.1.3) is implied by the limit ofM̂n
s (t) in Lemma 6.2.2.

We now turn to thêZ1,2(t) process. We start with the representation (4.4.2) ofZn
1,2(t).

Zn
1,2(t) = Zn

1,2(0) + µ2,2

∫ t

0

1{Dn
1,2(s)≥0}

(mn
2 − Zn

1,2(s)) ds

− µ1,2

∫ t

0

1{Dn
1,2(s)≤0}

Zn
1,2(s) +Mn

Z(t),

(6.2.6)

where

Mn
Z1,2

(t) ≡ N s
1,2

(
µ1,2

∫ t

0

1{Dn
1,2(s)≤0}

Zn
1,2(s) ds

)
− µ1,2

∫ t

0

1{Dn
1,2(s)≤0}

Zn
1,2(s) ds,

Mn
Z2,2

(t) ≡ N s
2,2

(
µ2,2

∫ t

0

1{Dn
1,2(s)≥0}

Zn
2,2(s) ds

)
− µ2,2

∫ t

0

1{Dn
1,2(s)≥0}

Zn
2,2(s) ds

and

Mn
Z(t) ≡Mn

Z2,2
(t)−Mn

Z1,2
(t). (6.2.7)
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Let Z̃n
1,2(t) have the same representation asZn

1,2(t), but with the indicator functions1{Dn
1,2(s)≥0}

and1{Dn
1,2(s)<0} replaced byπ1,2(x(s)) and1 − π1,2((s)), respectively. Similarly,̃Mn

Z(t) is

the same as in (6.2.7), with the indicator functions replaced by the appropriate counterparts.

Z̃n
1,2 ≡ Z̃n

1,2(0) + µ2,2

∫ t

0

π1,2(x(s))(m
n
2 − Z̃n

1,2(s)) ds

− µ1,2

∫ t

0

(1− π1,2(x(s)))Z̃
n
1,2(s) ds+ M̃n

Z(t).

(6.2.8)

If Conjecture 6.2.1 below indeed holds, then for allT > 0, n−1/2‖Zn
1,2 − Z̃n

1,2‖T ⇒ 0 in D

asn → ∞. Assuming Conjecture 6.2.1, we work witĥZ1,2(t) andM̂n
Z(t) ≡ M̂n/

√
n, but

with the indicator functions replaced by theπ1,2(x(s)) expressions.

From (4.5.13) we see that

z1,2(t) = µ2,2

∫ t

0

π1,2(x(s))(m2 − z1,2(s)) ds− µ1,2

∫ t

0

(1− π1,2(x(s)))z1,2(s) ds.

Upon centerinĝZn
1,2(t) about the fluid limit, and dividing by

√
n as in (6.1.1),

Ẑn
1,2(t) = Ẑn

1,2(0)−
∫ t

0
[(µ2,2 − µ1,2)π1,2(x(s)) + µ1,2] Ẑ1,2(s) ds√

n

+
µ2,2(m

n
2 − nm2)

∫ t

0
π1,2(x(s)) ds√

n
+
Mn

Z(t)√
n

= Ẑn
1,2(0)−

∫ t

0

[(µ2,2 − µ1,2)π1,2(x(s)) + µ1,2] Ẑ
n
1,2(s) ds+ M̂n

Z(t),

(6.2.9)

where the last inequality follows from the fact that(mn
2 − nm2)/

√
n→ 0, asn→ ∞.

Now, π1,2(x(s)) is locally Lipschitz continuous inA as a function ofx(s) by Theorem

2.5.1, and is thus Lipschitz continuous over compact sets. Moreover,x(s) is Lipschitz

continuous, as a function of the time arguments by Lemma 4.8.1. It follows thatπ1,2(x(s))

is Lipschitz continuous as a function of the time arguments as well. We can thus apply
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Lemma 6.2.1 and conclude that the representation in (6.2.9)is a continuous mapping from

D to itself. The convergence to the limit-processẐ1,2(t) is implied by the next lemma,

whose proof is similar to that of Lemma 6.2.2 and is thus omitted.

Lemma 6.2.3.Under the conditions of Theorem 6.1.1,M̂n
Z(t) ⇒ B(γ2(t)) inD asn→ ∞,

where{B(t) : t ≥ 0} is a standard Brownian motion, andγ2(t) is defined in(6.1.5).

Lemma 6.2.3 completes the proof.

Proof of Lemma 6.2.2 Let

M̂n
S (t) =

(
M̂n

1,1(t), M̂
n
1,2(t), M̂

n
2,2(t)

)
M̂n

A(t) =
(
M̂a1(t), M̂a2(t)

)
, and

M̂n
u (t) =

(
M̂n

u1
(t), M̂n

u2
(t)
)
.

To compress the notation, forx ∈ Dn andt ∈ [0,∞)n, we definex(t) ≡ (x1(t1), x2(t2), . . . , xn(tn)).

We start by proving that

(
M̂n

A(t), M̂
n
S (t), M̂

n
u (t)

)
⇒
(
BA(λt), BS

(
µ

∫ t

0

z(s) ds

)
, Bu

(
θ

∫ t

0

q(s) ds

))
,

(6.2.10)

in D7, asn→ ∞. HereBA(t), BS(t) andBu(t) are, respectively,2-, 3- and2-dimensional

independent Brownian motions. Using our compressed notation we haveλt ≡ (λ1t, λ2t),

µz(s) ≡ (µ1,1z1,1(s), µ1,2z1,2(s), µ2,2z2,2(s)), θq(s) ≡ (θ1q1(s), θ2q2(s)). For example,

BA(t) = (BA1
(λ1t), BA2

(λ2t)), and similarly forBS(·) andBu(·).

The result of the lemma then follows from the definition ofM̂n
s (t) in (6.2.3), and the

continuity of addition under continuous limits, e.g., Corollary 12.7.1 in [78].
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For the Poisson processes defined in (4.4.1), let

M̃n
ai
=
Na

i (nt)− nt√
n

, M̃n
i,j =

N s
i,j(nt)− nt√

n
and

M̃n
ui
=
Nu

i (nt)− nt√
n

, i, j = 1, 2.

Let M̃n
A(t), M̃

n
S (t) andM̃n

u (t) be the corresponding vector-valued processes. By the in-

dependence of all the unit-rate Poisson processesNa
i (·), N s

i,j(·) andNu
i (·), the following

joint convergence holds:

(
M̃n

A(t), M̃
n
S (t), M̃

u(t)
)
⇒
(
B̃A(t), B̃S(t), B̃u(t)

)
, in D7, asn→ ∞,

whereB̃A, B̃S andB̃u are, respectively,2-dimensional,3-dimensional and2-dimensional

independent Brownian motions. See Theorem 4.2 and§9.1 in [57].

Let

Φn
Ai
(t) ≡ λni t

n
, Φn

Si,j
(t) ≡

µi,j

∫ t

0
Zn

i,j(s) ds

n
and

Φn
ui
(t) ≡ θi

∫ t

0
Qn

i (s) ds

n
, i, j = 1, 2.

Then, by the condition on the arrival rates,Φn
Ai

⇒ λit, i = 1, 2. From the initial conditions

in the statement of Theorem 6.1.1, the fluid limit and the continuity of the integral mapping,

it follows that Φn
Si,j

⇒ µi,j

∫ t

0
zi,j(s) ds andΦn

ui
⇒ θi

∫ t

0
qi(s) ds, i, j = 1, 2 in D as

n→ ∞.

Let Φn
A(t), Φ

n
Si,j

(t) andΦn
ui
(t) be the corresponding vector-valued processes. Then

(
Φn

A(t),Φ
n
Si,j

(t),Φn
ui
(t)
)
⇒
(
λt, µ

∫ t

0

z(s) ds, θ

∫ t

0

q(s) ds

)
,
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in D7, asn→ ∞. By definition,

(
M̂n

A(t), M̂
n
S (t), M̂

n
u (t)

)
=
(
M̃n

A

(
Φn

A(t)
)
, M̃n

(
Φn

S(t)
)
, M̃n

u

(
Φn

u(t)
))

,

and the result follows from the continuity of the composition mapping at continuous limits,

Theorem 13.2.1 in [78].

As we stated above and as was made clear by the proof of Theorem6.1.1, the conver-

gence of the processes in (6.1.1) to the diffusion limits depend on the following conjecture,

which we intend to prove in the future.

Conjecture 6.2.1.ConsiderẐn
1,2 in (6.1.1)andZ̃n

1,2 in (6.2.8). Then‖Ẑn
1,2 − Z̃n

1,2‖ ⇒ 0 in

D asn→ ∞.
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