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ABSTRACT

Heavy-Traffic Limits via an Averaging Principle
for Service Systems Responding to Unexpected Overloads

Ohad Perry

This dissertation considers how two networked large-ss&ieice systems, such as call
centers, that normally operate separately, can help edwr ot face of an unexpected
overload, caused by a sudden shift in the arrival rates. \8fnas that the time of the shift
and the values of the new arrival rates are not known a-paod are hard to detect in real
time. We also assume that staffing cannot be increased irategdi

We propose thdixed-queue ratio with threshold&QR-T) control, and show that it
is optimal in a deterministic fluid approximation. The FQRzdntrol activates serving
some customers from the other system when a ratio of the twoejlengths (numbers of
waiting customers) exceeds a threshold. Two thresholdsf@mreach direction of sharing,
automatically detect the overload condition and prevemtegived sharing under normal
loads. After a threshold has been exceeded, the controltaitkeep the ratio of the two
gueue lengths at a specified value.

To gain insight, we introduce an idealized X model, i.e.,aastic model with two
customer classes, each with its own dedicated service ponlaining a large number of
agents. The agents in both pools are assumed to be croageetiirso that they are able
to serve the other class, even if somewhat inefficiently. éfatlse important queue-ratio
parameters, we consider an approximating determinisict fiodel. We determine queue-
ratio parameters that minimize convex costs for this fluiddeio Simulations show that
the proposed queue-ratio control with thresholds, whig@sum information about the new
arrival rates during the overload, outperforms the optiimadl partition of the servers when

the new arrival rates are known.



We then consider the stochastic X model under our propos&d FQontrol, and prove
that the fluid approximation, developed heuristically foe bptimality analysis, holds as a
many-server heavy-traffic fluid limit. In particular, undar appropriate fluid scaling, the
processes describing the X system, i.e., the queue-lengtlservice processes, converge
to a deterministic fluid limit as the number of servers andvarrates approach infinity.
This fluid limit is characterized by aordinary differential equatiofODE), coupled with
afast-time-scale proceg&TSP). In proving the fluid limit we also achievestate-space
collapse(SSC) result, which allows us to develop diffusion refinetaen

Proving convergence to the fluid limitis complicated beesthe limit involves a heavy-
traffic averaging principle(AP). The X model, operating under FQR-T, is driven by a
gueue-difference stochastic process operating in a fiasteiscale than the other processes
describing the system, thus achieving a time-dependestgt&ate instantaneously in the
limit. Hence, for the limiting ODE, the queue-differencepess is replaced by the long-
run average behavior of the FTSP at each instant of time.

In addition to complicating the convergence proofs, the /88 anakes standard ODE
and dynamical-systems theory difficult to apply. First, deéerministic ODE is driven by a
stochastic process, whose distributional charactesigtermine the evolution of the solu-
tion to the ODE. Moreover, due to the AP and its resulting SEE€ODE is not continuous
in its full state space.

Nevertheless, we provide results about the existence aiggiemess of the solution
to the ODE, prove that there exists a unique stationary paimt give easily verifiable
conditions for the fluid limit to converge to its stationargipt, which was used in our
optimization analysis. We also provide an efficient nunadradgorithm, based on matrix-

geometric methods, for solving the ODE.
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Chapter 1

Introduction

The introduction consists of four parts: #.1, we quickly review the general motivation
for our problem. Ing1.2 we briefly describe our modeling approach and our carttdh

to the existing literature. 1§1.3 we provide a short review of mathematical models that
commonly appear in the literature and are relevant to oukweinally, in §1.4 we briefly
explain the mathematical methods employed in this dis$entaand our contribution to

the existing mathematical-modeling literature of largengraerver systems.

1.1 Motivation

One of the characteristics of an advanced economy is ite kggvice sector. For example,
in the United States, the service sector is responsiblelfouta80% of the nominal GDP
and over 80% of the work force.

An important part of the service sector is the call-centdustry. In the United States
alone it employs more than 3.5 million agents (or 2.5% of titaltworkforce) [17[ 70].
However, the importance of the call-center industry goelt beyond its size; It is esti-

mated that call centers handle more than 70% of all busimésiictions.
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Since labor-related costs comprise 60-80% of the overatatpg budget of modern
call centers[[2], managers have to balance two conflictingabives: on the one hand,
they seek to minimize operating costs by reducing the nurabagents to the possible
minimum. On the other hand, they are required to provide spraespecified levels of
service (which can be measured in various ways, e.g., theopiion of customers that
abandon, the average waiting time, the probability of détagyueue, etc.). These two
objectives can be achieved in large call centers by staffopgyagpriately. However, this
means that the arrival rates of customers (i.e., number It par unit time), must be
known with a reasonable accuracy, where the forecastingtaffing decisions are being
performed in advance. Sé2 in [2], and§§3 and 6 in[[26]. Since the call center operates in
a random environment, with the arrival rates possibly latgan expected, at least during
some time periods, it may become overloaded due to largarekpected arrival rates, so

that the desired service levels cannot be met.

1.1.1 The Basic Research Problem: Overload Control

This dissertation considers how two networked large-ssatgice systems, such as call
centers, that normally operate separately, can help edwdr ot face of an unexpected
overload. We assume that occasionally, for various reasiogie may be unforeseen surges
in demand, going significantly beyond the usual stochastatudhtions, and lasting for a
significant period of time. A demand surge might occur beeads catastrophic event in
emergency response, a system failure experienced by anaite service provider, or an
unanticipated intense television advertising campaigretail. Such unexpected demand
surges typically cause congestion that cannot be elimidnatgirely. Since the demand
surge is sudden and unexpected, it may not be possible todmately change the staffing

level.



CHAPTER 1. INTRODUCTION 3

However, there may be an opportunity to alleviate the cangesaused by the over-
load by getting help from another service system, whichraudily operates independently.
(For example, with the reduction of telecommunication so$is more and more common
to have networked call centers, often geographically dggmk even on different conti-
nents.) Such sharing is typically possible among diffelaspitals in a metropolitan area.
It is often desirable to operate these service systemsaeparbut their connection pro-
vides opportunities, in particular, to provide assistamoger overloads.

An important consideration is that we typically do not wamiisng under normal loads.
One reason is that it is easier to manage the different tiasilseparately, e.g., by main-
taining clear accountability. Another reason is that therdg in each service facility may
be less effective and/or less efficient serving the custeirinem the other system, because
each requires specialized skills not required for the ot want to consider the case in
which serving the other class is possible, but that ther@analties for doing so. We will
assume that the service rates are slower for non-desigagéss.

The proposed overload control applies directly to sepasateice systems run by a
single organization, but could also be adopted by two difieiorganizations by mutual
agreement. Our analysis provides useful information atimitikely consequences of any
agreement, which should facilitate making the agreememtre@t practice for call centers
(that we are aware of) is limited to sharing within a singlgamization, and then only
manually or on a regular basis under normal loading. Loddruing schemes used in
practice are described .3 of [26].

Thus, our goal is to develop a control to automatically dst&hen an overload has
occurred (in either system, or in both) and then, before ti#iirsg levels can be changed,
reduce the resulting congestion by activating appropshtging from agents in the other
system. We also want to prevent undesired sharing underattwads. By focusing on this

overload problem, we aim to contribute new insight into thieglstanding question about
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the costs and benefits of resource pooling;$ge2 of [2] and references cited therein. Here
we focus on a situation where we want to turn on and off theipgol

To gain insight, we introduce an idealized X model, i.e.,akastic model with two
customer classes, each with its own dedicated service ponlaining a large number of
agents. See figufe1.1. The agents in both service poolssumasd to be crossed-trained,

so that they are able to serve customers from the other elass if somewhat inefficiently.

The X Call-Center Model

customer class 1 customer class 2

2’1 \ arrivals I ]’2
abandonment abandonment
=== 1__ —_—— -
‘91 |—| queues |—| 6’2

routing

& service pool 2

sameI other other I same

service pool 1

Ho o ko

class-dependent
service rates

Figure 1.1: TheX model

1.1.2 The Proposed Control: FQR-T

We now explain our proposed control, which we dated-queue ratio with thresholds
(FQR-T). The purpose of FQR-T is to prevent sharing of custenas long as the two
classes are not overloaded, and detect overloads quicléy Wiey occur. These two ob-
jectives are achieved by placing two thresholds, andk; ;, one for each queue. If queue

i crosses its threshold ;, i, j = 1, 2, then classg is considered to be overloaded.
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In addition to the two positive thresholds, andk; ;, we introduce two ratio parame-

tersr; » andry ;. We then define two queue-difference stochastic processes

Dl’g(t) = Ql(t> — 7’1,2@2(15) and D2’1<t) = 7’2,1Q2(t> — Ql(t), (111)

where@);(t) denotes the number of classustomers waiting in queue at timei = 1, 2.
As long asD; »(t) < ki1 andD,;(t) < ko1, we do not allow any sharing, i.e., we only
let agents serve customers from their designated class, FQR-T is designed to permit
sharing only in the presence of unbalanced overloads.

However, available podl-agents are assigned to classustomers whetD, »(t) >
k12, provided that no pool-agents are still serving a cladszsustomer. As soon as the
first pool2 agent is assigned to serve a classdstomer, we drop the threshalg,, but
keep the other threshold ;. (We could elect to add another threshold for the sharing; se
§2.7.6.) Upon service completion, a newly available tgmagent serves the customer at the
head of the clas$-queue (the class-customer who has waited the longestPif »(¢) > 0;
otherwise the agent serves a customer from his own clasisisiphase, pool-agents only
serve clasg-customers. Only one-way sharing in this direction will bewkd until either
the classt queue becomes empty or the other difference process ctbgsather threshold,
i.e., whenD,(t) > ko ;. As soon as either of these events occurs, newly availatidke2o
agents are only assigned to clasand the threshold, , is reinstated.

We can initiate sharing in the opposite direction when fi’st (£) > k-, and there are
no class2 agents serving classeustomers. At the first time both conditions are satisfied,
we start sharing with a pod-agent serving a clasiseustomer. When that first assignment
takes place, we remove the threshbld and again use the same procedure as before, but
now with the ratio parametes, ;. In particular, a newly available typeagent serves the

customer at the head of the classiueue ifD,;(t) > 0; otherwise the agent serves a
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customer from his own class.

Upon arrival, a class-customer is routed to poalif there are idle servers; otherwise
the arrival goes to the end of the clasgueue. An arrival might increase the queue to a
point that sharing is activated. Then the first customer iugus served by the other class
(presumably the agent that has been idle the longest, butowedfocus on individual
agents).

The queue-difference stochastic processef in (1.1.1)neiler provide any instanta-
neous motivation to have agents of both types simultangausificiently serving the other
classifry o > ro 1. That property will be satisfied when we apply a cost functmspecify
the ratio parameters i2.3.2.

Our FQR-T control is appealing for several reasons. Firss, automatic and simple;
we need not directly discover the arrival rates in order to fint when overloads occur, and
then decide what amount of sharing should be done. Inst€d; Fautomatically detects
the time the system becomes overloaded, and then autoityatictorces the optimal ratio,
by observing only the size of the two queues. It is easier éothis information about the
gueues, which is readily available, than to use informaéibaut the arrival rates, which
is not readily available. Moreover, simulation experingeindicate that FQR-T performs
better (produces lower expected costs) than fixing at their optimal values, even with

known arrival rates; see Figure 2.4.

1.2 Our Modeling Contribution

In this dissertation we contribute to the literature on &l (or congestion) control in
gueueing systems. There is a substantial literature stgayontrols that route (or assign)
customers (or jobs) to servers, possibly exploiting thoédd) but many of these papers, like

[11] and references therein, focus on single-server systégthout customer abandonment,
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whereas we focus on many-server systems with customer abaraht.

One feature of many-server systems with customer abandamve will exploit is
the rate at which the transient distribution approachestéady-state limit: It tends to be
much faster for many-server queues. In particular, theegystwe consider tend to reach
steady-state in a few mean service times; e.g., see (20f]raf’d (2.17) in[[79]. (We will
elaborate iff2.7.1.) Hence, in our analysis of performance during anloadrincident,
we approximate using the new steady state, determined hyetvarrival rates (assumed
constant). Customer abandonments ensure that the systeaimeestable.

We contribute to the call-routing problem for multi-clagsdamulti-site call centers
with skill-based routing; seg5 of [26] and§52.3.3, 4.1, 4.2 of [2]. Others have proposed
responding to stochastic fluctuations and unexpectedaadsiby modulating demand in
different ways: (i) admission control, (ii) making delayremuncements that may induce
customers to leave, use a different service channel (emajl énstead of voice), or call
back later, and (iii) acting to reduce service times, eygcurtailing cross-selling activities;
see§3 of [2] and [5].

In contrast, our work relates to the larger literature eitjplg server flexibility (supply-
side management). One approach is to have extra temponagrseavailable on short
notice; see [12] and references therein. Instead, we peopsiag servers that are already
working; i.e., we propose a form of resource pooling, whigpleits cross training; see
4.2 of [2] and§5.1 of [26]. As should be anticipated, though, our controbiteto be more
effective in alleviating congestion (rather than just balag the service degradation) when
the less-loaded system actually has some slack. Our wonksdra the queue-ratio control
proposed in[[29, 31], which applies to very general netwogotogies. Here we consider
the relatively difficultX model, allowing sharing in both directions (as depictedigufe
[L.1), but our approach makes the model behave more lik&/thedel, in which only one

service pool can serve both classes (so that there is sharimdy one direction); seé [69].
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However, we make significant departures from the previdesaliure. First, we want
resource sharing only in the presence of the unanticipatedaad, and only in the proper
direction, which depends on the nature of the overload. Eleme turn on and off the
sharing. Second, we regard the overload as a rare excelptioaaticipated event, rather
than a stochastic fluctuation in demand. Thus, we think thaimappropriate to perform a
long-run steady-state analysis of system performancealiéhnating normal and overload
periods (although that could be done). Instead, we focussamghe overload in isolation.

Since the system tends to be overloaded, even after shagden activated, system
performance tends to be well approximated by determinfktid approximations, as in
[79]. Our work also relates to the literature on arrivakrahcertainty; seg4.4 of [26] and
§2.4 of [2]. Arrival-rate uncertainty also tends to make detieistic fluid approximations

remarkably accurate; e.g., seel[10] and their previousrpapith Harrison, and [82].

1.3 Mathematical Models

The most basic mathematical model of a call center isihe//N (also known as the
Erlang C) model. In this model there is one service pool lmwhagents, one class of
customers and an infinite waiting room for customers in quée first 'M’ stands for
the assumed Markovian arrival process, i.e., a Poissorepspand the second 'M’ stands
for the Markovian service process, i.e., service times aseirmed to be independent and
identically distributed (i.i.d.) exponential random \abies. Important extensions of the
Erlang-C model are thé//M/N/K model, having a finite buffer (waiting room) of size
K, and theM /M /N + M (Erlang-A), which incorporates customer abandonmenthit t
model, customers are assumed to be i.i.d. with exponeratanre (the ‘+ M’ stands for
the Markovian abandonment process). In particular, thaerigHA model assumes that each

arriving customer has an exponential patience, and withdba if he cannot enter service
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before running out of patience. All the above models can be/@d as a variation of the
M/M/N/K + M model, having a single class of customers, single servicé \with N
agents, a buffer of siz& < oo and customer abandonment (with the patience rate allowed
to be infinite).

TheM/M/N/K + M model is attractive since it is relatively easy to analyzseHi-
cally, due to the Markovian assumptions, the queue-lengibgss constitutes a birth-and-
death (BD) process with state spa¢e1,..., N + K},orN = {0,1,2,...} if K = oc.
Thus, closed-form expressions for several steady statetitjiga of interest are easy to

derive and compute. (Sé&6é.1 in [85] for exact analysis of the Erlang-A model.)

Why Heavy Traffic?

Even for the simple\/ /M /N/K + M model a useful way to obtain insightheavy traffic
(HT) approximations. For example, the insight gained bysadering the three regimes in
§1.3.2 below is due to HT-limits considerations. Moreovethe Markovian assumption
is relaxed, exact analysis becomes much harder to carrynoubféen intractable. (How-
ever, results for thd//M /N + G model, having a general abandonment distributions, are
available. Seé6 in [85] for a summary of these results.)

Even in fully Markovian models, exact analysis becomes fffadlt to conduct once
the dimension of the model increases. If we consider a sysi@ing more than one
customer class and/or more than one service pool, then arabtsis becomes intractable
and finding the optimal staffing and routing schemes becompsactical. In these cases
HT approximations become a valuable tool.

The X model considered in this thesis is a multidimensiorerleyalization of the
Erlang-A model. Although it is assumed to be Markovian, ¢xatalysis becomes in-
tractable when sharing is taking place under FQR-T. Thesiea analysis of our model

proves to be harcggven when we consider the deterministic HT fluid approxondar the
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stochastic systems. However, the stationary fluid-limgragimation for the X model un-
der FQR-T is simple, and we use it in order to determine thérobparameters and show

that the control is optimal in the fluid limit.

1.3.1 The Conventional Heavy Traffic Regime

Heavy traffic limits were first proved by Kingman in [47,/48] @sproximations for steady
state distributions of a heavily load€d/G /1 queue. The HT procedure was adapted to
the multi-server settings, and extended to stochasticgaolimits, by Iglehart and Whitt
in [37,[38]. We refer tol[78] for a literature review.

We now describe the standard HT limit for the’G/1 queue. Lep denote the server
utilization, i.e., the long-run proportion of time that teerver is busy. Ip < 1 but close to
unity, then, although the system is stable, the queue ldmggtbmes arbitrarily large over
large time intervals. Loosely speaking, under the rightditoon on p, the queue length
process has fluctuations of ordef(1 — p) over time intervals of order/(1 — p)2, whenp
is close tol.

To make these statements rigorous, consider a seque&&Hfl systems indexed by
n > 1, and letp” = \"/u, where\™ denotes the arrival rate in systemand ;. denotes
the service rate, which is fixed for all systems. L¥t(¢) denote the queue-length process

(number of customers in the system at titre 0) in systemn. Then, if

Vn(l —p") — B € (—o0,00) asn — oo,

then
Q" (nt)
NG

where=- stands for weak convergence (convergence in distribusiea,[13], [78]), and

= R(t) asn — oo, (1.3.1)
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R is the well-studied reflected Brownian motion, which has apoaential steady state
distribution. The convergence holds not only pointwisee@th timet); the full process
{n=12Q"(nt) : t > 0} converges in distribution to the proce§&(t) : ¢+ > 0} in an
appropriate function space. A result of the type (1.3.1)ited afunctional central limit
theorem(FCLT) since the scaling is that of the central limit theordmt the convergence
takes place in a function space. It is a generalization ofbb&ic FCLT in Donsker’s
theorem.

The limit in (1.3.1) is the basis of what is now known as “camvenal HT”. In the
conventional HT, the number of servers in each station nesfaied, and the utilization of
each station approaches one in an appropriate manner.\@lkat, since the queue-length
process becomes large while the service rate remains fixedvditing times of customers
in queue also become very large. This phenomenon is trueniergefor systems in the
conventional HT. In single-server systems (or when the ramob servers in each station
is fixed along the sequence) one must choose between havigiglg hitilized system with
long waiting times, or a less utilized system with shorteitiwg times in queues.

The conventional HT is inadequate for the study of largeesystwith many servers. As
we mentioned above, call canters typically consist of erpools having a large number
of agents. Also, as experience shows, customers in lardeaaters typically do not
experience long waiting times, even when the utilizatiothef agents is close tbh Thus,

a different approach is needed in order to adequately am#dyge systems.

1.3.2 The Many-Server HT Regime

As the name suggests, the many-server heavy-traffic (MS¢eJijne is concerned with
large pools of servers. The first result is due to Iglehart36],] who considered the
M /M /N (Erlang-C) model. In particular, to achieve a MS-HT limglehart considered a

sequence ol /M /N systems (it is natural to let the number of serv&rbe also the index
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of the sequence), with a fixed service rate for all elememisgathe sequence, but with the
arrival rates and number of servers growing to infinity. Hegrethe number of servers
N grows to infinity so fast, that the limit becomes equivalemthat of the Markovian
infinite-server queuel{/M /o). In particular, a properly scaled sequence of stochastic
processes, representing the number of customers in thensysbnverges weakly to an
Ornstein-Uhlenbeck (OU) diffusion process.

Since the limit in this regime is indistinguishable from ttled the M /M /oo, if this
regime is applied to the analysis of call centers, then wetlsatythe system is operating
under theguality-driven(QD) regime. The QD regime is usually not suitable for caliier
analysis, as there are no customers waiting to be servedyaodstomer abandonment in
the limit.

Note the difference between conventional HT and the infiséever-type HT: In con-
ventional HT, the probability that customers will be wagtim queue approachdsin the
limit, while in the latter QD regime the probability of waity approaches. Systems which
are designed to operate such that the probability that @estwill wait to be served ap-
proaches one are said to operate indfiiency driveED) regime, since, asymptotically,
all agents are busy and all customers must wait to be served.

However, the QD and ED regimes are not the only MS-HT regin@es)sider a se-
quence of7/M /N queues with arrival rata” for the N** element of the sequence, with
M/N — MasN — oo, for some) > 0. Also assume that the service rates satisfy

uN =p>0forall N € N. Fort > 0, let

vy Q¥ - N

QN (t) = 7w NeN (1.3.2)

Observe tha®)" is centered about the number of servatsso thatQ™ (¢) < 0 indicates

that there is idleness in the system, wher@dg¢) > 0 indicates that there are customers
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waiting to be served, at time
In [33], Halfin and Whitt observed that a non-degenerateudiéfn limit can be obtained
for the number-in-system proces$s (113.2), with this lingtdiffusion process fluctuating

above and below zero. Specifically, assume that
VNA-p¥) = >0 as N — . (1.3.3)
Condition [1.3.B) is equivalent to tlegjuare-root safety staffing rylaamely
M/ =N —=BVN +o(VN),

whereo(v/N) denotes any functioif : N — R, satisfyingf(N)/vN — 0asN — oc.
Then, underf{L313), ()N (0) = Q(0), then

QV=0Q as N — x, (1.3.4)

whereQ is a well defined diffusion process, and the convergencestpkee in an appro-
priate function space (i.e., the whole procér% converges to the diffusion process.

In addition to the convergence result above, Halfin and W88} analyzed the steady
state properties of the limiting diffusion process. Theyawble to show that the stationary
distribution of the limiting diffusion is the limit of the s¢ed sequence of stationary distri-
butions for the stochastic number-in-system processess, the steady-state probability
of having to wait converges to a number strictly between zem one, as opposed to the
QD and ED regimes described above. The regime developedB]nd3how known the
Halfin-Whitt regime, or thejuality and efficiencyQED) regime, since it incorporates both
the QD and the ED regimes. In the QED regime, high serveratitn (the proportion of

idle servers in the system is at most of ordigy/N) is achieved together with short waiting
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times, which are of order/+/N. As a consequence, one needs ghlyN “extra” service
capacity in order to achieve any given level of service dam (1.3.3).

For service systems, modeling customer abandonment isiargoFor the thé//M /N +
M (Erlang-A) model, the same three different MS-HT limitireggimes, identified in [33],
were shown to exist i [27] by the limit i (1.3.3). The regen@ ED, (ii) QED, and
(iii) QD then occur, respectively, if the limit i (1.3.3) s with (i) 3 = —oo, (ii)
—o0 < [ < oo, and (iii) B = +oo. These three regimes also generalize to more com-
plex queueing networks (and non-exponential service fimes

Operating under the QED regime carries a risk; a well-opédratll center is usually
designed to have a utilization @f ~ 0.95. Hence, if the arrival rates are even slightly
larger than expected, (or if the number of agents is smdikan planned) the system may
encounter an unexpected overloaded. In such cases, thgbiereecomes the appropriate
limiting approximation to consider, e.g., s€el[79],][82]oMover, systems are sometimes
designedo operate under the ED regime, particularly if they are e@enue generating,
in order to decrease the operating costs. Thus, in recens yleere has been a growing
interest in the HT ED limits. See, e.gl, [27], [58], [79], Jédnd [82]. The ED regime
is often appropriate for service systems, and is nontrtai@nalyze, since customers can
abandon. Abandonment ensures that the system under caigides stable.

Consider theM//M/N + M model, and lep” = p > 1 for all N € N, so that the
arrival rate to each system along the sequence is largeritdhamaximal service rate. In
that case, the sequence of queue-length processes, ceabengt the number of servers
(similar to the expression (1.3.2)) will diverge to infinityr eacht > 0, since the queue
length is orderN larger than the number of agents, even though abandonmeps leach
system along the sequence stable. If one is interested &nafg FCLT, one should find
a new argument to center about. It turns out the the centargugment in the ED regime

is often of interest for its own right, and can be nontriviakichieve. In order to find that
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centering argument, we consider the limit of the sequépte= Q" /N. Let

Q = lim QV. (1.3.5)

N—o0

(Assuming the limit in[(1.3]5) exists.) Limits of the tyde.818) are called “fluid limits”,
since they tend to be continuous and deterministic prosesbieey are also callefilinc-
tional laws of large number@=LLN), since the scaling is that of the law of large nhumbers,
and the limit describes the mean values of the random sequéHue fluid limit of the
above Erlang-A model is relatively easy to establish; 58 [lh general, however, fluid
limits can be hard to characterize. Moreover, they can ptobe a crucial step in the proof

of the FCLT refinements, as in our case. See alsb [21].

1.3.3 Establishing HT Limits

There are several ways to prove that a sequence of stocpastiesses converges in dis-
tribution. Here we briefly review the three most widely useetimods in the HT literature.
For background on the different methods seé [13], [25] a8l [7

We start with defining the space in which the stochastic m®e® under considera-
tion exist; For a subinterval of [0, c0) let Dy (/) = D([I,RR;) be the space of all right-
continuousR-valued functions, with limits from the left everywhere,denved with the
Skorohod/J; topology. LetD, = D([0,00),Ry), with D = D;. LetCr(I) C Di(I) be
the subspace of continuous functions in7f(7). Usually, the sequences of stochastic
processes considered are random elemeri jiwhile the limits are typically in the sub-
space of continuous functiodg, in which case thég; topology coincides with the uniform
topology.

The most widely used method in the HT literature usescthinuous mapping the-

orem (CMT). The CMT approach exploits established stochastcgss limits (usually
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Donsker’s theorem or a variant) to obtain new limits. In jgattr, if the sequence of
processes considered can be represented as a continuquisgfapm D, to itself of pro-
cesses whose limits are known, then the limit of the sequeanebe characterized. The
hard step is then showing that a given mapping is continud@wen addition is in general
not a continuous function i®). However, many useful functions, which are often needed
in practice, were shown to be continuous in appropriateltapes. For many useful con-
tinuous functions (in different topologies) s&E3 in [78].

The second method, which can be applied to Markov proceisstse operator semi-
group approach. Convergence of the generators of Markosepses (in an appropriate
sense; see [25]) implies the convergence of the correspgrsgimigroups, which in turn
implies the convergence of the Markov processes. The getieary is hard to apply,
and rarely used in the HT literature. (But seel[71] for a qiregepplication). However,
simplified versions of the theory were applied extensiv8lgecifically, if the elements in
the sequence afgirth and death(BD) procesess, Stone’s theorem|[66] can often be ap-
plied. Stone’s theorem reduces the problem of showing bigagjénerators of the processes
converge to showing that the sequence of infinitesimal maadsariances converge. For
gueueing applications, see e.q.,/[2[]./[36], [79].

The third method is the compactness approach. Provingtimadrems in this method
follows two steps: 4) showing that the sequence under consideration is pre-achamd
(77) uniquely characterizing the limit. In the function spabg (endowed with the/,
metric), pre-compactness is equivalent to sequential esinpss, i.e., a sequence is pre-
compact if each of its subsequences has a further convesgimgequence, e.g., seel[57].
The framework of weak convergence via the compactness apipreas developed by Pro-
horov [60]. The direct half of Prohorov’s theorem (Theorerh i [13]), applied for ran-
dom elements of, andD,,, essentially reduces to the Arzela-ascoli characteozdand

its variant toD,,) of relative-compact sets in those function spaces.
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We will use the compactness approach to prove the main rektitis dissertation,
namely the fluid limit of the overloaded X model under FQR-Twéver, in our proofs,
we will also make extensive use of the CMT. Moreover, theudithn limits can be derived

using the CMT, building on the fluid limit.

1.4 The Analytical Contribution

Chapters 3 anfl4 are devoted to the mathematical analysieof imodel under FQR-
T. In particular, Chaptdr]3 is dedicated to a dynamicalaystype study of amrdinary
differential equation(ODE), which will be shown to arise as the fluid limit (FLLN) of
the X model in Chaptdr]4 (with some proofs appearing in Chdgte Chapter§]3 and 4
may seem out of order, because we establish properties difiidboefore we prove the
convergence to that limit. However, the order is approprimcause the properties of the
limiting ODE and its solution play a key role in the proof okthmit theorems in Chapter
4.

In Chaptef_B we show that there exists a unique solution t@OB& over an interval
[0, 6) for somed > 0. Conditions for extending this interval (typically all they to infin-
ity) are provided. We also prove that there exists a unigatostary point to the ODE. If
the solution to the ODE exists df, co), then it is shown that the solution must converge
to its stationary point exponentially fast. Finally, we yiate an efficient numerical algo-
rithm, based on the matrix geometric method and the cldg$sidar forward algorithm, for
solving the ODE.

In Chaptef# we show that the sequence of overloaded X systgrasating under FQR-
T, is pre-compact. We then show that the limit of every cogiey subsequence satisfies
the three-dimensional ODE which was studied in Chdpter 8.urtiqueness of the solution

to the ODE ovef0, §) implies that the whole sequence of fluid-scaled processesoges
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to the solution of the ODE. Proving convergence over thedfiimiterval|0, ) (no matter
how small) is sufficient, since the convergence can be erttad long as the solution to

the ODE is known to be unique.

An Averaging Principle

The main difficulty in establishing weak convergence viadbmpactness approach is usu-
ally in characterizing the limit. In our case, characterigihe limit is hard since FQR-T
is driven by one of the queue-difference processes in {({.depending on which class
receives help. When the sequence of fluid-scaled X modelsrisidered, the queue-
difference process is not being scaled and hence does nargarto a deterministic quan-
tity due to the spatial scaling. However, this control-driyprocess operates in a different
time scale than the fluid-scaled processes. In the limitnagpdete separation of time scales
is achieved, so that the queue-difference process corséoge (time-dependent) steady
state at each instant of time. (Hence, it achievdsng-run averagingnstantaneously,
where the “long-run” is with respect to the fast time scal&g refer to this fast long-run
averaging phenomenon asaveraging principlg AP).

The AP of the queue-difference stochastic process also lozatgs the analysis of the
limiting ODE. Since this process is not being scaled, it doasbecome deterministic in
the limit. The ODE itself is deterministic only due to the A®e call the stochastic process
which drives the ODE théast-time-scale proceq$TSP), because at each time> 0,
the FTSP is replaced by its long-run average behavior. Nmeeshe FTSP determines
the evolution of the ODE while, at the same time, the solutethe ODE determines the
distribution of the FTSP, it may seem that the ODE cannot lig &nalyzed. However,
the separation of time scales allows for a complete anatysise ODE, since the long-run
behavior of the FTSP at each fixed timmg 0 is determined by the value of the solution to

the ODE at the fixed time
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The second complication is that the AP produces a singulatfion in the state space,
causing the ODE to be discontinuous in its full state spaeandd, both the convergence to
the MS-HT fluid limit, and the analysis of the solution to thBBdepend heavily on the
state space for the ODE, which is characterized in termseoFirSP.

There are evidently only a few papers in the queueing lieeainvolving averaging
principles. Two notable papers afe [19], which consideesdiffusion limit of a polling
system with zero switch-over times, and|[35], which considarge loss networks under
a large family of controls. Referende [35] is closely rethte our work since it considers
the fluid limits of such loss systems, with the control-dnyiprocess moving at a faster
time scale than the other processes considered. Howegeardbf techniques here and in
[35] are very different. In particular, the AP in [35] is ped via the martingale problem,
building on [49].

We refer to [35] and([49] for a review of AP phenomenon in ststit settings, and
to [45] for AP-type arguments in deterministic dynamicateyns. However, we note that
our AP is very different than the settings considered_in [415] particular, although our
ODE is deterministic, the AP is stochastic in nature. In ptherds, our ODEs driven
by a stochastic proces3he ODE itself is deterministic since the stochastic pssads, at
each time > 0, replaced by its long-run average behavior. This makes @ @nalysis

an interesting combination of the dynamical-systems anbatility theories.

State Space Collapse

As in many multi-class queueing networks, there is no updeglcontinuous mapping
representing the queue-length process, e.g.,[ sée [16], f&ivever, often one can work
with “cruder” processes, which do not include the exactraxtBon between the different

processes considered. In that case, a CMT may be applicaibke Ibwer-dimensional
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(“crude”) process. That can be done by showing that the dinignsional process de-
scribing the system is experiencingtate-space collapg&SC). That is, in the limit, the
multidimensional processes exists in a lower-dimensibypérplane of its space.

In our proof of the AP we also achieve a SSC result for the qlength process. We
show that the limit of the two-dimensional queue-lengticess exists in a one-dimensional
hyperplane ofD,([0, §)). Letting Q; denote the diffusion limit of classqueue,i = 1,2,

we have that

A

Qi(t) = 112Qa(t) t €[0,9). (1.4.1)

(Here|[0, ) denotes the maximal interval on which the fluid limit is knoterexist. Typ-
ically we can take) = oco.) Hence, we can analyze the sequence of the one-dimensional

total queue-length process@s = Q" + Q7, Using [1.4.1), we deduce that

rooa 1 .

Ji=——Q,, and Q»=-—0Q,,
Qi =1—0Q Q= 1-Q

where@s is the diffusion limit of@g. Of course, the same relation holds for the fluid-limit
queues.

There is a large body of HT literature which includes SSCltesand we refer td [29]
for references. We mention that a framework for proving S developed by Bramson
[16] in the conventional HT. His work was later extended by Bxad Tezcan([21] to the
MS-HT QED regime. Gurvich and Whitt [29] proved that SSC tsdldr general network
topologies operating under the queue-and-idleness r@tiR)(family of controls. QIR
aims to keep the queue length of each class and the propoftidie servers at each pool
at pre-specified ratios of the aggregated queue length ajrdgaged idleness in the system.

In closing we remark that we could not use Bramson's framkvamid its extensions
to the MS-HT in [21] and[[29]. First, these two references @acerned with the QED

regime, whereas we are concerned with the ED regime. Moreriaptly, the SSC result
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is too crude for our needs. Knowing that SSC occurs in the Hiltliso that the queues

exist in a one-dimensional hyperplane, is not sufficientoior purposes. To characterize
the limit, we must also know the service process, i.e., homyrastomers from each

class are being served in each service pool at everyttimé. We thus need to consider
the customer-server assignment process, which drivesotiiteot and depends on all pro-
cesses. (IN[29] this problem is avoided by assuming thateiéce rates are class or pool
dependent. in cyclic networks, such as the X model. Thusxheteervice process can be

ignored in their settings.)



Chapter 2

Responding to Unexpected Overloads In

Large-Scale Service Systems

In this chapter we elaborate on the X model and its main chexiatics. We then derive
a heuristic stationary fluid approximation (which will besjified rigorously in the next
chapters) to analyze the system under the unexpected andwnloverloads.

Assuming that a convex holding cost is incurred on the twougaeduring overload
incidents, we find the optimal server allocation in the h&tigistationary fluid approxima-
tion. We then propose the QR-T and FQR-T family of controlkjol are argued to be
superior to a fixed partition of the service pools when shpisnneeded. Simulation ex-
periments show that our control actually performs bettentthe fluid-optimal fixed server

allocation, even if the arrival rates are known.

2.1 The Modelling Approach

The X model. As an idealized model of two separate service systems wélcdpability

of sharing, we consider th& model, depicted in Figurfe 1.1 Chapiér 1. Thiemodel has

22
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two homogeneous customer classes and two homogeneouspagént We assume that
each customer class has a service pool primarily dedicatédhut all agents are cross-
trained, so that they can handle calls from the other clags) ¢hough they may do so

inefficiently or ineffectively. Under normal loading (at near forecasted arrival rates), we
want each class to be served only by its designated agentguwiany help from cross-

trained agents in the other service pool. We assume thdingtdias been performed in

standard ways, so that the number of agents in each poolgaatketo meet performance
targets at forecasted arrival rates. However, we also weanitomatically activate sharing

when there are unexpected unbalanced overloads, eitheravigone class is overloaded
or when both classes are overloaded but one is much moreaded than the other.

More specifically, we consider a fully Markovian model. CGasers from the two
classes arrive according to independent Poisson procestearrival rates\; and \,.
There is a queue for each customer class, with customersdaaim class entering service
in order of arrival. We assume that waiting customers hawaded patience. A classeus-
tomer will abandon if he does not start service before a rantilme that is exponentially
distributed with meari /¢,. There are two service pools, with poohavingm; homoge-
neous servers working in parallel. The service times areiallytindependent exponential
random variables, but the mean may depend on both the custiass and the service
pool. The mean service time for a classustomer served by a typeagent isl/p; ;. Let
the service times, abandonment times and arrival procéssesitually independent. Let
Qi(t) be the number of classeustomers in queue and &t ;(¢) be the number of typg-
agents busy serving clasgustomers, at time With the assumptions above, the stochas-
tic process(Q;(t), Z; j(t);i = 1,2;j = 1,2) becomes a six-dimensional continuous-time
Markov chain, given any routing policy that depends on thisdémensional state.

In this context, under normal loading we want each classeseonly by agents from

its own designated service pool; i.e., we waht(t) ~ Z,(t) ~ 0 for all £. One possible
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reason is that the value of service by agents from the other mpaht be less, perhaps
because they lack specialized skills. Another possibleaeas that service by the cross-

trained agents is less efficient; we might havedtreng inefficient-sharing condition

pag > pa2 and  piog > o, (2.1.1)

We examine the inefficient-sharing case. Throughout théptdr, we assume thmasic

inefficient-sharing condition

12,2 = [1,2M02,1- (2.1.2)

Clearly, condition[(2.1]1) implies condition (2.1.2). Beeconditions play a role i§.3.2.

In this X-model setting with inefficient sharing, we suppose that mexpected over-
load occurs at some unanticipated time that changes thalamtes. We assume that we
are unable to immediately change the staffing levels in respdo that unexpected over-
load. However, we do have the option of allowing some of tlessitrained agents from
the less-loaded service pool serve customers from the nverdoaded customer class. In
addition, we do not know the new arrival rates when the oaetloccurs. Thus we need to
develop a control that depends on the system history; in seayewve must discover that
the arrival rates have indeed changed. That is challenfecguse stochastic fluctuations
under normal loading may make us think that the arrival rate® changed when in fact

they have not. We illustrate with the following example.

Example 2.1.1.To illustrate, consider a symmetric model with forecastaival rates

A1 = Xy = 90 per unit of time, where the mean service time for customengeseby
designated agents;izsﬁ = ,u;é = 1.0, while the mean service time for customers served by
agents from the other pool;’q‘é = ,u;j = 1.25. We measure time in units of mean service
times by designated agents, which for discussion we takesto oinutes. Notice that

condition [2Z.1.11) holds here: For all agents, the mean tiqeired to serve the other class
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is 25% greater than the mean time required to serve an agent’'s @ss.cLet customers
abandon at raté, = 6, = 0.4.

Because serving the other class is less efficient, with thasgmeters it makes sense
to operate the system as two separate systems. Followindasthstaffing methods for a
single-class single-podi/ /M /m + M model, we may assigm; = m, = 100 agents to
the two service pools. That makes the traffic intensitiess A\ /mipu11 = pa = 0.90,
which we regard as normal loading. With this staffing, staddslgorithms show that
steady-state performance is quite go®2i% of the arrivals enter service immediately upon
arrival without joining the queue, onl§.5% of the arrivals abandon, the average size of
each queue i3$.1, and the expected conditional waiting time, given that thst@mer is
served, is only).012 (about3.6 seconds with a mean service timebahinutes).

Now suppose that, at some unanticipated time, the arrival fox classl jumps to
A1 = 130, while the arrival rate for clasdremains at\, = 90. If class1 receives no help
from pool2, then clasd experiences severe congestion. Assuming that the systainas
steady state after this shift in arrival rate (which doesta&e very long, approximately
a few mean service times, as confirmed by simulations -§8€&1), almost all class-
customers must wait before starting servizg% of the classt customers abandon, the
average size of the clagsgueue becomes, the expected conditional waiting time given
that a class-customer is served 65 (3.25 minutes).

If, as system managers, we were able to recognize that tbeictarival rate had shifted
to 130, then we might elect to reassign some of the claagents. For example, we might
let 25 of the pool2 agents be devoted to serving cldssThat increases the total service
rate responding to the clagsarrival rate ofl 30 from 100 to 100+ (1/1.25)25 = 120, while
leaving a total service rate a0 — 25 = 75 to respond to the classarrival rate of90.
Since sharing is inefficient, we must sacrifizieunits of service rate for clagsin order to

gain20 units of service rate for clads
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Assuming that the two classes can be modellet/@8//m + M queues (which is only
approximately correct for classbecause its servers have become heterogenous), we can
analyze the performance, e.g., by|[80]. The pair of abandwriprobabilities for the two
classes changes frof0.23, 0.005) to (0.08,0.17); the pair of mean queue lengths for the
two classes changes frofib, 1.1) to (26, 38); and the pair of conditional expected waiting
times given that the customer is served changes fi@f%, 0.012) to (0.205, 0.450) (1.03
minutes an®.25 minutes, respectively). In this chapter we develop a cotited responds
in a similar way, but does so automatically without havinckt@w that the arrival rates

made that specific shift, and without making a fixed partibbthe agents.

Analysis with a cost function. The advantage of such sharing, or any other control that
produces similar sharing by the inefficient cross-traingenas, depends upon the cost of
the congestion experienced. To assess that cost, we willresthat there is a cost function
C, with C(Q1(t), Q2(t)) representing the expected cost rate incurred at tifhéne vector
of queue lengths at timeis (@ (t), Q2(t)). If the overload incident takes place over the

time interval[a, b], then the expected total cost would be

cTzE[ / c<@1<t>,@2<t>>dt] = [ B, Q) (2.1.3)

We assume that the cost functiéhis convex and strictly increasing. The convexity ex-
plains why we might want to share when one class is much m@gaaded than the other,
no matter which class is overloaded.

In this context, our goal is to choose a routing policy, whighy allow assignments
to cross-trained agents, in order to achieve low (nearsmuni) expected total cost for all
possible overload incidents and resulting stochasticge®es (), (t), Q2(t)), while pro-
ducing only a negligible amount of sharing under normal ingdTo define what we mean

by an “overload incident,” We can first specify an interjalc| over which the arrival-rate
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vector (A (t), Ao(t)) differs from the nominal vector. (We assume that the arrprak-
cess is a nonhomogeneous Poisson process with these nest eates.) However, we
should also include an additional interyalb| after timec to allow the vector queue-length
(@Q1(t), Q2(1)) to return to its nominal steady-state value. (Engineenigément is re-
quired.) In our analysis, we simplify by restricting attemntto scenarios, as in the example
above, in which the pair of arrival rat€¢s;, \,) makes a sudden unexpected shift at some
time, and remains at the new vector for a significant durasornthat the system reaches
a new steady-state at the new arrival-rate vector. (Custalv@ndonment ensures that the
system reaches steady state for any arrival-rate vectar.p@ntrol applies more generally.

For such scenarios, we simplify by re-expressing our goahiasmizing the expected
steady-state cost; i.e., we aim to minimize = E[C(Q1, Q2)], where(Q1, Q2) is the vec-
tor of steady-state queue lengths associated with the nmexalarate vector associated with
the overload. We will use this steady-state overload fraonkwo set the control parame-
ters and demonstrate effectiveness, but the control apigiether overload scenarios. For
this steady-state analysis to be effective, it is importhaat the system approaches the new
steady state associated with the overload relatively dyidks illustrated in the concrete
example above, this tends to happen in a few mean servics.tiediscuss this important
point further ing2.7.1.

In the context of Example 2.1.1, we might have a shift in atmates lasting five hours.
It might not be possible to change the staffing in responsmguse it is in the middle of the
same day. The initial transient period might lashean service times db minutes, which
is 5% of the total overload incident. There might then be a recpperiod lasting aboui
mean service times @5 minutes, after which the system returns to steady statesuair
overloads, the steady-state is evidently reasonable tamdssential for tractability. Even
with this simplifying approximation, the control problemrfthe stochastic system is very

difficult. We will get an approximate solution only after dajing a fluid approximation in
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addition to this steady-state analysis; §86.2. Even with that approximation, the analysis
with a general increasing convex cost function gets corasit, se€2.3.2. However, as
a byproduct, there is a very nice simple story (explicit fatas for everything), provided

that we assume a separable quadratic power cost functie®reposition 2.3]5.

2.2 The Proposed Control

We start by briefly reviewing théxed-queue-ratigFQR) routing rule from [29] and then
we show that the FQR rule without thresholds can performIgauith inefficient sharing,
where the conditions in the theorems|[of|[29] are violatecermive introduce our proposed
modification of FQR in order to treat unexpected overloatisvblves general queue-ratio

functions, as in[[31], and thresholds, one of each for ea@ttion of sharing.

2.2.1 FQR and its Difficulties with Inefficient Sharing

With two queues, FQR can be implemented by considering agtwed)queue-difference
stochastic procesB(t) = Q1 (t) —rQ2(t), t > 0, wherer is a single target-ratio parameter
that management can set. With FQR for tkiemodel, a newly available agent in either
service pool serves the customer at the head of the tlésisss2) queue ifD(¢) > 0
(D(t) < 0), and serves the customer at the head of its own quelétjf= 0. The goal of
FQR is to maintain a nearly constant queue rafjo(t) /(- (t) ~ r throughout time. When
r = 1, FQR coincides with serving the longer queue.

Under regularity conditions, the FQR control has two vergigible features for large-
scale service systems, which makes it possible to reducsdutieclass multi-pool staffing-
and-routing problem to the well-understood single-clasgls-pool staffing problem. First,
if the required conditions are satisfied, then FQR tends talywrestate-space collapse

(SSC); i.e., for theX model, the two-dimensional queue-length ve¢tr(t), Q- (t)) tends
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to evolve approximately as a one-dimensional processrdeted by the total queue length
Qx(t) = Q1(t)+Q2(t). In particular®;(t) ~ p;Qx(t) fori = 1,2, wherep; = r/(1+r) =

1 — py; e.g., see Figure 2.112 i§P.7.2. Moreover, it does so in a way such that all three
stochastic processes)s (), Q1(t) and@2(t) - remain appropriately stable as— co. In-
deed,[[29] show that, under regularity conditions, FQR exds SSC asymptotically in the
guality-and-efficiency-driven (QED) many-server heargfftc limiting regime. Second,
with FQR, it is possible to choose the ratio parametg@r, equivalently, the queue propor-
tionsp;) in order to determine the optimal level of staffing to ackieesired service-level
differentiation; i.e., staffing costs are minimized subjecmeeting class-dependent delay
targetsP(W; > T;) = «; seed 2.7.2 and [29]/[31] also showed how to staff to minimize
convex costs under normal loading. In that case, the asyioailyg optimal control in the
QED regime is not FQR, but a state-dependent generalizatfmqueue-and-idleness-
ratio (QIR) control. Our optimal queue ratios for the fluid modetianoverloading with
convex costs are of the same state-dependent form.

However, in our setting, where service provided by nonglestied agents is inefficient,
neither FQR nor QIR, without the extra thresholds, is appabg in normal loading, be-
cause they induce undesired sharing. Because of the ieeffisharing, the system mot
work-conserving; sharing causes the required workloaddrease. Indeed, the conditions
in the key theorems of [29, 81] are violated. In fact, thoseditions are actually needed
to maintain stability. (However, for FQR without the thre&ls, SSC is still achieved; the

two queues explode together.)

Example 2.2.1.To illustrate, consider th& model with parameters:,; = ms, = 100,
pi1 = fa2 = 1.0, 12 = poq = 0.8, \; = Ay = 0.99 andé, = 6, = 0.0 (no abandon-
ment). Since the traffic intensities ape = \;/m;u;; = 0.99, the two separate systems
without sharing are stable (with mean queue lersgthnd mean waiting time.85). How-

ever, if we use FQR with = 1, then inefficient sharing is generated, so that a significant
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proportion of each agent pool is busy serving the other ckas& consequence, the arrival
rate actually exceeds the service rate and the queue letigdrge to infinity. Here, there
still is SSC, but the two queue lengths diverge together.

This difficulty when FQR is applied inappropriately is iltested by Figureg 211 and
[2.2. They show the sample paths@f(t) and Z,(t), starting empty, in one simulation
run. After an initial transient period, the number of ages#isving the other class fluctuates
aroundE[Z, 5| = E[Z2,1] = 39, while the queue grows in an approximately linear rate; the
simulation estimate i&[Q;(t)] ~ 6.8t, ¢t > 0. (These numerical values are estimated from

multiple simulation runs. The confidence intervals are teaa1%.
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Figure 2.1: Sample path of,,(t) for = Figure 2.2: Sample path af),(¢) for
FQR FQR

Customer abandonment necessarily prevents the queueskploding. Even in the
worst case, when all agents are dedicated to the wrong thessystem would be stable.
However, there still is performance degradation, e.ghWit= 6, = 0.2 andr = 1 about
39% of the agents in each pool are busy serving customers fronottier class which

causes the queues to grow fray, if there is no sharing, t84. More details appear in

§2.7.2.
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2.2.2 The Proposed Control: FQR-T

Here is the lesson from the previous subsection: If we anegpioi use a queue-ratio control,
then we need to take extra measures to prevent sharing umaealioading. First, we want
to prevent simultaneous inefficient sharing in both ditsi Hence, we restrict the routing
to one-way sharingt any time: We do not allow a newly available typ&gent to serve
a waiting classt customer if there are any tygeagents busy serving clagssustomers.
And similarly in the other direction. (However, over timbetdirection of one-way sharing
may change; we are not considering the so-calechodel, which only allows one-way
sharing in one fixed direction.)

From cost considerations, discussediZa3, we want to allow different ratio param-
etersry 2 andry; for the different ways we may share. (In general, we may neecem
complicated ratio functions or, equivalently, sharingioeg; se€§2.3.2, especially Figure
[2.3.) In order to permit sharing only in the presence of uahedd overloads, we suggest
fixed-queue-ratio routing with thresholdBQR-T). In addition to the two ratio parame-
tersry , andr, 1, we introduce two positive thresholds, andk, ;. We then define two

gueue-difference stochastic processes

Dl’g(t) = Ql(t> — 7’1,2@2(15) and Dg’l(t) = 7’2,1Q2(t> — Ql(t> (221)

As long asD; »(t) < k12 andDs;(t) < ko1, we do not allow any sharing, i.e., we only let
agents serve customers from their designated class.

However, available podl-agents are assigned to classustomers whetD; 5(t) >
k12, provided that no pool-agents are still serving a cla8szsustomer. As soon as the
first pool2 agent is assigned to serve a classdstomer, we drop the threshalg,, but
keep the other thresholeh ;. (We could elect to add another threshold for the sharing;

seef2.7.6.) Once one-way sharing has been activated with pbelping class, we use
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ordinary FQR with ratio parameter .. Upon service completion, a newly available type-
agent serves the customer at the head of the dlagsgeue (the class-customer who has
waited the longest) i, »(t) > 0; otherwise the agent serves a customer from his own
class. In this phase, poalagents only serve cladseustomers. Only one-way sharing
in this direction will be allowed until either the cla3sgueue becomes empty or the other
difference process crosses the other threshold, i.e., \Whett) > k» ;. As soon as either

of these events occurs, newly available ppalgents are only assigned to cl&sand the
thresholdk, , is reinstated.

We can initiate sharing in the opposite direction when fi’st (£) > k-, and there are
no class2 agents serving clasiseustomers. At the first time both conditions are satisfied,
we start sharing with a pod-agent serving a clasiseustomer. When that first assignment
takes place, we remove the threshéld and again use FQR with one-way sharing, but
now with the ratio parameter ;.

Upon arrival, a class-customer is routed to poalif there are idle servers; otherwise
the arrival goes to the end of the clasgueue. An arrival might increase the queue to a
point that sharing is activated. Then the first customer iugus served by the other class
(presumably the agent that has been idle the longest, butowetifocus on individual
agents).

The queue-difference stochastic processef in (2.2.1)neiler provide any instanta-
neous motivation to have agents of both types simultangausificiently serving the other
classifry o > 1. That property will be satisfied when we apply a cost functmspecify
the ratio parameters i{2.3.2.

To illustrate how FQR-T performs in normal loading (heavgdobut not overloaded),
we again consider Example_2.R.1 with abandonments atdfate 0.2. We letr;, =
ro1 = 1, S0 that there is no change from FQR above, but now we addhiblost, , =

k.1 = 10. The performance is greatly improved with FQR-T compareB@R without
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thresholds:E[Z, 5] = E[Z,;] ~ 2.0 for FQR-T, whileE[Z, 5] = E[Z,;] ~ 39 for FQR.
As a consequence, the performance for FQR-T is almost the sarnwithout sharing. In
particular, with FQR-T, the abandonment rate is slighttyhar than without sharin@ (%
compared t®.0%), but the average queue length is actually lgs$ compared tal0.0).
In fact, FQR-T can outperform no sharing with larger thrédh@lues, because of the

resource-pooling effect. For more details, §&.2.

2.3 The Fluid Approximation for the Steady State

In order to obtain a tractable characterization of perfaroeafor FQR-T and find good
gueue-ratio parameters, we now introduce a determinisict &pproximation. To describe
the steady-state behavior of our model when there is norghawie first discuss the case of
a single customer class served by a single service pool {dksical)M /M /m + M model,
with arrival rate), individual service rate. and abandonment rafe Afterwards we treat

the more general X model.

2.3.1 One Class and One Pool

For theM /M /m + M model, the approximating deterministic fluid model has beted-

ied in [79] via many-server heavy-traffic limits. Here we lMdérive the simple steady-state
formulas directly. We assume that input and output (whiclcatefluid) occurs determinis-
tically at the specified rates. We think of the system as largkthus regard the number of
customers and servers as continuous quantities as wel, Tid arrives deterministically
and continuously at constant rateFluid also is served and abandons deterministically and
continuously at rates that are directly proportional tonlenber of busy servers and the
gueue length, respectively. If the “number” of busy servers then fluid is served at rate

xu; if the queue length ig, then fluid abandons at ragé.
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We say that the system is overloaded if the input rate excéedsiaximum possible
total service rate. Givem servers, each working at rate the maximum possible total
service rate ismpu. Thus the system is overloadedit> myu, and not overloaded otherwise.
If the system is overloaded, then in steady state all sewirbe busy and there will be a
gueue of waiting fluid, with contert which can be determined simply be equating the rate
in to the rate out, including customer abandonmeate in= A\ = mu + ¢f = rate out
As an immediate consequence, we get (A — myu) /6. If the system is not overloaded,
i.e., if A < myu, then there will be no queue. Then we can describe the st&atlyvia the
amount of spare service capacity (number of idle serveraich again can be determined
by equating the rate in to the rate otdte in= A\ = (m — s)u = rate out As an immediate
consequence, we get= m— (\/u). Without directly specifying whether or not the system

is overloaded, we can write

q:% and s= (m—%)Jr, (2.3.1)
where(z)* = max {z,0}. We always have theomplementarity relations = 0.

From the point of view of our analysis, we regaxds an unknown parameter, but we
consider the remaining parametenrs ;. and@ as fixed and known. For any givey we
can compute ands as indicated above. With our overload control problem indninis
significant that we can recoverfrom the pair(q, s), because we want to learn aboulby
observing(q, s). If ¢ > 0 ands = 0, then necessarily we aoverloadedand\ = 0g+my;
if ¢ = 0 ands > 0, then necessarily we avmderloadedwhich includes normally loaded),
and\ = (m — s)u; if ¢ = 0 ands = 0, then necessarily we aeitically loaded and
A = myu; we cannot haveg > 0 ands > 0. For an overloaded fluid queug,is an
increasing linear function af; for an underloaded queug,s a decreasing linear function

of s.
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As discussed i [79], we can also describe the transienwvimataf the fluid model and
determine other performance measures. For example, ifufdenflodel is overloaded, then
the associated approximate potential steady-state \gditime (virtual waiting time for a
customer with infinite patience) i8 = log (\/mu)/01 = log (p)/61, wherep = X\/mypu is
the traffic intensity, satisfying > 1; see (2.26) of [79].

Note that an increasing convex functionwofis an increasing convex function affor
A > mpu. Since\ is a positive linear function af under overloads, we see that an increasing
convex function ofw itself is a convex increasing function gfas we have assumed in our
optimization formulation. Similarly, the abandonmenerat the overloaded fluid model is

0q = A\—myu, so the abandonment rate is an increasing linear functigmoéler overloads.

2.3.2 The Optimal Solution for the X Fluid Model

The X fluid model is a natural generalization of the single-clasgle-pool fluid model
above. Now we have two deterministic arrival ratdesand )\, one for each class, with the
additional parametergm;, 6;, p; ;;1 = 1,2;5 = 1,2}. Closely paralleling the discussion
above, we will be characterizing the steady-state perfooman terms of the quantities
(Q1,Q2, 51, 52), whereQ); is the fluid content at the clagsyueue, whileS; is the amount
of spare capacity at pogl

The steady-state behavior of tefluid model depends on the number of agents from
each pool assigned to (and actually busy serving customaerg £ach customer class, i.e.,
the deterministic vecto(Z, 1, Z1 2, Z21, Z22), WhereZ; ; is the number of pooj-agents
assigned to serve classsustomers, which is regarded as a continuous variable. To be
legitimate assignments, we must ha¥g > 0 for all i andj with Z, ; + Z5; < m; and
Z1o + Zy2 < my. Since these agents are actually busy serving customensiugealso
havel; > Zy 1111 + Zigpi2 @and e > Zoqpeq + Zoopie . Once we assign values to

these variableg; ;, we reduce theX model to two single-class single-pool models. The
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arrival rate for classis \;, while the service rate for cla$ss Z, 111 + Z; 241; 2. Classi is
then overloaded if and only X; > Z; 1411 + Z; 21i 2, in Which case the steady-state fluid

content in the classis
Ni — Ziapin — Ziolti2

7 (2.3.2)

Q=

If classi is not overloaded, the@; = 0. The spare capacity in poglin steady state is
Sj=mj—Z1;— 225 20,5 =1,2.

In this X fluid model setting, for known arrival rates, our initial g@ato determine the
minimum costC* (A, \2), which is the minimum of”(Q1(Z1.1, Z12)), Q2(Z2.1, Z22)) for
specified arrival-rate vectdn\;, \;), which we denote simply b¥/(Z 1, Z1 2, Z2.1, Z2.2),
over all feasible fixed assignmentvectOfs |, Z1 o, Zo1, Z22) iNR* with Q; = Q;(Zi1, Zi2)
defined in[(2.32). We let the asterisk denote the optimailtsni. (We do not consider more
general controls.) We will apply the optimal solution to fitiee optimal state-dependent
gueue-ratio functions.

Let ¢; be the queue length of clasand lets; be the spare capacity in paolvhen there
is no sharing. They can be expressed a§in (2.3.1), with fiagrdepending on In the
fluid model, we regard the system as being in normal loadingither queue is overloaded
without sharing, i.e., if; = ¢2 = 0, but the amount of spare capacity is not too large. Since
the cost function is increasing and convex, under normalitmpwe achieve the minimum
cost by lettingZ, », = Z,; = 0 (no sharing) to obtaid); = 0 for « = 1, 2. The unexpected
overload means that either > 0 or ¢ > 0, or both. Henceforth we assume that to be the
case.

The natural model state {S\;, \2), but an equivalent representation(ig, si, g2, s2),
where we always have the complementarity relatjpnn = 50 = 0. If ¢; > 0, then
N = mup; + g it s; > 0, then\; = (m; — s;)pi. This alternative representation

implies that, for theX fluid model, we can determine the arrival rates by obsenvsy t
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gueue lengths and spare capacities.
Let Z;; be the optimal value of the variablg ;. We start by stating some basic propo-
sitions, which serve to simplify ouk -fluid-model optimization problem. We first reduce

the number of variables from four to two. The following is iradiate.

Proposition 2.3.1. (no idle agentsIf we do not have)] = Q3 = 0, then there should be

no idle agents, i.e$7 = 0 or, equivalentlyZy ; + 75 ; = m; for j = 1, 2.

As a consequence of Proposition 213.14if> 0, ¢ = 0 ands, > 0, then necessarily
Zi4 > 0. Moreover, eitherZ; , > s, or Q7 = Q5 = 0.

We next show that inefficient sharing implies no two-way si@r

Proposition 2.3.2. (one-way sharingSince the service rates satisfy the inefficient-sharing
conditionu 1 o2 > p 242,1 In (2.1.2) it suffices to consider one-way sharing; i8;,7; , =

0.

Proof: Suppose that, , > 0 andZ,; > 0, so that we have sharing in both directions. It
suffices to assume thgl; > 0 and@-, > 0. We will show that, for appropriate positive
variablesz, » andz, ;, if we replace(Z, 2, Zo1) by (Z12 — x12, Zo1 — x21), then both
queue lengths will decrease until one of the varialdes — x; » or Z, 1 — x2, becomes)

or both queues become empty. We defing as an appropriate constant multipleagf,,

so that we have a single real variable. To do soylet \; — Z;1p1i1 — Ziopio > 0 for

i = 1,2. Then letxy; = fx19, Wheref = (yop12 + Yipt22)/(2it11 + Yapt2,1). Then
we consider what happens as we increasg assuming thati remains constant. Let
A; = 60,(Qi(0) — Qi(z12)), whereQ;(z;2) denotesy); with the initial vector of sharing
levels(Z, 5, Z51) replaced by(Z 5 — x12, Zo1 — S12). Then

Ay — (M1,1M2,2 - M1,2M2,1)
1=7T12M
Yalt1,1 + Y121

A, — (M1,1M2,2 - M1,2M2,1)
2 = T1,272
Yalt1,1 + Y121

(2.3.3)
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Clearly,A; > 0 for bothi if and only if inequality (2.1.P) holds. Moreover, from (223
and [2.3.B), we see that both queues become empty at the saehefiz, ,. Hence, we
can decrease both variabl&€s, and Z,, by increasingr; » until one of these variables
become$) or both queue lengths simultaneously becamen

As a consequence of Proposition 213.2, we can re-expresm#ie optimization prob-
lem, first, in terms of two convex real-valued functions ofirsge real variable(; » and
Cs,1, and second, in terms of a single combined convex functicmshgle real variable,
C.. Let 14 be the indicator function of the séf; i.e., 14(z) = 1if z € Aandl,(z) =0

otherwise.

Proposition 2.3.3.(single-variable functionsSince the inefficient-sharing conditi@1.2)

holds, the optimal cost can be expressed as

C*()\la )\2) - C*(Q17 S1, 42, 82)) = min {0172(Z1’2)’ 02’1(2271)}
=min{Ce(Z12 — Z21)}

(2.3.4)

overZ; , andZ,; such tha) < Z; 5 <my, 0 < Zy; < my andZ; 22>, = 0, where

01,2(21,2) = 01,2(21,2; Al )\2)

—C (()\1 — M1 — Zl,2,u1,2)+ ()\2 - (mz - Zl,2)M2,2)+)
N th ’ 0

(2.3.5)
= Ci2(Z12:q1,51 = 0, q2, 52)

—C <(CI1 - M1,221,2)Jr (Q2 — Saflo 2 + M2,2ZL2)+)

91 ’ ‘92

CC(ZI,Q - Z2,1) = Cl,2<Zl,2 - Z2,1>1{Z172—Z27120} + C2,1<_(Z1,2 - ZQ,I))l{Zl,z—Z271<O}

= C12(Z12) 1z, 5500 + Co1(Z21) 1z, 50y + C(q1, @2) 121 5=25 =0}
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with ¢; and s; defined in(2.3.1) satisfyingg;so = ¢2s2 = 0, andCs1(Z,1) defined analo-
gously toC} »(Z1 ) in (2.3.3) The functions™; » and Cs ; are continuous strictly convex
functions of the single real variabl€s, » and Z,; over their domain. If, in addition, the
stronger inefficient-sharing conditigm ; > 1112 @andus s > e in (2.1.3)holds, therC.
is also a continuous strictly convex function of the singi@ variableZ; , — Z,; over the

domain specified in Proposition 2.3.3.

Proof: The representation is an immediate consequence of PrampiZiB.2. Sinc&’; »(Z) 2)
is the composition of a strictly convex function and a linkarction, it is a strictly convex
function of Z, »; e.g., p. 38 of([62]; similarly foiCy (7 1). To establish the convexity of
C., first assume that’ is differentiable. It suffices to show that the derivativeCgfwith
respect taZ; » — Z, 1, denoted by’ is nondecreasing. Existence and monotonicity of the
derivativeC'” away from the boundary poit; , — Z» ; = 0 follows from the differentiabil-
ity and convexity ofC; » andC, ;, assuming that’ is differentiable and convex. However,
even ifC is differentiable, the derivative @f. need not exist at; . — 7, ; = 0. It suffices to
show that the left derivative is less than the right derixaéit this point. The right derivative
of C, at0, denoted by’ (0), coincides with the derivative; ,(0), while the left derivative
of C, at0, denoted by’ (0), coincides with-C? , (0). LetC denote the partial derivative
of C with respect to its'™® coordinate at the argumefit; — (s1/11,1/601), g2 — (s2/12.2/62)),

which is positive becausg@ is increasing. Then observe that

ClL0) = —C) (B2) 405 (£22) and -y, 0)=—c) (B2 ) + oy ( B22
’ 0 0 ) 0, 0,

Hence (1 ,(0) > —C%,(0), so thatC;*(0) > C.,~(0) if the two inequalities in[(2.1]1) hold.
These relations can be extended to non-differentiableifumeC' by working with left and

right derivatives. =

Corollary 2.3.1. (three intervalslf the stronger inefficient-sharing conditig@.1.1)holds,
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then for each pair of arrival rate$\;, \,) or initial state (q1, s1, ¢2, s2) (without sharing,

there are two threshold§ » > (»; such that exactly one of the following occurs:

(’L) Ziz > 0 and Z;,l =0 for ZLQ — Zg’l > CLQ,
(ZZ) Z;,l > 0 and ZiQ =0 for ZLQ — Zg’l < <2,1

(’LZ’L) Ziz = Z;,l =0 for C271 < ZL? — Z271 < Cl,?' (236)

The value of Corollarf2.311 will be clear when we turn oueation to the queue ratio
r below. We can apply Proposition 2.B.2 to get further simgdifion if there is initially
spare capacity. Then, from the beginning, we know that weardy have sharing with
help provided by the pool with spare capacity; i.e.qif> 0 > s, thenZ}, > 0 and
Z3, = 0, so that it suffices to minimize€', »( 7 »).

It is natural to have the cost functid@r be smooth, in which case the optimal solution
can be found by simple calculus. Proposifion 2.7.1 condubat, if the optimal solution
found by calculus falls outside the feasible set, then theshoptimum value is obtained
at the nearest boundary point.

It is easy to see that there is a one-to-one correspondenaedie the queue ratio
r = (1/Q2 and the real variabl&/, , — Z,; used to specify the optimization problem
in Propositio 2.313. That implies that there is a one-te-oarrespondence between the
fixed-agent-allocation optimization problem (choosifig andZ, ;) and the (fixed) queue-
ratio control problem (choosing state-dependent quetieftenctionsr, » andr, ;) in the
fluid-model context. We establish it formally §2.7.4.

Finally, we provide a basis for an efficient algorithm to detme the equivalent optimal
controls. To do so, we effectively reduce the dimension ftera to one by observing
that special weighted sums of the queue lengths (and camdspy weighted sums of the

arrival rates) are independent of the agent-assignmerdbles 2, , and Z, ;. We only
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state the result fo#, »; the corresponding result fdf, ; is stated in§2.7.3. The proof is
verification by direct computation, so we omit it. For undangling, it may be helpful to

refer to Figuré 213 in the next subsection.

Proposition 2.3.4. (constant weighted queue lengfhst

ap =221 and ., = M2 (2.3.7)

Consider any initial staté\;, \»), or equivalently(q, s, g2, s2), With s; = 0. Then

_ Al — My Ay — Maflao\ Sofl2,2
Wip = G132 o + 9 = a12q1 + Q2 — o

So(Z12) p2.2

i (2.3.8)

= a10Q1(Z12) + Qa2(Z12) —

for all ZLQ with 0 < ZLQ < ma.

Proposition 2.3 implies that the locus of all nonnegativeue-length vecto(s),, Q2) =
(Q1(Z12),Q2(Z,12)) associated with initial state\,, \s), or equivalently(qi, s, gz, S2),
with s; = 0, is on the line{(Q1, @2) : a12Q1 + Q2 = w2} in the nonnegative quadrant.
Thus, for any nonnegative constant,, the optimal queue-length vect@p;, @3) and the
optimal queue-ratio}, = Q}/Q5 restricted to one-way sharing,,; = 0) are the same
for all initial states(qi, s1, g2, s2) with s; = 0 satisfying [2.3.B) provided that > Q1. In
that caseq; Q)7 + Q5 = w; 2. That same optimal queue-length vector and optimal queue

ratio holds for all arrival pairg\;, \2) wheres; =0, Z,; = 0 and

0102w1 2 + a1 20amapu1 1 + Gimapio o
01,292

AL+ Q10 = Wy =

(2.3.9)

And similarly for sharing in the other direction; sg&.7.5.
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2.3.3 Computing the Optimal Queue-Ratio Functions

We now demonstrate how to numerically find the optimal stependent queue ratios,
andr; , as functions of the fluid stat),, 51, @2, S2). With the thresholds, this gives us
a state-dependenqueue-ratio control with threshold€®R-T). To illustrate, we consider a

(nonseparable) quadratic cost function of the form

C(Q1, Q2) = 3Q7 +2Q35 + Q1Q2 + 10Q1 + 5Q». (2.3.10)

For any vector of arrival rate§\;, \,) we can assign one, and only one, point in the
(@1, Q2) plane, which represents the queue lengths associatechegh arrival rates, when
there is no sharing. To represent spare capacity, we allgative values; i.e;-(Q); is short-
hand for—S; ., ;/6;. (We actually plo{Q; — Sipi11/601, Q2 — Sapi22/62) even though the
axes are simply labelle@;.)

We apply Propositiof 2.3.4 to find the optimal queue ratioe filst consider when
pool 2 helps clasd. To treat that case, we let = mopus 0, SO that clasg has no queue
before poob helps clasg. We then assume that > m; i, ; So that clas$ is overloaded.
We then choose a large set of positive weighted arrival spis, . . ., @}, } and find the
optimal queue ratio for each. In the first step, welet= w2 — a;12)9, using [(Z.3.D).
We then write[(2.3.10) as a function 4f ,, take its derivative and find the optima} ,,.
PluggingZ7 , in the queue equations gives us the optimal queue lengthshdospecific
arrival rates), and the optimal queue ratjg. We repeat this for evenya{z to get the curve
1/r}, depicted in Figuré 213. To find the curigr; ; we go through essentially the same
procedure forz; ;.

Figure 2.8 simultaneously depicts the three optimal sigaggions in the two-dimensional
state space and the two curves of optimal queue ratios. Igemasrated using Matlab on a

system with the following parametersi; = my = 100, p111 = p1a2 = 1, pi12 = p21 = 0.8
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and#, = 6, = 0.3. In addition, Figuré 2]3 shows how to find the optimal queu® rf@r
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Figure 2.3: Curves of the optimal queue ratios foramodel

two possible initial queue lengths denoted by stars. Wheimitial queue-length vector is
(Q1,Q2) = (150, 0) (equivalently\; = 145 and ), = 100), then the optimal queue-length
vectoris(Q7, Q3) = (76.5,91.8) and the optimal queue ratioi$, = Q7/Q5 = 0.83. This
optimal queue ratio is the intersection of the curye, , with the line with slope-q; , that
passes througfi50, 0) (the circle on thd /r; , curve). When the initial queue-length vec-
tor is (Q1,Q2) = (0,150) (equivalently,\; = 100 and A\, = 145), we getr;, = 0.41
and(Q7,Q3) = (46.6,112.8). The optimal queue ratio is also the intersection of theeurv
1/r91 with the line with slope—a,; that passes througld, 150) (the circle on thel /r, 4
curve).

Both thel/rj, and1/r;; curves seem to be linear, although that is actually not goéte
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case; the ;'s are not constants for this cost function. For example, nemdy noted that,
for (A1, A\2) = (145, 100) the optimal queue ratio ig , = 0.83. If we change\, to 110 then
the optimal ratio becomes80. For the other sharing direction, [\, \») = (100, 145),
thenr; , = 0.41, but if we change\, to 110, then the optimal ratio changes(ias.

The fact the the two optimal-ratio curves are nearly lin@aFigure[2.8 suggests that
we can approximate the optimal queue-ratio function by fogeelue ratios, depending only
on the direction of sharing; i.e., we can use FQR-T with only values: one for; , and
the other for, ;. In our example we may choose to usg = 0.8 andr,; = 0.4. The cost
for using a nearly optimal ratio is very small in the fluid apgmation, and even smaller
in the stochastic system.

To understand when the optimal queue-ratio functions améynknear, as in the exam-
ple above, and what the structure should be more generalynwestigate structured cost
functions in§2.7.6. We obtain explicit analytical expressions in speciages. We focus
on separable cost function§i(@Q;, Q2) = C1(Q1) + C2(Q2), where each component cost
functionC; is strictly convex, strictly increasing and twice diffeteiole. For example, we
find that QR-T reduces to FQR-T exactly whénQ;) = ¢Q;" with n; = ny; the case
n, = ny = 2 is close to[(2.3.70).

Proposition 2.3.5. (explicit solution WhenC(Q1, Q2) = ¢1Q? + c2Q3, FQR-T is optimal
for the X fluid model with

« _ Q12C2 02M2,291 « _ Q21Cy C2M2,191
- ) T2,1 == - )

@] 01M1,292 C1 01M1,192
7 (crp20h)(qn — (s1p1,1/01)) — (copa26) (g2 — (Sap122/62))

1,2 - 2 9 2 9 )

C1#1,2/ 1 +02,“2,2/ 2

. 02M2,192(Q2 - (52M2,2)/92) - C1M1,191(Q1 - (81M1,1)/91)
ZQ,1 = 5 3 . (2.3.11)
CLUT 1 + Cafl 4
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In Propositionl 2.315, the cost is specified by a single patamd&he ratioc; /¢, spec-
ifies the relative importance of the two queues. (The remgiparameter is equivalent to
choosing the monetary units.) Finally, we caution that otases (e.g., linear costs) can

be quite different; se§2.7.8.

2.3.4 Application to the Stochastic Model

We can directly apply the QR-T control derived above to tlelsastic model. Figuie 2.3
identifies three sharing regions to apply to the stochasbiegss () (t), S1(t), Q2(t), S2(t))
once sharing has been activated. There are two regionsdbrdé@ction of sharing; e.g., if
sharing has been activated with p@dielping clasd, available pooR agents serve class-
customers when the queue-length vector falls in the lovgdit iegion, whereas there is no

sharing in the other two regions. The way to share is destiing2.2.2.

2.4 Choosing the Thresholds

We now consider how to choose the threshdids andk, ;. These thresholds have two
important roles: First, they automatically detect whensytem becomes overloaded and,
second, they prevent unwanted sharing in normal loadinthelthresholds are too large,
then the queues may not reach them during the overload. (menents necessarily keep
the queues from increasing without bound, even under cagslp On the other hand, as
discussed if2.2.1, if the thresholds are too small, then sharing may besded too often,
so that we may get inefficient sharing.

Unfortunately, the fluid analysis cannot reveal the “rigéi¥e of the thresholds, since
the fluid queues are empty under normal loading. We need terataohd the extent of the

stochastic fluctuations, something which is not capturedhieyfluid approximation. At
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this point, it is convenient to apply many-server heavyfittdimits to gain additional in-
sight. To understand the general idea, it suffices to refestablished limits for the basic
M/M/n + M model, as in[[2[7] and [79]. There, both fluid models and refidiédision
process models are obtained as limits as the scale increslsese scale is measured by
the number of servers. What is unusual here, though, is that we are amebusly inter-
ested in the quality-and-efficiency-driven (QED) regime #me efficiency-driven (ED) or
overloaded regime.

The QED regime is appropriate to describe normal loadingchvis what prevails
before the overload occurs, while the ED regime is appript@mdescribe the overloaded
system. In both cases, the arrival rate is allowed to grow as oo, while the service rate
and abandonment rate are held fixed. The important insightisthe queue lengths tend
to be of orderO(/n) in the QED regime, as depicted by the diffusion limit in theQE
regime, while the queue lengths tend to be of odér) in the ED regime, as depicted by
the fluid limit in the ED regime.

Thus, to prevent unwanted sharing when the system is norrwated, we should
choose the thresholds to be of size bigger theg/n). That ensures that the weighted-
queue-difference processés, , and D, ;, will not move above the thresholds by random
fluctuations. On the other hand, we should choose the thidskm beo(n), so that the
thresholds will be asymptotically negligible compared lte ©(n) fluid content. Then,
asymptotically, they will be exceeded instantaneouslymie overload occurs and they
will not significantly alter the queue ratios. From this simpeasoning, we see that it
suffices to havecf.z.) = O(n?) asn — oo for 1/2 < p < 1. (Incidentally, that scaling also
makes the thresholds out of reach in normal loading in thedktihe-iterated logarithm
scaling of(n loglog n)'/2.)

This asymptotic analysis shows that the thresholds chaoséns way are asymptoti-

cally optimal, both during normal loading and during oveddncidents. Asymptotically,
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the thresholds will be exceeded negligibly often duringmalrloading; asymptotically, the
thresholds do not alter the optimal average cost in the oadrincidents. For the case of
normal loading, we can apply the QED results|inl [27]; for thertoad incidents, the ED
results in[[79] provide only heuristic support, because tygply only to theM /M /n + M
model. The ED fluid model for th& model with FQR-T is analyzed in the next two
chapters.

Of course, we actually have a system with one fixedWhen we want to apply the
theory to a real system, with a finite number of agents, it bexohard to distinguish
betweenO(n) andO(y/n). For example, ifr = 100, then both10 = 0.1n and10 =
v/n. Thus, as in any application of asymptotic results, we shoulmerically verify that
the values chosen are appropriate, and refine them if negeésawhich we can use
simulation. For example, for a system with) agents in each pool (and abandonment rates
less than service rates), we found that = 10 is effective. We found that the performance
is not too sensitive to the choice of the thresholds, pravitiat they are neither too small
nor too large. We present simulation results for FQR-T umaemal loading in§2.8.2,

including a sensitivity analysis for the thresholds.

2.5 Simulation Experiments

Our analysis has been based on a fluid approximation of aaticlsystem. It remains to
show that the fluid approximation is suitably accurate ferstochastic system and that the
optimal control for the fluid model works well in the stochiaslystem. For those purposes,

we conduct simulation experiments.
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2.5.1 Accuracy Of The Fluid Approximation

In this subsection we investigate the accuracy of the apmation. To show how the accu-
racy increases as the system becomes larger, we simuleg¢ecctses, each case represents
an element in a sequence of queueing systems indexeddoaled to satisfy a many-server
heavy-traffic limit in the ED regime as — oo. We use the same fixed service and aban-
donment rates as beforg;( = 1, j112 = 21 = 0.8 andd, = 0.3). We consider a fixed
gueue ratio- = 1. We let the arrival rates b&, = 1.3n and )\, = n, when there are
agents in each service pool. The three cases we consider are5, 100,400. We let
the thresholds for these three valueshobe k1, = ko; = 3,10, 30, respectively. (The
thresholds were dropped when exceeded.)

Table[2.1 shows the results. Each result is the averag@diependent simulation runs
having300, 000 arrivals in each run. The half-width 66% confidence intervals, calculated
using thef random variable witld degrees of freedom, are also given.

To show both the actual performance and the convergenceettiuild limit asn in-
creases, we display both the direct values and the scaladsjalividing byn. Since the
scaled values tend to be nearly independent,affe witness the heavy-traffic fluid limit.
We see that the approximations get betten ascreases, but they are already not too bad

whenn = 25.

2.5.2 Comparing The Two Controls

In the fluid analysis, choosing the number of agents in eaohtphat are helping customers
from the other class is equivalent to choosing the queue, ratj. However, that is not the

case in the actual stochastic system. With specified nundiexrgents serving customers
from the other class, the queue ratio fluctuates randomlyh ¥yiecified queue ratios, the

numbers of agents helping the other class fluctuates raryddvidreover, with specified
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H | n=25 || n=100 || n=400 |
| perf. meas.|| approx.| sim. || approx.| sim. [ approx.| sim. |
Q1 13.9 13.5 55.6 52.8 222.2 216.7

+0.4 +1.2 +7.0
Q1/n 0.56 0.54 0.56 0.53 0.56 0.54
+0.02 +0.01 +0.02
Q- 13.9 15.7 55.6 58.4 222.2 223.1
+0.5 +1.2 +7.0
Q2/n 0.56 0.63 0.56 0.58 0.56 0.56
+0.02 +0.01 +0.02
ratio 1.0 0.98 1.0 0.90 1.0 0.96
+0.02 0.00 0.00
Z12 4.2 4.8 16.7 17.7 66.7 66.4
+0.2 +0.3 +2.2
Z1,2/n 0.17 0.19 0.17 0.18 0.17 0.17
+0.01 +0.00 +0.01
Cost 1.37 1.79 19.35 | 20.28 299.6 | 299.8
(thousands +0.01 +0.81 +19.2

Table 2.1: A comparison of steady-state performance measuaithe fluid approximation
with corresponding simulation results for the Markovisgmrmodel. For each, there arex
agents in each pool, withy = 1.3n, Ay =n, p;; = 1, p12 = pe1 = 0.8 andd; = 0.3. The
thresholds:, » = ko1 are3, 10, 30 for n = 25, 100, 400, respectively.

numbers of agents serving customers from the other clas$ythqueue-length processes
evolve independently. In sharp contrast, with specifiediguatios, the queue-length pro-
cesses are strongly dependent, as in Figuré 2.12. Thisstsgbat there is a big difference
between the two controls in a real, stochastic system. Wedkpect the average cost un-
der FQR-T to be different than the average cost when fiing We conducted simulation
experiments to compare the two controls.

To compare the two controls - FQR-T, and fixgg, - we simulated a system with,; =
100 agents in each pool, arrival rates = 130 and A, = 100, service rateg; ; = 122 = 1

andyu 2 = po1 = 0.8, and abandonment ratés = 0, = 0.3. Since class is overloaded,
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we tookks; = k12 = 10, but once we go over the threshatd,, we drop it, so that it
becomes:; » = 0.

Figure[2.4 presents simulation results comparing the tveoeme costs for five different
cases(l)rio=12,Z15=15,(2)r2=1,2Z12=17,(3) r12 = 0.83, Z1 2 = 19 (optimal
point), (4) r12 = 0.6, Z1 2 = 22 and(5) r1 2 = 0.4, Z, » = 25. For each point, we fixed the
queue-ratio o, and used FQR-T with this ratio. For each sugh, there is an equivalent
Z1 2 in the fluid equations. Since this , is not necessarily an integer, we rounded it up to
the smallest integer larger thah », i.e., we used 7, »] in each simulation of the fixed ;
control. According to the fluid approximation, the optimalegie ratio is , = 0.83, and

the respective optimadl, , is equal tal8.4, rounded up td9 in the simulation experiments.
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Figure 2.4: Cost of using FQR-T vs. fixed partition

For each case, we conductethdependent simulation runs using FQR-T, @&ndde-

pendent simulation runs with a fixeéd », each run witt800, 000 arrivals. The independent
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replications make it possible to reliably estimate confaemtervals using the statistic
with 4 degrees of freedom. The large number of arrivals ensuréghib#ransient behavior
in the beginning of the simulation, before reaching steddtes does not affect the final
simulation estimates of the steady-state averages. Additisimulation results are given
in Tablel2Z.2 ing2.8, including the half-width 095% confidence intervals and a comparison
of the simulation to the fluid approximation.

There are several interesting observations to be made; tes-cost curve lies sig-
nificantly below theZ-cost curve, which shows that FQR-T is a superior control that
optimal point for FQR-T, the average cost under FQR-T is aboty, smaller than the
average cost under the fixefl-, control.

Secondly, FQR-T tends to be a more robust control. Smallgdsimr do not produce
large changes in the cost. Note that the largestlue here1.2) is 3 times as large as the
smallestr value (0.4), whereas the largest value here 45) is only 1.6 times as large as
the smallestZ value (15). Moreover, the average costs when using FQR-T with= 1.2
andr, o = 1 are still smaller than the cost of fixing, » at its optimal value. For further

discussion, seg2.8.

2.6 Conclusions

In this chapter we studied ways to respond to unexpectedoats in large-scale service
systems. We considered the Markovigmmodel with two customer classes and two service
pools, assuming that agents are more effective servingmgss from their own class than
customers from the other class, as specified by the ineffisiearing conditions i (2.7.1)
and [Z.1.2). Thus we want negligible sharing under normed$p but we want to activate
sharing when there is an unexpected overload at an unaatgdpgime, without knowing

what the new arrival rates will be.



CHAPTER 2. RESPONDING TO UNEXPECTED OVERLOADS 52

The main ideas for analyzing the performance and detergnaqpropriate queue-ratio
functions for thequeue-ratio with threshold®QT-R) andfixed-queue ratio with thresholds
(FQR-T) controls we propose are: (i) to use steady-statlysisaand (ii) to apply an ap-
proximating deterministic fluid model. The QR-T and FQR-Ttols proposed for the ac-
tual stochastic system are direct applications of the spording optimal controls derived
for the fluid model in§2.3.2. We developed an algorithm to find the optimal quetie-ra
curves for a general convex cost function in ProposfiionPaBdy2.3.3. The resulting QR-
T control is easily understood as a partition of the statesjpao three sharing regions, as
depicted in Figuré 213, with two regions for each directibéslwaring.

In Proposition 2.3]5 we also provided strong justification FQR-T when the cost
function has the fornC(Q,,Q,) = c1Q? + Q3 for some constants, andc,. In that
case, we proved that FQR-T is optimal for the fluid model (ilee optimal QR-T control
reduces to an instance of FQR-T) and exhibited the explititmal queue-ratio parameters.
Then the optimal queue-ratio parameters depend on thewusidnC' only via the single
parameter; /c,, which succinctly captures the relative importance of the queues. For
other sharing regions, sgg.7.6.

The main ideas for gaining insight into appropriate thréshvalues were to apply (i)
many-server heavy-traffic asymptotics and (ii) simulatiéteuristically, we showed that
the thresholds should be asymptotically optimal simultasséy for periods of normal load-
ing and for periods of overload. Asymptotically, no tradetded be made. The require-
ment is that the thresholds should be of or@én”) asn — oo, wherel/2 < p < 1 and
n is the system scale factor. We used simulation to verifyttinathresholds work well for
given finiten.

Our FQR-T (or QR-T) control is appealing for several reaséinst, it is automatic and

simple; we need not directly discover the arrival rates gheotto find out when overloads
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occur, and then decide what amount of sharing should be dostead, FQR-T automati-
cally detects the time the system becomes overloaded, andatitomatically enforces the
optimal ratio, by observing only the size of the two queugss éasier to use the informa-
tion about the queues, which is readily available, than tsiao®rmation about the arrival
rates, which is not readily available. Moreover, simulagxperiments indicate that FQR-
T performs better (produces lower expected costs) thargfiXjn at their optimal values,

even with known arrival rates; see Figlrel2.4.
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2.7 Supporting Material

In this section we present additional material supplemeritie results in the main chap-
ter. The topics are ordered as they arise in the chaptef2.Jhl we discuss the way the
transient distribution approaches its steady-state linoith at the beginning and the end of
an overload incident. 1§2.7.2 we provide additional discussion about the FQR and-FQR
T controls, supplementingZ.2. In§2.7.3 we present additional details about the optimal
solution for the deterministic fluid model during the ovexdip supplementingZ.3. Finally,

in §2.8 we present additional simulation results about theoperd@nce of the control. In
42.8.1 we present a table of detailed simulation results suipg Figure[2.4. In§2.8.2

we present additional simulation results about the perdmee of FQR-T under normal

loading. We perform a sensitivity analysis for the thregisdhere.

2.7.1 Time To Reach Steady State

An important aspect of our QR-T and FQR-T controls is thediam behavior of the sys-
tem. When the overload incident occurs, the system mudt fsbih steady state under
normal loading to steady state under the overload. Aftedsjaat the end of the overload
period, there is a recovery period, during which the systeiftsdack to the original steady
state. From analysis and extensive simulations, we coadlual these two transient pe-
riods do not dominate, so that it is possible to use steaatg-stnalysis as a reasonable
approximation. In this section, we provide some supporsingulation results and discuss
the supporting mathematical results.

Simulation Experiments We start by doing a simulation experiment of an overload
incident, including all five regimes: (i) steady state beftine overload, (ii) transition to
new steady state at the beginning of the overload, (iii) neady state under the overload,

(iv) recovery period and (v) original steady state agaieratie overload.
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Our example is based on Example 2.1.1 in the main chaptertanassociated typical
overload incident described at the endjéf2. We assume that there is an overload incident
that lastss hours when the mean service times aminutes. Given that we measure time
in units of mean service times, the overload incident I68tsme units. Thus, we simulate
the system over the time intervidl, 150], and have the overload begin at ti®@and end
at time140. Thus, the initial transient begins at tiri@, while the recovery period begins
at time140.

We consider a large system with= 400 agents in each pool. For the normal loading,
we let\; = A\, = 380; for the overload duringg0, 140], we let\; = 520, while \; = 380
as before. As in Example_2.1.1, we let the mean service timeudstomers served by
designated agents b@j} = u;é = 1.0, while the mean service time for customers served
by agents from the other pool ;sj% = ,u;j = 1.25. We let customers abandon at rate
01 =6, =0.4.

Since clasd experiences the overload, we will have p@dielping clasd during the
overload incident. Typical sample paths of the proces§est) and (), (t) generated by
simulation are shown in Figurés 2.5 dnd]2.6 below. A dottedizbatal line depicts the
steady-state fluid approximation during the overload. Weatsshow the other processes.
From corresponding plots @}, (¢) and @ (t), it is evident that they move together during
the overload, reflecting state-space collapse, but theyenmaependently during normal
loading. From the displayed sample path, we see that themyistdeed reaches a new
steady state after a few mean service times, as claimed inttioeuction.

To elaborate, we also show corresponding sample paths imdsi@.7 and 218 with
n = 100 agents in each pool. One important observation is that ih fggtems{ = 100
andn = 400) it takes less thaf time units for the queues to hit their fluid value, denoted
by the dotted horizontal lines. The recovery time, afterdherload incident has ended, is

also very short, and is abo2time units for the queues in both systems.
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Figure 2.5: Z,5(t)/400 with overload Figure 2.6: (), (¢) with overload over
over|[80, 140}, n = 400. (80, 140}, n = 400.

The story is different for theZ; »(¢) process. To make the connection between the two
cases clear, we present th@portion of classi customers in poad? instead of the actual
number, i.e., we show; 5(¢)/n in Figured 2.6 and 2l7. First, when the overload begins
at time 80, it takes some time until the queues hit the threstiglgd That is the reason
why Z, »(t) starts growing a bit after timg0. It is interesting to see how our choice of the
thresholds influences this delay. Recall that we choosentiestiolds to be of order of size
less tharO(n) but greater tha®(,/n); see§2.4 for more details. In these simulations, we
took x; ; = 20 for n = 400 andx; ; = 10 for n = 100. This explains why in the. = 400
system it takes less time fdf; 5(¢) to start increasing than in the = 100 system: The
thresholds are relatively smaller for the bigger system.

We also observe a difference between the two systems aéartival rates return to
normal at timel40. At this time, theZ, »(¢) processes start decreasing immediately and in
a very fast rate. But now, service-pabstops serving classcustomers faster in the small
system. Lefl} » be the time it takes for pod to stop serving all class-customers after

the end of the overload incident (aftet0 in our example). As an approximation, we have

T

E[T 5] ~ Z 1

g e

=1
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wherer = Z; 5(140). Hence, the largef; »(140) is, the longer it take<; »(¢) (or equiva-
lently, Z, »(t)/n) to reach zero after the arrival rates shift back to normat, ivi both cases
Z1 2(t)/n drops belowd.1 in about2 time units, so that the total service rate in service-pool
2 is greater than\,; in 2 time units after the shift. In summary, we see that the tensi

period is relatively short, and a steady-state analysisasanable to apply.

Proportion of type 2 servers serving class 1 customers Number of customers in class 1 queue
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Figure 2.7:Z, »(t)/100 for FQR-T, with  Figure 2.8:Q),(¢) for FQR-T, with over-
overload ovef80, 140], n = 100. load over[80, 140], n = 100.
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Figure 2.9: Z; »5(t)/25 for FQR-T, with  Figure 2.10:Q,(¢) for FQR-T, with over-
overload ovef80, 140], n = 25. load over[80, 140], n = 25.

Mathematical AnalysisWe now provide further support. We first review mathematical
analysis of the\/ /M /n+ M model; we next contrast with single-server models; aftedea

we discuss implications for our X model
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The M/M/n+M model. Consider theV//M /n + M model with arrival rate\, service
ratep, and abandonment rafle First, it is useful to consider the special case in wiieh y;
then the number in system is distributed the same as il Al /oo system with service
rated = u. Thus the number in system at tim@as a Poisson distribution for each fixed
initial state. An explicit expression for the mear(¢) at timet, starting empty, is given
in (20) of [24]. More generally, the mean(t) satisfies an ordinary differential equation
(ODE); see Corollary 4 of [24]. These results show thdt) and the entire distribution
reaches steady state approximately at tinye, some constant times the mean service
time1/u. The constant depends on our criterion; the critical time constarit/ig, a mean
service time.

For the more general overloadéd/M /n + M model (without assuming thét= ),
it is helpful to consider the deterministic fluid approximeatin [79]. Formula (2.17) there
shows that the fluid approximation for the number in queye), starting with all the
servers busy, again evolves as g /oo ODE, but with arrival rate\ — nu and service
rated. That implies that the fluid queue content (approximating nlamber in queue),
starting from all servers busy but no queue, reaches stéattyapproximately at time/6,
some constant times the mean abandonment tim&. That too will be approximately
c¢/p provided that) is not too different fromu.. The critical time constant here ig0, a
mean time to abandon.

To illustrate this mathematical analysis, we do a simutatibthe M/ /M /n+ M model.
We base our example here on Exaniple 2.1.44i@. In that example, the service rates in
both pools are:; ; = 1, the abandonment rates a@e= 0.4 and the number of agents in
each pool ig00. In this example the arrival rates changed at some instamt fA;, \;) =
(90,90) to (A1, A2) = (130,90). We show what happens if claggeceives no help from
service-pool. Then the class-queue behaves like @ /M /100 + M queue. Figure2.11
depicts a simulated sample path of @i A//100+ M queue, when the system is initialized
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empty at time). The average steady-state queue length in the overloadkeimicis about

% Number of customers in class 1 queue

a1 o ~ o)
o o o o
T T T T

Number in queue
ey
o

Time

Figure 2.11: Time to reach steady state.

75, and it can be seen that this steady-state value is reachieid @bout4 time units when
the system is initialized empty. (Time is measured in unitsiean service times). If we
assume, as in our example above, that the system was opebefiore the arrival rates
changed, then most of the agents were probably busy, anugirtbéd reach the new steady
state is about time units (two mean service times).

Single-Server models.In the introduction we stated that the number in system tends
to approach steady state more quickly in many-server queithsabandonment than in
single-server queues without abandonment. We should beghina qualification: Slow
approach to steady state occurs for single-server systetinguvabandonment when the
system is heavily loaded. For single-server queues, we t@f8ection 111.7.3 of[[20] on
the relaxation time. Sections 4.6 and 5.1[0f|[76] gives cativeal heavy-traffic approx-
imations (wherp 1 1 with n fixed, wherep = \/nu is the traffic intensity) for the time
required for the mean number in system to reach steady st#te general /G /n model

with fixed n and without customer abandonment. The time required thrst@ady state is
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approximately:/(1 — p)? mean service times, wherés a constant depending on the num-
ber of serversy, the variability of the arrival and service processes (gfiad explicitly)
and again the criterion. Clearly the time to reach steadg st@n be quite long whemis
high.

The X model. For ourX model, there are two implications of thé/M /n+ M analysis
above: First, when the overload incident begins, the quength should be negligible, so
that the fluid content in a newly overloaded queue will growragimately linearly at rate
A — npu, because the opposite forée(t) will be small, since;(t) is initially small. That
means that the threshold will be quickly passed if there igraficant unbalanced overload.

For our more complicated model with the QR-T control, after the threshold has been
exceeded, the theoretical analysis for thgA//n + M model above provides a rough
heuristic analysis indicating what should happen, but titea evolution still depends on
the state of the six-dimensional Markov chdif;(t), Z; ;(t);i = 1,2;j = 1,2). Thus
we rely on simulation to confirm that the actual behavior tei@d similar to what occurs
in these simple many-server models. We remark that the-spatee collapse discussed
in the next subsection indicates th&t (¢), Q2(t)) should evolve approximately as a one-
dimensional process, suggesting that the analysis abawvgdshot be too far off when the

service rateg; ; do not differ greatly.

2.7.2 More on FQR

In this section we present additional background on FQRyioe, sed [29, 30, 31, B2]. We
first illustrate the state-space collapse (SSC). The comdifor SSC are satisfied if either
the service rates only depend upon the customer class agnvieesrates only depend upon
the agent pool. To illustrate, suppose that the service i@te independent of both class
and pool, withy, 1 = 2 = pa1 = po2 = 1.0. Figure[2.1P shows the plots of typical

sample paths of the two queue-length processes whea A\, = m; = my = 100 and
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0, = 0, = 0.2. From Figuré 2.12, we can clearly see the SSC.
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Figure 2.12: State-Space Collapse

We observed that, with FQR, it is possible to choose the marameter (or, equiva-
lently, the queue proportions) in order to determine the optimal level of staffing to ackiev
desired service-level differentiation. For example, una@mal loading, our goal may be
to choose staffing levels as small as possible subject taga&0; of classi customers
wait less thar20 seconds, whil&0% of class2 customers wait less thait) seconds. To
see how this can be done with FQR, tbe the class-delay target (e.g./7 = 0.033
and7; = 0.100 for 20 seconds and0 seconds if the mean service times apeminutes);
let IW; be the clasg-waiting time before starting service; Igt be the queue proportion
determined by-. As explained in[[29], the following string of approximati® show how
the individual class-performance target8(W; > T;) < «, for bothi, can be reduced into

a single-class single-pool performance tatgétl” > 7') < « for an appropriate choice of
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the queue proportions and the aggregate targét

2
PW,>T,) ~ P(Q;>NTL;,)~P(pQs>\NT)~P (QZ > Z)\ka>

k=1

~ P (AW > iA@) ~PW>T)<a, (2.7.1)
k=1
where we defing; = AT,/ (MT1 4+ ATo), A = A + A andT = (M1 + AoT3) /(M +
A2). The first approximation in(5.5.87) follows by a heavy-fiafeneralization of Little’s
law, establishing that the steady-state queue-length athg-time random variables are
related approximately b§; ~ \;1W;. The second approximation in (5.5137) is due to SSC:
Q; =~ p;Qx. The third approximation is obtained by choospas specified above. The
fourth approximation in[(5.5.37) follows from the heavgffic generalization of Little’s
law once again, for the entire systes; ~ AW for \ as defined above, whel& is the
waiting time for an arbitrary customer. The fifth and final epppmation follows by the
appropriate definition of the aggregate targetas defined above. With this reduction, we
can determine the overall staffing by using elementary éskedal methods for the single-
class single-pool model. That is, we choose the total nurmbagentsy, so thatP (W >
T) < ainthe M/M/m + M model. We then letn; = p;m. From [5.5.3F) and the fact

thatr = p, /(1 — p1), we see that the required ratio is

P MTh

= = . 2.7.2
1—m AT ( )

r

For theX model (and more generally), Theorem 4.1 of Gurvich and WB@} shows that,
if the service rates only depend on the service pool or thesclaut not both), then FQR is
asymptotically optimal to minimize linear staffing costbmct to service-level constraints,
as above, in the QED many-server heavy-traffic regime.

As was shown iff2.2.1, with inefficient sharing FQR without the thresholds add
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in FQR-T can cause the queues in the general X-model systarpiode when there
is no abandonment, because of the inefficient sharing. We stmw that there is also
serious performance degradation when we include custobsrdanment. We use the
same example as [f2.2.1, only adding abandonments with rates- 6, = 0.2. As before,
there arel00 agents in each pool. The arrival rates are= A\, = 99 and the service rates
arep;; = poo = landu; o = pey = 0.8. To describe the performance degradation,
we compare the performance to the no-sharing case. Whenitheo sharing2% of the
customers abandon, the mean queue lengil iand the mean conditional waiting time
given that the customer is servediid0. On the other hand, for FQR with = 1, again
about39% of the agents are busy serving customers from the other. dlass reduces the
effective service rate for each class frafo to 92.2. As a consequence, abditit, of the
customers abandon, the mean queue length and the average conditional waiting time
given that the customer is served)ig85.

Figured 2.1B and 2.14 show the sample paths of the numbeenfsaim pooll helping
class2 customers, and the classjueue, respectively. Due to the symmetry of the system
in our example, the&Z, ; and (- figures are very similar, and the fluid approximations for
both queues and, ;s are equal.

In contrast, to illustrate how FQR-T performs, we consitierdame example: Example
[2.2.1 with abandonments at rate= 0.2. We letr, , = 5, = 1, so that there is no change
from FQR above, and we let the thresholdstbe = k. ; = 10. The results of a simulation
experiment are shown in Figures 2.15 and P.16. Numericalegalvere given if2.2.2.

The performance is greatly improved with FQR-T.

2.7.3 Optimal Solution for the Fluid Model

In this section we provide additional material supplenteni?.3.
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Figure 2.13:Z,,(t)/100 for FQR with Figure 2.14:Q),(t) for FQR withr = 1.
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Figure 2.15: Z,,(t)/100 with FQR-T, Figure 2.16:Q,(t) with FQR-T,r = 1.

r=1.

Optimal Values Beyond the Boundariedlt is natural to have the cost functian be
smooth, in which case the optimal solution can be found bykroalculus. The following
result concludes that, if the optimal solution found by aals falls outside the feasible
set, then the actual optimum value is obtained at the nelaoestdary point. Lett A b =

min {a, b} anda Vb = max {a, b}. We omit the proof, which is a standard convexity result.

Proposition 2.7.1. (optimal values beyond the boundaji¢et 7, , and Z, ; be the values

of Z, , and Z, ; yielding minimum values af; , andC5; in (2.3.5) and IetZLQ and 22,1
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be the corresponding values yielding the minima ignoring ¢bnstraints in Proposition
233. ThenZ, o = Z1,V 0 Ama, Zoy = Zs1 V0 Amy and(Z;,, Z3,) can assume only

two possible values:Z, ,,0) or (0, Z5,).

2.7.4 The Relation betweenrand Z

In §2.3.2 we observed that there is a one-to-one correspont&teeen the queue ratio
r = (1/Q2 and the real variable/; , — Z,; used to specify the optimization problem
in Propositior 2.3]3. That implies that there is a one-te-oarrespondence between the
fixed-agent-allocation optimization problem (choosiig, and Z, ;) and the queue-ratio

control problem (choosing a state-dependent queuesratiothe fluid-model context.

Proposition 2.7.2. (relatingr and Z, » — Z, ;) For any given arrival-rate vectofA;, \)

or initial state (q1, s1, ¢2, s2) (without sharing, the queue ratio- = @;/Q)> is a strictly
decreasing differentiable function &f , — Z,;, denoted byp, as Z, , — Z,; varies over
its allowed domain in Propositidn 2.3.3. Thus, the functidmas a unique invers¢—! and

there exists a unique optimal = r*(q¢1, s1, g2, s2), Which is characterized by
rt=¢"NZf,— Z3,), (2.7.3)

where both* andZ; ,— 73 | are understood to be functions of the initial stéfg, s1, g2, s2).
Moreover, there are two thresholgs., > 1, ; such that we want one-way sharing with pool
2 helping clasdl if » > n 2, in which case we let, » = r*; we want one-way sharing with
pool 1 helping clas if » < 1,1, in which case we let;; = *; and we want no sharing
atall if 7oy, < r < n2. The thresholds are obtained from the threshaldsand ¢, ; in

Corollary23abyn 5 = ¢~ ((12) andna; = ¢ (Ca1)-

Proof: By (2.3.%), when pooP helps clasdl, ); is a strictly decreasing differentiable

function of Z; , and while(), is a strictly increasing differentiable function &f .. On the
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other hand, when podl helps clas®, @, is a strictly increasing differentiable function of
Zy 1 and while@ is a strictly decreasing differentiable function6f,. Thusr = Q,/Q-

is a strictly decreasing differentiable functionf, — Z, ; over its domain. =

2.7.5 Constant Weighted Queue Length

We now complete Propositidn 2.8.4 by exhibiting the resuifgool 1 helping clasg.

Proposition 2.7.3. (constant weighted queue lengths with podlelping clas®) Let

and a, = 2L, (2.7.4)
M1

Consider any initial staté\;, \»), or equivalently(qy, s1, g2, s2), With s, = 0. Let

AL — Ao —
Wa,1 = Q2,1 < . m1M171> + ( 2 mg,um) = a9, (Ch - $1M1,1) +q. (2.7.5)

91 92 91
Then
S1(Z
a1 (QI(ZI,2) - %) + Q2(Z2,1> = Wz (2.7.6)
1

for all Zg’l with 0 < Zg’l <my.

Just as with Propositidn 2.3.4, Proposifion 2.7.3 implies the locus of all nonnegative
queue-length vectol®),, Q2) = (Q1(Z2,1), Q2(Z2,1)) associated with initial state\;, \2),
or equivalently(qi, s1, g2, $2), With s, = 0, is on the line{(Q1, Q2) : a2 1Q1 + Q2 = wa 1}
in the nonnegative quadrant. Thus, for any nonnegativetantis, ;, the optimal queue-
length vector(Q7, ;) and the optimal queue-ratig ; = Q7/Q5 restricted to one-way
sharing(Z; » = 0) are the same for all initial statésg,, s;, g2, s2) With s, = 0 satisfying
(238)andg, > Q;. Moreover,ay Q7 + Q5 = wo1. That same optimal queue-length

vector and optimal queue ratio holds for all arrival pdiks, \2) wheres, = 0, Z;, = 0
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and
~ 0102wa 1 + ag 1 0amaypur g + Oimapia o

AL+ g g = Way =

2.7.7
02,192 ( )

2.7.6 Structured Separable Cost Functions

At the end of§2.3.3, we observed that we can obtain explicit analyticpressions for the
optimal ratio control if we impose additional structure amr @ost function. We give the
main results in this section and provide supporting detaitee next section.

Main Results We first assume that is separable, i.e(;(Q1, Q2) = C1(Q1)+ Ca(Q2),
where each component cost functiéh is strictly convex, strictly increasing and twice
differentiable. We start by assuming that the derivati¥/éare strictly increasing, so that
their inverses exist. Le¥(Q;) = C7(Q,) and let¥~! be its inverse. Then one of the
following relations between the queue lengths should helten we choose the one that

minimizes the cost:

Ql = \Il_1<a17QC£(Q2)) or Ql = \I]_l(ag’lcé(Qg)), (278)

for a, » defined in[(2.3J7) and, ; defined in§2.7.5. IfC] is not strictly increasing, then we
work with the left-continuous inverse df defined byl = {z : ¥(z) > y}.

Power functions. If the cost functiong; are simple power functions, i.e.;(Q;) =
Q" fori = 1,2, then we have that eithel; = 17,Q; """ VorQy = r5 Q3 /"1,

where

Tio = "y/a1acana/cing and 13, = "y/azicana/cing. (2.7.9)

Whenn, = ny, Q7/Q% is afixed queue ratio, eithef , orr; , for r;; asin[2.7.9). Thus, we

need only to decide which way we should share, and then useTF@ith the appropriate
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ri;s i.e., we are in the setting of Figure P.3 with constant safa which we have explicit
expressions.

Quadratic functions. In practice it may be difficult to actually specify an appriape
cost function. Thus, for practical application we suggasdyatic functions:C;(Q;) =
c:Q? + b;Q; + a; fori = 1,2. These functions might be obtained by performing an approx-
imation (e.g., via Taylor series approximation to an anedytexpression or least squares

fit to data). In this case, we have either

QT — 1125 =kiy  of Q7 —13,0Q5 =k, (2.7.10)
for
« _ Q12C2 C2M2,291 « _ G21C2 02,LL2,191
T19 = = 0’ o1 = = 0 (2.7.11)
C1 Cil1,202 @] C11,102
and
ay,.2b9 — by ag1by — by
ki, = ————, ki =="—" 2.7.12
b2 2¢; 21 2¢y ( )

In other words, we keep a fixed-queue ratio centered aboutstanatk; ; instead of zero.
That is, we employ new thresholds after sharing has beevat&d. (The current thresholds
k; ; are not to be confused with the thresholgdsused with the queue-difference processes
in (2.2.1) to test for the occurrence of overloads. We kfsgonly after sharing with pool
2 helping classl.) From the two formulas iN(2.7.11), we directly see how éhestio
parameters and thresholds should depend on the model garamnia particular, each ratio
is either directly proportional or inversely proportionaleach of six model parameters.
Quadratic and linear power functions. A natural simple cost function is the quadratic
power function, which is is special case of the general pdwection withn; = n, = 2
and a special case of the general quadratic function &yita b, = a; = a3 = 0. The

optimal control then is precisely FQR-Ej(= k; = 0), as indicated in Propositidn 2.3.5.
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In §2.7.7 we also discuss the special casgs- 2,n, = 1 andn; = 1,n, = 1.

FQR-T without cost functions. Clearly, FQR-T could be employed directly without
specifying any cost function, using engineering judgmentdt the parameters. Even if
that is the case, the queue-ratio formulasiin (2]7.11) asdiply the centering formulas
in (4.2.5) provide important insight into how the controtameters should depend on the

model parameters.

2.7.7 Supporting Details About Structured Separable Cost &nctions

We now supplemenrf2.7.6 by providing more details about the fluid model withpasable
cost function. As before, we assume tliais separable, and that each component cost-
function(; is strictly convex, strictly increasing and twice diffeteole. We then relax the
strictly-increasing assumption, and consider linear fioms.

Let C'(Q1, Q)2) be a separable function. We can writeas a function of one variable

Z1 2 OF Zs1, depending on which way the sharing is done.

C(Q1,Q2) = C1(Q1) + Ca(Q2) = Cri,5)(Zig) + Coi)(Zig) = C(Zij),  (2.7.13)

where
Cra2)(Z12) =Cy (Q1 — 51511,1 — Z1,;i£1,2) )
Co,1,2)(Z12) = Cy (QQ - 82522’2 + 217;52’2) .
and

S Z
017(271)<ZQ,1) = Cl (Ch — 151’1 + 27;”1,1) :
1 1

S Z
Cy,(2,1)(Z2,1) = Cy (QQ _ 252,2 _ 2’;M2’1) |
2 2
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Hence, the optimat, , is achieved when

C/<Zl,2) == —C:/[7(172)<Zl72) (%1’2) _'_ 057(172)(Z1’2> (%) et 07

or equivalently,

/ 9 ! !
CH(Qu) = E22L04(Qn) = a12C3(Q2).
H1,202

Similarly, the optimal?, ; is achieved when

9 ! !
CH(Qu) = EEZL04(Qn) = 024C5(Q2).
H1,102

70

The fact thatC; is strictly convex implies tha€?” > 0. If C/ > 0 thenC! is strictly

increasing, and its inverse function exists. Wgt);) = C(Q,) and let?~! be its inverse.

Then one of the following relations between the queues shiooid:

either Q; = U 1(a12C%(Q2)) or Q1 =V (ax105(Q2)),

where we choose the relation that minimizes the cost-fancti( @, , @»).

(2.7.14)

If the inverse of does not exist, then we can work with the left-continuougine of

U defined by (y) = {z : U(z) > y}.

We now consider separable cost functions of the form:

C(Q1,Q2) = a1QT + 20057, ni,ny € N,

(2.7.15)

where each component is a power function. The optimal smiug given in the main

chapter. We observe that the compatible-ratio conditign> - ; in S[2.2.2 holds, because

<

E3
2 a2 o H11f42,2 >,
5,1 as 1 Hi12M21

<
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under the inefficient-sharing conditidn (2.1.2). Whan= n, we get

% =7y OF % = T35
i.e., it is optimal to keep a fixed-queue ratio. Thus, we neadg to decide on which way
we should share, and then use FQR-T with the appropriate fede ratio; ;.

These results explain why the optimal ratios in our numéegample with the cost
function in (2.3.1D) in§2.3.3 are almost constant. In the numerical example there ar
other terms, but the dominating ones are the quadratic teks\the queues get larger, the
influence of the smaller-power terms decreases, and thealptatios converge to fixed
numbers. If the function is separable (as would be the casgr iéxample had not had the
Q1Q- term), then the convergence is to the same ratios as if tlyg@nmmhs are:; Q7 +c2 Q5.

The mixed terms of powet change these numbers. For the cost functiof in (2.3.10), the
@10, terms is also of powet, and hence the optimal ratios converge to different numbers
than [2.7.9). But for that example, clearly the optimalaatare nearly constant.

In §2.7.6 we introduced the general separable quadratic caostifun to provide a
tractable approximation for a broad range of possible aosttfons. We observed that
the optimal queue-ratio function becomes a shifted versfdrQR-T, which is just FQR-T
centered at pointé;, andk; , instead of centered @& We now illustrate the resulting
control for a candidate cost function. In order to make thedr components have approx-
imately equal weight to the quadratic components when tleeglengths are abobid, we
divide the coefficients; for the quadratic terms bi0. We also omit the mixed teri®); Q-,
which violated the separability property. Instead of thetdanction in [2.3.100), we now

consider the cost function

C(Q1,Q2) = 0.3Q7 + 10Q; + 0.2Q3 + 5Qs. (2.7.16)
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The centering is depicted by the y-intercepts on the twalind=igurd 2.117.
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Figure 2.17: The optimal queue ratios (shifted FQR).

We now consider the two linear cases. When one or more of ting@aoent cost func-
tionsC; is linear, we are led to modify our control. We indicate how fluid-model anal-
ysis can be applied to generate alternative controls iretbases, but we do not examine
their performance here.

n; = 2,n, = 1. The cost-functiorC(Q,, Q2) = c1Q? + Q> has one quadratic term
and one linear term. The special structure of this funct@nr(ot strictly convex) changes

the control. Now, there is no longer dependence on the twoegjesince), no longer
comes into play. By[(2.7.14),

a1,2Co a21Co
Qi =—""—=ki, or Qi =—F—=kj;.
2cy ’ 2cy ’

Thus, we are no longer trying to keep a relation between tloegqueues, but instead we
keep(; not bigger thark; , or k3 ,, depending which is optimal to use. To ke@p at its
optimal target, we modify our control: If cladsis overloaded such that > £7,, then

wheneverD, , > max{k o, kiz} every newly available agent takes his next customer from
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the head of queué. Otherwise, every agent takes his next customer from thd beds
own class queue.

If class2 is overloaded, then we can ha#g; > 0 as long as we kee@; < ko ;.
Hence, ifDy; < kop and @y < ko1, then every newly available agent takes his next
customer from the head @J,. Otherwise, he will take his next customer from the head of
his own class queue.

n; = 1,ny = 1. The purely-linear cost functiof'(Q,, Q) = c1Q1 + 2@ IS even
more different than the functions we considered so far. Hewaet is well known that a
linear function attains its minima on the boundaries of dsdin. In our setting, this means
that we either try to keep the queue that needs help at zetbabwe do not help it at all.

WhenZ,; » > 0, we have

S22 12,2

s
C(Q1,Q2) =C(Z1p) =1 | ¢ — Ll Zig |+l qe— + =71
91 91 92 92

S1H1,1 So 422 Call2.2 Cilt1,2
— : +c — : + = — i AR
q1 3 ) 2 (QQ 0, ) < 0, o, ) 1,2

Thus, if
Ci1,2 < Colt2,2

T

(2.7.17)

the functionC'(Z, ») is increasing, and its minima is attained whgy, = 0. Otherwise,
the function is decreasing, and it is optimal to take as large as needed to ens@re= 0
(the simple calculus gives us thdf, = m,, but of course class may not have enough
arrivals to fill both service pools). This means that we eigte@re completely, or not share

at all.
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Similarly, for

s s
C(Q1,Q2) = C(Z2,1) =0 (Q1 S &22,1) + Co <Q2 — 252’2 + %22,1)
2 2

S1H1,1 S22 C1H1,1 Coll21
— — 2 _ ’ = ; Z
C1 (Ch 0, ) + c2 (Q2 0, ) + < 0, 0, ) 2,1

Coll21 CiH1,1
=< ’ 2.7.18
0, — 6 ( )

thenC(Z,,) is increasing, and its minima is attainedzt; = 0. Otherwise,C'(Z,,) is
decreasing, and it is optimal to take ; as large as needed (and possible) to make sure that
Q2 = 0.

Rewriting the inefficient-sharing condition (Z.1..2), we ge

Hi1 > ,u1,2‘
H21 H2.2

If the two inequalities[(3.517) and(3.5.8) hold togethkert

0c 0,c
12<M1,2 and ,LL1,1< 1C2

—_— — )
Oacq 2,2 H21 Oacy

but this contradicts the inefficient-sharing conditionaaunless all the inequalities hold
as equalities. Thus, we can have at most one of the ineqsl{f8.5.7) or[(3.518), hold
under [2.1.P).

At first glance, it may seem from the discussion above thagnathe holding cost is
linear, we should not consider the system agtamodel, but rather as ai model (sharing
can be done in only one direction), if eithér (315.7)[or (8)%old, or two independent
systems (no sharing at all), if none of these two inequalitield. But that is not so. If

there is spare capacity in one class, while the other clasgeidoaded, then it is always
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optimal to use the extra agents to help the overloaded ciisse we do not know what
the overload incident will produce, we cannot restrict thaded to anV model in advance.

Let us summarize what we have found: The cost analysis leadis give priority to
either queud or queue. Suppose that it is optimal to give priority to queueThat leads
us to set the threshold for pool 2 helping class k.at = 0. In the fluid model that will
either produce the desired res@lt = 0 or ; > 0 andZ; , = ma, with pool2 devoting
all its effort to classl. There remains another case: when pool 1 has spare spatgapa
In that case, within the fluid model, if pool 2 is overloaddter pool 1 should devote all
the required spare capacity to serving class 2. We shoulelhav = s; A ¢2. If 51 > ¢,
then the help pool 1 provides to class 2 makes both queueyeamgt there is remaining
spare capacity for pool 1. On the other hands,if< ¢, then we have exactly, ; = s;.
Overall, there are three possible end results in the fluidehdd @, > 0 andZ; 5 = ma,
(i) Q1 = Q2 =0, (iii) Q2 > 0,Q; =0andZy; = s;.

We now must consider how to implement that control in theaystem. As indicated
above, to give priority to queue 1 at all times, we caniset = 0, and we always allow
pool 2 to help classl, even if Z;; > 0. The only difficulty is detecting whether or not
pool 1 has spare capacity, so that we can have pool 1 helmsglFor this purpose, we
propose using a positive queue threshold for queue 2: Wenlavailable agent in podl
help clasg if, and only if, Q3 > ks 1, Q1 = 0andZ; , = 0.

Since we allow pooP to serve clasg all the time, we could possibly have simulta-
neous two-way sharing (both; , > 0 andZ,; > 0), but there should be only minimal

simultaneous two-way sharing. It remains to further ingede this case.

2.8 Additional Simulation Results

In this section we present additional simulation results.
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2.8.1 Comparing the Two Controls

We now supplement the comparison of the two controls (thelfstaffing levels versus
QR-T) in §2.5.2 by presenting detailed simulation results. Theseyaen in Tabld 2.2,
including the half-width 0b5% confidence intervals and a comparison of the simulation to
the fluid approximation.

As stated before, for each case, we conduttiedlependent simulation runs using QR-
T, and5 independent simulation runs with a fixgd ,, each run witf800, 000 arrivals. The
independent replications make it possible to reliablyneate confidence intervals using the
t statistic with4 degrees of freedom. The large number of arrivals ensurethth&ransient
behavior in the beginning of the simulation, before reaglsteady state, does not affect
the final simulation estimates.

We now provide additional observations about our simutatésults for this example.
Another important observation is that FQR-T is doing a bigtib in keeping the ratio
between the two queues close to the desired ratio. The aycheaomes even better when
the system s larger (see the “ratio” row in Tabl€g 2.1 inithe 400 columns). We have also
included a column showing the simulated standard devigtbthe ratios. Note how small
the standard deviations are when using FQR-T, in compatistine standard deviations
when using the fixed4, , control. Since FQR-T is working towards keeping the ratio
between the two queues fixed throughout, the ratio betweetwtb queues at any time
point is approximately ». It also makes the two queues strongly positively correlate
which reduces the overall variance. In contrast, under xeel{t; » control, the two queues
are independent with zero correlation.

The simulated ratio was calculated as a long-run averageeofatio between the two
queues throughout the simulation time. We can comparei @), from Table 2.1l which

appears i2.5.1 (in then = 100 columns) which is also approximatelyd. These agree
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I | Cost (in thousands]| actual ratio [ actualZi, |
policy Approx. |  Sim. Approx. | Sim. std. Approx. | Sim.
r=1.20 19.65 20.51 1.20 1.07 0.16 15.0 15.9
+0.64 +0.00 | +0.01 +0.4
r=1 19.35 20.28 1.00 0.90 0.13 16.7 17.7
+0.81 +0.00 | £0.01 +0.3
FQR-T r=0.83 19.25 19.73 0.83 0.76 0.11 18.4 18.9
+0.64 +0.00 | £0.00 0.5
r = 0.60 19.56 21.16 0.60 0.56 0.08 21.4 22.1
+0.77 +0.00 | £0.00 +0.3
r=0.40 20.75 22.31 0.40 0.37 0.06 25.0 25.3
+0.92 +0.00 | £0.00 +0.3
Z1o=15 19.65 21.47 1.20 1.52 1.93 15.0 15.0
+0.57 +0.08 | £0.29 +0.0
1o =17 19.32 21.35 0.96 1.13 1.17 17.0 17.0
+0.46 +0.11 | +£0.45 +0.0
fixed 212 Zip=19 19.26 20.86 0.78 0.87 0.75 19.0 19.0
+0.37 +0.07 | £0.57 +0.0
Lo =22 19.69 21.42 0.56 0.61 0.38 22.0 22.0
+0.60 +0.05 | £0.04 +0.0
Zio =25 20.75 22.63 0.40 0.42 0.33 25.0 25.0
+0.86 +0.01 | +£0.14 +0.0

Table 2.2: Full simulation results of Figurie_(2.4). The ‘epp columns show the antic-
ipated results according to the fluid model, and the ‘simlugms show the simulation
results, together with half-width confidence interval.

closely because of state-space collapse, as in Higure Bdizsded in2.7.2.

Finally, Tabld 2.2 shows that the fluid approximation teralariderestimate the actual
average cost in the stochastic model. That is understamdadtause the fluid model ig-
nores stochastic fluctuations, which will tend to incredsedverage costs with a convex
cost function. However, note that the fluid approximatioegldo an excellent job in de-
scribing the relative costs. In particular, the fluid modetseeds in locating the correct

minima for both controls.
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2.8.2 Performance of FQR-T Under Normal Loading

In §2.2.1 we saw that FQR-T performs well whey, = ko1 = 10 for ExampldZ.2.11 with
n = 100 servers and,; = 99, showing that FQR without thresholds and one-way sharing
can perform poorly. To supplement those simulation resuits the simulation results in
g2.8, in this section we present additional simulation rssuAs in Tabld 21, we consider
three values ofi: n = 25, n = 100 andn = 400. We let the arrival rates in both queues
beA™ = 0.98n. The service-rate and abandonment-rate parameters ateafixg = 1.0,
pi2 = po1 = 0.8, 6; = 0.2. We let the thresholds b@ﬁ"z) = k;é"l) = 0.1n, rounded up
to 3.0 for n = 25. We compare the results of FQR-T to thé/)M /n + M model, which
would prevail if there were absolutely no sharing at all. A$doe, we see that the mean
gueue lengths are actually slightly smaller with FQR-T. fl$taows that the little sharing
that takes place with FQR-T is not so bad.

Due to the symmetry of the system under the parameters we dhese is no difference
between the steady-state values of both queues and sepot® hus, we display only
(1 andZ, ,. We can see that as the system becomes larger, the shariegskes; and the

queue size gets closer to the queue length in&d//n + M model.

2.8.3 Sensitivity Analysis For the Thresholds

We now consider different values for the thresholds withwaitdout one-way sharing. Our
objective is to perform a sensitivity analysis for the ti@gs for a finite system (in this
case havind00 agents in each service pool), as a complimentary to the asyimpne of

reasoning ir§2.4. The simulation results, displayed in Table 2.4, aresf@tems having
XNi =98, i1 = pa2 =1, 1o = poy = 0.8 andf; = 0.2, 7 = 1,2. We vary the thresholds
betweenx; ; = 1 andx;; = 30, 4,5 = 1,2. (Note that withx, ; = 1 FQR-T reduces to

FQR.) For ease of exposition we takg, = ro; = 1. The symmetry allows us to present
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| [ w2 [ nei0 [ nea0 |
| perf. meas]| I model| sim. || / model.| sim. || I model| sim. |
E[Q1] 5.1 18 8.4 7.3 11.3 [ 10.5
+0.3 +1.0 +2.6
E[Q1/n] 020 | 0.19 0.08 | 0.07 || 003 | 0.03
+0.01 +0.01 +0.01
E[Z, )] - 1.3 — 1.9 — 1.3
+0.1 +0.2 +0.4
E[Z14/n] — 0.05 = 0.02 — 0.00
+0.01 +0.00 0.00

Table 2.3: A comparison of the exacimodel queues with simulation results for the steady-
state performance measures of tiemodel in normal loading under FQR-T. The arrival

rates are\!"™ = A\{” = 0.98n and the thresholds aréfij = né"l) = 0.1n. Service rates are
pi1 = fa2 =1, 12 = po1 = 0.8 and the abandonment rates éye= 6, = 0.2

the results forE'[Q;] and E[Z; 5] only, and considek; ; = k. (If 712 # 721 then the
sensitivity analysis should be performed for each of thettwesholds separately.)

Table[2.4 clearly shows the benefits of using one-way shasinge even with; ; = 1
the performance is almost as good as when we add threshaditzeds. However, recall
that the thresholds play a vital role in our control: In agiditto helping prevent unwanted
sharing, they act as “overload detectors”: WHep(¢) first crosses the threshoid ;, we
consider clasg-queue to be overloaded, and sharing is activated with pbelping queue
1.

As discussed iff2.4, we do not want to have the thresholds too large, as tHefaikto
detect small overloads. Moreover, we see that it can agtbalbeneficial to share a little,
even when the system is not overloaded; Observe that thagergueue length in the case
ri; = 30 is larger than whem; ; is 10, 15 or 20. (See also the last paragraptjihd.)

Thus, in choosing the thresholds we need to make sure that nodmal loadings they
will not be crossed too often, but even small overloads véldetected. Here we see that

any value in{10, ..., 20} is reasonable, both with one-way sharing and without. Toens
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that even small overloads will be detected by the threshalds probably best to take
10 <, ; < 15.

Insight From the Asymptotic Analysis of the Thresholds. The asymptotic analysis
in §2.4 helps to find good candidates for the thresholds for tagstems. In our example,
we can heuristically think 030 as being of orde®(n), while 10 and15 are of a smaller
order, sayO(n’®). Then30 = 0.3n, 15 ~ n®% and10 ~ 2/3n"*.

This line of reasoning hints at what the thresholds shoul@pproximately) for a larger
system having the same service and abandonment paranmfébersxample, ifn. = 1000
thenk;; = 0.3n = 300 is too large, butd ~ n*% < k;; < 2/3n°% ~ 42 are good
candidates for the thresholds. The threshold values carteendined using simulations,

just as in Tablé2]4.

| | With One-Way Sharing| Without One-Way Sharing

| perf. meas| E[Q\] | E[Zio] | ElQi] | E[Z, 5] |
k=1 |84 2.8 29.9 38.2
+0.4 +0.3 +1.7 +0.6
ki;=b |83 2.4 8.6 8.1
+0.9 +0.3 +0.6 £0.1
ki, =10 | 75 1.9 74 3.6
+0.4 +0.2 £0.6 £0.2
k=15 | 7.2 15 71 2.1
£0.6 £0.2 £0.6 £0.1
Ki; =20 || 75 11 73 13
+0.7 £0.2 £0.7 £0.2
Kij = 30 8.2 0.5 8.2 0.5
+0.9 £0.1 £0.7 £0.1

Table 2.4: Sensitivity analysis of the effect of the thrddeon a system witi 00 agents
in each pool. The arrival rates alg = A\, = 98. Service rates arg;; = 20 = 1,
t12 = po1 = 0.8 and the abandonment rates ére= 6, = 0.2. All the results are derived
from five independent simulation runs.



Chapter 3

Transient and Stability Analysis

This chapter is devoted to the study of a dynamical systgmnesented by a three-dimensional
ordinary differential equation§ODE). In Chaptel 4 this ODE will be shown to arise as the
many-server heavy-traffiMS-HT) fluid limit of the overloaded Markovian X service-
system model operating under FQR-T, as in Chdgter 2. Howavéhis chapter we will
derive the ODE heuristically, by considering the behaviathe stochastic X model when
the number of servers in each service pool becomes largearticyar, we will apply a
heavy-trafficaveraging principle(AP) as an engineering principle, in order to justify the
ODE considered here. As mentioned above, a rigorous jutdit is given in Chaptefd 4
and5.

The FQR-T control is driven by a queue-difference stochastcess, which operates
in a faster time scale than the queueing processes therasstvé¢hat it achieves a time-
dependent steady state instantaneously in the MS-HT limitChaptei’4 we will show
that convergence of the fluid-scaled sequence of overlodeaddel systems to this ODE
holds, provided that the driving process is replaced byitgirun average behavior at each
instant of time.

The AP creates a singularity region, causing the ODE not todoginuous in its full

81
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state space. Hence, classical results of ODE theory, suttipas establishing existence,
uniqueness and stability of solutions, cannot be applieettdy. Moreover, existing algo-
rithms for numerically solving ODE’s cannot be applied dthg either, since the solution
to the ODE requires that the time-dependent steady statéiroftang fast-time-scale pro-
cess be computed at each instant. Nevertheless, we preddiksabout the existence and
uniqueness of solutions to the ODE, prove that there exigtsque stationary point; and
give easily verifiable conditions for the fluid process to\a@rge to its stationary point.
Moreover, we show that the convergence to stationarity moe&ntially fast. Finally,
we provide a numerical algorithm, based on the matrix-genocmmethod, for solving the
ODE.

Since this chapter appears before the fluid limit is derives priefly explain how the
fluid limit is derived. We also review the main points of Cheni® which will be needed

for our analysis here.

3.1 Preliminaries

We now briefly summarize the essential conclusions of Ch&bte

3.1.1 The Approximating Deterministic Fluid Model in Steady State

Given the model i32.2.1, we want to determine an effective control and anatgzserfor-
mance. In order to (approximately) minimize the expectest oger the overload incident,
we exploited two characteristics of many-server systerist,lan overloaded many-server
service system can be well approximated by a fluid model, Wwisicleterministic and rel-
atively easy to analyze; e.g., séel[79]. Second, as denavedtm§2.7.1, many-server

systems approach steady state relatively quickly. (Inc¢hegpter, we provide additional
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mathematical support by showing that the fluid model core®tg stationarity exponen-
tially fast.) These properties support restricting aftento steady-state analysis of the
fluid model during the overload incident.

A main conclusion of Chaptéf 2 is that for the fluid model irastgstate (in overloadi,
is possible to minimize the steady-state cost by choosipgppate queue-ratio functions
which can be calculated in advance. (The queue-ratio fonstcan be functions of the
arrival rates or of the queue lengths without sharing.) Mueg, as we explain below, it
often suffices to use fixed queue ratios (FQR), with one rati@éch direction of sharing.
In addition, under the basic inefficient sharing conditjon o2 > ft1.2p921, it IS never
optimal to simultaneously share in both directions. Thaipprty justifies the additional
requirement thaat most one service pool is allowed to serve customers framdiasses
at any time.In practice, this additional restriction helps prevent anted sharing under
normal loads. It directly prevents simultaneous sharinggath directions.

Thus, we are lead to consider the deterministic fluid modpkec8ically, we approx-
imate the stochastic processggt) and Z; ;(t) by deterministic and differentiable (thus,
continuous) functions, which we call “fluid”. Let(t) andz; ;(¢), i, j = 1, 2, be the deter-
ministic fluid approximations of);(t) andZ, ;(t), respectively. Thetiq;(t), z;;(t):i,7 =
1,2,t > 0) is called the “fluid model” (or the “fluid approximation”) ofieé stochastic sys-
tem. Letg andz;; be the limits of the fluid functions as— oo, assuming these limits
exist. Then the vectdy;, z;;; 4, j = 1,2) € R is called the steady-state of the fluid model,
or alternatively, the stationary point of the fluid modelg§8.3 for a formal definition).

As indicated above, we assume that quéue overloaded and is receiving help from
pool 2, so thatz7, > 0. As mentioned before, this implies that, = 0 andzj, = m;.

If we further assume that poalis overloaded after sharing, we have thaf = m, —
21 »- Thatis the main case we want to consider. Hence, we neecconbider the three-

dimensional steady-state vector = (g7, g3, 21 5). Now, forz(t) = (q1(t), g2(t), 21,2(t))
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to remain fixed for allt, the flow into the system must be equal to the flow out of the
system. Hence, in steady state, thererafeagents processing clagdiuid in pool 1 at
rates 1, pluszj, agents in poo2, processing at ratg, .. In addition to the class-fluid
leaving the system due to the service process, there is aldddhving the system due to
the abandonment process, with réte| in steady state. Similarly, clagsfluid is served by
the remainingn, — z7 , servers in poa, which process at raje, ,. All the class2 arrivals
which are not served, abandon at rétg;. Equating the input to each queue (which is just

the arrival rate to this queue) to the output from each queaesee that

AL = pamy + M1,2Z>f72 —biqi and Xy = g o(my — Zig) — 243,

from which we get the expressions for the stationary quengties

Ay — me — 27
and ¢ = - M2,2222 21’2). (3.1.1)

k
. AL H1my — H1,2%71 2
qy = [
1

This steady-state fluid framework greatly simplifies thetoalrproblem, because in the
setting above there is only the single decision variable The equations iri(3.1.1) can be
used to find the optimal; , by solving the simple optimization problem of minimizingeth
convex-cost functioiW(q;, ¢;) over the constrairt < z, < m.

It follow immediately from [3.1.1) thai; is decreasing with} ,, while ¢; is increas-
ing with z7 ,. Consequently, for given arrival rates and\,, The optimal:} , determines
a unique ratio between the steady-state fluid queyesq;, ¢;) = 7 5(A1, \2) = ¢7/a5.
(Similar analysis holds for; , (A1, A2) which is used when classis being helped by pool
1.) In general, the optimal ratios are different for differarrival rates. An efficient algo-
rithm to find the optimal ratio-function was developed in Gteal2.

However, as explained in Chapiér 2, the optimal ratios dftew to be approximately



CHAPTER 3. TRANSIENT AND STABILITY ANALYSIS 85

the same for all possible overload%(/\l, A2) =~ 1, SO that it is usually enough to con-
sider only one fixed queue ratio for each direction of sharirigs conclusion is supported
mathematically when we impose additional conditions oncthravex cost function. Since
the actual cost function be difficult to specify, it is nalucaconsider simple parametric spa-
cial cases. In particular, it is natural to assume that theihg cost is a separable quadratic
function, i.e., of the formC'(¢1, ¢2) = Ci(q1) + Co(qe), With Ci(q;) = ciq? + bigi + a;,

1 = 1,2. In that case, the optimal queue-ratio function has a xatisimple explicit
form, in particular, we can translate each of the state-oégeat queue ratios to a fixed ratio
shifted by a constant. More specifically, the optimal relatihat should hold between the
two queues ig; — ;¢ = Kij, 4,5 = 1,2, wheres; ; andr}; are fixed constants for all
possible overloads. If, in additioh, = a; = 0 so thatC;(¢;) = ¢;¢?, thenk; ; = 0, and the
optimal relation between the queues should be a fixed quéiogire.,r; ;(Ai, A2) = 77 ;.
Thus there is a theoretical basis for using FQR once shadsdpben activated. However,

we also consider shifted FQR, which is the optimal controkibseparable quadratic cost

functions.

3.1.2 The FQR-T Control for the Original Queueing Model

Having found the optimal steady-state fluid levels for thedflmodel, we suggested em-
ploying the FQR-T control (or its variants), which is debexd in§2.2. The purpose of the
control is to automatically detect overloads immediateiewthey occur, and maintain the
optimal ratio between the two queues when the system isaaced.

With the assumptions on the X system and the FQR-T contrel,stk-dimensional
stochastic procesg);(t), Z; ;(t); 1,7 = 1,2) is a CTMC. Once sharing is initialized, the
control keeps the two queues at approximately the target, ratg., if queuel is be-
ing helped, ther),(t) ~ r;2Q2(t). If sharing is done in the opposite direction, then
r91Q2(t) = Q1(t) forall t > 0.
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In general (if the convex cost function is not separable araticatic) the two optimal
ratios depend on the arrival rates to the system, which amen@ed to be unknown. In
that case we can use thheeue-ratio-with-thresholds contr@@R-T), proposed in Chapter
[2, which uses the state-dependent queue ratios at eaclodeggoch. However, even if
QR-T is used, then after a short period of time the systemldistabilize at a fixed ratio
77 ;» which is optimal for the specific (unknown) arrival rates; i QR-T will automatically
“discover” the optimal ratio. Once the queue-ratio stab#i at a fixed ratio, the control is
the same as FQR-T.

If the optimal relation between the queuesyfs= r7,q; + 12 for somex;, € R
(assuming that po@ needs to help clad9, as is the case when the holding cost is separable
and quadratic with non-zero constant and linear terms, Wense theshifted FQR-T
control. Shifted FQR-T centers abowt, instead at about zero. For example, if class
1 is overloaded, then every server takes his new customer thenhead of queue if
D; ;(t) > k1. Otherwise, it takes the new customer from the head of its dess queue.
We call that controshifted FQR-Tsince it keeps the two queues at a fixed ratio, but shifted
by the constant; . We can think of FQR-T as the special case of shifted FQR-T wit
k12 = 0.

Our analysis so far relies on the assumption that FQR-T aifttdi-QR-T achieve
their purpose, i.e., that they keep the the two queues appataly in fixed relation. In
the stochastic system this means that the two-dimensie@br(Q),(t), Q2(t)) should
tend to evolve approximately as a one-dimensional procksshe fluid model this ap-
proximation becomes exact; We no longer need to consideghtke-dimensional process
z(t) = (q1(t), ¢2(t), z1.2(t)), since it is enough to considey(t) together with only one of
the queues. The other queue is determined by the first vistéte-space collap9ESC)
equationy, (t) = r; ;¢2(t)+ &, j, depending on which way the sharing is performed.[In [59]

SSC is substantiated via simulation; in Chapier 4 it will heven to hold asymptotically
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in the MS-HT limit, which we describe in the next section.

In [59] we suggest the fluid approximatigm(¢) : ¢ > 0}, which is characterized by a
three-dimensional ODE involving the AP. In order to devetlloig approximation, we con-
sidered the fluid as a limit of a properly scaled sequenceoahsistic X models operating
under (shifted) FQR-T. We then argued that the transiertt fnodel has a stationary point,
which agrees with the optimal solution derived heuristichéfore. However, none of the
claims were proved, and were only verified using simulatiqreeiments.

Unlike the steady-state fluid approximation, there app&aise no simple heuristic
derivation of the transient ODE without considering theyoral stochastic system. To see
why, assume that FQR-T is employed with a ratja. If FQR-T indeed keeps the ratio
between the two queues fixed, thgiit) = 7, 2¢,(t) for eacht. But thenD, 5(t) = ¢, (t) —
r12¢2(t) = 0 for eacht, which implies that every newly available server takes lestn
customer from the head of quetiat any timet. Obviously, this heuristic approximation
is meaningless. Hence, a more careful treatment of thereh'rft@-processdéi,j is needed;
we somehow need to capture the fact that, in the fluid moded, #uflowing from queue
1 to both service pools at every tinie To do that, we evidently must consider the fluid

model as a limit of stochastic X models.

3.2 The Many-Server Heavy-Traffic Fluid Limit

We first describe the convergence of the sequence of stickgstems to the fluid limit,
as was conjectured i [69] and will be established in Chaft&Vithout loss of generality
we assume that cladsis overloaded, and receives help from service-gbdClass2 may

also be overloaded, but less than classo that pooR should be serving some class-

customers.)
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3.2.1 Many-Server Heavy-Traffic (MS-HT) Scaling

To develop the fluid limit, we consider a sequence of X systenaexed byn (denoted by

superscript), with arrival rates and number of servers grgwroportionally ton, i.e.,

— X\, and m!=——m; as n — oo, (3.2.1)

>
<5
Il

Sy
R

with the service and abandonment rates held fixed. We thened#fe associated fluid-

scaled stochastic processes

Qi) == and Z7(t)= L2 =12 t>0. (3.2.2)

For each system, there are thresholil’, andk3 ;, scaled as suggested in Chajpier 2:

“o 50 and 2 w00 as n—oo, i,j=1,2. (3.2.3)
n NLD

The first scaling byh is chosen to make the thresholds asymptotically negligibMdS-
HT fluid scaling, so they have no asymptotic impact on thedstestate cost. The second
scaling by,/n is chosen to make the thresholds asymptotically infinite B-NIT diffusion
scaling, so that asymptotically the thresholds will not keeeded under normal loading.
It is significant that MS-HT scaling shows that we shold besdblsimultaneously satisfy
both conflicting objectives in large systems. There are #isoshifting thresholds:’,
arising from consideration of separable quadratic costtfans; se€f3.1.2, but we do not
specify their scale.

We let time zero be the time at whiep¥(0) = &7 ,, and sharing is activated by send-
ing the first class- customer to service poal We thus need only considef’, and the

weighted-difference procesf@{‘z(t) = Q7(t) — r1,Q5(t). However, ifsT, — oo, then
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Dﬁz — oo asn — oo. Hence, we redefine the difference process. Let
D(t) = (Q1(t) — ") —rQ5(t), =0, (3.2.4)

wherex = k; andr = r{,.

With this definition, we allowx™ to be of any order less than or equal@®@n); in
particular, we assume that'/n — « for 0 < k < oo. There are two principle cases:
r = 0 andx > 0. The first case produces FQR; the second case producesiSrijte.
(Since the overload has already begun, the original thtésig; no longer play a role.)

We now apply FQR using the proceg® in (3.2.4): if D™(t) > 0, then every newly
available agent (in either pool) takes his new customer fitterhead of the classqueue.
If D"(t) < 0, then every newly available agent takes his new customer fhe head of

his own queue.

3.2.2 Representation

In order to understand why the ODE takes the form it doeshiéipful to see the represen-
tation used in the first step in establishing the MS-HT lirRllowing common practice, as
reviewed ing2 of [57], we represent all the processes of interest in t@fmsutually inde-
pendent random-time-changed ratBoisson processes: L&t', N, and N} fori = 1,2
be six mutually independent ratePoisson processes.

For simplicity, we restrict attention to the main case, imlgan be shown to be asymp-
totically equivalent to the actual system: We assume thatgants are busy all the time
and no clasg-customers are being served at service-doorhus, we haveZy () = 0,
Z1,(t) = mt andZ3,(t) = my — Z7',(t), forallt > 0, so that we need only consid&f,.

We thus obtain the following representation for the thresepsses)y, Q5 andZ7', in
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terms of the queue-difference procdssin (3.2.4):

t
Z0a(t) = Z05(0) + N3, (u / Lomtopsoy (i — Z7o(s)) ds)
t
_ NlS,? (,LLLQ/ 1{Dn(5)<0}Z{L’2(S) dS) , t> 0.
0
t
Q1(t) = Qi(0) + NP (NHt) — Niy(mlyunat) — N7 (u [ im0 Zsts) ds)
0
t t
- 8535 (a2 | Nomsm g = 2t ds) = a7 (00 [ Qtenas). ez0
0 0
t
Qu(t) = Q3(0) + N2(\it) — N;, (u | 1iomcortmg - 235050 ds)

t t
N, (,m / om0y Za(5) ds) _ Ny (92 / Qg(s))ds), > 0.
0 0
(3.2.5)

We then construct the usual martingale processes by stibhgdlee stochastic intensi-
ties, lettingM"*(t) = N#(A"t) — APt, M"(t) = N¥ (ei JhQr(s) ds) —0; [ Qu(s) ds
and M5 (t) = N7, (I75(t)) — I75(t), wherell,(t) is the stochastic intensity used with the
PoissON-procesyy, (1), .9.,115(t) = piz [ 1ipn(s)<o) Z15(s) ds.

The fluid limit is a FWLLN. To express it, leD be the usual function space of right-
continuous functions on the intervil, co) with left limits in (0, c0), endowed with the
usual topology and let- denote convergence in distribution; see [25, 78].

We next rewrite the equations [0 (3.R.5) by subtracting aftiray the stochastic intensi-
ties, and then dividing each equation/yit can be shown that/;"* /n = 0, M""/n = 0
andM;'y’/n = 0in D asn — oo, (where0 here stands for the zero function). Hence, we
replace these processes by@(il) term, where a sequend&™ : n > 1} of processes

in D satisfiesY™ = o,(1) if Y* = 0in D asn — oco. We thus have the associated
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representation for the fluid-scaled queueing processes:

t
Z05(8) = Z75(0) + ta / Lm0y (71 — Z05(s)) ds
t
- ,u1,2/ Lipn(s)<0y Z1'9(8) ds + 0,(1), t >0,
0
t
QﬁﬂEQﬁ®+Aﬁ—mﬁ—mQ/lwmwmﬂﬂﬁﬂs
0

t t
- /~L272/ Lipn(s)z01 (M5 — Z74(s)) ds — 91/ Q1 (s)ds +op(1), t>0,
0 0

t
O3(t) = B3(0) + A3t — pin / om0y (M — Z0y(s)) ds
0

t t
— HM1,2 / 1{D”(S)<O}Z{L’2(S) ds — 92 / QS(S)) ds -+ Op(l), t Z 0.
0 0

(3.2.6)

The ODE we study is an approximation for the three-dimeraidinid-scaled process

X" = (Q1, Q3. Z7',) with components defined iA{3.2.6).

3.2.3 A Heuiristic View of the AP

In fact, the ODE we study is the limit of the three-dimensidhad-scaled proces¥™ =
(Q1, Q3. Z1,) with components defined il (3.2.6); i.e., in Chapler 4 we sthaX " =
in D3 asn — oo, Wherez = (qq, g2, 21.2) IS a deterministic limit satisfying the ODE. The
resulting ODE can be seen directly from the differentiahiaf the integral representation
in (3.2.6), provided that we invoke the AP discussed belog.aAesult of the AP, the in-
dicator functions ;p»(s)>0y andlpn(s)<0}, @appearing in the integrands, are replaced by by
deterministic functions, denoted hy »(z(s)) andl — 7 2(x(s)), respectively (in addition
to replacingX™ by x).

The AP is concerned with the system behavior when sharirakied place; i.e., when

some, but not all, of the pool 2 agents are serving class halrsituation, it can be shown
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that the queue-difference proce38in (3.2.4) is an orde® (1) process, without any spatial
scaling, i.e., for each, the sequence of unscaled random variableg(¢) : n > 1} turns
out to be stochastically bounded (or tight)lkn That implies thatD™ operates in a time
scale that is different from the other procesg¥sand Z7',, which are scaled by dividing
by n in (3.2.2) and[(3.2]16). A heuristic explanation is that,hwihe MS-HT scaling in
(3:2.1), in order for the two queues to change significantlya(relative sense), which is
captured by the scaling if(3.2.2), there needs t®be) arrivals and departures from the
gueues. In contrast, the difference procégscan never go far fron), because it has
drift pointing toward<) from both above and below. Thus, the difference procesfates
more and more rapidly aboOtasn increases. It transitions above and belowf order
O(n) times in any finite interval. Thus, over short time intervedsvhich X™ remains
nearly unchanged (for largé), the proces®™ moves frequently in its state space, nearly
achieving a local steady state rapidly with respeckta Asn increases, the speed of the
difference process increases, so that in the limit, it adse steady state instantaneously.
That steady state is a local steady state, because it depenrds, the fluid limitx at time
t.

To formalize this separation of time scales, we define a fawifiltime-incremented

difference processes: for eagh> 1 andt > 0, let

D = DM(X"(t),s) = {D"(t + s/n) : s > 0} (3.2.7)

Dividing s by n in (3.2.7) allows us to examine what is happening right dftee ¢ in the
faster time scale. For ea¢ha different proces®); is defined. For every > 0 ands > 0,

the time incremenit, t + s/n) becomes infinitesimal in the limit. A main result in Chapter
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dis that, for each > 0,
D} ={D"(X"(t),s): s >0} = D, ={D(x(t),s) : s >0} inDasn— oo, (3.2.8)

where the limitD, = {D(z(t), s) : s > 0} is apure-jump continuous-time Markov process
with state spacék +rj : k € Z,j € Z}. We call D, thefast-time-scale-proceg5TSP).
This limit is easy to understand by examining the transitaies of the process} defined
in (32.7), which depend on the CTME"(¢).
The deterministic functiom; 5, mentioned in the first paragraph of this section, is the
steady-state probability of the g6t o) for the FTSP, i.e.,
m2(x(t)) = im P(D(z(t),s) > 0) = lim 1 ' L{D(a(t),5)>0} A5, (3.2.9

S—00 u—oo U Jo

which depends om because the distribution ¢ (z(¢), s) : s > 0} depends on the value
of z(t) € Rs.

To actually establish convergence far in (3.2.6), we go further in Chaptéf 4 and
prove local uniform convergence inwhich implies that for any > 0, there exist,, and
n > 0 such that, for any. > ny,
1 [t
'E/t Lipr(xn@),s)>0p ds — mia(x(t))| < e (3.2.10)

The local uniform convergence allows us to replace the atdicfunctions in the integrals

in (3.2.6) with ther » functions in the fluid limit.

3.2.4 The Fluid-Limit ODE

The discussion ifg3.2.2 and 3.213 above is an outline of the convergence riesDhapter
4. A different approach appearéd.2 of [59], where the ODE was developed directly,
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assuming that the fluid limit exists, and is differentiablhe convergenc&” = z, es-
tablished in Chaptén 4 based on the representdtion [3d@y6éjher with the AP inN(3.2.7)-
(3.2.10), lead to the same ODE as[in|[59]. We now specify th&QRhich is the main
subject of this chapter.

The general form of an ODE is(t) = ¥(xz(t),t) for a functionW, wherei(t) is
the derivative evaluated at In addition, our ODE isautonomougor time invarianj
becausel(z(t),t) = ¥(x(t)). An autonomous ODE does not depend explicitly on the
time-argument, and its behavior is invariant to shifts in the time origin.

We consider the autonomous ODE

.T(t) = (QI(t)v q'2(t>7 21,2(t)) = \I/(J}(t)) = W(Ql(t)v Q2(t>7 21,2(t))7 t> 07 (3211)
where¥ (z) : [0,00)? x [0, my] — R3 can be displayed via

Gi(t) = M —mapng — ma(x(t)) [z1,2(0) 12 + 20.2(t) 2] — 01 (t)
Ga(t) = Ao — (1 — mio(2(t))) [222(8) 2o + 212(t) 1 2] — O2q2(t) (3.2.12)

Z12(t) = mip(w(t))222(t) a2 — (1 — mi2(2(t)))212(t) 11,2,

with 7, 5 : [0, 00)% x [0, my] — [0, 1] defined in [3.:29).
Some of the results in this chapter depend on the initialevaftthe ODE. In that case,

we consider thénitial value problem(IVP)
(t) =V (z(t)), x(0)=wy (3.2.13)

for ¥(z) in (3:2211) - (B.ZIR).
We remark that specifying the IVP if(3.2]11)-(3.2.13) doesfully characterize the

limit of X", given convergence of the initial conditioAg' (0) — w, W.p. 1, wheraw, > 0
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is deterministic, as required in Chaplér 4. First, it is notially evident that a solution
to the ODE exists. Second, even if a solution does exist,sthlistion must be unique as
well in order for it to characterize the limit of?, because in the proof of convergence the
ODE initially appears only as the limit of a converging sujpsence. In general, different
subsequences may converge to different limits. Thus, osirtiisk here is to prove the
existence of a unique solution to the IVP [n(3.2.13).

The proof of existence and uniqueness of a solutior_to (3)2i% tied to the char-
acterization ofr - in (3.2.12) and[(3.2]9), and thus the FTHP. We need to determine
conditions for the FTSIP, to be positive recurrent, so that the AP holds, and then tztu
its steady-state distribution in order to fingd,. Moreover, we need to establish topological

properties of the function, », such as continuity and differentiability.

3.3 The Fast-Time-Scale Process

Recall that the FTSP;, is the limit of D" without any scaling (seé (3.2.8)), whel¥ is
the time-incremented difference process defined in (3i2.tBrms of the queue-difference
stochastic proces®™ = (Q} — k™) — r@Q% in (8.2.4). Since there is no scaling of space,
the state space for the FT3R is the countable latticé+j + kr : j,k € Z} in R. To see
this, first observe froni (3.2.4) th&" has state spacetj + kr — k™ : j, k € Z}. Next,
because of the subtraction (n_(312.7); has state spacet;j + kr : j,k € Z}. Finally,
because of the convergence[in (3/2.8), the FT&Ras this same state space.

3.3.1 The Fast-Time-Scale CTMC

We fix a timet and assume that we are given the valtg = (¢ (t), ¢2(t), z12(t)). In order
to simplify the analysis we assume thais rational. That clearly is without any practical

loss of generality. Specifically, we assume that j/k for some positive integersandk
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without any common factors. We then multiply the process$ bso that all transitions can
be expressed as; or £k in the state spacg. In that caseD; = {D(z(t),s) : s > 0}
becomes a continuous-time Markov chain (CTMC), which wentd as thdast-time-scale
Markov chain(FTSMC).

Let AV (m, (1)), A% (m, z(t)), u? (m, z(t)) andp'? (m, x(t)) be the transition rates
of the FTSMCD; for transitions of+j, +k, —j and—k, respectively, whetD(xz(t), s) =
m > 0. Similarly, we define the transitions when(z(t),s) = m < 0: )\(_j)(m,x(t)),
A® (m, 2(t)), 19 (m, 2(t)) andp™ (m, z(t)). These rates are the limits of the ratedyf
asn — oo with X™(¢) = x(t); convergence will be proved in Chapkér 4.

First, for D(z(t), s) = m € (—o0, 0], the upward rates are
A (mat) =N, and A (m,z(t) = pozi(t) + popzea(t) + 0aaa(t), (3.3.1)

corresponding, first, to a clagsarrival and, second, to a departure from the clagsieue,
caused by a type-agent service completion (of either customer type) or byaas#l cus-

tomer abandonment. Similarly, the downward rates are
pM (m, 2 (1) = gz () + 0iq(t) and ¥ (m,a(t) = X, (3.3.2)

corresponding, first, to a departure from the classistomer queue, caused by a class-
agent service completion or by a classustomer abandonment, and, second, to a dass-
arrival.

Next, for D(z(t),s) = m € (0, 00), we have upward rates

A (m,z(t)) = A and A (m, (1) = Oaga(t), (3.3.3)
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corresponding, first, to a clagsarrival and, second, to a departure from the classs-

tomer queue caused by a clasststomer abandonment. The downward rates are

ugf)(m, {L'(t)) = ,u1712171(t) + ,U1722172(t) -+ ,U2,22’272(t) + 91(]1 (t) and

. (3.3.4)
u (m, 2 (1)) = s,

corresponding, first, to a departure from the classistomer queue, caused by (i) a type-
agent service completion, (ii) a typeagent service completion (of either customer type),

or (iii) by a classt customer abandonment and, second, to a dassival.

3.3.2 Representing the FTSMCD, as a QBD

Further analysis is simplified by exploiting matrix geoneinethods, as in [52]. In partic-
ular, we represent the integer-valued FTSMC= {D(x(t),s) : s > 0} just constructed
as a homogeneous continuous-time QBD, as in Definition =8dl§6.4 of [52]. To do
so, we must re-order the states appropriately. We ordertéibessso that the infinitesimal
generator matrix) can be written in block-tridiagonal form, as in Definitior81. and
(6.19) of [52] (imitating the shape of a generator matrix dfidih-and-death process). In

particular, we write
B A, 0 0

Ay A1 Ay O
0 Ay A Ay ... (3.3.5)
0 0 Ay A

O
Il

where the four component submatridesA,, A; and A, are all2m x 2m submatrices for

m = max {7J, k}. In particular, Thes@m x 2m matricesB, Ay, A; and A, in turn can be
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written in block-triangular form composed of four x m submatrices, i.e.,

Al B, AF 0
B= and A= (3.3.6)
By A 0 A

fori =0, 1,2. (All matrices are also functions af(t).)

To achieve this representation, we need to re-order thesstato levels. The main
idea is to represent transitions above the boundary anavtieboundary within common
blocks. LetL(n) denote leveh, n = 0,1,2,... We assign original stategn) to positive

integersn according to the mapping:

o(2nm+i)=nm+i and ¢(2n+1)m+i)=-nm—i+1, 1<i<m. (3.3.7)

Then we order the states in levels as follows

L(0) = {1,2,3,4,...m,0,—1,-2,....—(m—1)},

h
—~

—_
~—

Il

{m+1,m+2,....2m —m,—(m+1),...,—(2m — 1)},

With this representation, the generator-matpixcan be written in the forni (3.3.5) above,
whereA; groups all the transitions within a level, groups the transitions from levéln)

to level L(n + 1) and A, groups all transitions from levédl(n) to level L(n — 1). Matrix

B groups the transitions within the boundary le¥¢0), and is thus different thas;.

To illustrate, consider an example with= 0.4, so that we can chooge= 2 andk = 5,
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yieldingm = 5. The states are ordered in levels as follows

L<0) = {17 27 37 47 57 07 _17 _27 _37 _4}7
L(l) = {67 77 87 97 107 _57 _67 _77 _87 _9}7

L(2) = {11,12,13,14,15,—10, —11, —12, —13, —14},

Then the submatriceB,,, B,, A;” and 4;, which form the block matrice® and 4;,

1 =0, 1,2, have the form in[(3.3]9) with
or = AP 420D 4 1O 1P and ol = A0 AP 4,0 4 P (3.3.8)

(We solve a full numerical example with these matrice§3r8.3.)

Henceforth in this chapter, we refer o, as the QBD, because this is the only QBD
under consideration. However, we will consider other QBR'haptel#. To summa-
rize, both the FTSMC and the QBD are alternative representabdf the original FTSP
(exploiting the assumption that = j/k for positive integerg and & without common

factor).

3.3.3 Positive Recurrence

We now determine when the FTSP, is positive recurrent, so that the AP holds. For
that purpose, we employ the theory§i of [52], modified to the continuous-time QBD.
To apply the theory, we construct the aggregate matrites Ay + A; + Ay, AT =

Ay + AT + Ay andA- = Ay + AT + A5. We first observe that the aggregate matrix
A is reducible, so we need to consider the component matriceand A~, which both

are irreducible CTMC infinitesimal generators in their ovight. Letv* andv~ be the
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o 42 0o o v 0 A® 0o o A®

p20 0 4?0 AP0 0 AP o

Bo=| o o 4 0o o Bi=| 0o 0o A 0o o
o % 0o 0o o0 0o A% 0o 0o o0

0 0 000 AP 0 0 00 0

A 0 0 0 0 0 0 00 0

0 AP 0 0 o 4 0o 0o o0

A= 0 o AP o o Ay=1 0 o u 0 o0
A2 0 0 AP o 0 0 42 o

0 A2 0o o AP 0o w0 0o u¥

(3.3.9)

—o, 0 AP 0 o0 o0 4@ 0 o0
0 —op 0 AP 0 0 —o. 0 4 o0

A= u? 0 -0 0 AP Ar=| 2\ 0o - 0o ¥
o w0 -0 0 0o A% 0 -0 0

o 0 42 0 -0 0o 0 A? 0 -

p 0 0 4?0 AP0 0 AP o

o 42 0o o u? 0 AP 0o 0o A®

A= 0o o & o o A= 0 0o AP 0o o0
o 0o o 49 o 0 0 0 A? 0
o 0o 0o 0 u? o 0 0 o0 A?
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unique stationary probability vectors df- and A~, respectively, e.g., witht A* = 0 and

vT1 = 1. The theory concludes that our QBD is positive recurrennd anly if
vTAJ1 <vTAF1 and v Aj1 < v AS1. (3.3.10)

In our application it is easy to see that beth andr~ are the uniform probability vector,
attaching probabilityl /m to each of then states.

Leto, ando_ be the drift in the positive and negative region, respeltjves., let

o1 (@) = (A @) = 1 @) +k (AP @) - @)

| | (3.3.11)
o) = j (A1) — (@) + b (A () — 1P (1))

By our construction of the rates above, we always Rave:(t)) > 6, (z(t)). We immedi-

ately deduce a simple criterion for the QBD) to be positive recurrent fromi (3.3]10):

Theorem 3.3.1.The QBDD; is positive recurrent if and only if
d_(x(t)) > 0> 5. (x(t)). (3.3.12)

If the QBD D, is positive recurrent, then the AP takes place, andz(¢)) can be com-
puted, as shown if3.3.4 below. If, instead, we have net upward drift, i.ed ifz(t)) >
d(x(t)) > 0, thenthe CTMC is either null-recurrent or transient; imeitcaser; »(z(t)) =
1. If, instead, we have net downward drift, i.e.Q0it> §_(z(t)) > 04 (x(¢)), then the CTMC

is again either null-recurrent or transient; in either case(z(t)) = 0.

3.3.4 Computingm o

In this framework, the stationary vector of the QBD can beregped as: = {«,, : n >

0} ={an;:n>0,1<j<m}, wherea, = (o], a;, ) for eachn, with ;" anda;, both

n’ n
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beingl x m vectors. Then the desired probability, can be expressed as

T = i i a:{’j = iaf{l = iaan (3.3.13)
n=0 n=0

n=0 j=1

wherel denotes an x 1 column vector with all entrie$, while 1, represents &m x 1
column vector, withn 1’s followed bym 0's.

By Theorem 6.4.1 and Lemma 6.4.3[0f[52], the steady-stateldlition has the matrix-
geometric form

a, = aqpR", (3.3.14)

where R is the2m x 2m rate matrix Since the spectral radius of the rate matkixs

strictly less thari (Corollary 6.2.4 of[[52]), we have
Y R"=(I-R)"
n=0

Also, by Lemma 6.3.1 of [52], the boundary probability vectg is the unique solution to
the system
ao(B+ RA) =0 and al= ool —R)™'1=1. (3.3.15)

Finally, given the above, and usirg (3.3.13), we see thaléis&éed quantityr, » can be
represented as
T12 = ao(] - R)_11+, (3316)

whereR is the2m x 2m rate matrixandayg is thel x 2m vector of stationarypoundary
probabilities The rate-matrixR is the minimal nonnegative solutions to the quadratic
matrix equation

Ay + RA, + R*A, =0,
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and can be found efficiently by existing algorithms, aslin] [2e §3.8). In addition,
important topological properties @f are known, and will be shown to hold in our case.
With the QBD representation, we can determine when the FIDSB positive recur-
rent, for a givenz(¢), (using [3.3.1R)) and then numerically calculate. This allows us
to numerically solve the ODE(3.2111), asi&8. Moreover, we will use the representation
(3.3.16), and results about the rate mafixto conclude topological properties of .

3.4 Existence and Uniqueness of Solutions

We now start to analyze the ODE and IVP introducef@®?.4. In this section we show that
a unique solution exists to the IVP{3.21.13) for every iniiaint in the state space, at least
on some initial interval. In subsequent sections we extargresult, and give sufficient
conditions for a unique solution to exist for al>> 0. To apply existence and uniqueness
results from ODE theory, we need the functignin (3.2.12) to be (locally) Lipschitz
continuous. Howevew is not even continuous on the full state-spéce [0, c0)? x [0, m]
with elementse = (¢4, g2, 212). (Herex denotes a possible value of the functigrwe use
the notation interchangeably; it should be clear from thetext. Recall that the ODE is
autonomous, so that there is no time argument, Wéz,t),¢t) = W(x(¢)).) To overcome
this difficulty, we divide the state-spaéeinto three regions, and show thé&tis indeed

locally Lipschitz continuous in each of these regions.

3.4.1 Properties of¥

The ODE inherits essential structure from the queueingesystith the FQR control. For
the queueing systems, the instantaneous sharing is ineaatiffdirection when the (cen-
tered) queue-difference proceBs(t) in (3.2.4) is aboveé or below(0. The ODE has sim-
ilar structure, but a special role is played by the boundastyefe equality holds), which
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is where all averaging takes place. In particular, the OD&diffierent behavior when the
(fluid-scale, un-centered) queue differenge- rq, is abovex, equal tox or belowx. We
refer to the middle region as th®undary

Thus we divide the state spa8e= [0, 00)? x [0, m2] = {(q1, g2, 21.2) } of the ODE into

three regions:

Sb={g—ree=k}, S'={g-rex>r}, S ={q —re<r} (3.4.1)

withS =SPuUST US™.

The boundary subsé? is a hyperplane in the state spaeand is therefore a closed
subset. It is the subset 8fin which SSC and the AP are taking place (in fluid scale§’In
the functionr; , can assume its full range of valu@s< 7 »(z) < 1.

The regiorS*™ above the boundary is an open subsef.ofor allz € ST, 1, 5(z) = 1.
The regiorS— below the boundary is also an open subsé.dfor allx € S~, 7y 2(z) = 0.

It is important to keep in mind that, in order f6r to be a proper subspace ®f both
service pools must be constantly full (in the fluid limit). dd) if x € S7, thenz,; = my
andz; o + 225 = mo (butg; andg, are allowed to be equal to zero).

It is immediate that the functiod in (3.2.12) is Lipschitz continuous d¥i" andS—,
becauser; »(z) = 1 whenz € S, andm »(z) = 0 whenz € S™, so that¥ is linear in
each region. Howeve¥ is not linear orS*, so we must work harder there.

To analyzel onS’, we exploit properties of the QBD introduceddB.3. First observe
that, if 0 < m2(z(t)) < 1for s <t < u, thenz(t) € S for ¢ € [s,u], i.e., SSC holds on
[s,u]. Recall that, forx € S, 6 (z) andd_(x) are the QBD drift rates in(3.3.]11). Létbe
the set of all: € S for which the QBD is positive recurrent, as given[in (3.3;12), let

A={z eS| 6_(x)>0>d.(x)}. (3.4.2)
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From the continuity of the QBD drift-rates if (3.3]11), iflifmvs that A is an open and
connected subset 6. Hence,A can be regarded as an open connected subsif of
(sinceS’ is homoeomorphic tR* x [0, m,)).

If x(t) € Afort € [s, u), then we say thadtrong SS@olds on that interval. li(¢) € A

for all t > 0, then we say that strong SSC holds globally.

Definition 3.4.1. (local Lipschitz continuity A functionf : R,, — R,, is locally Lipschitz
continuous if for every, € R, there exists a neighborhodd of v, such thatf restricted
to U is Lipschitz continuous; i.e., there exists a constAnt= K (U) such that]| f(v;) —

f(va)]| < K||v1 — vl for everyvy, vy € U.
Theorem 3.4.1.The function¥ in (3.2.12)is locally Lipschitz continuous of.

Proof: The key component of the functidhis 7, ». We will look atm, », and thus the QBD,
as a function of the variable € A. By the definition of the matriced,, A; and A, in
(3.3.6) (see also the example§B.3.2) and the definitions of the rates[in (313[1)-(3.3148, t
matricesA;, i = 0, 1, 2, are twice differentiable (as functions.ofat eachr € A. It follows
from Theorem 2.3 in He [[34] that the rate matdikin (3.3.14), which is the minimal
nonnegative solution to the quadratic matrix equatign- RA, + R?A, = 0, is also twice
differentiable at eaclhr € A. In particular, the derivativ&’ exists and is continuous if.
It follows from the normalizing expression in (3.3115) ahd differentiability of R, thatay
is also differentiable. Hence, from (3.3116), we see thatis differentiable at each € A,
with

T =0l —R) "1y +ao(I — R)'R'(I — R)™'1,.

By differentiating [3.3.15), we have

(I —R)™M +aog(Il —R)"'R'(I - R)™1 =0,
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so thatay is continuous. The continuity ok’ and oy, implies that the derivative , is
continuous o, which in turn implies that the derivativ@’ is continuous om\. That in
turn implies that¥ is locally Lipschitz continuous oA, as claimed. For this last step, we
use the fact that a function mapping a convex compact sub&}, @o R,, is Lipschitz on
that domain if it has a bounded derivative. Since we can aweyrk with balls inRR,,
(which are convex with compact closure), that in turn implieat a function mapping an
open subset dR,, to R,, is locally Lipschitz whenever it has a bounded derivativeeanh
ball in the domain; e.g., see Lemma 3.2 [of|[45]. Finally, simccontinuous function on
a compact set is bounded, satisfies this property. Henck is indeed locally Lipschitz

continuous. =

3.4.2 Solution to the ODE

The local Lipschitz continuity o allows us to apply the classical Picard-Lindelof theorem
(extended to locally Lipschitz functions) to deduce themeksexistence and uniqueness of

solutions to the IVP(3.2.13); e.g., see Theorem 2.2 of Tig&&h

Theorem 3.4.2.(local existence and uniqueng¢ssw, € A, then there exists a unique

solutionz : [0,0) — A to thelVP (3.2.13)for somes > 0.

Proof: By the classical Picard-Lindelof theorem, Theorem 2.2 egchl [68] or Theorem
3.11in [45], and Theorem 3.4.1, there exigts> 0 such that there exists a unique solution
to the ODE on the intervdD, 6,), provided thatz(t) € A fort € [0,6;). Sincewy is
contained in the open sét and the functionz and the driftsé_ andj, are continuous
functions, there necessarily existsvith 0 < § < §, such thatc(t) € A forall t € [0,0).
n

We now give sufficient conditions for the existence of a ueigolution to the IVP

(3.2.13) over the entire halflirje, o). There are two issues: (i) extending the existence and
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uniqueness result above, given that the solution falls,iand (ii) showing that a solution
necessarily stays withifi. To address the firstissue, we exploit boundedness. Ircpkatj
we prove that a solution to the IVIP(3.2113) is bounded, so ¢hary fluid solution is

contained in a compact subset$fWe use the following notation: vV b = max{a, b}.

Theorem 3.4.3.(boundedneg<£Every solution to théVP (3.2.13)is bounded. In particu-

lar, the following upper bounds for the fluid queues hold:
¢(t) <q@0)VA/0; t>0, i=1,2. (3.4.3)

Proof: For the boundedness, itis clear that 2, » < my andg; > 0in S. Hence, we only
need to prove the upper bounds (3.4.3). Fer 1,2, let u;(t) be the function describing
the queue-length process (of quedén a modified system with no service processes (so
that all the fluid output is due to abandonment). The quengtkeprocess in the modified

system evolves according to the ODE

whose solution is

ui(t) = 2— + (ui(O) — 2—) et > 0.
It follows thatw;(t) < u;(0) V \;/6; and, whenu;(0) = ¢;(0), the the right-hand side in
(3.4.3) is an upper bound far;(t). We now show that this is also a bound fgft). For
that purpose, define the auxiliary functigrit) = ¢;(t) — u;(t), t > 0, and observe that
£:(0) =0 andf;(0) < 0. Hence,f is decreasing at with f(t) < f(0) for all t € [0, ) for
somed > 0. This implies thay; (¢) < w;(t) forall ¢ € [0,0).

We now want to show thaf;(t) < wu;(t) for all ¢ > 0. For a proof by contradiction,
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assume that there exists sotge> 0 such thay; (tg) > wu;(to), and let
t1 = sup{t < to: ¢:(t) = u;(t)}, to = inf{t >ty : q¢:(t) = wi(t)}.

By the contradictory assumption and the continuityy@nd«, we haved < t; < ty < ts.

(t2 may be infinite.) Then
qi(t) > u(t) forall ¢ <t <ts. (3.4.4)

It follows from the mean-value theorem that there existsestone (¢, ty) such that

= L= _ st

> 0.

Henceg:(t3) > u;(t3). Fori = 1, this translates to

A — piamy — mo(2(ts)) [21.2(t3) 12 + 20.2(t3) o] — O1qa(ts) > A — Oruq(ts).

Thus,

O (qu(ts) —ui(ts)) < —prima — m2(z(ts)) [21,2(t3) 1,2 + 222(t3) po,2] < 0,

so thaty (t3) < uy(t3), contradicting[(3.4)4). A similar argument holds fgr =

Theorem 3.4.4.(global existence and uniqueng&et x be the unique solution to tH¥P
(3:213)on an intervall0, §), established by Theordfa4.2 If z(§) € A, then the solution
can be extended to an intervidl ¢'), o' > 9, with the solution again being unique. If it is

known that the solution can never leakiethend’ = oo; i.e., there exists a unique solution

to thelVP 3.2.13)on [0, co).
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In the proof of Theorermn 3.4.4 we make use of the next lemmait&proof see Theo-

rem 3.3 in[45].

Lemma 3.4.1. Consider anODE & = f(x) in a domainU in R,, where f is locally
Lipschitz. Let’ be a compact subset bf. If every solution of th@©DE is contained in,

then there exists a unique solution to tABE on the entire halfling), co).

proof of Theorem[3.4.4: By Theoren{3.4]1V is locally Lipschitz continuous, and by
Theoreni 3.4]3, a solution to the IMP(3.2.13) is boundedlloivs from Lemm&3.4]1 that
there exists a unique solution {0 (3.2.13) foralt 0. =

In Section§3.8 we give sufficient conditions for the solution of the NBZ.13) to lie
entirely in A, which by Theoreni 3.414 will imply existence and uniquenafsa solution
over the entire halfliné), co). We also go further to provide an a posteriori demonstration
of existence and uniqueness of a solution over the entiférteal0, co) when these suffi-
cient conditions do not hold: 16§3.6.2, we show how being containedAnfor all ¢ > 0
can be inferred from thmitial behaviorof the solution, which is what we can achieve nu-
merically. We then can apply Theorém 314.2 to conclude tieretexists a unique solution
to the IVP [3.2.1IB) for alt > 0.

Remark 3.4.1. Theorem$3.4][-3.4.4 also hold for solutions to the IVP.I@RinS~ and
S*. Indeed, they are elementary, becawsis Lipschitz continuous, since, » is constant
in these regions. The boundedness used in the proof of Tind8ré.4, and proved in

Theoreni 3.4]3, applies in these two regions as well.

3.5 Fluid Stationarity

Our initial analysis of the overloaded X model in Chapter Zwaing a steady state (or

stationary) fluid analysis. That is, we assumed that thestsex unique stationary poimt
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and thatz(t) — z* ast — oo for all initial statesz(0), and gave a heuristic derivation
of the limit z*. In this section we provide mathematical justification. Wstfgive a
formal definition of fluid stationarity and prove the existerand uniqueness of a stationary
point z* for the ODE [3.2Z.IR). We then give conditions under which fio&l solution

x = {z(t) : t > 0} converges to stationarity as— co. In §3.6, we show that it does so

exponentially fast.

Definition 3.5.1. (stationary point for the fluid)e say that* is a stationary point for the
ODE (or fluid mode} if z(t) = «* for all ¢ > 0 whenxz(0) = z*. That is,z* is a stationary
point if U(z*) = 0 for ¥ in 3.2.11)and (3.2.12) If z(¢t) = z*, then we say that the fluid

solution is in steady state at tinie

We now make some important assumptions, which we will usbdwghat there exists
a unique stationary point for the ODE. For that purposeyldte the length of fluid-queue
i and lets? be the amount of spare service capacity in service-paolsteady state, when
there is no sharing, = 1,2. The quantities)? and s? are well known, since they are
the steady state quantities of the fluid model for the Erlangrodel (M /M /m; + M)
with arrival-rate \;, service-rateu;; and abandonment-ratg; see Theorem 2.3 in_[79],

especially equation (2.19). In particular,

¢ (A_‘g—mﬁ and s = <mi - :)+ i=1,2, (3.5.1)
where(z)* = max{z,0}. It is easy to see thaf's! = 0,7 = 1, 2.

A sufficient condition for the ODH(3.2.12) to be well definesb ¢hat the solution is
in S, possibly after an initial transient) is to havé = s = 0, i.e., there is no spare
service capacity in either pool in their individual steadigtes. However, itj > 0, the
solution can still be irS after an initial transient, if enough classuid is processed in

pool 2. To have the solution be eventually § we require thav; (¢f — k) > p1255.
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This condition ensures that service p@as also full of fluid when sharing is taking place,
i.e., z12(t) + 222(t) = mo for all t > 0 (assuming that pod! is full at time0). To see
why, note that when service-podlhas spare service capacity; (> 0), sharing will be
activated if¢f > . Now, the maximum amount of cladsfuid that pool2 can process,
while still processing all of the classfluid (so thatg, is kept at zero), i, 2s5. hence,
1,254 is the minimal amount of claskfluid that should flow to poat. On the other hand,
61q¢ = A\ — piamy is equal to the “extra” classfluid that flows to the system, i.e., all the
classi fluid that pooll cannot process. Some of this “extra” clasfiuid might abandon
(if g1 > 0). The minimal amount of claskfluid that abandons i&, x (but x can be equal
to zero). We thus require that all the clasfuid, that is not served in poal, minus the
minimal amount of clasd-fluid that abandons, is larger than,ss. With this requirement,
pool 2 is assured to be full, assuming that it is initialized fullf gool 2 is not initialized
full, then it will fill up after some finite time period; s&8.1.)

From the above, we see that in order to have both service pabkll the time, we
must have eithes{ = s§ = 0, or, if s3 > 0, 61(¢} — k) > p1255. We summarize these

conditions in the next assumptiavhich is assumed to hold henceforth in this chapter.

Assumption A. (system overload, with clagsmore overloadeq

Exactly one of the following must hold:
(1) 61(qf — K) = pu 255
(II) ¢f < kands} = s3=0.

In words, Condition/) of the Assumption A guarantees that if there is spare service
capacity in pook, then there is enough clasdtuid to have both service pools full. Con-
dition (17) guarantees that when there is no sharing of customers, both are full (with
their own class fluid only), due to the arrival rates beingéarthan the total service ca-

pacity of each class. If ConditiofY /) holds, then FQR-T prevents sharing, and the two
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classes are independent. In this case, we can decomposestam snto two independent
Erlang-A models (operating in the ED regime), and analyeentiseparately, as was done
in [79].

It is significant that Assumption A involves only the parasrstof the system, and
requires no knowledge on the specific solution to the IVP.I8R We will show that
when this assumption holds, there exists a unique statigomant inS for every solution to
B212).

We will use a different version of this assumption in Chadiewhere we consider only
limits in A. Since we will want the system to be genuinely overloadeadtmn (/) will

be slightly strengthen by assuming the the inequality mngfr See Assumptidd 1 §.3.

3.5.1 Uniqueness of the Stationary Point

By definition, a stationary point* € S is such that¥(z*) = 0. From [3.2.1R), we see
that this gives a system of three equations with three unkspwamelyg, ¢; and 27 ,.
The apparent fourth variable , = 7, »(z*) is a function of the other three variables and
its value is determined by*. In principle, the three equations W(z) = 0 can be solved
directly to find all the roots of. However,r; , is a complicated function of* having the
complicated closed-form expression(in (3.3.13) and (8)3.1

Theoren3.5]1 below states thétthere exists a stationary point for the fluid ODE
(3.2.12), then this point is unique, and must have the spelcfirm. The uniqueness of
x* is proved by treating , as a fourth variable, and adding a fourth equation to theethre
equationst(z) = 0. However, it does not prove that a stationary point exisigydneral,
the solutions , we get from the system of four equations may not equat;tgz*), for
the functionr, , defined in[(3.2.9). The existence of a stationary point isenovolved,
and is proved later; See Corolldry 3]5.6.

The proof of existence is immediate from the proof of uniesmnwhenr; 5(z*) is
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known in advance to beé or 1, with the value determined. That occurs everywhere except
the regionA; it occurs in the two region§* andS—, but it also occurs if$* — A. Since
the QBD is not positive recurrent & — A, it follows thatr; »(z*) can only assume one
of the values() or 1, achieving the same value as in the neighboring refjioor S—. (We
omit detailed demonstration.) But we will have to work hariheA.

We now focus on uniqueness. Although, is treated as a variable, we still impose
conditions on it so that it can be a legitimate solutiont@(@). In particular, it} —rq; > x
then we letr} , = 1; if ¢f — g5 < &, then we letr} , = 0. Equation[(3.514) below shows
that0 < 7}, < 1 whenever; — r¢; = , i.e., whenever* € S".

Fora,b € R, recall thata V b = max{a, b} and leta A b = min{a, b}. Let

92()\1 - ml,ul,l) - 7“91()\2 - m2,u2,2) — 0,025

3.5.2
ripe2 + Oapi1 o ( )

z

Theorem 3.5.1. (uniqueness of the stationary paifthere can be at most one stationary

pointz* = (q7, g3, 21 ) for the IVP(3.2.13) which forz in (3.5.2)must take the form

. . AT Mg — H1,221 2 . A2 — Haa(mg — Zf,z)
2o =0VzAmy, q = o, o Qo = 0, :
(3.5.3)
Moreover,
Z*
T, = H1,2%1,2 (3.5.4)

2 s+ (ma — 21 5) e
Proof: We start with[[3.54). This expression is easily derivearfrie third equation in
(BZ12), by equating, »(t) to zero. Observe that iff , = m, thenn}, in 35.2) is equal
to1, and ifzj, = 0 thenni, = 0. Now, by plugging the value of; , in the ODE’s for
¢1(t) andgs(t) in (8.2.12) we get the expressionsgfandg; in (3.5.3). We now have the

two equations for the stationary queues, but there are thmeeowns:z] ,, ¢; andg;. We
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introduce a third equation to resolve this difficulty.
Consider the following three equations with the three umkma =, ¢;(z) and ¢»(z).
(hereq; andg, are treated as functions of the variablenot to be confused with the fluid

solution which is a function of time.)

A — my — z Aoy — Mo — 2
Q(z) = 1 Ml’lell e , @(z) = : /&;i : )’ K= qi(z) — rg(2).

(3.5.5)

Notice thaty, (z) is decreasing with, whereasy, (z) is increasing witte. Thus, there exists
a unique solution to these three equations, whichzhas in [3.5.2). We can recovef
from the solution tol(3.515), and by doing so show thiais unique and is always in one of
the three region§—, ST or S* (so thatz* € S).

Let (¢1(2), ¢2(2), 2) be the unique solution td (3.5.5). First assume thatm,, which
implies thatg,(z) > 0, and, by the third equation; (z) > x > 0. By replacingz with m.,
¢.(+) isincreased angh(-) is decreased (but is still positive), so thatms) — rga(ms) > K
(and, trivially, ¢, (ms) > K, ga(m2) > 0). This implies thatt* = (¢;(m2), g2(ma), ma) €
St and, if itis indeed a solution t& (z) = 0, thenz* is the unique stationary point for the
ODE.

Now assume that the unique solution[to (3.5.5) has 0. By replacingz with 0 we
haveq; (0) < ¢1(z) andgx(0) > ¢2(z), which imply thatg, (0) — r¢2(0) < k. In that case
there is no sharing, and by Conditioh/ ) of Assumption A, the point* = (¢:(0), ¢2(0), 0)
isinS~. Once again, ift* is indeed a solution t# (z) = 0, thenz* is the unique stationary
point.

Finally, assume that the solutianiz) = (¢1(2), ¢2(2), 2) to B5.5) had) < z < mo.
To conclude that:(z) is in S” we need to show that(z), ¢:(2) > 0, so thatg} = ¢,(2)

andg; = ¢2(2) are legitimate queue-length solutions. We now show thdtdscase under
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Assumption A.
Let S = my — Ao/ 0. Note that, ifS§ > 0, thenSs = s3, for s5 in (4.2.8). We start
by rewritingq; (z) andgs(2) in (3.5.5) as

a(z) =gt - B2z golz) = “9—2< 5. (3.5.6)

(3.5.7)

where the second inequality follows trivially, sin6§ < s5. From the third equation of
B.5.5),x = ¢1(2) — r¢z(2). Combining this with[[3.5]6), we see that

k= aq(z) —rg(z) = ¢ — %fz - r“ei;(z — 59). (3.5.8)

Combining [3.5.17) and(3.5.8), we get

a 1,2 H2,2 a a H12 qa
LI 7"9—(2 —53) S ¢f — =53,
1 2

which is equivalent to

H12 H2.2 a
< | —== iintink — .
0_(91 +r92)(z S5)

This, together with the fact that the solution has 0, implies that: > max{0, S5} = s5.
It follows from (3.5.6) thaty,(z) > 0 and, by using the third equation in_(3.5.5) again,
G(z)=re(z)+k>k>0. =

An immediate consequence of the proof of Theotem B.5.1 ts iarder to find the
candidate stationary point, one has to solve the three equation$in (3.5.5). If the (8)iq

solution hasz < 0, thenz* € S~ andz;, = 0. If 2z > my thenz* € S* andzj, =
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msy. Otherwisez* € SP with 0 < 215 < my. The queue lengths have always the same
expressions, and their values depend only on the valueTie next corollary summarizes

the values:* may take, depending on its region.

Corollary 3.5.2. Letz* = (qf, ¢3, 2} ,) be the point defined in Theorém 3]5.1.

1. Ifz* € S?, then, forz defined in3.5.2)

Sy — 0102(q7 — k) — r01(Na — 12 2m0)
b r01 122 + Oapt1 2

0102(qy—rq5—k) ) 0 .
rO1p22+02p1,2 if q; = 0, Sy = 0.

0102(q0 42088 /02—K) & a4 .
r01p2,2+02 11,2 ) if g5 =0, 55 > 0.

. AT Mg — 2 ol 2 . A —(ma — 2]y
61 62

2. Ifz* = ST, then

_ _ AL — My — Mafiy 2 - A2
21,0 = My, 4, = 0, ) dy = 9_2
3. Ifz* € S7, then
AL — mift1a Ao — mal2 2

Zik72 = 0’ q; = T’ q; g T

Proof: If z* € S, then the solution td (3.5.5) will have< » < m,, where the exact value
of z* is readily seen to be the one (if). If 2* € ST, theng} — rq¢; > &, so thatr}, = 1.
Pluggingny, = 1 in the ODE forz; »(t) in (3.2.12), we get, »(t) = 22,2(t)p2,2. Since at
stationarityz, »(¢) = 0, it follows thatz;, = 0, which implies that], = m,. Plugging
this value of:7 ,, together withr; , = 1 wheng;(t) = 0,7 = 1,2, we get the values aof;

andg; as in(ii).
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Finally, if z* € S7, i.e., if g7 — rq; < r, thenn], = 0, so that, by plugging this value
of 7} , in the ODE forz; »(t) in (3.2.12), we see that »(t) = 1 221,2(t). Equating to zero,
to get the value at stationarity, we see thgf = 0. Pluggingr;, = 0 andzj, = 0 in the
ODE for ¢, (t) andgs(t), and equating these to zero, we get the valuésiin. =

If 2* € ST, as in(ii), then the system does not have enough service capacity po kee
the weighted difference between the two queues, aven when all agents are working
with class1. In this case, the only output from queeés due to abandonment, since no
class2 fluid is being served (in steady state). Quéus then equivalent to an//M /oo
system with service raté and arrival rate\,. On the other hand, quedeas equivalent to
an overloaded invertet-model: a system in which one class, having one queue, iscerve
by two different service pools.

As we remarked at the beginning of this subsection, from tbefs of Theorenh 3.511
and Corollary3.5)2, and from the expressiomdin (3.5.4), itis clear that* is a stationary
point for the ODE[(3.2.12) when* is in S orS~. In that caser, »(2*) = 7}, (equalsl in
S* and equal$ in S7). That same conclusion applies whenis inS* — A, once we have
verified thatr, »(z*) = 77 ,. In these cases;” is the unique stationary point to the ODE.
The problem of existence is only when the suspected staigyant x* is in A.

The next corollary gives necessary and sufficient conditfonz* to be in each region.

It shows that the region af* can be determined from rate considerations alone.
Corollary 3.5.3. Letz* be as in(3.5.3) Then
1. z* € St if and only if

TAy o f12Ma

9y, 6

a
H1,259

01

Vrgs < ¢f —k < (3.5.9)

x* € A if and only if both inequalities are strict.
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2.zt eSTifandonlyif ¢f — k> 2 4 K202

3. z* € S ifandonly if r¢§ > ¢f — k.

Proof: We prove(i) only. The proofs for(ii) and (iii) are similar. First assume that
z* € S’. Sincez}, > 0, It follows from the expression for; , in (i) of Corollary(3.5.2 that
if ¢5 > 0theng! — k > rg5. If s§ > 0thengy — k > py 255/6, by Assumption A. For the

other inequality we use the fact that

x 010>(q7 — k) — r01( X2 — /~L2,2m2)

z S ™o
12 T 2,0 + Oapi o ’

which implies the right-hand inequality in (3.5.9).
Now Assume thaf (3.5.9) holds. It follows from the right-daside (RHS) inequality
and the expression afin (3.5.2) that

0,102(qf — k) — 101 (A2 — p2,0mo)
T8 pi2,0 + Oap 2
< 9192(7’)\2/92 + M1,2m2/91) - 7’91()\2 - ,u2,2m2)
o ripe2 + Oapir o

Zz =

= My.

From the left-hand inequality in (3.5.9), we see thatjif= 0 (and necessarily; > 0 =

s3), then
o> 91927’613 - 7"91()\2 - M2,2m2)

=0.
- ripiao + Oapir o

If s§ > 0 (andg§ = 0), then

> Oapt1,255 — 101( Ay — pa,2\2) _ 02411255 + 101 12,255 _ g
ripiao + Oapir o T pi2,2 + Oapir o 2

Thus, if (35.9) holds, ther < z < my. This was shown to to imply that* € S in
the proof of Theoreh 3.5.1. (In fact, we have a stronger tesuice we have > sj.

This is due to the requirement thgt — x > 111 255 /61, which is exactly Conditiori/) in
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Assumption A.)

We can show that the inequalities [n_(315.9) are strict if anty if z* € A by first
observing that the inequalities are strict if and only ik z* < ms, and then directly
calculate the QBD drift rates at the point. This is done ing3.6.2; see[(3.615). It then
follows that [3.3.1PR) holds at* if and only if 0 < z* < m..

Alternatively, in Corollary [(3.5)6) we show that , in (3.5.4) is indeed the value of
(3.2.9) at the point*. Itis easy to see that< 7i, < 1in (3.5.4) if and only if0 < z* <

mo. =m

Remark 3.5.1. It follows from Corollary[3.5.B that in applications, is the most likely
region for the stationary point when the system is overldadeénis is because we expect
the arrival rates to be about — 50% larger than planned, during an overload incident.
Typically, a much higher overload is needed in order for tia¢i@nary point to be irs™.
Consider the following example: There ar@é) servers in each pool, serving their own
class at rateg, ; = 122 = 1. Type=2 servers serve classeustomers at ratg; , = 0.8.
Also, 8, = 6, = 0.3, r = 0.8 andx = 0. Suppose that classis not overloaded with
A2 = 90. Then, for the stationary point to be 81", we need to have, > u;1m; +
p1amsa + 6017 X2 /6y = 252, i.e., the clasd-arrival rate is252% larger than the total service
rate of pooll. If Ay > 90, especially if pook is also overloaded, thexy needs to be even

larger than that.

3.5.2 Existence of a Stationary Point and Stability

We have just established uniqueness of the stationary jpdintand characterized it. In the
process, we have also established existen&e-nA. Now we will establish existence of
the stationary point idh. However, we want to do more. Having a unique stationarytpoin

does not imply that a fluid solution necessarily convergabitpoint ass — oo. It does
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not even guarantee that a solution to the IVP _(3]2.13) is asytically stable in the sense
that, if || z(0) — 2*|| < ¢, thenz(t) — =* ast — oo, no matter how smallis. In fact, there
is not even a guarantee the) will remain in thee-neighborhood of* for all ¢ > 0. We
will establish all of these properties in Theorem 3.5.4 wely showing that* in §3.5.1

is globally asymptotically stable, as defined below:

Definition 3.5.2. (global asymptotic stabilityA pointz* is said to be globally asymptoti-
cally stable if it is a stationary point and if, for any initiatatex(0) and anye > 0, there

exists atimg’ = 7T'(z(0), ) > 0 such that

|z(t) —x%|| <€ forall t>T,

Note that our definition of global asymptotic stability gdesyond simple convergence
by also requiring that the limit be a stationary point. (Imegeal, it is possible to have
convergence without the limit being a stationary point.)

The next theorem concludes thaty{)) andz* in (3.5.3) are both in one of the regions
S—, St or A, and if the fluid solutionz lies entirely in that same region, theri is a
globally asymptotically stable point for the ODE (3.2.12%;, z* is a stationary point and
x(t) — x* ast — oo. (So far, We are unable to establish global asymptotic liyafor z*

in the boundary regiof’— —.)

Theorem 3.5.4.(global asymptotic stability of*) If the solution to@.2.13)lies entirely in
one of the regionS™*, S~ or A, thenz* in Theoren3.5.1is globally asymptotically stable.

The proof of Theorerh 3.5.4 relies on results from nonlingartrol theory for deter-
ministic dynamical systems, specifically, Lyapunov siibiheory; for background, see
Chapter 4 of Khalil[[45]. LetE be an open and connected subseR6fcontaining the
origin. We use standard vector notation to denote the inredyet of vectors:, b € R,

i.e.,a-b= Z:'Lzl Cl,ibi.
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Definition 3.5.3. (Lie derivative For a continuously differentiable function : £ — R,

and a functiond : £ — R", the Lie derivative of/ alongV is defined by

V@)E%g@@):VV~@@L

whereVV = (2~ 9V is the gradient of/.

1 goe ey m
Definition 3.5.4. (Lyapunov-function candidaté\ continuously differentiable functidn :

E — R is a Lyapunov-function candidate if:
1. V(0) =0
2. V(x)>0 forallzin E— {0}

In proving Theorem 3.514 we use the following theorem, whschheorem 4.2 pg. 124
in [45]:
Theorem 3.5.5.(global asymptotic stability for nonlinear ODEgtx = 0 be a stationary

pointofi = ¥(z), ¥ : £ — R", and letV : R} — R be a Lyapunov-function candidate.

If

1. V(z) - 00 asllz|| - o and

2. V(z) <0 forall z # 0,
thenz = 0 is globally asymptotically stable as in Definitibn 3J5.2.

Notice that, under the conditions of Theorem 3.5.5, the Lyap-function candidate
V' provides a form of monotonicity: We necessarily hav@) = 0 and V' (z(t)) strictly
decreasing irt for z(t) # 0. To elaborate, we introduce the notion o¥aball, which we
will apply further in§3.6.2. We say that, («) is thea V-ball with center at:* and radius
a if

Byla)={z e R, : |V(z) = V(z")| < a}. (3.5.10)
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If z(tg) € Pv(a) for somea > 0 andty > 0, thenz(t) € [y (a) for all ¢t > t,. Thus,
with the Lyapunov-function approach, we shbwththatz* is a stationary point and that
there is convergence(t) — =* ast — oo for all initial valuesz(0). We also establish this

stronger “V-monotonicity.”

proof of Theorem[3.5.4: Letxz = {x(¢) : t > 0} be the unique solution t6 (3.2]13), and
assume that lies entirely in only one of the regior, S* or A. Letz* = (¢f, ¢5, 21 o)
be the stationary point for the system (3.2.11), and asshate is in the same region as
x. Sincez™ # 0, we perform a change of variables and define a new system wimigee
stationary point isc = 0. To this end, lety = » — z* so thaty = # = ¥(x). Hence,
U(x) = ¥(y + 2*) = g(y) and we have thaf(0) = V(0 + z*) = ¥(z*) = 0. Thatis, if
x* is a stationary point for the original systeim= ¥ (x), then the stationary point for the
new systemy = g(y), isy* = 0. We distinguish between two case€s) ;2 > 22 and
(4) p12 < po,2-

(i) First, if 1 9 > o0, then choosé (z) = 1 + x2 and apply its Lie derivative along
9(y) = V(y + z*) wherey + 2™ = (q1(?) + 7, @2(1) + 43, 21,2(t) + 27 5) andz™ is given in
(B5.3). By the definition of the Lie derivativé; (y) is equal to the inner product

Vily) = (1,1,0) - (d1(), ¢2(t), 21,2(8)) = du(t) + do(2),

for ¢1, ¢» andz » in (3.2.12), after the change of variables. Egi(t) = z14(¢) +2*. Then,
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for 2" = (g7, g5, 21,) as in [353)

Vily) = M = mapng — ma(y(t) Ero(D)p 2 + (ma — Z1a()) 2] — 1 (a1 (t) + 47)
+ A2 — (L= m2(y (@) [(m2 — Z12(6) 22 + Z12(t) 2] — O2(q2(t) + )
= A+ Xo —mypin — Maplog + 212t 2o + 2 o — 212(E) 12 — 21 912
— 61q1(t) — b1g7 — 02q2(t) — 023

= —01q1(t) — Oaqo(t) — 212(t) (1.2 — pr22)-

Thus,V;(y) < 0 for all y € R? unlessy = 0.
(i1) Whenyy o < p99, there exists @& > 1 such thatus, = By 2. We next show
that for anyC' > B the candidate-functioh;(z) = Czy + 25 + (C — 1)z3 is a Lyapunov

function. The Lie derivative o¥;(z) for the modified system(y) is
Va(y) = (C,1,C = 1) - (61 (1), do(t), Z12(t)) = Ca(t) + Go(t) + (C — 1)z ().
Hence,

Va(y) = C [\ — maypung — mi2(y(8) Gro(®) e + (ma — Z12())p22)] — 01(ai(t) + q7)
+ A2 = (1 = m2(y(®))(Zro()pz + (Mo — Za(t)p22)) — 02(q2(t) + ¢3)
+(C = 1) [m2(y(t))(ma — Z12(t) ) p22 — (1 — m12(y(t))) Z1,2(¢) 1 2]

= —C001q:(t) — 02q2(t) — 212(1)(Crz — p22),

so thatVa(y) < 0 for all y # 0.

By Theoren{ 3.5)5y* = 0 is globally asymptotically stable for the modified system
g(y). Hencez* is globally asymptotically stable for the original syst&n). That is, for
every initial valuer(0) we have that:(¢t) — z*, provided that: is in the same regiorS(",

S~ orA)forallt>0. =
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We summarize the existence and uniqueness result of thenstgt point in the next

corollary.

Corollary 3.5.6. (existence and uniqueness of a stationary pdilmyler Assumption A,
there exists a unique stationary poiritin S for the ODE in(3.2.11)and (3.2.12) with z*
defined in(3.5.3) As a consequence, we hawg (r*) = 7, for m 5 in 3.2.9)and 7 , in
B.5.4)

Proof: Uniqueness of a stationary point for the ODElin (3.2.12) willy freated in§3.5.1,

so it suffices to consider only existence. We already obseafter the proof of Corollary
[3.5.2 that both existence and uniqueness are immediateisfin S — A. The existence
of the stationary point* € A follows from Theoreni_3.5]4 provided that there exists a
solution lying entirely inA. However, we can choose to tak€)) = z* in A, in which

casex(t) = z* for all t > 0, so that extra condition is satisfiedm

3.6 Conditions for State-Space Collapse

Both our result establishing global existence and unigsemé a solution: to the IVP
(3.2.13) (Theoreri 3.4.4) and our result establishing dlabgmptotic stability of the sta-
tionary pointz* to the ODE[(3.2.111) (Theoreim 3.5.4) require that the satutiies in the
same region for alt > 0. As before, we are mostly interested in regidpwhere the AP
is operating, and which is the most likely region for the istadry pointz* to be (during
overloads). In this section we give ways of verifying thdies entirely inA, given that
x(0) andz* are both inA. In §3.7 we provide conditions for the solution to eventually
reachA after an initial transient. The results here are intendeapioly after this initial
transient has concluded. (It is then reasonable to consjf¢as well asc* as being imn.)
We start by giving sufficient conditions for global strongG§$.e., havingr € A on

[0,00). Afterwards, for the cases in which these sufficient cond&ido not hold, we
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provide a method to infer strong SSC by solving the ODE (ZRup to some finite time

T (which is shown to be not very large).

3.6.1 Sufficient Conditions for Strong SSC

We now give sufficient conditions for global strong SSC. Ehesnditions depend only on

the initial pointz(0) and the basic parameters of the system.

Theorem 3.6.1. (sufficient conditions for global strong S$Cet v = 12 A po2, and

suppose that(0) € A. Also assume that

QQ(O) < )\2/‘92 and ql(O) < ()\1 — ml/QLLl)/Ql. (361)

If, in addition, the following inequalities are satisfietieh the solution to the IV[B.2.13)

isin A for all ¢:

(Z) A< VMg + M fi11 and

Remark 3.6.1. The rate conditions i (3.6.2) are intuitive, at least when = 122. Under
condition(i), there is enough service capacity in both service poolstesd of the class-

1 input. Thus, a situation in whicly, — r¢, > « can not be sustained for long, sinceyif
grows above the boundary, padlcan allocate more service capacity in order to “pull”
gueuel back to the boundary. Similarly, under condition (ii), thas enough service
capacity in pooR (which is the only one serving clagdn our settings) to “pull” queue
back to the boundary whenever it grows above it, so ghat r¢q, < « is not sustainable
either. Observe that Conditigi) is relatively weak, since it allowa; to be quite large

compared to the total service capacity of pbpi.e., classl can be highly overloaded. On
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the other hand, Conditiofvi) is more restrictive, and whem, » > ;. is likely not to
hold in applications. However, ji.» < 14 2 (equality of the rates is often assumed), then

Condition(zi) simply states that classis not overloaded.

proof of Theorem [3.6.1: We start by showing, under Conditigm), thatd, (z(¢)) in
(3:311) is strictly negative for ea¢hFor a fixedt

ua(t)) =5 (A (0) = 12 (0) +k (A1) ~ (1) <0
if and only if

(H2,2 — p1,2)21,2(t) — Mapto s < —(Ay —map 1) +7(Xo — Oaqa(t)) + O1qu(t).  (3.6.3)

If pa2 > 119, then the left-hand side (LHS) df (3.6.3) is maximizedaf(t) = mo, and
is equal to—puy oma. If 92 < i 9, the the LHS is maximized af »(¢) = 0, and is equal
t0 —f19.0m2. Whenus o = 111 o the LHS is equal te-ji3 9me = —p11 2mo. Overall, the LHS
of (8.6.3) is smaller than or equal tavms,.

Sinceqy(0) < A\y/63, we conclude, using the bound [n_(314.3), thak () < )\, for all
t > 0. This, together with the fact that(¢) > 0 for all ¢, implies that the RHS of (3.6.3) is

larger than or equal te-(A\; — my 1), SO that

(22 — p12)212(t) — p22me < —vmg

< =AM =mapng) < =M= mapna) + (A — 02q2(1)) + 011 (1)

where the second inequality is due to conditjon

To show that conditiorfii) is sufficient to have)_(xz(¢)) > 0 for all ¢, fix t > 0 and
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note that, for_ (x(t)) in 33.11), we have

if and only if

r(p12 — po2)z12(t) + o eme > —(A — mapra) + (A — baqa(t)) + 01¢1(1). (3.6.4)

It is easy to see that the LHS ¢f (3.6.4) has a minimum valu€ @f ; A ji22)ms = rvms.

By essentially the same arguments as in Thedreml|3.4.3 wehcanthatq; (1) < ¢;(0) V

(A1 — mqpy1)/0:. Since we assume that(0) < (A — mp1)/61, we have the bound
¢ (t) < (A —mypyq)/6, forall ¢ > 0. With this bound, we see that the RHS [of (316.4) is

smaller than or equal to\,. Overall, we have

r(p2 — po2)212(t) + rpgame > rvme > 1

> —(A = mapn) +7(A2 = Oaqa(t)) + Or1qu (1),

where the second inequality is due to Condit{ai).

Since [(3.3.1R) holds for ail > 0, we also havé® < 7 »(¢) < 1 for all t. Hence, every
solution to the IVP in[(3.2.13) must lie entirely in. =

Combining Theorenls 3.4 4, 3.5.4 dnd 3.6.1, we have thedoitpcorollary providing

sufficient conditions for all good results discussed so far:

Corollary 3.6.2. If (3.5.9)holds with strict inequalities;(0) € A and the four inequalities
in Theoreni3.6.1hold, then(i) there exists a unique solutianto the IVP@.2.13)which
lies entirely inA and (i7) there exists a unique stationary point to the ODE([@.2.12)

which is globally asymptotically stable. That stationamyirng =* is given in Corollary

B.5.3
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3.6.2 Verifying Eventual Convergence to Stationarity

It is reasonable to assume that, if we look at the system arfi@nitial transient ovejo, 77,
thenz(7") and the unique stationary poimt will be in the same region, and the fluid
solutionz(t) will converge toz* ast — oo. Even ifz leaves the region for some period
of time, we expect that, after some transient period, it veturn to the region where*
is, stay there and convergetd. However, it remains to prove in full generality that there
necessarily exists a tinié after which the solution will never leave a region.

However, for every individual IVP, we may be able to infertthé ) will converge to
x* by numerically solving the IVP over an initial intervdl, 7’| and observing that, after
some initial transient (which has passed)) is indeed in the sef and is close tac*.
Specifically, we will show that there exiat > 0 and7" = T'(«), such that global strong
SSC can be inferred onde:(7') — z*|| < a.

To achieve that goal, we make use of the Lyapunov funcdtiaand, more specifically,
By (), thea V-ball with center at:* and radiusy in (3.5.10). We will exploit the fact that
the solutionz cannot leave & -ball once it enters it. Thus we seek an> 0 such that
pv(a) C—. Oncex enters thisiy («), it can never leave, so the functiarremains inA
thereafter.

To find an appropriate radius we introduce the drift rates at stationarity, = d, (z*)

andé* = §_(x*). It follows from the expressions ifi(3.3]11) that

0L =04 (27) = —paa(r +1)(mg — 21,) and 0" =0 (") = p2(r +1)z7,. (3.6.5)

Thus, if0 < 27, < my, then the positive recurrence condition (3.3.12) holdsasstation-
ary pointz*. (This agrees with (3.9.4) which has< 77, < lifandonly if0 < 27, < my.)
In the next theorem we give explicit expressions dor Observe that for reasonable

rates, such as will hold in applicationsjs quite large (which is what we want, because we
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will then be able to infer that lies entirely inA with only modest computation). In fact,
in the numerical example consideredjf18.3 we show that, typically in applicationsjs
so large, that we can infer thatlies entirely inA without even solving the IVP! That is,

the initial condition is already in the V-ball, («).
Theorem 3.6.3.Suppose that* € A and let{ = min{|d7% |, 5* }.
1. Whenus s > 2, leta = £/rbsy
2. Wherug s < o, leta = £/¢, wheres = g9 — oo + 61 + 162 > 0.

In both cases, if there exists > 0 such thatz(7") € gy («), then{z(t) : t > T'} lies en-
tirely in A, so thatz* in (i) of Corollary[3.5.2 is a globally asymptotically stable $tetary

point.

Proof: To find a propek for the V-ball 5y («), we once again use the conditiohs (3.6.3)
and [3.6.4). We first show how to findfor the casg,» = By, » for someB > 1, i.e.,
whenpu, 2 < pso. Recall (proof of Theoremn 3.3.4) that in this casg(z) = Czy + 22 +
(C'—1)x3 is a Lyapunov function for ang' > B. Also, the Lyapunov function was defined
for the modified system in which the origin was the stationaoint.

Letz* = (¢f, ¢, 27 ») be the stationary point iA. First assume that, at some tirig
Vo(x(T)) = €1,1.6.,Cq(T) 4+ q2(T) + (C = 1)z12(T) = €1. If 2(t) € Py, (&1) forall t > T,
then it must hold that

. € € . .
(11_51<Q1(t)<(h+51, ¢ —€ <q(t)<¢g+ea and
(3.6.6)
* €1 % €1
12— O —1 <Zl,2(t) <Zl72+m, t>1T.

To make suré (x(t)) < 0, we use[(3.6]3), reorganizing the terms. We need to have

(p22 — p12)212(t) +102q2(t) — O1q1(t) < —(A1 — pr,0ma) + 17X + pi20me.
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By (3.6.6), the above inequality holds if

€ €1

(#2,2 - #1,2) (Zb + C i 1) +702(qy +€1) — 01 (Cff - 6> < —(M — ,ul,lml) + 7 Xo + 2, 2mo.

Plugging in the expressions fgf, ¢; andz} ,, we see that we need to find an> 0 such
that

€ € .
(po,2 — M1’2)C—il + a6 + 9151 < pa2(r +1)(ma — 21,2)-

We can take”' as large as needed, so that the only term that matters on tBad:tse;.

Hence, we need to have

poo(r + 1) (mg — Zi2) _ ‘&H
7“92 7’92 '

€ <

Similarly, to make sure that (z(t)) > 0, we usel(3.6]4), reorganizing the terms. We need

to have

T(p12 — p22)212(t) +102q2(t) — O1q1(t) > — (A — paama) + (A — pr22me).

Using (3.6.6) again (with a differemnt), we see that it suffices to show that

* € * % €
r(f12 — f2,2) (Zl,g + C—il) +102(q5 — €2) — 01 (ql + 52)
> — (A1 — piama) +1(Xe — pooms).

Once again, plugging in the valuesgf ¢; and-7 ,, and takingC' as large as needed, we

can choose, > 0 such that
paa(r+1)25, 0%

€ < — % = .
7’92 7“92
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Hence, we can take as in(7).
For the second case, when, > 92, We use the Lyapunov function (z) = z; + x.

Using similar reasoning as above, we get

_ po2(r + 1) (my — Zik,z) B |07 |

pi2(r + 1)1, o
f12 — f2o + 61 + 705 S '

H12 — fo2 + 601 + 702 T

€1 and e <

Hence, in this case we can taken (ii). =

3.6.3 Exponential Stability

In this section we will establish exponential stabilitg.j.we will show that the solution
converges to the stationary point exponentially fast. Wehiofor two reasons: first, to
help justify using the stationary point for performancemmations and, second, to show
that it should not require a lengthy calculation to verifgttthe solution will remain within
the setA and converge to the stationary poirit

In the previous section, we have shown that for a system wéteady state* in A,
we can run the algorithm, starting at an arbitrary initiainpa:(0), until x = (q¢1, g2, 21,2)
falls in theV-ball 8y («) in (3.5.10) for anv identified in Theorerh 3.613. It is easy to see
that if 27, is not too close td or my, thena is relatively large, so that numerical issues
do not rise. However, we want to know that the tiffieat which the solution enters this

a-neighborhood of* should not be too large.

Definition 3.6.1. (exponential stability A stationary pointz* is said to be(globally)

exponentially stable if there exist two real constants > 0 such that

lo(t) — 27| < 9)|2(0) — 2*[le™,

forall t > 0 and for allz(0), where|| - || is a norm onR,,.
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To show thatz* in (8.5.3) is exponentially stable, we use Theorem 3.4 on .03

Marquez [50], which we state here for completeness.

Theorem 3.6.4. (exponential stability of the origihSuppose that all the conditions of
Theoreni 3.5]5 are satisfied. In addition, assume that thast positive constant&’;, K,

K3 andp such that

Kifzll” < V() < Kolz]]”

Vie) < —Ksa|l.

Then the origin is exponentially stable, and
|lz(t)]| < |l=(0)]| (Kg/Kl)l/pe‘(Kf’/2K2)t forall ¢t and z(0).

We now state our application of the general theorem. We w#l the; norm: ||z|| =

|JJ1| + |.T2‘ + |.T3‘ for x € Rs.

Theorem 3.6.5.(exponential stability of:*) If the entire trajectory of the solution to the

IVP (3.2.13)is in A, thenz* in (3.5.3)is exponentially stable, and the following hold:

1. If Hi2 > (42,2, then
|z(t) — 2*|| < [|z(0) — z*||e”F/Dt forall ¢ and z(0),

where

Kg = max{@l, 92, Hi2 — u272}. (367)

2. Ifpoo = By 2, B > 1, then foranyC' > B

lz(t) — || < [|2(0) — || (C/ K )e"E+/2t forall ¢ and z(0),
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WhereKl = min{l, C - 1} andK4 = max{(]@l, 92, (C,ULQ — MZQ)}.

Proof: We consider the two cases in turn:

(0) If p112 > poo, thenVi(x) = z1 + 22, > 0, was shown to be a Lyapunov function
in Theoren_3.5]5 with a strictly negative Lie derivative.uBhsincer > 0, we can take
K, =K, =1andp = 1. As Vl(x) = —01q1(t) — O2q2(t) — (12 — po2)z12(t), we can
take K5 in (3.6.7), and the result follows from Theorém 316.4.

(2) If 12 < p92, then we use the Lyapunov functidh(z) = Cxy + 22 + (C' — 1)xs.
Then K ||z|| < Va(z) < CJjz|| for K1 = min{1,C — 1}. From Theoren 3.55 we know
thatVs(z) = —C1qi(t) — Oaqa(t) — (Cpiro — po.2)212(t), SO thatVs(z) < —Kyl|z||. =

If 2(0) andx* are inS~ or ST, then the same methods can be applied to verify whether
x lies entirely in the same region, and thus converges tarhese methods, together with
the fast rate of convergence, suggest thatf andx* are both in the same region, then
will converge tar*, and will do so exponentially fast. As mentioned in the bagig of the
subsection, we cannot prove this in full generality. Thdreuwd be convergence for any
initial state, even outsid®, but that requires formulating ODE'’s for other regions, efhi
we turn to next. In fact, as we explain in Remark 3.7.1 in the section, we need to add
another feature to make it possible to have convergencetstationary point for all initial

conditions.

3.7 Transient Behavior Before Hitting S

Recall that our model is designed to respond to unexpectedoads. We assume that the
two classes operate independently until a time at which theaarates change, and the

system becomes overloaded. Ddie the time that the arrival rates change. We thus think
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of a system in steady state at tithevhen the arrival rates change, with

71(0) = ¢2(0) = 212(0) = 2,1(0) = 0. (3.7.1)

In particular,¢; (0) < x, and no sharing is taking place. A well-operated systemsténd
have a critically loaded fluid limit, yielding steady-statduesz; ; (0) = m; andz,5(0) =
ms, but we could also have an underloaded steady statezwith) < m; and/orz,»(0) <
ms as well.

The ODE in [3.2.11)E(3.2.12) can be regarded as the fluid iné sequence of over-
loaded queueing models. Clalswas assumed to be overloaded due to the arrival rate being
larger than the total service rate of service pbalhile clas2 was overloaded either be-
cause its arrival rate was also too large (but less so thas tjaor because pod was
helping classt customers. For the ODE, the system overload assumptioslatas into
havingz; 1(t) = m; andz »(t) + 22,2(t) = my for all ¢, so that the state space for the fluid
limit was taken to beéS. (The spaceé was defined in[(3.411) ig3.4, but the assumption
that the service pools are both full was introduced at thénnéng of §3.2.2.) However, if
eitherz; 1(0) < my 0Or 232(0) < my, then the initial state is not i}, so we cannot use the
ODE (3.2.11) to describe the system. There is a transierd@§, ts) during which the
two service pools fill up, but the system is not yet overloaded

If sharing is eventually going to take place (i.e.zifis in eitherA or St), then with
initial conditions as in[(3.711), we should certainly §it Sharing will begin only at a time
T such that; (T') — rq2(T) = k. In this section we show that, ifindeed € A US™, then
T < oo, Where

T =inf{t >0:z(t) € S"}. (3.7.2)

The transient period of the fluid system can be divided into distinct periods: The

first transient period, on the intervgl, 7'), lasts until the fluid limit hitsS’. The second
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transient period is the one starting at the hitting tifieand is described by the ODE
(3.2.12). This period was analyzed in the previous sectidie first transient period is
described by different ODE’s, depending on the state of yiseesn. These ODE'’s, for the
initial condition in [3.7.1), are given in the proof of Theon[3.7.1 below.

We shall prove thal’ < oo under the extra assumption that at no time dufihg”)
iS z21 > 0. The assumption can be verified directly by solving the fluimblel of the first

transient period. We discuss this condition after the poddheoreni 3.7]1.

Theorem 3.7.1.1f z* € AU ST, if (3.Z.1)holds and ifz,;(¢t) = 0 for all ¢ > 0, then
T < oo, for T'in (3.7.2)

Proof: We start by developing the ODE to describe the system beftined'S. As before,
we do not consider the original queueing model and proveexgance to the appropriate
fluid limit, but instead we develop the ODE directly. We firsnsider the case isf > 0

(so thatgg = 0), i.e., clas®2 experiences no overload by itself (before ppastarts serving
classd fluid). First, there is an initial period in which the pooledreing filled with fluid.

It is easy to see that as long as neither pool is full, the poakent functions; ,;(¢) behave

as the fluid approximations for the number in system at tirmean M /M /oo queueing
model with arrival rate\; and service rate; ;, i = 1,2; e.g., see [57] (where it assumed
that A\ = u, so that\/u = 1). Therefore, the system evolution is described by the fair o
ODE's

Z11(6) =M —piaz1a(t), 211(0) =

Z09(t) = Ao — ponzea(t), 222(0) = (o,

and the unique solution to each ODE is

Yy Yy o _
zii(t) = — + (Q — ) ettt >0, i=1,2.

Hi i
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These ODE's describe the dynamics of the two classes urgilobthe pools is full, i.e.,
until the time

t = n_1}r§ inf{t > 0: z,(t) =m;}. (3.7.3)

Since we assume ths§ > 0, ¢, is the time at which, ;(t) = m4, and at this time we need
to start considering;. Clearly,q; evolves independently of claguntil ¢;(t) = « (when

sharing is initialized). Let

Recall thatx may be equal td), in which caset; = t,. If t5 > t;, theng(t), t €
[t1,12), evolves as the fluid approximation for the queue-lengticgse in an Erlang-A
model operating in the ED MS-HT regime, asinl[79]. The ODEcdiéing the evolution

of g; is

ql(t) = )\1 — M11my — qul(t), t1 <t <t with ql(tl) =0, (375)
and its unique solution is

A —
q(t) = 2L Zl’lml (1—e ) |y <t <ty

Now, sinceg; (t2) = k andgs(t2) = 0, classi fluid starts flowing to service poa@l so that
21 o Starts increasing. There is a timesuch that, for € [t2,3), ¢1(t) = £, ¢2(t) = 0 and
all the excess classfluid, that is not lost due to abandonment, is flowing to pbdfience,

21 2 satisfies the ODE

Z19(t) = (M — pama — 01k) — oz 2(t), to <t <ts, Wwith 2z15(t3) =0,
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whose unique solution is

A K11y — 0.1 (1 _ e—ul,z(t—t2)) ’

212(t) = 11,2

ty <t <t

Hence,ts; = inf{t >ty : z15(t) + 222(t) = mo}, SO that at timés both service pools are
full, with ¢, (t3) = &, ¢2(t3) = 0 andqy(t3) — rq=(t3) = k. It follows thatts is the time at
which the fluid model hits the spa&&, and the first transient period is over, i.g,,= T
for T'in (3.7.2).

Now we consider the second case in whigh> 0. In this case there are different
scenarios: In the first scenario, pabtan be filled before poal, so thatt; = inf{t >
0 : 290 = ma}, for ¢, in (3.7.3). In that case, begins to increase at time, evolving

according to the ODE of the overloaded Erlang-A model
G2(t) = Aa — p22mo — Oaqa(1).

However, by the assumption of the theorem, we have ruledheutase in whicly, (t) —
r21¢2(t) = kK21, SO that no clas8-fluid will flow to pool 1. Hence, from the beginning
(time0), z; ; increases until timé&, > ¢, at whichz, ; = m;. Theng, increases, satisfying
(8.Z.8) with¢,(¢;) = 0. By the assumption om*, and following Corollary_3.5]3, there
exists a timél” < oo such thaty, (7') — rq2(T) = x. This is becauseg,(t) < r¢§ < ¢ — k
forall t < T. On the other hand, it follows trivially from the solution 8.7.5), that{ is
the globally asymptotically stable point &f (3.7.5). Henf everye > 0, there exists,
such thaty (t) > ¢f —eforall t > t.. (This is because, by the initial conditions(t) < ¢

for all t). Thus, we can find > 0 such that

rgy < qi —e—r < q(t)—rforallt>t. (3.7.6)
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The second scenario of the second case haslpidtdd first at timet,, so thaty, starts
increasing according t6 (3.7.5).df reaches: beforeg, starts increasing, then we have the
same behavior as whef > 0. However, if at time, in (3.7.4)¢, > 0, then the two queues
will continue increasing independently until tifie Once again[(3.716) can be shown to
hold, sothatl’ < cc. =

We can easily calculate the exact valuer¢f’) and use it to calculate the QBD drift
ratesd, (z(7T)) andd_(x(T)) to find whether the positive-recurrence conditibn (3.8.12)
holds at7’, so thatz(7T") € A.

Remark 3.7.1. (sharing in the wrong directionin Theoren3.7]1 we assumed that we
never havex,; > 0. The reason is that, if,; ever does become positive, then the fluid
x never hits the regiofs. To see that this is so, suppose that for some tipgharing is
initialized, with class2 fluid flowing to service pool. Thenz,; is increasing until a time
t5 at whichg, (t5) — r¢2(t5) = &, and the AP begins to operate. At that time; will start

decreasing according to the ODE
Z01(t) = —po1201(t), t>t5,
whose unique solution is
291 (t) = 291 (t5)e 21718t > ¢, (3.7.7)

Hencez, ; remains strictly positive for all > ¢;, andsS is never hit.

Of course, the fluid state should be approaching a stéieast increases. However, if
there is such a limit point, then that limit point itself tgaily will notbe a stationary point,
because ifc did start at that limit point, then it will have to continue noove toward the

final stationary point*.
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More generally, the failure of, ; to actually reacld in finite time has practical impli-
cations for the FQR-T control in the original queueing systé suggests that it should be
beneficial to introduce lower positive thresholds fos andz, ;, below which we relax the
one-way sharing restriction. It remains to examine theesygterformance in response to

such more complex transient behavior.

For the cases covered by Theorem 3.7.1, the system evol@mthe entire halfline
[0,00) is a continuous “soldering” of the different ODE'’s, but aetholdering points;,
the functions under consideration are typically not défegrable. Hence, there is no single
ODE that captures the full dynamics of the system. To see edngider the case in which
s3> 0andk > 0. Then, fort < t1, ¢:(t) = 0andg; = 0, butfort; <t < ts, ¢1(t) evolves
according to[(3.7]5), which typically has a strictly positiderivative at;. Thus the left
and right derivatives &t are not equal. Similar arguments hold for all the other salde
points.

We observe that all the fluid approximations used in the poddheoreni 3.7]1 can be
shown to hold as fluid limits of a sequence of scaled queuegiocgsses. In fact, these MS-
HT fluid limits are much easier to establish than the MS-HTvengence to the fluid limit
described by[(3.2.11), since they do not include the AP. Asrsequence, their limiting
ODE's are continuous in their full state spaces. In addjtibea ODE’s describing the fluid

limits have unique closed-form solutions.

3.8 A Numerical Algorithm to Solve the IVP

In this section we provide a numerical algorithm for solvithg VP (3.2.1B). To the
best of our knowledge, there are no other algorithms avaitebsolve such an IVP. The
difficulty, of course, is that the ODE is driven by the stodi@BTSC proces#);. Having

an efficient algorithm for solving the IVP clearly is vitalrfbaving the fluid approximation
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be a useful tool for applications, but the algorithm is ateportant for other reasons. First,
establishing convergence by the metho§3r6.2 (when the sufficient conditions for global
stability in §3.6.1 do not hold) depends on calculating the solution upfioite time T,
where we an observe that the solution is close enough todhiersary point:*, for which

an explicit expression is given i§8.5. Second, the ability to solve the IVP provides a
powerful demonstration of the AP, and a verification of itsreotness, because we can
compare it to simulation results. The close agreement vimlulation also shows that the
overall approximation is effective; see the numerical eplentelow and the comparisons

between the fluid solutions to simulation results in/[59].

3.8.1 Computingm 2(x) at a point x

In §3.3.2 we saw that our representation of the FT$Ras a QBD was very helpful for
characterizing positive recurrence and thefsathere the AP prevails. This QBD structure
also plays a key role in our numerical algorithm. The QBDdtuite allows us to use estab-
lished efficient numerical algorithms to solve for the steathte of the QBD to compute
m2(x), for any givene = z(t) € A.

We start with a giverr € A, so that averaging is taking place. As before, we assume
that classl is overloaded, and that service paois helping class. From [3.3.I6) it is
clear that we must start with computing the rate mafitix= R(x). (To simplify notation,
we drop the argument with the understanding that all matrices, and the veatpare
functions ofz.)

We exploit the well-developed theory for QBD processes itoluehe and Ramaswami
[52]. By Proposition 6.4.2 of [52], the matrik is related to two other matrice&, andU,

via

G=(-U)"4;, U=A +4G and R= Ay(-U)"" (3.8.1)
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In addition, the matrice&’ and R are the minimal nonnegative solutions to the quadratic

matrix equations
Ag + AlG + A0G2 =0 and Ao + RAl + R2A2 =0. (382)

Hence, if can compute the matiix, then the rate matri® can be found vid (3.8.1). Once
R is known, we use[(3.3.15) to computg. With oy and R in hand,m; »(x) is easily
computed via[(3.3.16).

It remains to compute the matrix. In §8 of [52], three different numerical algorithms
to calculateG are provided. We chose to use tbgarithmic reduction algorithnin §8.4,
modified to the continuous case, as;B7, in [52]. As reviewed there, this algorithm is
guadratically convergent (as opposed to the linear rateon¥ergence of the other two
algorithms), and is numerically well behaved. These tw@prbes are important for us,
since we need to compute the matfixr) for thousands of points when we numerically
solve the IVP[(3.2.13). From our experience with this altyon, it takes fewer than ten

iterations to achieve 8)~° precision (when calculating).

3.8.2 Computing the Solutionz

To compute the solutiofz(t) : 0 < ¢t < T'}, we combine the forward Euler method for
solving an ODE with the algorithm to solve fat »(z(¢)) described above. Specifically,
we start with a specified initial valug(0), a step-sizé: and number of iterations, such
thatnh = T'. First, assume that ;(0) = m; andz; 5(0) 4 22.2(0) = my, so thatz(0) € S.
If D(0) = (q:(0) — k) — 7¢2(0) > 0thenm; o(x(0)) = 1. If D(0) < 0thenm;o(x(0)) =0
and if D(0) = 0 then we check to see whethBr(3.3.12) holds. If it does, #igh< A and
we calculater; »(x(0)) as described above. #{0) € S* — A then we can still determine

the value ofr; 5(x(0)) in the following way: If6_(z(¢)) = 0 > d04(x(¢)), then we let
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m2(z(t)) = 0; if insteadd_(x(t)) > 0 = 04 (x(¢)), then we letr; 5(x(t)) = 1. As long
as we the calculated solution remains within one of the regig S™ or S—, we know that
we are calculating the unique solution to the IVP, by virtfidleeoren{3.44 and Remark
[3.4.1. We do not yet have such a supporting theoretical ras§ — A, but numerical
experience indicates that this method is effective.

Givenz(0) andm; »(x(0)) we can calculat& (z(0)) explicitly, and perform the Euler
step

z(h) = z(0) + h¥(z(0)).

We then use the same procedure to fiti@h), (3h), ...z(nh),

2((k+ 1Dh) = 2(kh) + hWU(z(kh)), 0<k<n, (3.8.3)

wherex(kh) is given from the previous iteration, ankl(z(kh)) can be computed once
T 2(z(kh)) is found.

If 211(0) < my 0rz;2(0)+ 222(0) < mo, sothatz(0) ¢ S, we use the appropriate fluid
model for the alternative region, as specified@4, where at each Euler step we check to
see which fluid model should be applied.

We have chosen to use the forward Euler algorithm, althotughknown to have an
error proportional to the step size and to be relatively numerically unstable at times. We
have two reasons for doing so: First, the Euler method isithplest numerical method
for solving ODE’s. Thus, one can immediately observe thenratiucture of the algorithm.

It is also very easy to see how to apply more sophisticateatidihgns, such as general lin-
ear methods, which have a smaller error, and can be more ruaihestable. The only
adjustment needed, is to replace the Euler step in (3.8.8)ddifferent method. At any

iteration, m; » is computed as i§3.8.1. Moreover, as can be seen the numerical example



CHAPTER 3. TRANSIENT AND STABILITY ANALYSIS 143

below, 7 5 is almost constant throughout (starting at the timigits the setd). This sug-
gests that the solution behaves very much like a simple ex@i function (strengthening
the result 0f§3.6.3), which is very smooth and stable. Hence, we have niolg@rowith
numerical stability with the Euler method.

In the numerical example 3.8 we took the ratioo = 0.8 = 4/5, so that all the
matrices, used in the computations fgr,, are of sizel0 x 10. It took less thari0 seconds
for the algorithm to terminate (using a relatively slomisB memory, laptop). The same
example, but with- = 20/25, so that the matrices are néW x 50, took less than a minute
to terminate. Moreover, the answers to both trials were thx#lte same, up to th&th
digit. In both cases, we performé&d00 Euler steps (each of size = 0.01, so that the
termination time isl’ = 50). It is easily seen that; , had to be calculated for ovef00
different points, starting at the timg , becomes positive (see Figlrel3.2 in the following
example).

The validity of the solution can be verified by comparing istmulation results. See
the example below. See also Chapter 2 for comprehensiviBcadons via simulation
experiments. However, there are two features of the nuadesatution itself that strongly
suggest its validity. First, we can check whether the sotutonverges to the stationary
point z*, which can be computed explicitly usirig (3)5.3). An eveomsger verification of
the solution’s correctness is the fact that the two queuep ke the ratio-, even though
this relation between the two queues is not forced explidiyl the algorithm (it is only
used to calculate, .. Hence it appears implicitly in the ODE via the expressianifp,).
Specifically, the fact that the SSC equatignt) — r¢2(t) = «, holds for all¢ from the
moment the solution hitS, is a strong evidence that »(¢) (and, consequently;(t)) is

computed correctly; See FigureB.1.
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3.8.3 A Numerical Example

Below are figures produced by a Matlab code implementing ld@righm above. In addi-
tion, we added the sample paths of the stochastic proc€sse®d”; ,, on top of the trajec-
tories of the solution to their fluid counterpagisandz; .. These sample paths were created
by a single simulation run. The model is the same one intredirt§3.3.2 with component
rate matrices i (3.319). The model parametersiare= m, = 1000, \; = 1300, A\, = 900,
pi1 = 2o =1, o = poq = 0.8 andf; = 0, = 0.3. We takex = 0 andr = 0.8. We
chose to take a relatively large system=£ 1000), so that the stochastic fluctuations do
not to hide the general structure of the simulated samplespdthe time-dependent mean
values follow the fluid solutions very closely, as can be comdid by considering multiple
replications; see [59] for more comparisons with simulatioThere it is shown that even
for surprisingly small systems (e.g., wi2h agents in each pool) the mean values are well
approximated by the fluid.

We ran the algorithm and the simulation fa® time units. Since we used an Euler
step of sizeh = 0.01, we performed000 Euler iterations, but in each Euler iteration we
performed several iterations to calculate the mattix (3.8.1), which is used to calculate
the instantaneous steady-state probabitity. The QBD matrices for this example with
r = 0.8 appear in[(3.319).

Figured 3.1[-3}4 show the curves of the ratio between theeguéas a function of,
i.e., the actual ratio between the queues through time), ¢; together withQ);, andz; -
together withZ, ,, for a system initializing empty. After a short period in whithe pools
fill up, ¢:(¢) starts to grow, and immediately then fluid (customers) sféotving to pook2,
causingz »(t) to grow. At this initial time period, the stochastic proaessind their fluid
approximations are almost indistinguishable.

In Figure[3.1 we see that on@& is hit, the ratio between the queues is kept at the
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target ratio0.8. As discussed before, this is an evidence for the validitthefnumerical
solution, and a strong demonstration of the AP. In FiqurévB2see that initially, while
¢ = 0, m o = 0. This lasts untilzo5(¢) + z12(t) = ma, at which time the spacg is
hit (specifically,S’), and the averaging begins. It is interesting that offtés hit, 5
becomes almost a constant, even before the system reaehdsg state. This explains why
the curves ofy;, ¢» andz, » resemble the curves of exponential functions, and stremgth
the results 0§3.6.3. (Observe that if, »(z(t)) is replaced by a constant in the ode (3.2.12),
then its solution is easily seen to be an exponential fungtio

When the algorithm terminated, the valuexdt,,) wasq; (¢,,) = 363.9, ¢2(t,,) = 455.0
andz »(t,) = 238.5. Also, mi»(t,) = 0.2. Calculating the value of* = (q7, g3, 27 5)
(using [3.5.8)) we have* = (366.7,459.5,237.5). Pluggingz] , in (3.5.4), we getr} , =
0.2. As we mentioned before, these steady-state values alg@siiat the algorithm is

achieving the correct solution to the ODE.
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Figure 3.1: ratio between the queues. Figure 3.2:m, , calculated at each itera-
tion.

Note that in this example, the sufficient conditions for sg&SC i§3.6.1 do not hold.
Specifically, conditior(iz) in Theoreni:3.6]1 does not hold sintg= 900 > vmy = 800,
for v = 12 A pep. Observe that Conditiofi) in that theorem does hold, since =
1300 < vmg + p11my = 1800; See Remark’3.6.1.

However, this example shows how useful the result§306.2 are. By Theorein 3.6.3

we haven = ¢/rf,, where§ = |67 | A6*. With the value ok} , computed above, it follows
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Figure 3.3: trajectory of; together with Figure 3.4: trajectory ofz » together
a simulated sample path 6f;. with a simulated sample path 4f, 5.

that{ = 0* = 342, so thate = 1425. This means that(¢), t > 7', whereT is the time
the solution hitsd, is known to lie entirely inA without even solving the algorithm. That
is because:(T) = (0,0,100) € By (a), andBy(a) C—. (Recall that the solution hits’
whenz; s + 220 = mo. In our example it is easy to see thak(7) = X, = 900, so that
212(T) = 100. Sincex = 0, we also have, (1) = ¢»(T") = 0. We can calculaté_(z(71'))
andd (z(T)), to conclude that:(T") € A.)

3.9 Conclusions and Further Research

In this chapter we analyzed the deterministic ODE (3]12(@13:12), arising as the MS-HT
fluid limit of the overloaded X call-center model operatingder the FQR-T control. In
addition to being an interesting mathematical object iovws right, the ODE analyzed in
this chapter is a vital link between Chagtér 2 and the corrarg proofs in Chaptér 4.

We showed that the existence of a unique solution to the [VEP13) depends heavily
on the characterization of the functidnin (3.2.11) and its topological properties. These
properties, in turn, depend on the state spac&,cind the regions of the state space in
which ¥ is continuous. These regions are further characterizethdyptobabilistic prop-
erties of the family of FTSC processé®, : ¢ > 0}. The existence of a global unique

solution further depends on other properties of the saluspecifically, its stability. Since



CHAPTER 3. TRANSIENT AND STABILITY ANALYSIS 147

the proof of convergence depends on the uniqueness of tiiosolo the IVP, this chapter
prepares the way for Chaptér 4.

The connection to Chapter 2 is clear: First, we prove thasthgonary point:*, which
was developed heuristically in Chapkér 2 using flow-balaargeiments, and was claimed
to be the stationary point of (3.2]12) in [59], using reasgsisimilar to those i§3.5, is
indeed the unique stationary point for the fluid. Moreovee, pvovided mild conditions
assuring the convergence of the solutiomto We also showed that the convergenceto
is exponentially fast, further justifying the steady-stahalysis in Chaptét 2.

To fully connect to the model considered in Chapter 231 we considered the system
at the time when the arrival rates change. At that time, dehby0, the system will typi-
cally be underloaded, so that the state space should ribtAter the change, we assume
that the arrival rates are larger than the total service aatbe two pools. Specifically,
we assumed Assumption A §8.3. We then considered the first transient pefind’),
whereT is the time at whicl§? is hit. Using alternative fluid models (ODE’s), we showed
thatT < oo, under the conditions of Theordm 3J7.1. The solutions tofltiid models
during the first transient period are all exponential fumrasi, so that this period also passes
exponentially fast.

Finally, we developed an efficient algorithm to solve the I{#2.13), based on the
matrix geometric method. This algorithm solves the différuid models described in
§3.7, and combines these solutions with the solutiof to T3)2once the seh, where the
AP takes place, is hit.

Our main results in this chapter were based on classicaltseBam ODE theory,
specifically the Picard-Lindelof theorem establishing éixistence and uniqueness of solu-
tions to IVP’s, and the theory of QBD processes. Since thetfanV appearing in[(3.2.11)
is not continuous i1$, and not Lipschitz continuous & — A, we could not apply this the-

orem for solutions that are not known to be confined to oneoregiWe do not yet have a
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proof that a global solution to the IVP exists in general,f@tta solution passing through
Sb — A is unique in that region.
It also remains to generalize Theorem 3.7.1, and includedke in which, ; becomes

positive during the first transient period. We do make thioWaihg conjecture:

Conjecture 3.9.1. Make Assumption A as usual and introduce lower thresholds Be-
mark[3.7.1 If the appropriate ODE is defined for each relevant regios,jrathe proof of
Theoren3.7.] thenz(t) — z* ast — oo, wherez* € S, for any initial statez(0), in S or

not.

It also remains to consider more complicated dynamics thamigied by a single
change in the arrival rates. The numerical algorithm apphere generally, but it remains
to establish mathematical results and examine the perfureador example, it remains to
consider a second overload incident happening before ttersyhas recovered from the

first one.

3.10 Miscellany

3.10.1 More on the Algorithm

In this section we elaborate further on the algorithm intiet in§3.8. Let{¢,, : m =

0,1,2,...,n} be the Euler steps, with,.; — t,, = h. In our experiments we found

h = 0.01 to be a good candidate for the step size since it is small dntugninimize

numerical errors, while the number of iterations neededfelODE to reach its stationary

point, is just a few thousands. Hence the algorithm takeg @féw seconds to terminate.
Let D(t) = q.(t)—rq(t), denote the weighted difference between the two fluid queues

The discretization of the ODE in the numerical algorithm mee¢hat if, at stepge — 1,
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D(t,—1) ¢ S" butis close to it, therD(¢;) may miss the boundary, even though the (con-
tinuous) ODE is at the boundary at timg For that reason, it — h < D(t;) < k + h,
then we forcer(t;) to be inSP, by taking D(t,) = k. Once we haveD(t;) = ~ we de-
cide whether to keep staying on the boundary for the nextristég, by checking whether
(3.3.12) holds. According to the relation between the QBIf dates at time,, we decide
whether we should apply the AP, in order to fimgh(x), or rather setr, »(tx) to zero or
one.

At any step in the algorithm, we must also decide which ODEs (r'hat depends on
the state of the system at each time, as describg8.1h If the fluid state is not i§, as in
the initial period of the example i§B.8 and the example below, then we use the appropriate

fluid model, as given in the proof of Theorém 3]7.1.

3.10.2 An Example withx* € S*

We now consider the same example ag3B.3, except now we increase the arrival rate
for class1 substantially, so that* € S*. In particular, we let\; = 3000 instead of
1300. Once again, the system is initialized empty. That meansthigafluid solution in

S is moving between the two regio$$ andS*. In particular, the solution first hit§
(specifically,S’ — A), as was proved in Theordm 3.7.1, but it stays there for & shoount

of time, and then crosses 0.

We see how, » starts increasing up to the tifiéin which z1 5 (7)) + z22(T) = ma. At
this timez, »(7") starts decreasing, and is replaced by clafisid. Since no clasg-fluid is
flowing to either of the service pool, all the claa#luid output is due to abandonment. We
can also observe that » eventually hitd), even though » satisfies the equation (3.7.7).
This is due to the numerical errors, as describegBi.

In steady-state we havg = \,/6, = 900/0.3 = 3000 andq¢; = (A — myp1q —
mafty 2) /02 = 4000, as in Corollary 3.5]2:7).
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Chapter 4

Convergence to the Fluid Limit via the

Averaging Principle

4.1 Overview

In this chapter we will prove that the solution to the ODE ire@tef3 is indeed the MS-HT
fluid limit of the overloaded X model; see Theorem 4.6.1; aeeld.3 for the key assump-
tions. In doing so, we will also prove tlaeraging principlgAP) which in turn will pro-
vide a strong version dftate-space collapg&SC) for the two-dimensional queue process

and the server-assignment processes; for the SSC resdt$hsoremis 4.4.0, 4.4[2, 4]5.6

and[4.7.1l. To streamline the reading, some of the more teghpioofs appear separately
in the next chapter.

We now consider theX’ model during the overload incident only, once sharing has
begun; that will be captured by our main Assumptibohs 1[@nd@li8. As a consequence,
the model is stationary but the evolution is transient. Beeaof customer abandonment,
the stochastic models will all be stable, approaching prefEady-state distributions. We

will be proving a MS-HT limit for the system processes.

151
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Convergence to the fluid limit will be established in rougthisee steps::f representing
the sequence of system(4), () proving that the sequence considere@-isght (§4.8.1),
and ¢iz) uniquely characterizing the limit (Chapfér 3 and much efribst of§4.344.8, and
Chaptefb).

The first representation step $.4 starts out in the usual way, involving rateéRois-
son processes and martingales, as reviewed in [57]. HowneSSC in Theorein 4.4.1
requires a delicate analysis of the unscaled sequencé4séeaspecially Lemnila 4.7.4.

The second tightness stepdh.8.1 is routine, but the final characterization step is-chal
lenging. These last two steps are part of the standard cdngsscapproach to proving
stochastic-process limits; see [13], [25], [57] &1d..6 in [78]. As reviewed in[25] and
[57], uniquely characterizing the limit is usually the masiallenging part of the proof,
but it is especially so here. Characterizing the limit ididifit because the FQR-T con-
trol is driven by a queue-difference process which is nohdpeicaled and hence does not
converge to a deterministic quantity with spatial scalidgwever, the driving process op-
erates in a different time scale than the fluid-scaled pgE®sasymptotically achieving a
(time-dependent) steady state at each instant of timeajigigethe AP.

As was shown in Chaptét 3, the AP and the FTSP also complicatartalysis of the
limiting ODE. First, it requires that the steady state of atocwious-time Markov chain
(CTMC), whose distribution depends on the solution to theEQBe computed at every
instant of time. (As explained in Chaptér 3, this argumeny seem circular at first, since
the distribution of the FTSP is determined by the solutiomh® ODE, while the evolu-
tion of the solution to the ODE is determined by the behavidhe FTSP. However, the
separation of time scales explains why this constructi@oisistent.) The second compli-
cation is that the AP produces a singularity region in théesspace, causing the ODE to
be discontinuous in its full state space. Hence, both theergence to the MS-HT fluid

limit, and the analysis of the solution to the ODE depend gaw the state space of the
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ODE, which is characterized in terms of the FTSP. For thadaeamany of the results in
ChaptefB are needed for proving convergence, and we sumerthe essential results in
44.8 below.

There is now a substantial literature on fluid limits for geielg models, some of which
is reviewed in[[78]. For recent work on many-server queues,[40/44]. Because of the
separation of time scales here, our work is in the spirit afiflunits for networks of many-
server queues in[8) 9], but again the specifics are quiterdifit. Their separation of time

scales justifies using a pointwise stationary approximagymptotically, as in [51, 77].

4.2 Preliminaries

We briefly specify some of the notation we will be using.

4.2.1 Many-Server Heavy-Traffic (MS-HT) Scaling

We now add the subscriptto the processy, describing the X system, to emphasize that
the original stochastic system under FQR-T is a six-din@mradicontinuous time Markov

chain(CTMCQC), i.e.,

Xo(t) = (Qi(t), Zijuy;i, 5 = 1,2), t>0 (4.2.1)

To develop the fluid limit, we consider a sequence of X systdmig : n > 1} defined as
in (4.2.1), indexed by: (denoted by superscript), with arrival rates and numbeeofess

growing proportionally tos, i.e.,

>
<5
Il

— A and m} =

—m; as n — oo, (4.2.2)

Sy
R
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and the service and abandonment rates held fixed. We there deBnassociated fluid-

scaled stochastic processes

QI (t) = Q;;L(t) and Z7;(t) = ZZ’LTJL(t), 1,j=1,2, t>0,
Xg(t) = (Qp (1), Zy(t) » 4,5 =1,2), t>0. (4.2.3)

In this framework, with additional regularity conditionge will prove thatX* = x4 in an
appropriate framework (sed.2.2), wherer is a deterministic continuous function.
We now return to the description of our systems. For eaclesystthere are thresholds

kT, andky ,, scaled as suggested in Chagfer 2:

“ 50 and 2 w00 as n—oo, i,j=1,2. (4.2.4)
n NLD

The first scaling byn is chosen to make the thresholds asymptotically negligibMdS-
HT fluid scaling, so they have no asymptotic impact on thedstestate cost. The second
scaling by,/n is chosen to make the thresholds asymptotically infinite B-NIT diffusion
scaling, so that asymptotically the thresholds will not keeeded under normal loading.
It is significant that MS-HT scaling shows that we should ble & simultaneously satisfy
both conflicting objectives in large systems.

We will also consider shifting thresholds ;, satisfying

n
i j
n

— k;; >0 asn—oo, 1,j=12. (4.2.5)

These shifting thresholds can be of order.e.,x; ; > 0, if a version of FQR-T, thehifted
FQR-Tcontrol, is employed. Shifted FQR-T is designed to keep ¢hation between the

queues at); ~ r12Q2 + K12, OF Q1 = r91Q2 + ka1, Which is the optimal relation in
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the stationary fluid model for the important class of seplargbadratic cost functions; See
§2.7. These shifting constants can also stand for the thidshj, i, j = 1, 2, if we choose
not to drop them once sharing is initialized (for the reastescribed irg3.1.2). In that
case, the scale ef’; is as in [4.2.4). If the thresholds are dropped and the czidtetween
the queues is a fixed ratio, theft; = 0 foralln > 1, ¢,j = 1,2. To summarize, we
considers;; = O(n), but without specifying their exact scale.

As before, let

DYo(t) = (QV(1) — K1) —m2@s(t), =0, (4.2.6)

and recall that FQR using the proceB$, in (4.2.8): if DT ,(t) > 0, then every newly
available agent (in either pool) takes his new customer fitterhead of the classqueue.
If DY,(t) < 0, then every newly available agent takes his new customenr fhe head of

his own queue.

Let
AV Ai .
pi = ——, and p; = lim p}' = , 1=12. (4.2.7)
i i n—00 i i1

Then p is the traffic intensity of class to pooli, andp; can be thought of as its fluid
counterpart.

Our results depend on the system being overloaded, whettgyuwtiloss of generality,
we assume that clagss more overloaded than cla8sHowever, in our case, a system can
be overloaded even if one of the clas3ésnot overloaded by itself. We have the following

guantities:

Cam )T A\t
g W and s?E(mi— A2) L i=1,2, (4.2.8)
i i i

where(z)t = max{z,0}. It is easy to see thaf's = 0,7 = 1, 2.
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4.2.2 Conventions About Notation

We use the usudk, Z andN notation for the real numbers, integers and nonnegative in-
tegers, respectively. L&, denote allk-dimensional vectors with componentsin For
a subintervall of [0, 00), let Dy(I) = D(I,Ry) be the space of all right-continuoi,
valued functions od with limits from the left everywhere, endowed with the faiauilSko-
rohod J; topology. We letd;, denote the metric o®, (/). Since we will be considering
continuous limits, the topology is equivalent to uniforrmgergence on compact subinter-
vals of I. LetC;, be the subset of continuous functiong¥. Lete be the identity function
iND =Dy, i.e.e(t) =t t € l. The function) € D will be denoted simply by, when the
context is clear, or bye. Let = denote convergence in distribution.

We use the familiar big? and smalle notations for deterministic functions: For two

real functionsf andg, we write

f(z) = O(g(x)) whenever limsup |f(x)/g(x)| < oo,

T—00

f(z) =o(g(xz)) whenever limsup|f(x)/g(z)| = 0.

T—00

The same notation is used for sequences, replacinigh n € N.
Fora € R, let ()" = max{0,a} and (a)~ = max{0,—a}. For a functionz :

[0,00) = Rand0 < t < oo, let

[z]le = sup [2(s)].
0<s<t

LetY = {Y(¢t) : t > 0} be a stochastic process, and fet [0,00) — [0,00) be a
deterministic function. We say thatis Op(f(t)), and writeY = Op(f), if ||Y||:/f(t) is
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stochastically bounde(6B), i.e., if

lim lirtri S;lpp (“;;J'; > a) = 0.
We say that” isop(f(t)) if ||Y|;/f(t) converges in probability (and thus, in distribution)

t00, i.e., if
Y1le

f(t)
If f(t) =1,thenY = Op(1)ifitis SB, andY = op(1) if ||Y||; = 0. We defineOp(f(n))

=0 as t— oo.

andop(f(n)) in a similar way, but with the domain gf beingN, i.e., f : N — [0, c0).

For a sequencéY™ : n > 1} (of stochastic processes, random variables or real num-
bers) we denote its fluid-scaled versionYy= Y /n. The fluid limit of stochastic pro-
cessed’ " is denoted by . The diffusion-scaled sequence of stochastic processetred
about their fluid limit, is denoted by = (Y™ — nY)/\/n, and its limit byY. We let
Y™ = Y"/,/n be the,/n-scaled processes without the centering about the fluid.limi

4.3 The Main Assumptions

We now specify the three main assumptions: Assumpfibhs hdZBaelow. These three
assumptions are assumed to hold henceforth.

First, we have the two assumptions already mdde, (4.2.2Y&@Bd). Our first new
assumption is on the asymptotic behavior of the rates; itips the essential form of
the overload. For the statement, recall the definitionsi&.24, [4.2.5) and_(4.2.8), which

describe the asymptotic behavior of the rates.

Assumption 1. (system overload, with clagdsmore overloaded

The rates in the overload are such that the limiting ratesséat
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(1) 01(qf — k) > p1,255.
(2) qf — K >rgs.

Condition(1) in Assumptiori L ensures that claisss asymptotically overloaded, even
after receiving help from podl. To see why, first observe that, sinee> 0, ¢f > k >
0, so thath; > uy1m; andp, > 1. Hence, clasd is overloaded. Next observe that
p1285 = pia(l — po)™, and that(l — py)™ is the amount of (steady-state fluid) extra
service capacity in podl, if it were to serve only clas8-customers. Thus, Conditiqn)
in Assumptiori L implies that enough classustomers are routed to pabto ensure that
pool 2 is overloaded when sharing is taking place. This conclusibinoe demonstrated
in §4.7. Note that Conditioril) in Assumptiori 1 is slightly stronger than Conditioh)
of Assumption A in Chaptdrl 3. because here there is a strayyality instead of a weak
inequality.

Condition(2) in AssumptiorL]L ensures that classs more overloaded than clagsf
class2 is also overloaded. This condition helps ensure that tiseme incentive for pool
to help pool2, so that we can assume thgt, remains ab.

We now expand upon the centering constants.

Assumption 2. (centering constanjs

For the sequencéx” : n € N} of centering constants, we require that
(1) k™ > 0forall nandx™/n — k, whered < rk < co.

(2) If kK = 0, then in addition we require that” — ¢; andx"/logn — ¢ asn — oo,

where0) < ¢; < o fori =1, 2.

In Assumptiod 2, the first condition is the standard scalorglie centering constants.

If x = 0, then we have FQR after sharing has been activated by pas&rnlresholds; if
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k # 0, then we have shifted FQR after sharing has been activatpddsing the thresholds.
From the perspective of the centering constants alone utdsuffice to considet™ = nk.
However, we have imposed additional conditions for the ease 0. We did this so that
we could consider the FQR-T control with the original thi@sls retained. As discussed in
§4.2.1, we want those thresholds todie) but large compared t0(,/n); e.g., we might
havex” = n? for 1/2 < p < 1. The regularity conditions involving scaling Iyg n is for
results ing4.1 showing that the idleness is at moXtogn).

Our third assumption is about the initial conditions. Weuieg that a fluid-scale limit
exists at time), where the limitz(0) satisfies the initial conditions required for the existence
of a unique solution to the ODE, established in Chapter 3.JbB& and the FSTP will be
reviewed here ifd.5. Specifically, Assumptidd 3 refers to the sedefined in[(4.5.16) and
expressed i (4.5.22). We will be explaining Assumpfibn 8hie next two sections. For
the statement, recall the definition of the six-dimensidloéd-scaled procesX¥? in (4.2.3)
and letX" = (Q7, Q3. Z7',) be the associated three-dimensional processi(Fhwe show
that it suffices to consideX™.) We also need to separately specify initial conditiongtier
gueue-difference processes|in (4.2.6). We assume the glifference processes start in

some fixed state.

Assumption 3. (initial conditions)

For eachn > 1, Z7,(0) = my, Z3, = 0, Q7(0) > &", Z75(0) + Z3,(0) = mj and
D7,(0) = Q7(0) — r12Q3(0) = j for some fixed. In addition,

X"0)==z(0) e A as n — oo,

with z(0) being a deterministic element Bf;.

If the systemis initialized not i, then other fluid models hold during the initial period
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beforeA is hit; See§3.7. In this chapter we want to concentrate on time intervalg/hich
the averaging principle is operating. The conditidf) € A implies thatg, (0) > &, and
that sharing is taking place (or at least initializing) at#i0, and that both service pools are

full.

4.4 Representation ofX{

The statements of our asymptotic results are easier to staahel if we first exhibit the

representation ak ¢ that we will use in our proof.

4.4.1 Starting with Rate-1 Poisson Processes

Let A7 (¢) count the number of classeustomer arrivals, les7?;(¢) count the number of
serivce completions of clagszustomers by agents in pogland letU*(¢) count the num-

ber of class- customers to abandon from queue, all in modeluring the time interval
[0,t]. Following common practice, as reviewedsi of [57], we represent these processes
in terms of mutually independent raté?oisson processes. We represent the counting pro-

cessesi}, S andU;" as
A} (t) = N (A1),
t
SZ;‘@) = Nis,j (Ni,j/o ZiT,Lj(S> ds) ) (4.4.1)
t
U'(t) = N/ (91/ Q7 (s) ds) , >0,
0

whereN{, N7, andN;* fori = 1,2; j = 1, 2 are eight mutually independent ratd2oisson

processes.
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The evolution of X7 in (4.2.3) is somewhat complicated because, at each service
completion epoch, we need to know whethép? ,(t) is strictly positive or not, and whether
there are any classeustomers in service-pogl| i = 1,2, i # j. For example, fixx and
consider a timeg > 0 in which a type2 server becomes available and ttait,(t) > 0.
Then the newly available server should take a customer frehead of queugé. How-
ever, if at the same tim&3 | (¢) > 0 then, according to the one-way sharing rule, he cannot
take customers from queue Hence, we need to be able to know at each time 0
whetherZ};(t) > 0. In addition, some customers may arrive to find idlenesseir tass

service pool, so that they go immediately into service.

4.4.2 Simplification via SSC

However, since the system is assumed to be overloadedgids®nable to expect that the
idleness process in the two service pools is asymptoticaiyigible in diffusion (and thus
in fluid) scale. That means that’, (¢) + Z3,(t) = mj andZ3,(t) + Z7',(t) ~ mj for all
t > 0, provided that those approximations hold at 0. Also, since we assume that cldss
is more overloaded than clagsit is reasonable to expect thaf,, becomes positive before
the threshold? | is crossed (for large), so thatZs, () = 0, at least on some initial interval
[0,7], 7 > 0. If that is true, therZ  (t) =~ my and Z3,(t) =~ my — Z7,(t), t € [0,7]. The
approximation signs will be replaced with equality with baliffusion and fluid scaling,
producing a SSC result. Specifically, the dimension of theise process reduces from
four to one in the limit with diffusion scaling. That will begved in Theorerh 4.7].1 below.
We now state a result which will allow us to represent theesysin a relatively simple
form, building on the SSC for the service process just erpldiand which will be proved
in §4.7). Recall thatX} has been defined i#.2.1, the assumptions .3 are in force,
dj, denotes the standard Skorohfdmetric andy™ = Y™ /y/nforanyY" € Dy.
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Theorem 4.4.1. (Representation via S3@sn — oo, d, (X2, X™*) = 0 in Dy, where
X = Xg = (Q,0Q%, 27, 23, 274, Z3,) under the extra condition that?, = m7,

Zy, =0andZy, + Z5, = my, with X" = (Q1, Q3, Z1',) being represented via

t

t
Z05(t) = 205(0) + / 1 g 00 AS3(1) — / 1 g 10 ST (1)
t
= Z15(0) + N3, <M2,2/ Lipg,(s)=03 (M5 — Z7'5)(s) ds) (4.4.2)
0

t
— Nig (m,z / Lipy,(5)<01 Z1(8) ds), t>0,
0

t

QO = QO + A ~ [ Logi00 45"
- /Ot Lipp,(s)<0y dST1 (1) — UT'(2)
= QU0) + NI — Ny (a2 )
— Ny, <M1,2 /Ot Lipp,(s)>01Z12(5)) ds)

t
— N3, <M2,2/ 1{D{Ly2(s)>0}(mg — Z1'9(8)) dS)
0

t
— Ny (91/ Q1(s) ds) , t>0,
0
t

Q3(t) = Q3(0) + A1) / g 0y ASEa(1)

(4.4.3)

t
- [ topos dstate) - U3 £20
= Q30)+ M50

t
— N3, </~L272 /0 Lipp,(s)<03 (M3 — Z1'5(s)) dS)

t
_ le’2 </Jz1,2/ 1{D711’2(5)§0}Z{L’2(S) dS)
0

— Ny (92/tQ§(8)d8>, t > 0.
0

(4.4.4)
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With a slight abuse of notation, henceforth we useé = (QF,Q3, Z7',) to refer to
both its direct representation ; and (by virtue of Theoreiin 4.4.1) the essentially three-
dimensional proces&™* in D.

Theoreni4.4]1 is achieved as a corollary of Theorem #.7.ichwill be stated and
proved in§4.7. Without it, we could not write the representatibn (A)44.4.4). In fact, if
we do not know thatZ;, is asymptotically negligible, then the evolution &f becomes
intractable. Specifically, the system may oscillate betwaifferent directions of sharing,
with Z7', being positive at some instances, afi} being positive at other instances. The
system may also get “stuck” wity, (t) > 0 and Z7',(t) = 0 for all ¢ > t,, for some
to > 0, even though we want to have sharing in the other directi@ee (Lemma_4.712
below. If at some, > 0 we have that,;(¢y) > 0thenz,;(t) > 0 for all ¢ > t,, where
21 is the fluid limit of Z, ;) These situations are ruled out by Theofem4.7.1 and Theore
4.4.1.

4.4.3 Simplification via Martingales

We now obtain further simplification using the familiar magale representation, again

see[[57]. Consider the representation'df in (4.4.2) - [4.4.14) above, and let

M™(t) = NO(AP) — \'t,

2

M () = ( /Q” )—Gi/OtQ?(s)ds, (4.4.5)

M3 (1) = Nip(Ji(t)) — Jia(b),

where J,(t) are the compensators of the Poisson-proce¥seg) in (4.4.2)-{4.4.4); =
1,2, e.q.,
t
Jio(t) = ,ul,g/ Lip ,(s) )<0} Z12(s) ds.
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The quantities in[(4.415) can be shown to be martingalesh(r@spect to an appropriate
filtration); See [[57]. However, we will not use any martingaroperty, and call those
terms martingales for convenience.

The following lemma follows easily from the FSLLN for Poissprocesses and the

C-tightness to be established in Theofem 4.8.1:

Lemma 4.4.1. (fluid limit for the martingale termsAsn — oo,
no (M, MG M MG MYy M) = 0 in Dy

Proof: By Lemmd4.811, the sequen¢& : n > 1} is tight in D. Thus any subsequence
has a convergent subsequence. By the proof of Lemma 4.8 5etjuenceg);’;/n} are
alsoC-tight, so that{J!";/n}, i = 1,2, all converge along a converging subsequence as
well. Consider a converging subsequerc€”} and its limit X, which is continuous by
Lemma4.811. Then the claim of the lemma follows for the cogivey subsequence from
the FSLLN for Poisson processes and the continuity of thepomition map at continuous
limits, e.g., Theorem 13.2.1 in [8]. In this case, the liofieach fluid-scaled martingale
is the zero functiobe € D, regardless of the converging subsequence we consideis and
thus unigue. Hence we have completed the proof.

We can thus obtain an alternative martingale representéioX™. In particular, we
can let

M= X" - Cm, (4.4.6)

whereX™ is defined in[(4.4]2)E(4.414) and, with an abuse of notatih= (Q7, Q3, Z7,)
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for

t
Z75() = Z05(0) + pia / 1 g 01500 (7 — Z05(5)) s
t —
- M1,2/ Lipp,(s)<0y £12(8) ds,
0

t
Q1) = QU(0) + it — it — i / L op w50y Z25(5)) ds
0 (4.4.7)

t t
~ e [ g - (2 = Zia(s) ds =61 [ Qi)ds,
0 0
t
O3(t) = O3(0) + X3t — 1z / g, oy (78 — Z0(s)) d
0

t t
— /LLQ/ 1{D?72(8)§0}Z{L72(8) ds — 92 / QS(S)) ds.
0 0

(We have used the same notati@py', 3, Z7,) in the definition of the different procsses
X"in (4.4.2)-[4.4%) and™ in (4.4.7) above. The following result shows that this anlyma

causes no problem. Recall that denotes the standard metric.

Theorem 4.4.2.Asn — co, M™ = 0, so thatd,;, (X", C") = 0 in D3 asn — oo, Where

X" is defined in@.4.2)(@.4.2)and C" is defined in&.4.7)

Proof: Since the weak limit of the centered fluid-scaled Poissongsses i (4.4.5) is the
(continuous)) function, the sum of any two or more of those processes alseetges to
0 = Oe in D, by the continuity of addition at continuous limits, and eteforeop(1).
Hence we gefl/” = 0 asn — oo directly from Lemma4.4]1, from which the remaining
convergence follows directlys

As a consequence of Theorém414.2, henceforth we can foatls on(4.4.7) instead of
X" in @.4.2)-[4.4.%). We will do so, but redefining™: We letX" = C"; i.e., henceforth
we letX" = (Q1, Q3. Z7,) in @4T).

Theoren{4.4]2 reduces the expressionkdfto the random rates of the Poisson pro-

cesses, and reveals the basic structure of the limiting GDE.5.13). Due to Theorem
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[4.4.1, the representation [n (4.14.7) is equivalent to theagentation of the six-dimensional
processX}, for X2 in (£.2.3). Hence, proving tha" converges to a unique deterministic
limit, will imply the convergence ofX to a limit in a three-dimensional hyperplane of
Dg, which is homeomorphic t®s. It is thus enough to work with the three-dimensional

process in[(4.4]7). Given Theorems 414.1 land %.4.2, we haolhsthat

X" = ( _?, _372?,2) =T = (Q1,Q2,Zl,2) in Dg([o,é]) as n — oo

for some) > 0, wherez is a deterministic element 6§, with z(¢) € A for all ¢t € [0, ].

45 The FTSP and the ODE

Even though Theorenis 4.4.1 and 4.4.2 allow us to considgr tbel three-dimensional
processX” in (4.4.7), we still must cope with the indicator functiomsthe integrands in
(4.4.1), which appear because of the FQR routing. Thus, éidda successful analysis
of X" is understanding the behavior of the stochastic queuerdiite procesd?, =
(QF — k™) — r12Q% in (A.2.8) when some, but not all, tyReservers are helping clags-
customers, and the system is overloaded in the sense of Asisufd.

In Chapte B we presented and analyzed a three dimension&l @bich we refer
to simply as “the ODE” since it is the only ODE under considierg). This ODE was
conjectured to arise as the limit of the fluid-scaled vergibA™ in (4.4.2)-(4.4.4). In this
chapter we will prove that conjecture. Specifically, we wibw thatX™ indeed converges
weakly to the solution of that three-dimensional ODE, sd tha fluid limit of X™ and the
solution to the ODE coincide. Howevehe ODE is well defined and its solution exists as
an element of 3, regardless of any convergence results.

Since an understanding of the ODE, its state space and its®ols required in order
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to characterize the fluid limit, we begin by defining the ODEofivated by the sequence
X™). In doing so, we will be reviewing Chapter 3; see Chaptenr&afoomplete analysis of
the ODE. Recall that the ODE is driven by a stochastic prqagkese local steady-state
distributions govern the evolution of the solution to the E2DWe thus start by defining
the driving process, which we call the FTSP. To understard=hiSP, we need to better

understand the queue-difference process.

4.5.1 The Drift Rates of the Queue-Difference Processes

In this subsection we specify the transition rates of theugeiifference processD?,(t) :
t > 0} in (4.2.8) at any time, conditional onX"(#,) = I'", where sharing is taking place;

i.e., we consider the transition rates of the process

D" = DM = {DM(I™ 1) > to} = { DIy (X (k). 1) : £ > 1o} (4.5.1)

at time t, conditional onX"(¢t,) = I'", whereI™ is a deterministic state, under the
assumption that sharing is taking place. (We will explainewlsharing will be taking
place in the following subsections.) The initial differenat timet, is D7 ,(X" (%), o) =
Q7 (to) — r1205(ty), where(Q7(to), Q5 (1)) is part of X7(¢y). To be well defined, the
statel™ should be for the full CTMCX{'. The transition rates are independent of tithe
for any given process staf&'. However, because @#.4, it suffices to focus on the three-
dimensional procesX”. In other words, we can think af* as a state oK, i.e., a vector
in N2 x [0, m3]. Thus the transition rates ih (4.5.2)-(4]5.5) below, urttés simplifying
assumption, are asymptotically correct wiftn) terms as: — oo (which we omit).

To simplify analysis, we will work with an integer state spacThus we assume that
the shifting thresholds?, in (4.2.6) are integers and that, is rational, in particular,

r12 = j/k for positive integerg andk. We then look at queue differences measured in
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units of1/k. Hence, we have transitions #fj and+k instead of the original values &f1
and-+tr.

When D" ('™, t,) = m < 0, let the transition rates b8 (n, m, I™), A% (n, m, ™),
,u(_j)(n,m, ') and u(ff)(n,m, ') for transitions of+j, +k, —;j and —k, respectively.
When D"(I'",ty) = m > 0, let the transition rates bkﬁf)(n,m, ), )\f)(n,m, rm),
MSf)(n, m, ™) and/,bf) (n,m, ™) for transitions of+j, +k, —j and—Fk, respectively.

First, for D™(I'™, ¢y) = m < Owith I'" = (Q7, Q%, Z7',), the upward rates are

A® (n,m,T") = A", and
(4.5.2)

A (n,m, T") = o Z3y + paa(my — Zi's) + 6205,

corresponding, first, to a clagsarrival and, second, to a departure from the clagsieue,
caused by a type-agent service completion (of either customer type) or byaas#l cus-

tomer abandonment. Similarly, the downward rates are

M(_k)(na m, ") = ppamf +6:Q7  and ,u(_j)(n,m, ") = A3, (4.5.3)

corresponding, first, to a departure from the classistomer queue, caused by a class-

agent service completion or by a classustomer abandonment, and, second, to a dass-

arrival.

Next, for D" (I'", ty) = m € (0, c0), we have upward rates

AD(m, T = A0 and AD (n,m, T) = 6,Q0, (4.5.4)
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corresponding, first, to a clagsarrival and, second, to a departure from the classs-
tomer queue caused by a clasststomer abandonment. The downward rates are

i (n,m, T = puam + a2y + paa(my — Z1,) +6,Q7  and 5.5

u (n,m, I") = A3,
corresponding, first, to a departure from the classistomer queue, caused by (i) a type-
agent service completion, (ii) a typeagent service completion (of either customer type),
or (iii) by a classt customer abandonment and, second, to a dassival.
Using these transition rates, we can definedtiie ratesfor D™ (X" (t),t) = D™(I', t),
conditional uponX"(¢) = I'". Let these drift rates in the regioi8, co) and(—oc, 0] be
denoted by" (X™(t)) andé™ (X" (t)), respectively, Combining (4.5.20) ahd (4]5.2)-(4.5.5),

we obtain

OL(X™(t)) = JINT — paamd + (22 — t1.2) Z7'9(t) — poomy (t) — 61Q7 ()]
— k[AY — 0:Q5(t)],
[ Q5 (t)] (4.5.6)
0" (X"(t) = JIAY — paamy — 0, Q7 (1)]

— KNS + (p22 — p1,2) 27 5(t) — paomy — 02Q5(1)].

In order to have sharing, we will want to haye(I'™) < 0 < 6 (I').

45.2 The FSTP

The FTSP can perhaps be best understood as being the limiaofily of time-expanded

gueue-difference processeefined for eachh > 1 by

DT, s) = Dyy(to + s/n), 520, (4.5.7)
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where we condition oX™(t,) = I'" for some deterministic vectd” assuming possible
values ofX™ (o) = (Q7 (to), @5 (to), Z75(t0)). (The timet, is an arbitrary initial time.) We
choosel™ so that sharing will occur (or will occur eventually farlarge enough). Since
we divides in (4.5.7) byn, we are effectively dividing the rates by We are applying a
“microscope” to “expand time” and look at the behavior aftex initial time more closely.
That is in contrast to the usual time contraction with coiegral HT limits. Seel[75] for a
previous limit using time expansion. We will explain the tinm detail in §4.5.8 below.

With that in mind, we see that the FTSP should have the sarteesgtace a7 ,. When
we relate the FTSP to the expanded queue-difference procgd%.6 below, we will also
relate the initial differences, which so far are unspecifiece. Since we already converted
to an integer state space, the FTSP will be a continuousMar&ov chain (CTMC) or¥.
With that convention, the FTSPD(~, s) : s > 0} has transition rates among the integers
determined at any time (in the newly introduced “infinitesimal” time scale) by batk
current stateD (v, s) = m and the vector. The vectory is a possible state of the fluid
modelz(t) = (q1(t), ¢2(t), z1.2(t)) at some time, where averaging may take place. Thus
v € [0,00)% x [0, ms]. Specifically,y can be any vector in the subsetefined in[4.5.16)
below.

Given the current state:, we let the rates of the FTSP as a function ofy be the
limit of the rates ofD"(I'", -) divided byn, where the rates ab™(I'", -) are themselves a
function of the current stat®™(I',0) = m with ['*/n — v asn — oo. Sincel™/n —

v asn — oo, there will be sharing in all systems for all sufficiently large. (For the
corresponding rates of the queue-difference proéegs$™, -) itself, see[(4.512)-(4.5.5).)

Since the drift rates 0D™ (T, ¢) in (4.5.8) are linear functions of the stak&(¢), we
have

M (X™(1) = 6, (X (1)) and 6" (X"(t)) = d_(X(t)) (4.5.8)
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wheneverX"(t) = X (t) in R, which we will have (for allt along a convergent subse-
quence, because along that subsequence we Xave> X in Ds; as a consequence of
tightness).

Directly, we letthe FTSRD(~, s) : s > 0} be a CTMC with transition rate\éf)(m, ),
A®) (m, ), u(_j)(m,y) and ;™ (m, ) for transitions of+j, +k, —j and—k, respectively,
when D(v,s) = m < 0. Similarly, let the transition rates bleﬁf)(m,y), )\Sf)(m,y),
uﬁf)(m, v) anduf)(m, ~) for transitions oft j, +k, —j and—k, respectively, whed (v, s) =
m > 0.

Paralleling the definitions in_(4.8.24)-(4.5.5), we define transition rates foD(v) as

follows: First, forD(v, s) = m € (—oo, 0] with v = (q1, ¢2, 21.2), the upward rates are

A k)(m, v) =X\, and

. (4.5.9)
A(j)(m> Y) = pr2z12 + po2(me — 212) + 0a2qo.
Similarly, the downward rates are
/i(—k)(ma ¥) = paama +61qp and ,u(_j)(M, 7) = Ao (4.5.10)
Next, for D(v,s) = m € (0, c0), we have upward rates
AP (m,7) =2 and AP (m,7) = bago. (4.5.11)
The downward rates are
(k) _
py (m,y) = piamy + 2212 + poa(me — 212) + 611 and
. (4.5.12)

P (m, ) = Ko,
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4.5.3 The ODE

We can now present the three-dimensional ODE in terms of I®PP. Letd = (1, Go, 212),

wherez(t) is the derivative evaluated at timgand

Gi(t) = A —myprq —m2(x(t)) [z12(E) p12 + 222(t) p22] — 01qu(t)
Ga(t) = Ao — (1 — mio(2(t))) [22.2(E) 2o + 212(t) 11 2] — O2q2(t) (4.5.13)

Z12(t) = mip(2(t))222(t) a2 — (1 — mi2(2(t)))212(t) 11 2,

with 7 2 (x(t)) = P(D(z(t),00) > 0) for eacht > 0, whereD(z(t), co) has the limiting
steady-state distribution as— oo of the FTSPD(~, s) for v = x(¢).
Equivalently, we have the following integral represemtatdf the ODE in[(4.5.73):

219(t) = 212(0) + ,UQ’Q/(; m2(x(s))(ma — 212(s)) ds
~na [ (1= maa(®)arals) ds,
1 (t) = ql(O) + )\1t — mlt — IULQ/ 71'172(1'(8))2172(8)) dS
. 0 . (4.5.14)
- ,UQ’Q/(; m2(x(s))(ma — 212(s)) ds — 64 /0 ¢ (s) ds,

¢2(t) = ¢2(0) + Aot — ,um/o (1 —mia(z(s)))(me — z12(s)) ds

“na [ (= mala(o))rals)ds — 0 [ ) ds

The integral representation is closely related to the nalegpresentation oX" = (Q7, Q3, Z7,)
in @.4.7); X™ has been replaced hyand the indicator?.Db(Sbo have been replaced by
m2(x(s)).

Sincey = z(t), the relevant FTSP at timedepends on the solution of the ODE at time
t, z(t). Since the right side of the ODE has(z(t)), the evolution of the ODE beyond
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in turn depends on the FTSP, specifically, upon the steatg-sdistribution of that FTSP.
Givenz(t) for somet > 0, we can determine the FTS®)(z(t), s) : s > 0}. Given that

FTSP, we can determine the steady-state quantityz(¢)). Thenm, »(x(t)) appears on
the right side of the ODE i (4.5.113), determining the futafé¢he ODE. We provided an
efficient algorithm to solve this ODE coupled with the FTSFCimaptef B. The efficiency
is based on the QBD structure discussetrb.5.

4.5.4 The State Space of the ODE

Since the ODE in[(4.5.13) is driven by the family of FT$R~, -) (just as the stochastic
systems are driven by the proceS$,), we divide the state space of the fluid limit ac-
cording to the relation that holds betwegnand ¢,, and the behavior of the FTSP in the
different regions.

Denote byS the state space of the ODE. That &,= [0,00)? x [0,ms] = {7 =

<QI7 q2, 21’2)}, and let

Sb={q —rp =k}, St={q—-rex>r}, S ={q —re<r}, (4.5.15)

withS =SPUStUS—.

The regiorS™ above the boundary is an open subse.ofor ally € S*, 71 5(7) = 1.

e

The regiorS— below the boundary is also an open subsé.dfor ally € S™, 71 2(y) =

The boundary subsé? is a hyperplane in the state spateand is therefore a closed
subset. It is the subset &fin which the AP is taking place, and the functien, can
assume its full range of value®,< 7, 5(7) < 1,7 € Sb. Let A C S be the set in which
D(x,-) is positive recurrent. We have< m; 5(y) < 1ifand only ify € A. Thus, for each
v € S?, we define

A={yeS:0<ma(y) <1} (4.5.16)
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4.5.,5 The Fundamental QBD structure

Characterizing the sét in (4.5.16) is essential to our analysis. Our analysis ip#fiad

by exploiting matrix geometric methods, aslinl[52]. In pautar, we represent the integer-
valued FTSRD = {D(~, s) : s > 0} constructed above as a homogeneous continuous-time
QBD, as in Definition 1.3.1 angb.4 of [52]. To do so, we re-order the states appropriately.
We order the states so that the infinitesimal generator métrcan be written in block-
tridiagonal form, as in Definition 1.3.1 and (6.19) lof [52h(tating the shape of a generator
matrix of a birth-and-death process). In particular, fortethree-dimensional state we

write
B Ay 0 0

Ay A Ay 0
0 Ay A Ay ... (4.5.17)
0 0 A, A

O
Il

Q)

where the four component submatridesA,, A; and A, are all2m x 2m submatrices for
m = max {j, k} (and are also functions of). Thesem x 2m matricesB, Ay, A; and A

in turn can be written in block-triangular form composedaiifrm x m submatrices, i.e.,

A} B, AT 0
B= and A = (4.5.18)
B\, A] 0 A

fori = 0,1, 2. (All these matrices are also functionsj
To achieve this representation, we need to re-order thesstatb levels. The main idea
is to represent transitions aboveand below) within common blocks. Lef.(n) denote

leveln, n = 0,1,2,... We assign original states(n) to positive integers. according to
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the mapping:

¢(2nm+i) =nm+1¢ and
(4.5.19)
o(2n+1)m+i)=-nm—i+1, 1<i<m.

Then we order the states in levels as follows

h
—~

=)
~—

Il

{1,2,3,4,...m,0,-1,-2,...,—(m — 1)},

L(1) = {m+1,m+2,....2m,—m,—(m+1),...,—(2m — 1)},

With this representation, the generator-matpixan be written in the forni_(4.5.117) above,
whereA; groups all the transitions within a level, groups the transitions from levéln)

to level L(n + 1) and A, groups all transitions from levédl(n) to level L(n — 1). Matrix

B groups the transitions within the boundary le¥€0), and is thus different thad;. An
example is given inf4.5.5.

QBD’s having a generator matri of the form [4.5.117)£(4.5.18) will be repeatedly
constructed in our proofs. We thus refer to the QBD struct@eresented by the generator
matrix () as specified by (4.5.18) as thendamental QBD

To determine when the AP holds, we need to be able to deterntira the FTSR is
positive recurrent. Fortunately, QBD theory allows us ttedaine that easily for each,
as explained in Chaptkl 3 and summarized below.

Let o, andd_ be the drift of the QBD in the positive and negative regiospextively
(seef3.3.3. See[52] for the general theory); i.e., let

0 (v) = (A(ﬁ)(v) - uf)(v)) +k (Af) (7) = uf)(v)) :

| | (4.5.20)
o (v) =7 (A(_”(v) - u(_”(v)) +k (A(_k) (v) — ugf)(v)) :
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By our construction of the rates above, it holds thaty) > J. () for everyy € S. Below

we repeat Theorefm 3.3.1 with the modified notation:

Theorem 4.5.1.The QBD representing the FTS® (v, s) : s > 0} is positive recurrent if
and only if
d_(7) > 0> d,(y). (4.5.21)

For everyy € R3, the setA in (4.5.16) where the AP is operating, is the same set in
which (4.5.21) holds, i.e.,

A={yeS:0_(7)>0>d:(7)} (4.5.22)

From the continuity of the QBD drift-rates ih (4.5120), ifllfmvs thatA is an open and
connected subset 8f. Hence A can be regarded as an open connected sub&gt (fince
S* is homoeomorphic t&* x [0, m,]). Our proofs (here and in Chapfér 3) rely on the fact
that if z(s) € A, then for somé > 0, z(u) € A, 0 < u < h. In particular, ifz(0) € A,
then there exists & > 0 such that{z(¢) : 0 < ¢t < §} C A, as stated in Theorem 3.4.2,

which we repeat below:

Theorem 4.5.2.1f 2(0) € A, then there exists a unique solutiore C3([0, §)) to the fluid
ODE (@.5.13)for somed > 0.

We will initially work on an interval(0,6), 6 > 0, over which we can guarantee that
the AP and Theorein 4.53.2 hold. After the convergence is ksitl, this interval can be
extended, typically all the way teo; seef3.6. However, the extension of the initial interval
[0,6) depends only on the solution to the ODE. Thus, it suffices togthe convergence
over[0, ) no matter how smali is. We will characterize & > 0 in §4.8.3. For the rest of

the discussion, assume that- 0 is known.
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45.6 The FTSP Arising as a Limit

We now present some results in which the FTI3R= {D(v,s) : s > 0} arises as a limit.
These results connect the queue difference prof¥sss {D7,(t) : t > 0} defined in
(4.2.6) and[(4.5]1) and the time-expanded queue-differpnacesse®” in (4.5.17) to the
FTSP defined above. These results help explain the maingimeor

We first formalize the separation of time scales using thet@xpanded queue-difference
processe®” defined in[(4.517). The following result “explains” the ARjtloes not com-

plete the proof of the FWLLN. We prove this theorentiil.

Theorem 4.5.3.1f I'"/n — v and D" (I'",0) = D(~,0) in R asn — oo, wherey € A,

then

{DX(I" s):s>0}={D(y,s):s>0} in D as n— o, (4.5.23)

where D" is the time-expanded queue-difference procesgiB.7)and D is the FTSP;
i.e., we have convergence of the sequence of time-inhomogeI CTMC'’s to a limiting

time-homogeneous CTMC.

Of course, we are actually interested in the queue-diftargmocesses. We will obtain

the following resultin Corollary 4.815. Recall the definitiof stochastic boundedness (SB)
in §4.2.2.
Theorem 4.5.4.0ver an appropriate interval0, ¢), the sequence of stochastic processes

{{D7,(t) : 0 <t <46} :n > 1} is SBInD, so that the sequence of random variables

{D74(t) :n > 1} is SBInR for eacht, 0 < ¢ < 6.

Nevertheless, one implication of Theorém 4.5.3 is thay axreasespy, fluctuates
“too much” in the neighborhood of every poitte [0, d) for the sequence of stochastic

processe${Dy,(t) : 0 <t <4} : n > 1} to beD-tight. If the sequence were tight, then
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it would have a convergent subsequencel}f, were to converge of), §) to a process in
D along that subsequence, then the limiting process mustdtavest finitely many dis-
continuities exceeding any constant 0, see e.g., Lemma 1 on p. 122 pf[13]. However,
for every neighborhood of anye [0, 4], there would necessarily be infinitely many jumps
of sizel in the limit asn — oo. Moreover, every would have to be a discontinuity point
of the limit, but there can be only countably many discorities. Hence, the limit process
could not be an element &. Hence tightness does not hold.

However, we do obtain a proper limit for the sequence of ramstariables{ D7 ,(t) :
n > 1} in R for each fixedt by exploiting the AP. After we prove Theorem 416.1, we
will establish the following pointwise AP result, which pelexplain the AP. Seé [77] for
a similar result. We prove this theoremd&.1 after proving Theorem 4.5.3.

Theorem 4.5.5. (pointwise AR Fix ¢ € [0,9). Asn — oo, Diy(t) = D(z(t),00) in R as
n — oo, wherex(t) is the solution to the ODE at timeand D(z(t), co) has the limiting
steady-state distribution of the FTSR~, s) for v = z(t).

Remark 4.5.1. Even though the limit of{™ turns out to be deterministic, Theorems 4.5.3
and[4.5.b imply that the proced3, does not become deterministic as— co. Given
Theorem§& 4.5]3 and 4.5.5, we see that indbedleterministic ODE is driven by a stochas-
tic process More precisely, the evolution of the (deterministic) smo to the ODE over
[0, 6) is governed by a stochastic process, although the ODE désgthat evolution is it-
self deterministic, depending on the time-dependent gtetate distribution of the FTSP’s.
The limiting ODE and its solution are deterministic becatwe kinds of averaging
phenomena taking place simultaneously: The first is thefgitrong-law type of averag-
ing, which is achieved by the spatial fluid scaling. The se¢omore interesting one, is the
AP, providing instantaneous long-run averaging througtsttparation of time scales in the

fluid limit.
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As an immediate consequence of Theokem #.5.4, we obtaimllog/ing SSC result.

Corollary 4.5.1. (SSC of the queue procegssn — oo,
e ((QF = £") =1 2Q3) =0 i D([0,4))

for any sequencéc, : n > 1} satisfyinge,, — oo asn — oc.

Corollary[4.5.1 shows that the two-dimensional scaled gumocess is effectively a
one-dimensional process as—+ oco. Combining Theorerm 4.4.1 and Corollary 4]5.1 gives
the following SSC result, which reduces the dimension ofplecess from the original
six dimension, to only two when we consider the fluid-scalediffusion-scaled versions
of the processX{ in (4.2.3). In particular, asymptotically, the six-diménsal process
XpP € Dg actually exists in a two-dimensional hyperplanel®f which is homeomorphic
to D, over the interval0, §). ForDs = {(ay, as, a3) : a1, ay, a3 € D}, X¥ is asymptotically
an element of the two-dimensional hyperpldnie, , 11 2a1 + ~, a3) : a1, a3 € D} of Ds.

Recall that for a sequence of proces§Es } in D, Y™ = Y™/ /n.

Theorem 4.5.6.(Complete SSCAsn — oo, dy, (Xg, X)) = 0in Dy([0,6)) asn — oo,
where X3 = (Q7,r12Q7 + K", Z75).

Remark 4.5.2. The SSC result in Theorem 4.4.1 is stated®gr= Ds([0, o0)), while the
SSC in Corollary 4.511, and thus also Theofem 4.5.6, hold®gi0, ¢)). However, the
SSC result in Corollary4.5.1 and Theorém 4.5.6 can be egtknd long as the solution
to the ODE is inA, since the SSC of the queue process is implied by the AP. (¥itlis
become clear in the proofs.) As we mentioned above, theisoltd the ODE is typically

in A forall ¢ > 0.
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4.6 The FWLLN

In this chapter we will establish a FWLLN for scaled versiamishe vector stochastic

process X¢, Y"), where

Xe = (@7, Z;,

7j

) €Ds and Yg' = (A7, S, U") € D, i,j =1,2, (4.6.1)
For the FWLLN, we focus on the scaled vector process

(X0, ¥M) = n~ (X0, YD), (4.6.2)

for X7 andYy" in (4.6.1). Recall that AssumptiohE1-3 are in force.

Theorem 4.6.1.(FWLLN) There exist$ > 0 such that

(X5, V) = (z,y) in Dyu([0,6)) as n — oo, (4.6.3)

where(z, y) is a deterministic element 6f4([0, §)) with

r=(q,2,) and y=(a;,sijuw), t=1,2;j=12; (4.6.4)

Zo1 = Soq1 = M1—211 = Ma—222—212 = 0eand(qi, g2, 21 2) being the unique solution to
the three-dimensional ODE i@.5.13) The remaining limit functiony is defined in terms

of z:

S
&
—~
~
SN—

Il

t
Ait,  sij(t) E,um'/ zi(s) ds,
0

<
&
~—~

~
S—

Il

¢
Gi/ gi(s)ds for t>0, i=1,2; j=1,2. (4.6.5)
0
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The time interval0, §) can be expanded to the largest interygjipically [0, co)) such that

there exists a unique solution to the ODE@Eh5.13)

Theorenl4.6]1 established convergence over some intérval Theoreni4.6]1 con-
cludes by stating that the interval can be extended whelegesolution to the ODE can be
extended. Ensuring convergence ojen) will usually imply convergence over an interval
[0,7"), for someT" > §, often everil’ = co. First, the convergence ovg), ¢) implies that
the SSC results in the next sectiéfd. 4, hold globally - see the explanation right above
Lemma4.7.B. Second, once the convergence is establisimth@unique solution to the
ODE (4.5.1B) is known to exist (Theordm 4]5.2), we can useébalts in§3.8, to infer
whether we can extend the convergence to the whole halfline) by analyzing the limit-
ing ODE itself, and not the stochastic sequerice In particular, the solution to the ODE
(4.5.13) can be extended to the entire halflinec) by showing that:(¢) € A forall ¢ > 0.
Often, this can be done without even solving the ODE; see fEmai@.4.4 and3.8.

By Theoreni4.56, it is enough to present the fluid limitQf, Z}',), since each queue
determines the other in the limit. Nevertheless, in Thedde®al we presented the fluid
limit for both queues. We did so, because the three-dimeatsiivamework applies in
other regions. For example, in Chagdtér 3 we analyzed thae €2DE in all three regions.
More importantly, even in our settings, when Assumpfibn Rle@nd the solution is in
A over|[0,6), it is helpful to solve the fluid equations without expligifiorcing the SSC
relation between the queues. Having the solution satiglyi(t) — r, 2¢2(t) =  strongly
indicates that the numerical solution to the fluid ODE is eoty See the last paragraph in
§2.9.2.

The rest of this chapter is devoted to the proof of Thedrenil4 llost proofs of sup-

porting theorems and lemmas appear in Chdgter 5 (in ordgopsfaaance in this chapter).
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4.7 SSC for the Service Process

In this section we establish state-space collapse (SS@)dmervice process
Z" = (Z{L,la Zﬁza Zg,la 22"72);

i.e., we show that we can consider the prodess, Z1',, 0, m3 — Z7,) instead ofZ™ in dif-
fusion scale (and thus, in fluid scale). Thus, the relevanedsion of the stochastic service
process is one instead of four. We accomplish this goal bwstgpthatZ;, is asymptoti-
cally null and that the idleness in each pool is asymptdticedgligible in diffusion scale
(in preparation for a future FCLT refinement of the FWLLN here

Unlike our main convergence result - Theorem 4.6.1 - whichraved on an initial
interval, the SSC of the service process holds globally0ono) for FQR-T, given As-
sumption$ fI13. However, here we do not yet show that a Iimﬁ@‘ asn — oo exists.
We only show that, when analyzing’, it is sufficient to consideZ?',, prove that its fluid-
scaled and diffusion-scaled versions converge and theacteaize the limits. That will be
done for the fluid-scaled case in the next section (and Ch&jte

Here is the SSC result to be established in this section. Maieit directly implies
Theoreni4.4]1.

Theorem 4.7.1.(global SSC of the service procggssn — oo,
n—l/Q(m? - Zﬁl - ZZl? Zg,b mg - Zﬁg - ZZQ) = (O, 0, O) in Dg.

Let It = m} — 7', — Z3, andly = my — Z1, — Z3, be the idleness processes in

service poold and2, respectively, and let

['=1'/n and I =1"/vn, j=1,2 4.7.1)
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Theoreni4.7]1 will be proved in two steps. First, we show #igt=- 0; second, we show
that /" and/} are asymptotically negligible. By the first stelfy, = m/ — 71, +op(1),s0
that we can disregard the-(1) term in the second step.

So far, we know only that the initial state converges by Asstiom[3. We do not yet
have convergence results for any of the stochastic pros@sseonsider. Hence, the results
in this section will be established K§y) determining bounding stochastic processes (using
sample-path stochastic order) for which the limits are kmoweasy to establish, arid)
using extreme-value theory for the bounding processesstifyjwur claims. The bounding
processes established in stgpwill have a QBD form (or anM /M /1 form, which can
also be viewed as a trivial QBD). Hence we start by estalvigskextreme-value limits for

homogeneous QBD processes.

4.7.1 Extreme-Value Limits for QBD Processes

We are unaware of any established extreme-value limits BID Qrocesses, so we establish
the following result here. Recall that a QBD has stateg), wherei is the level ang is the
phase. If we only consider the level we get the level prodéssan elementary function

of a QBD. The proof of this theorem, like most others. appeathapteib.

Theorem 4.7.2.(extreme value for QBPIf L is the level process of a positive recurrent
(homogeneoyxBD procesgwith a finite number of phasgghen there exists > 0 such
that

tli)I?OP(HLHt/logt > ¢) = 0.

Both the statement and the proof of Theofem 4.7.2 are coatptidy the discreteness
of the integer-valued proce#s The proof is also somewhat complicated by the continuity
of time. It is well known that the stationary distributiontbie QBD level is asymptotically

geometric, e.g., se€9.1 in [52]. Hence, we are unambiguously in the light-taitede,
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but we do not have the conventional convergence in law to tinalé&l distribution if we
subtract byclog ¢ instead of divide. Indeed, there do not exist scaling fumgti(¢) and
b(t) such that(t)(||L||: — b(t)) converges in law to a proper limit as— oo; see Sections
1.5 and 1.7 of([53]. Even though the conventional extremae/émit cannot hold, Theo-
rem[4.7.2 evidently is not in best possible form. First, wewtl have||L||;/ logt = ¢ for

a specific constant (which is easy to identify); second, we should have tighdérefsthe
family {||£||: — clogt : t > 1} for that same constant e.g., see Example C.2.6 6f [3] and
Problem 4.2 of([7], but our weaker implication of such resultiffices for the application

here and has a relatively simple proof; §8€2.

4.7.2 Basic Stochastic-Order Bounds

As we mentioned before, the proofs will involve stochastider bounds, using sample-
path stochastic order, involving coupling; seel[74], Ch.f45d] and §2.6 of [56]. We
briefly discuss those bounds for a sequence of stochasteggeq Y™ : n € N}. We will
bound the process™, for eachn > 1, by a process}”; i.e., for eachn, we will establish
conditions under which it is possible to construct stodbarrbcesse?ﬁ’b" andY™ on a com-
mon probability space, Witbﬁ]‘ having the same distribution a§’, Y" having the same
distribution asY™, and every sample path 6@” lies below (or above) the corresponding
sample path ot ™. We will then writeY," <, (>)Y". However, we will not introduce
this “tilde” notation; Instead, we will use the original mbbnY™ andY;". As a first step,
we will directly give both processe$;” andY," identical arrival processes, the Poisson
arrival processes specified for*. We will then show that the remaining construction is
possible by increasing (decreasing) the departure ratésasowhenevel’™ = Y,*, any
departure iy also leads to a departure ¥j’. That is justified by having the conditional

departure rates, given the full histories of the system®ujrtet, be ordered.
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The stochastic-order bounds will be of the form

k ¢
Y™(t) =Y"(0)+ ZNZ- (/ JM(s) ds) , 1>0, (4.7.2)
i=1 0
where V;, © = 1,2,...,k, denote independent ratePoisson processes, anfl is a

stochastic process that serves as a random time change Bbigson procesyd;. If we
are concerned with the fluid limit of *, then we next divide both sides 6f (417.2) hy

subtract and then add badk to get the representation

Yot = Y () /= Y™0) + ! /0 J7(s) ds

+n_lg [Ni (/Ot JI'(s) ds) - /Ot J(s) ds} :

The third step is to apply a version of the continuous mappiegprem to[(4.713) (The

(4.7.3)

purpose of the bounds is to be able to use the continuous ng@orem, which can not
be used onX".) However, to avoid unnecessary repetitions, we will natemhe second
step [(4.7.8) and write only the representation ag in (4. Wih the understanding that the
continuous mapping theorem is actually applied to the varsf Y in (4.7.3).

We now construct lower and upper stochastic-order bounddéoqueues, that will be
repeatedly used in following proofs, including in the probthe AP. ThroughoutlVy, N7,
andN}!, 1,7 = 1,2, denote independent ratePoisson processes.

We start with the bound;’ = (Q,, Q% ,, Z) inwhichQt, >, QF, Q5 , <« Q%
andZ; <, Zi',. For later use, we will consider the evolution{X () : t > y} for any
y > 0. To construc{ X(¢) : t > y} for a fixedy > 0, we initialize with X (y) = X" (y),
and act as if all newly available po@lservers (after timg) take their next customers from
the head of poo, even ifQy ,(t) < 0 (we allow the queues to become negative), so that

queuel is served by pool- servers only. Then, for any > 0 andt > y, X(t) can be
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represented via

La(t) = Q7o (y) + NY(ATE) — N7y (paamit)

-t (0 [ (@ Vo).

Qba(1) = Q3u(y) + NEOH) — N7, (u [z ds)
t ’ (4.7.4)
- 3, (e [ = 22050 as)
0

- (02 [ (@20 V0.

220 = 2300 = 3, (e [ 22001 a5).

Observe thatZ” is non-increasing, and will eventually rea6h By our construction,
Zy(y) = Z1'5(y), whereZ,(y) is the number of pook-servers helping classeustomers.
Starting at timey, every server takes his new customers from q@ege that the downward
drift of )3, may become negative. Since we have no reflectig, itself may become
negative, and if the downward drift is greater than the upwaare, it will drift to —co as
t — oo. However, the above bounds will be used to boufidon small intervalsy, y + ¢),
over which they will be meaningful. Note that the operatmrside the integrants oV}
ensure that there is no abandonment w@¢n < 0, i = 1, 2.

Next, we construct the bounding systeff = (Q7,, Q3,, Z7'), havingQ7t, <. QF,
Qy, > Qy andZy > Z7',. Once again, for each > 0, we consider the evolution the
process X;'(t) : t > y}. First, we initialize withX}'(y) = X"(y), n > 1. We now act as
if every newly available server at tinie> y takes his next customer from quelieeven if

15(t) < 0. (Once again, we allow the queues to become negative, glthioLthis case,

Q3,(t) > 0 for all t andn.) Then, for any fixed) > 0 andt > y, X;' can be represented
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via

t
2 (8) = Qy(y) + NE(NIE) — N7y (uamlt) — N7y <u / Z:<s>)

Y (91 / (@) v 0) ds) |

t (4.7.5)
1= Qa(y) + NS (AD) — Ny <92 | @ ds),

25(6) = 230+ N (sas [ 3 = 2505 85 ).

Observe thatZ] is nondecreasing, and will eventually reaetj. Thus, the downwards
drift of Q7 , might eventually become larger than the upwards drift, wineans tha@y ,
may drift to —oo (ast — oo). Again, these bounds will be used over short intervals over
which they will be meaningful.

By a simple application of the continuous mapping theoremcese prove the next

lemma:
Lemma 4.7.1.For y > 0 consider the processds(”(¢) : t > y} in (&.Z.4)and { X}*(t) :

t >y} in (@Z.3) for which the following holds for akb > 1:

<_ ?,av g,avzg) <st <_ ?7Q37Zﬁ2) <st <_ ?,ng,b? ZI?)

Also assume that(y) = X"(y)/n = X.(y) andX}*(y) = X,(y) inRasn — co. Then
(XP(t) it >y} = {X,(t) : t >yrand{X}(t) : t >y} = {X}(t) : t > y}inDsasn —
oo, whereX, and X, are defined as follows: Far > y, X,(t) = (Q1.4(t), Q2.4(t), Zu(t))
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satisfies the following integral equation

Q1a(t) = Qraly) + Mt — p,mat — 6, / (Q1,4(s) vV 0) ds,
0

Qoalt) = Qualy) + Aot — 11 /O Za(s) ds — iz /0 (ms — Za(s)) ds

t (4.7.6)
— 0 a 0) ds,
[ (@uate) v o) s
Za(t) = Za(y) + pasmot — fins / Zu(s) ds,
0
and X, (t) = (Q1(t), Q2(t), Zy(t)) satisfies the integral equation
Q15(t) = Qup(y) + Mt — pryamat — ,Ul,Z/ Zy(s) ds
0
4, / (Qra(s) v 0) ds,
0 (4.7.7)

Qo(t) = Q) + Aot — b5 / Qa(s) ds,
0

t
Z(t) = Zo(y) + pasmat — pins / Zu(s) ds,
0

Proof: By the continuous mapping theorem, applied to the integmatesentation, The-
orem 4.1 in[[57],Z" = Z"/n and Z = Z}'/n converge to the processés and Z,
with continuous sample paths. We can then apply Theorerm4H7j again, to conclude
that the fluid-scaled queue lengthig;, = Q7,/n andQ?, = Q7,/n, i = 1,2, converge
as well. (Note that:(s) = (s Vv 0) is Lipschitz continuous, as required for the integral
representation to be continuous.s

Note that the conditioX” (y) = X, (y) andX;'(y) = X,(y) in R asn — oo holds for
y = 0 with X,(0) = X,(0) = z(0), wherez(0) is deterministic, by Assumptidd 3 and our
construction (since we takg(0) = X;'(0) = X"(0)). In that case, and whenev&t,(y)

and X, (y) are deterministic, the limitX, and X, are deterministic functions. Indeed, we
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anticipate that the limitx', and X, will be deterministic, but we use the more general form
in our proof of Lemma& 4.8.11, exploiting convergence alongsequences, where we do

not yet know that the limit is deterministic.

4.7.3 TheZj, Process

We now treat”y; ,, proving that it is asymptotically globally (for all> 0) null in distribu-

tion. This conclusion foZ;', holds without any scaling.
Theorem 4.7.3.(global one-way sharingZ;', = 0in D asn — oo.

The proof of Theorerh 4.7.3 relies on three lemmas, which i stow. The proofs
of these lemmas and Theorém 417.3 appeéar ih 5.2. The firstdepnaves a special case
which implies Theorem 4.7.3. The other two lemmas prove alleersion of the theorem,
i.e., thatl|Z3, ||- = 0 asn — oo for somer > 0. In the proof of Theorern 4.7.3 we extend
the local result to the full halflin@®, co).

Our first lemma treats the simplest case.

Lemma 4.7.2.1f 2, 5(0) > 0, then, foralll’ > 0, P(infoci<r Z7',(t) > 0) — 1asn — oco.

As a consequencgy, = 0 asn — oc.

Given Lemmd4.7]2, it remains to consider only the casg0) = 0. Hence, we
assume that, »(0) = 0 for the rest of this section. Here is the outline of the probifie
SSC statement fafy, will first be proved locally on an intervdl, 7], for somer > 0.
Then, we can use later results, proving th&t (¢) = z1,(t) asn — oo on [0, 4] for some
0 < 7, to extended the local SSC statement to a global one. Thatirsproof follows
three steps:1) We first prove thaf| 73, ||, = 0, for somer > 0. (2) For some’ satisfying
0 < 6 < 7, we can use the local result established in the first stepoeprheorerh 4,611,

and deduce that thieterministidiuid limit = 5(¢) of Z7',(t) exists over0, 6]. (3) Finally,
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we show that:; »(ty) > 0 for somet,, 0 < t, < § < 7, so that Lemma_4.7.2 can be
applied to extend the local statement in steépt@ a global oneWe emphasize at the outset
that the extension to a global statement is not circularcsithe convergence of tk@2
process ovef0, §] (established in Theorem 4.6.1) uses only the local SSCtrssute we
takeo < 7).

The next two lemmas establish st described above, namely thaf, = 0 on an

interval[0, 7.

Lemma 4.7.3.1f either (i) x > 0 or (ii) 72 > o1 @and ¢, (0) > 0, then there exists,

0 < 7 < 00, such that
lim P ( sup Dy, (t) < O) =1,
n—0o0 te[0,7] ’

sothat||Z3, | = 0 asn — oo.

The proof of Lemma 4.713 relies on a fluid argument. That fle@soning fails when
k= 0andry; =2 = rorwhens = 0andg (0) = 0, since therny, (0) — r;2¢2(0) =
71(0) — 7r21¢2(0). In these cases we will rely on the threshéld, and construct a finer
sample-path stochastic-order bound for the stochastiersys

When we consider the stochastic sequeh&é&}, we need to haveQs(t) — Q7 (t) >
k3, in order to initialize sharing, with pool helping clas2. It is thus clear that we
need to consider the stochastic fluctuations of the weightedie-length processéy) ,,
and show that the probability of the threshdlfl, being crossed over an initial interval
[0, 7] converges t® asn — oo. Arguments relying solely on the fluid-scaled processes
(which are of ordefr(n)) are too crude, and cannot reveal whettigris exceeded on an
interval, sinceky | is taken to bex(n). We treat that case in the next lemma by appealing to

the extreme-value result established in Thedrem4.7.2.

Remark 4.7.1. Recall that the two initial thresholds’, andky, are designed to prevent

sharing when the two classes are not overloaded, and areftbesn to satisfy;; //n —
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oo asn — oo. Once sharing starts, with podlhelping queue, 7, may be dropped
(unless shifted-FQR is employed, in which cdgg = " = O(n)), butky, is kept, in
order to prevent sharing in the other direction. In the proiofhe next lemma, Lemma
[4.7.4, we will see that when sharing is taking place, it isugtoto haveky , / logn — oo
asn — oo. This suggests that, once sharing starts, we can replaagitiieal threshold

k3, with a new and smaller threshold, which satisfigs/ log n — oo asn — oo.

In the nextlemma we treat the cases not treated in Lemma 4n7a8dition toz; »(0) =
0, we assume that = 0 and thaty, (0) — r2,1¢2(0) = 0. This latter assumption implies that

eitherg; (0) = 0 (so thatg,(0) = 0 as well), or, if¢; (0) > 0, then necessarily, 5 = 7.

Lemma 4.7.4.Assume that = 0 and thatky , / logn — oo asn — oo. Also assume that
¢1(0) — r21¢2(0) = 0 (wherery; is a rational numbey. Then there exists, 0 < 7 < oo,

such that
lim P | sup D3, (t) < ki, | =1
n—00 te[0,7] ’ ’
Hence||Z3 ||, = 0 asn — oo.

Lemmag 4.7]3 arld 4.7.4 prove that, for some 0, ||Z3,]|, = 0 asn — co. We will
use this local result in the proof of Theorém 416.1, whichvehthat, for somé < § < 7,
{X"(t) : 0 <t <8} = {z(t) : 0 <t < 4§}, wherex is deterministic. In particular,
Z7,(t) = z12(t) over[0,d], wherez 5(t) is deterministic. Recall that Theorem 416.1

relies only on the local version of Theorém 417.3 estabtiskieeady.

Remark 4.7.2. The conclusion of Lemmga_4.7.2 reveals a disadvantage of rileenay
sharing rule for very large systems. The lemma concludes finalargen, if for some
€ > 0andty > 0 Z7,(to) > en, thenZ7,(t) is very likely not to reactt for a long time,
thus preventing sharing in the opposite direction, evehaif tvould prove beneficial to do

So at a later time, e.g., because there is a new overloacemiaial the opposite direction.
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In practice, we thus may want to relax the one-way sharing. rGine way of relaxing
the one-way sharing rule is by dropping it entirely, and iredyonly on the thresholds
ki, andky , to prevent sharing in both directions simultaneously (astaintil the arrival
rates change again). Another modification is to introdueestathresholds on the service
processes, denoted by, i # j, such that poa? is allowed to start helping clagsat time
tif D3, > k3, andZ7,(t) < st,, and similarly in the other direction.

We do not analyze either of these modified controls In thigptdra We observe that
a global result stating that;;, = 0 asn — oo will be much harder to show, because
we cannot use the reasoning in Lemima 4.7.2. Specificallyisigothat Z7', becomes

positive in fluid scale and never empties, does not imply #gt=- 0, since sharing may

be allowed at timé even if Z7',(¢) > 0. Nevertheless, Lemmas 4.7.3 dnd 4.7.4 still hold,
so thatZ3,(t) = 0 for all t € [0,7) for somer > 0 and alln large enough. Since the
convergence to the fluid limit in Theordm 4.J6.1 is initialst@blished for an intervad, ¢),

we can decreaseif necessary, so that < 7. Once convergence of the fluid limit to its
stationary pointis established (using the resul§ii7), we have that the fluid cannot leave

A, andz,; is guaranteed to remain zero throughout.

4.7.4 The ldleness Processes

We next address the two idleness processes. We will useathéastd concept of stochastic

boundedness, extended to stochastic processes, whictefieding4.2.2.
Theorem 4.7.4.For j = 1,2, I/ logn is SB, which implies thafgﬂ = 0 asn — oc.

Remark 4.7.3. The proof Theorern 4.7.4 uses the result in the previous stibeenamely
thatZ3, = 0 asn — oo. Hence, the statement of the theorem should first be shown to
hold on|0, 7], for 7 in Lemmas 4.7]3 ard 4.7.4. Once the local result is shownlth fas

used to prove Theorem 4.6.1, so that the convergens&'dab the deterministic fluid limit



CHAPTER 4. CONVERGENCE VIA THE AP 193

x is established over an intervill 6], for some0 < ¢ < 7. In the proof of Theoremn 4.7.3
this was shown to imply that}, = 0 asn — oo over the entire halfling), co). We can
thus extend the proof of Theordm 4]7.4 to the entire halflsvevell. For that reason, the
statement of the theorem refers to the global result andasf@also assumes that;, is

asymptotically null globally.

4.8 Proofs of the Main Theorem

We now come to the proof of Theorém 416.1. There are eighestiiosis here. 11§4.8.1 we
establish tightness. 1#4.8.2 we establish explicit stochastic bounds on all thegsses,
which control the total rate of transitions. .83 we identify an interval0, §) over
which the frozen difference processes are positive restjresymptotically. 1ff4.8.4 we
state a continuity result for QBD’s that we will apply. #.8.5 we establish stochastic-
process bounds. 1§4.8.6 we establish bounds for the integrals over small sabials. In
44.8.T we complete the proof of Theorém 416.1, exploitingdteparation in the previous
subsections. The string of inequalities[in (5.5.37) in® $hows what is needed. Finally,
in §5.1.2 we prove Theorem 4.5.5. Most of the proofs for thisisacppear irf5.5.

4.8.1 Tightness

We start by establishing tightness.
Lemma 4.8.1. The sequencf( X7, Yy?) : n > 1} in (@.6.2)is C-tight in Dy,.

For background on tightness, seel[13,[57, 78]. We recall &igwfacts: Tightness of
a sequence of-dimensional stochastic processe®inis equivalent to tightness of all the
one-dimensional component stochastic processPs For a sequence of random elements

of Dy, C-tightness implieD-tightness and that the limits of all convergent subsege®nc
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must be inC,; see Theorem 15.5 of the first 1968 edition[of/[13]. Thus ifisa$ to verify
conditions (6.3) and (6.4) of Theorem 11.6.3(0f|[78]. Heritsuyffices to prove SB of the
sequence of stochastic processes evaluated attane appropriately control the oscilla-
tions, using the modulus of continuity @h We obtain the stochastic boundedness at time
0 immediately from Assumptidn 3 i§4.3. We show that we can control the oscillations in
our proof of Lemma&4.8]1. The resulting tightness impliext the sequence of stochastic
processes is SB. We give an alternative proof of SBii8.2, which yields explicit bounds
on the limit processes.

Since the sequendg X7, Yy) : n > 1} in (£.6.2) isC-tight by Lemmd4.8]1, every
subsequence has a further subsequence which convergesiiraious limit. We conclude
this section by applying the modulus-of-continuity inelifies established in the proof of
Lemmal4.8.11 to deduce additional smoothness propertiesedirits of all converging

subsequence.

Lemma 4.8.2.1f (X, Yz) is the limit of a subsequence pfX?, V) : n > 1} in Dy, then
each component i®, say.X;, has bounded modulus of continuity; i.e., for edch> 0,

there exists a constant> 0 such that

w(X;, (,T) < e wp.l (4.8.1)

for all ¢ > 0. Hence(Xj, Y3) is Lipschitz continuous w.p.1.

In closing this subsection, we remark that we cannot emplegd bounds on the mod-
ulus of continuity to directly deduce that the liniks, Y3) is either differentiable or deter-
ministic. For example, a nonlinear piecewise-linear fiorcvith bounded slope is Lips-
chitz continuous without being differentiable, and thedam functionAt¢, ¢ > 0, where
A is a bounded (non-deterministic) random variable satigfig®1) without itself being

deterministic.
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The(C-tightness result in Lemnia 4.8.1 implies that every subsece of the sequence
{(Xp, V) - n > 1} in (46.1) has a further converging subsequenc®;in whose limit
is in the function spac€,,. However, by Theorernh 4.7.1, it suffices to focus Bf in
Ds, where the limits of the subsequences will beCin To establish the convergence of
the sequenc&™, we must show that every converging subsequence convergies same
(unique) limit. We thus need to characterize the limit of awoynverging subsequence,
show that it is deterministic and that it satisfies the ODE.(B) of Theoreni 4.611. The
existence and uniqueness of the solution to the ODE ovettervai|0, §), for somey > 0,
is stated in Theorein 4.5.2. Thican be increased as long as the solutida the limiting
ODE[4.5.18 remains irk. In this section we will characterize an initial interjal ] for
which the solution is ensured to beAn Since we will be using the results .7, we can

decreasé if necessary, so that< 7, for 7 defined in Lemmas 4.7.3 ahd 47.4.

4.8.2 Explicit Stochastic Bounds

In this section we establish some explicit stochastic bewndthe sequencg X, V) :
n > 1} in (£.6.1) and[(4.612). These bounds complement the mbitedd.8.1 and will be
used to control the transition rates of the queue-diffezestochastic processéy,.

To treatYy?, we use the inequalities
Siy(t) < N3y (pigmit)
Q7 (t) < Q7 (0) + AF (1), (4.8.2)

Ui (t) < Ni* (6:[Q7 (0)t + AF()t]), ¢ =0.

We apply the FWLLN for the Poisson process with (4.8.2) ansdufsptior B to obtain

the following lemma.
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Lemma 4.8.3.Yy < Y;3, whereY;s = 4,4 in  Ds, with

Ypa(t) = (Ait, Aat, 1. 1mat, 0, g amat, ps omot,
(4.8.3)

61 [ql (O)t —+ )\1t2], 92 [QQ(O)t -+ )\2t2]) in Rg.

We now turn toX}. SinceZgjj < n~'m} — m; asn — oo, the agent occupancy pro-
cesses?;‘j present no problem. L&Y = Q7 + Q% be the stochastic process representing
the total number of customers waiting in queue in our staahasdel indexed by.. It is
easy to see that we can boufd above stochastically b§;,, whereQ}, is defined to be
the number in system in al /M /oo model with arrival rate\” = A\ + A} and individual
service raté) = 0, A 6, = min {6,,60,}. The upper bound is created by simply removing
all the servers in the original model, and only allowing d#e by abandonment.

For the following comparison result we use the same samgiegiochastic-order con-

struction as irfi4.17.
Lemma 4.8.4.1f Q%(0) <y Qp,(0) in R, thenQ%, <, Q7 in D.

It is well known that, ifQ},(0) = 0, then@},(¢) has a Poisson distribution with a finite
mean for eaclh > 0. Moreover, it is easy to establish a FSLLN and a FWLLNdgy; we
state the FWLLN.

Lemma 4.8.5.1f Q7,(0) = qa(0) in R w.p.1, wherey,(0) is deterministic, then we have
the FWLLN

QL= qa In D as n— oo, (4.8.4)

whereg,, evolves deterministically according to the ODJ;(t) = A — 0qua(t), Starting at
¢a(0). Thus
Ga(t) < qpy = @a(0) V (A/0) forall t>0. (4.8.5)
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Proof: Let N* and N* be independent ratePoisson processes. Then,

Qut) = Qp0) + 50 - v (o Qus) ).

Applying the continuous mapping theorem for the integrplesentation, Theorem 4.1 in
[57], we have thaQ?, = ¢, in D asn — oo, whereg,, satisfies the ODE in the statement
of the lemma. The solution to this ODE is easily seen tqtg= \/0 + (¢(0) — \/0)e~?,
from which [4.8.5) follows. =

Lemma4.8b implies that the sequerdcgy, : n > 1} is C-tight in D whenever there
is convergence of the initial conditions. Together with lreai4.8.4, that implies the fol-

lowing result.

Corollary 4.8.1. The sequenc@Q% : n > 1} is SB inD. For eacht > 0, The limit of any
converging subsequence{dfQ%||; : n > 1}, wheren — oo, is almost surely contained in

the bounded intervdD, (¢1(0) 4+ ¢2(0)) vV (A/0)].

Proof: We use Assumptioll 3 to ensure that there is convergence dafitla conditions:
X"(0) = 2(0) in Rg asn — oo, wherez(0) is deterministic. We can then let the initial

conditions in Lemm&aZ.8.5 bg,(0) = ¢,(0) + ¢.(0). Hence, we get
QL =qa In D as n—oo for gu0)=q(0)+ ¢(0).

That FWLLN for Q7, implies that{Q%,} is SB, which in turn implies thafQ%} is SB.
Moreover, we get the final conclusion of Corollary 418.4..
We now have the following strengthening of the SB concludlmat can be deduced

from Lemmd4.8]1.

Corollary 4.8.2. The sequencf( X2, Y) : n > 1} in (4.6.1)and (4.6.2)is SB inD,,. For

eacht > 0, the limit of any convergent subsequence of the sequgiicg?, Y|, : n > 1}
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is contained in a compact subsetf;.

We also want to control the changes in the queue-length pseseover intervals. For
that purpose, leT™(t) be the total number of transitions of the procédg, Y*) in the

time interval(0, ¢].

Lemma4.8.6.For0 <t < t +wu withu > 0,

sup {[|Q7(s) — QT (1) +[Q5(s) — Q5 (1)} < T™(t +u) = T"(t) <a T3'(u), (4.8.6)

t<s<t+u

where{T}'(t) : t > 0} is a Poisson process with ratg , ¢,,/n — ¢, with

c=M+ A+ pamy + (12 V pe2)me + (61 V 6s) ((Ch(o) +¢2(0)) vV (21 J\;;:)) .
(4.8.7)
As a consequence; 'T)* = T, in D asn — oo, whereTy(t) = ct, t > 0, for cin (4.8.1)
Thus, for any(t, u, ¢, e) with0 < ¢t < t +u, ¢ > cande > 0, there existsy = n(t, u, ¢, €)
such that

P(T"(t+wu) —T"(t) > ¢énu) <e forall n > ny. (4.8.8)

Proof: Apply Lemma4.8.B to bound the rate of arrivals and servicametions. Apply
Corollary[4.8.2 to bound the total queue content, then iplylty 6, \/ 6, to bound the rate

of abandonmentsa

4.8.3 Positive Recurrence of the Frozen Difference Process

We defined the transition rates of the queue-differencega®m [(4.5.11). We assumed that
X"(ty) = I' whereI' is some fixed deterministic state where sharing is takingela
and specified the transition rates at titge We now consider theonstant-rate QBDwith

those transition rates. We also extend the definition bynkpit” be a random variable,



CHAPTER 4. CONVERGENCE VIA THE AP 199

where it is understood that* only determines the constant transition rates, and does not
otherwise affect the future evolution of the stochasticpss. LetD} (I™) = {D}(I™, 1)

t > 0} denote this process. (Sinégplays no role in[(4.5]1), we take it to loe) We use

the subscriptf because we refer to this constant-rate QBD adrbeen queue-difference
processthinking of the constant transition rates being achievechhbse the state has been
frozen at the state”. (As in §4.5.1 the now-constant transition rates[in (4.5.2)-(4.6r6
asymptotically correct as — oo with extrao(n) terms, which we omit.)

We will frequently apply this constant-rate QBD wiil¥ being a state of some pro-
cess, such ax™(t). We then writeD}(X™"(¢)) = {D}(X"(t),s) : s > 0}, where it is
understood thab} (X" (t)) 4 D%(T'™) under the condition that” 4 X" (t).

Itis important that this frozen difference proce3j(I'™) can be directly identified with
a version of the FSTP, because both are QBD’s with the sametste. Indeed, the frozen-
difference process can be defined as a version of the FTSPspétial state and basic
model parameters; andm;, and transformed time. In order to express the relationship

we indicate the dependence upon the arrival rates and nushbervers. In particular,
(DO, m2, T, 5) s > 0} = {D\!/n,m" /n, /0, ns) : s > 0}, (4.8.9)
with the understanding that the initial differences cailegii.e.,
D(N! fn,m? /n, T /n,0) = DY, m?,T",0) = Q1(0) — 112Q4(0),  (4.8.10)

where(Q7, Q%) is part of the stat&™. This can be checked by verifying that the constant
transition rates are indeed identical for the two processferring to [4.5.2)E(4.515) and
@59)-[451R). Since}/n — X\, i = 1,2 andm!/n — m;, j = 1,2, by virtue of
the MS-HT scaling in[(4.2]2), we will have the transitioneof D(A} /n, m} /n, T, /n, -)
converge to those ab(y) = D(\;, m;,~,-) wheneverl',/n — ~. Of course, [(4.819)
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should not be surprising, because we defined the FTSP in tefrthe queue-difference
process by a limit that asymptotically reverdes (4.8.9)e Transition rates oD(v) were
defined to be the limit of the transition ratesof(T",,) /n whenl'/n — ~.

Since the proces®’ (X" (ty),t) has the same QBD structure as the FTi3Pa ver-
sion of Theorenh 4.511 holds, i.e., for a given fix&d (¢,), the frozen difference process

{D}(X"(to),t) : t > 0} is positive recurrent if and only if
O (X" (to)) <0< 0™ (X"(tg)). (4.8.11)

In this subsection we find@> 0, such that the frozen proces (X" (t), -) is positive
recurrent for alt € [0, &) with probability converging td asn — oo. We do not actually
use this result in the following, but the result is intenegtand the proof illustrates the
technique we will use in a relatively simple setting.

For¢ > 0 andn > 0, let B, (£, n) be the following subset of the underlying probability

space:

B, (&,m) = {sup 07 (X"(t)) < —n and inf 6"(X"(t)) > n}. (4.8.12)
te[0,¢] t€[0,0]

On B, (£, n), the proces$ D’} (X" (t), s) : s > 0} is positive recurrent for all € [0, £].

Lemma 4.8.7. There exist > 0 andn > 0 such thatP(B,,({,n)) — 1 asn — oo, where
B, (£, n) is the subset if4.8.12) on which the procesgD’} (X" (), s) : s > 0} is positive

recurrent for allt € [0, &].

4.8.4 Continuity of the FTSP QBD

In the remaining proof, we will ultimately reduce everytjidown to the behavior of the

FTSP QBDD. First, we intend to analyze the inhomogeneous queuerelifée processes
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D"(I') in terms of associated homogeneous (constant-rate) me=$(I™") introduced

in §4.8.3, obtained by freezing the transition rates at thesttiam rates in the initial state
I'". In (4.8.9) above, we showed that the frozen-differencegsses can be represented
directly in terms of the FTSP, by transforming the model paeters(\;, m;) and the fixed
initial statey and scaling time. In the following subsections, we will agmiately bound
the queue-difference processe8(I") above and below by associated frozen-queue dif-
ference processes, and then transform them into versiothe dfTSPD. For the rest of
the proof, we will exploit a continuity property possessgdiis family of QBD processes.
We will be applying this to the FTSP.

To set the stage, we review basic properties of the QBD psodesm the transition
rates defined il (4.5.9)-(4.5]12), we see that there aresodifferent transition rates over-
all. The generato€) in (4.5.17) is based on the four bagie: x 2m matricesB, A, A,
and A,, involving theS transition rates. By Theorem 6.4.1 and Lemma 6.4.3 of [5Bgnv
the QBD is positive recurrent, the FTSP steady-state pibtyabector has the matrix-
geometric formy,, = aoR", wherea,, anda, arel x 2m probability vectors and is the
2m x 2m rate matrix, which is the minimal nonnegative solutionshe guadratic matrix
equationAd, + RA, + R?A, = 0, and can be found efficiently by existing algorithms,
as in [52]; See Chaptél 3 for applications in our settingsthéf drift condition [(4.5.21)
holds, then the spectral radius Bfis strictly less tharl and the QBD is positive recur-
rent (Corollary 6.2.4 of [52]). As a consequence, we hayg jR" = (I — R)~*. Also,
by Lemma 6.3.1 of\[52], the boundary probability vectgris the unique solution to the
systemny (B + RAp) = 0 andal = ag(I — R)™'1 = 1.

Like any irreducible positive recurrent CTMC, the positregurrent QBD is regenera-
tive, with successive visits to any state constituting abedded renewal process. As usual
for QBD’s (seel[52]), we can choose to analyze the systenattijrin continuous time or in

discrete time by applying uniformization, where we geregdl potential transitions from
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a single Poisson process with a rate exceeding the totaliti@nrate out of any state. In
continuous time we focus on the interval between successits to the regenerative state;
in discrete time we focus on the number of Poisson trangti@iween successive visits to
the regenerative state.

Let 7 be the return time and IéY be the number of Poisson transitions (with specified
Poisson rate). Because of the QBD structure, the return titmeés a moment generating
function (mgf) ¢, (0) = E[e’7], for which there exists a critical valus > 0 such that
¢-(0) < oo forf < 0* and¢.(f) = oo for 6 > 6*, while the number of transitiongy, has
the generating function (gf)x (z) = E[2"], for which there exists a radius of convergence
z*with 0 < z* < 1 such that)y(z) < oo for z < z* andyy(z) = oo for z > 2*.

Moreover, the mgf..(0) and gfiyy(z) can be expressed directly in terms of the finite
QBD defining matrices. It is easier to do so if we choose a reggive state, say", in the
boundary region (corresponding to the matBixn (4.5.17)). To illustrate, we discuss the
gf. With s* in the boundary level, in addition to the transitions witkiie boundary level
and up to the next level from the boundary, we only need censite number of transitions,
plus starting and ending states, from any level above thademy down one level. Because
of the QBD structure, these key downward first passage timetha same for each level
above the boundary, and are given by the probabilitiegk| and the associated matrix
generating functiorz(z) on p. 148 of [52]. Given(z), it is not difficult to write an
expression for the generating functign,» (=), just as in the familiar BD case; e.g., see

4.3 of [52].

We will be interested in theumulative process

cw= [ (F(D(s)) - ELf(D(o)))ds 30, (4.8.13)

for the special functiorf (x) = 1,>0;. Cumulative processes associated with regenerative
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processes obey CLT’s and FCLT’s, depending upon assungmioout the basic cycle ran-
dom variables- and [ f(D(s)) ds, where we assume for this definition thaf0) = s*;
see§VI.3 of [[7] and [28]. From [14], we have the following CLT with Berry-Esseen
bound on the rate of convergence (stated in continuous tinlidke [14]): For any bounded

measurable functioli, there existsg, such that

|E[f(C(t))/Vt] — E[f(N(0,5))]] < forall t > t,, (4.8.14)

Sl =

where

o’ =F

( /0 f(D(s)) = E[f(D(c0))] dsﬂ : (4.8.15)

again assuming for this definition thBX0) = s*. The constank” depends on the function
f and the third absolute moments of the basic cycle varialdéaaetl above, plus the first
moments of the corresponding cycle variables in the intyale if the process does not
start in the chosen regenerative state.

There is significant simplification in our case, because timetfon f in (4.8.14) is an

indicator function. Hence, we have the simple domination:

/OT |f(D(s)|ds = /OT f(D(s))ds <7 w.p.l (4.8.16)

As a consequence, boundedness of absolute moments of lotetvayiables reduces to the
moments of the return times themselves, which are contrbiethe mgf.

We will exploit the following continuity result for QBD’s.
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Lemma 4.8.8. (continuity of QBD’$ Consider a sequence of irreducible, positive recur-
rent QBD’s having the structure of the fundamental QBD4n5.53, with generator ma-
trices {Q,, : n > 1} of the form(@.5.17) If Q, — Q asn — oo, where the positive-
recurrence drift conditiorf4.5.21)holds for@, then there exists, such that the positive-
recurrence drift conditior{4.5.21)holds for@,, for n > nq. For n > ng, the quantities
(R, g, v, ¢7, 0%, 0y, 2, 02, K) indexed by are well defined for),,, wheres? and K are
given in(4.8.14)and (4.8.1%) and converge as — oo to the corresponding quantities

associated with the QBD with generator matx

Proof: First, continuity of R, oy and« follows from the stronger differentiability in an
open neighborhood of any € A, which was shown to hold in the proof of Theorem 5.1 in
ChaptefB, building on Theorem 2.3 in[34]. The continuity-éffollows from the explicit
representation il (4.8.115) above (which corresponds tedhéion of Poisson’s equation).
We use the QBD structure to show that the basic cycle vasabénd [ f(D(s)) ds are
continuous function of), in the sense of convergence in distributions (or convergerh
mgf's and gf's) and then for convergence of all desired mamsezxploiting [(4.8.16) and
the mgf of r to get the required uniform integrability. Finally, we ghetcontinuity of K
from [14] and the continuity of the third absolute momentdh# basic cycle variables,
again exploiting the uniform integrability. We will have maergence of the characteristic
functions used in[[14]. However, we do not get an explicitresgion for the constants
K. =

We use the continuity of the steady-state distribution (5.5.33) ing5.5.3. In addition,
we use the following corollary to Lemnia 4.8.8 in (5.5.32}fi5.5.

Corollary 4.8.3. If (A}, m},~,) — (A, m;,~) for our FTSP QBD’s, wher@4.5.21)holds
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for (A\;, m;,~), then for alle > 0 there exist, andn, such that

1 t
P <|¥/0 Lo mn yn,s)>0p ds — P(D(Ai, mj,7,00) > 0)] > 6) <€

forall t >ty andn > ny.

Proof: First apply Lemma 4.818 for the steady-state probabilityteex, to find ny such
that| P(D (A}, m}, yn, 00) > 0)| — P(D(X\i; my,7,00) > 0)| < ¢/2 foralln > ny. By the
triangle inequality, henceforth it suffices to work with D(A}, m}, v,,00) > 0) in place
of P(D(\;,m;,7,00) > 0) in the statement to be proved. By (4.8.14), for ady there

existst, such that for alt > ¢,

1 [t - M
" (|?/0 Lipomg n.s)>01 ds — P(D(A?, mj, v, 00) > 0)] > \/z_f)
Vi '

(4.8.17)
< P(|N(0,02(A?,m;‘,7n))| > M) +

Next, chooseV/ so thatP(|N(0,02%()\;,m;,v))| > M) < €/2. Then, invoking Lemma
[4.8.8, increase, andt, if necessary so thaa@*(\;', m},v,,)) =0 (A, mj,v))| @and| K (A}, m?, 7,) —
K(\;, m;,~)| are sufficiently small so that the right side bf (4.8.17) ssléhan:/2 for all

n > ng andt > t,. If necessary, increasg andn, so thatM/\/t, < ¢/2. With those

choices, the objective is achievea.

4.8.5 Process Bounds

Our next step is to find & > 0 for which we can uniformly bound the frozen difference
processeg D’} (X"(t),-)} and the queue-difference proces$éx’,(t)} for all ¢ € [0,¢],
with two QBD’s - one from above and the other from below. Westhranslate the unifor-
mity of the bounds on the drifts, established in Lenima #.&7% uniformity of bounds
on the family of proces$ D’ (X" (¢),-)} for ¢t € [0,&]. Having two bounding QBD's will
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eventually allow us to use a sandwiching argument. Noweabf sample path stochastic
order, we use rate order, denoted¥y <, X,, by which we mean that, from every integer
state and for every possible state that can be reached fransttite in a single transition,
both (i) the transition rates up in CTM@; are less than or equal to the corresponding
transition rates up in CTM,, and (ii) the transition rates down in CTME, are greater

than or equal to the corresponding transition rates downTiMC X5.

Lemma 4.8.9. There exist > 0 andn > 0, random vectors{}, and X, and a sequence
of sets{B,,(¢,n) : n > 1} in the underlying probability space witR(B,,({,n)) — 1 as

n — oo, such that, folb <t <¢,

Dy(Xy, ) < DF(X"(1),-) <» DF(Xpp,-),

DF(X5,) <o DYo(t) < D(Xhy, ), (4.8.18)

where the bounding processe (X7}, -) and D}(X7, ), and thus also the interior pro-

cesseD}F(X"(t),-), satisfy@.8.12)on B,,(¢, ), n > 1, and are thus positive recurrent.

Whenr, , = 1, rate order directly implies the stronger sample path stetih order, but
not more generally, because the upper (lower) process ogmgown below (up above) the
lower (upper) process when the lower process is at 8tatéelow, while the upper process
is just above stat8. Nevertheless, we can obtain the following stochastic robdeind,

involving a finite gap. However, there is no gap when = 1 because thep =k = 1.

Corollary 4.8.4. Let( = (j V k) — 1. Under the conditions of Lemn#a8.9 there exist
¢ > 0andn > 0, random vectors(}, and X", and a sequence of sei®,,(¢,n) : n > 1}

in the underlying probability space with(B,,(¢,7)) — 1 asn — oo, such that, whenever



CHAPTER 4. CONVERGENCE VIA THE AP 207
inR,

in D([0,&])), where the bounding processé® (X}, -) and D}(X],-), and thus also
D}(X™(t),-), satisfy@.8.12)on B,,(¢, 1), n > 1, and are thus positive recurrent.

Proof: We can do the standard sample path construction: Providedie processes are
on the same side of state 0 in the CTMC representation, we a&a ail the processes jump
up by the same amount whenever the lower one jumps up, andatidke processes jump
down by the same amount whenever the upper one jumps downeowthere is a diffi-
culty when the processes are near the state 0 in the CTMCsexgegion (which involves
the matrixB for the QBD). When the upper process is aboand the lower process is at
or below0, the lower process can jump over the upper process by at(most) — 1, and
the upper process can jump below the lower process by this samount. But the total
discrepancy cannot exceédl v k) — 1, because of the rate order. Whenever the desired
order is switched, e.g., whenever the processes are ordgred},, t) < D}(X],t), no
further discrepancies can be introducead.

As an immediate corollary to Corollafy 4.8.4, we can deduoelmstic boundedness

(SB) asn — oo. The following corollary implies Theorem 4.5.4.

Corollary 4.8.5. Forn > 1, let S" be the set of all processg®)y,(t) : 0 <t < ¢} and
{D}(X"(t),s): 0 < s <&} for0 <t <& with ¢ from Corollary4.8.4 (The setsS™ form

an uncountably infinite subset of the spd2€0, £]).) Suppose that conditio@.8.19)is
satisfied. Then the sequen®™ : n > 1} is SB. Consequently, the sequence of processes
{{Dp,(t) : 0 <t <&} :n>1}is SBIND([0,£]), so that the sequendeDy,(t) : n > 1}

is SB inR for eacht with0 < ¢ < &.
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Proof: By lettingn — oo in Corollary[4.8.5, we are able to exploit the stochasticeord
bound in [4.8.20), where the bounds are positive recursatisfying [4.8.12). =

We will later show that the conclusions of Corolldry 418.3chwhen¢ is replaced
by d, where|0, §) is the interval over which there exists a unique solutiorh® ®DE in
A. Together with Theorer 4.5.3, Corolldry 418.5 proves thatgequence of processes
{D7,(t) : 0 <t <&} :n > 1} is SB but not tight inD([0, ¢]); the oscillations are too
rapid.

4.8.6 Special Construction to Bound the Integrals

The comparisons in Lemnia 4.8.9 and Corollary 4.8.4 are itapgrbut they are not di-
rectly adequate for our purpose. The sample-path stoctasler bound works fine for the
special case of, ; = 1, but not more generally, because of the gapHowever, we now
show that an actual gap will only be present rarely, if we deathe interval length small
enough andh big enough. We use the construction in the previous seatixpipiting the
fact that we have rate order, where the bounding rates carade arbitrarily close to each
other by choosing the interval lengghsuitably small.

However, we must specify the initial conditions for all théfetence processes under

consideration. Consistent with Assumptidn 3, we assunte tha
DY,(0) = Dy(X5,,0) = Dy(X};, 0) = DF(X"(2),0) = j (4.8.21)

for some fixed;, forall ¢, 0 <t < ¢&.

Lemma 4.8.10.Assume that conditiofd.8.21)holds. For any > 0, there exist > 0 and
n > 0, random vectors\(y;, and X7, associated QBD processg®}(Xy,, s) : s > 0} and
{D}(X),,s) : s > 0} (with constant transition ratgsand a sequence of sef#,,(¢,7) :

n > 1} in the underlying probability space witR(B,({,n)) — 1 asn — oo, such that,
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on the set3, (&, ),

XL < —n and §T(XD) >,

(Xy) < —n o oand 6" (Xy) > (4.8.22)

(so that the bounding processég (X ,-) and D} (X}, -), and thus alsaD}(X™(t),-),

are positive recurrentand, for0 < ¢ < ¢, (also onB, (&, 7))

1 /¢ 1 /¢
3 /0 Lipn(xp.s>0p ds — € < 3 /0 Loy (xn(@),)>0) ds

1 13
< ¢ / Lipp(xy,.)>01 ds + €
0 (4.8.23)

1 /¢ 1 /¢
g/o 1{D?(X;}”s)>0} ds —e < g/o 1{D’i2(s)>0} ds
1 13
< 5/0 Lipn(xp,.s)>01 ds + €.

4.8.7 Proof of Theorem 4.6.1

By the tightness established in Lemma4.8.1, we know thatyesgbsequence ofX™ :
n € N} has a further subsequence converging weaklpin We will be considering a
converging subsequence with limif, but without changing the indexing notation. (We
understand that runs through a subsequence.) It suffices to show that thé Kimis
deterministic and satisfies the ODE [in (4.5.13) or, equiviethe integral representation
in (4.5.13).

By Theorem$ 4.411 arid 4.4.2, which draws$dnd, it suffices to focus on the integral

representation foX” in (4.4.7). Many of the terms converge directly to their cauparts
in (4.5.13) because of the assumed MS-HT scalirfgfii.]1 and the convergendg® = X
through the subsequence obtained from the tightness. dntlee only exceptions are the

integral terms involving the indicator functions. Howewirese integral terms are easily
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seen to be tight as well, as a conseuence of the tightnese setiuence§Z!’; : n > 1}
established irf{4.8.1. Hence, we can consider a subsequence of our originaenying
subsequence in which all these integral terms convergeofgeptimits as well. Hence we

have the integral representation(in (4]14.7) converge teystem

Z12(t) = 212(0) + pool, 1 (t) — 121, 2(t)

Q1(t) = qu(0) + Mt — mat — pyalg11(t)
— pia2 1y 91/ Qi (s (4.8.24)

Qa(t) = q2(0) + Aot — ool 1 (t)

— pi1 21, 92/@2

We have exploited the assumed convergence of the initialitons in Assumptiofi]3 to

replaceX (0) by z(0) in (4.8.24). In more detail, for one integral term we have
t — —
{{/ ey Z0a(s) ds 1> 0} sn > 1} = {[,1a(t) 11> 0} in D
0

through the final converging subsequence.

At this point, it suffices to identify the limit of each intejterm with the corresponding
term in the integral representation n_(4.5.14). That wiliquely characterize the limit
over an initial intervall0,0) because, by Theorem 4.5.2, there exists a unique solution
to the ODE over an initial intervgD, ). Since each of these integrals can be treated in
essentially the same way, we henceforth focus only on time fer »(¢). Thus, it suffices

to show that

Iq71’2(t) = At 7T172(X(S>>Zl72(8)) ds (4825)

for eacht. (It suffices to look at only any ong) From a differential perspective, it suffices
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to show that

Toao(t+ &) — Ijao(t) = ma(X(1) Z12(t)E +0(€) as € — 0. (4.8.26)

We achieve that goal by applying Lemma 4.8.11 belaw.

Recall that|0, ) is the interval where the ODE has a unique solution. It iSahyt
reduced to satisfy the requirementsjéfi, but then can be increased once a smaller interval
has been treated. However, here we reduegain if necessary, so that< ¢ for ¢ in
Lemma$4.8]7,4.8.9 and 4.8110. After Lenima 4.8.11 and Enedc6.1 have been proved
for this reduced, § can be further increased to the point where the existenceaunfcue
solution to the ODE has been determined. Below we will beoohicing a new¢ less than

this news.

Lemma 4.8.11.(convergence of the integral terim®r anye > 0 andt with0 < ¢ < ¢,

with § specified above, there existss £(e, 0, t) with0 < £ < 6 — ¢ andng such that

1 [t _ - B
P <|E/ Lipp, (5504 Z12(8) ds — m2(X (1)) Z12(8)| > e) <e (4.8.27)
t

for all n > ny.



Chapter 5

Remaining Proofs in Chapterl4

This chapter is dedicated the remaining proofs in Chdgtand,consists of five sections.
The material is presented in the order of the associatedrialaite Chaptef #. Section 5.1
contains the proofs of Theorerns 4]5.3 and 4.5.84i8. Sectior 5]2 contains the proofs

for theorems and lemmas establishing SSC for the serviaepses if§4. 4. Sections 513
and[5.4 contain supplementary material §dt4. In particular, Section 3.3 displays the
bounding QBD used in the proof of Lemma 4]7.4, while Sedfighgovides more on the
idleness processes, going beyond Thedreml4. 7A4.ih

Sectior[5.b contains the proofs for the theorems and lemuoragleting the proof of
Theorem 4.6]1 if4.8. Sectiol 5J5 has four subsections, corresponding tsubgections

of §4.8 where the results are located.

5.1 Remaining Proofs in Section 4.5

In this section we provide the two remaining proofff3: We prove Theorenis 4.5.3 and
45.5.

212
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5.1.1 Proof of Theoremi4.5.3

We first establish the claimed convergence of processésBP@). For anyy € A, the
limiting FTSP{D(~,s) : s > 0} is a CTMC with bounded constant transition rates, as
specified in§4.5.2. (In this section we view the FTSP as a CTMC rather tisaa @BD
process.) Hence, the FTSP can make only finitely many tiansiin any bounded interval.
Moreover, there are only four possible transitions from state, and there are only two
possible forms for these transitions, depending upon venédy, s) > 0 or D(~, s) < 0.
Thus, the FTSP is a well-defined random elemenDof In this framework of integer-
valued processes, convergencéiis equivalent to convergence of the finite-dimensional
distributions (fidi’s).

The converging processé®”(I'™,s) : s > 0} defined in [4.5]7) are more compli-
cated, having time-dependent transition rates, but theg leasentially the same struc-
ture. For eacln ands, these processes also have only four possible transitions dny
state, and there are only two possible forms for these transj depending upon whether
Dr(T™,s) > 0 or DX(I', s) < 0. By assumption, the initial conditions converge. Since
' /n — ~ asn — oo, and because of the special time scalindin (4.5.7), we haiferm
convergence of the time-varying transition rate®3{[", s) > 0 to the constant transition
rates of the FTSP over the interyal ¢]. Hence, we have convergence of the fidi’s, and thus
convergence iD.

We now elaborate on the way this last step can be formalizedt dan be done cleanly
using a uniformization framework, as in Theorem 3.1[of [S@&]which all transitions of
{D}(I'™,s):s >0} are generated from a single Poisson process with constantaw-
ever, there is a complication, because in general the trangates are not unbounded
above. One approach to this problem is to use adaptive umifation as in[[55] and ref-

erences cited therein. However, by Corollary 4.8.1, théescmtal queue content™ ' Q%
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is stochastically bounded above by a proces&)y,, which converges in law to the de-
terministic finite boundy,(t) < ¢, given in [4.8.5). HenceD?(I'", -) is asymptotically
equivalent to a process with uniformly bounded transitiates. (For a direct stochastic
bound on the number of transitions over a subinterval, seenha4.8.6.) Hence, without
loss of generality, we work with the asymptotically equesat processes that do have uni-
formly bounded transition rates. However, we do not inticelnew notation; instead we
simply act as ifn'Q% is bounded above and the transition rateg Bf' (I, s) : s > 0}
are bounded above. Hence, we just apply standard unifotionza

Given the Poisson process with a fixed rate, which exceedsathsition rate out of any
state, all potential transitions are the transition epadtthe Poisson process. The actual
transitions at the transition epochs of the Poisson pramess according to a discrete-time
Markov chain (DTMC). However, in our nonstationary contelte DTMC is nonstationary

as well. In particular, as in [51], we can express the timgethelent transition function as

Pi(1)

Z?]

P(DZ(T",t) = j|Dy(I",0) = 1)
» (5.1.1)

oo 77t T}t k .
Iy LR s s,
k=0

0<s1<52< - <5 <t =1

wheren is an upper bound on the total transition rate out of eacle $tatall» > 1, and
Pé")(s) = [ + Q™ (s)/n is the discrete-time markov chain transition matrix at tispe
based on the infinitesimal generator matg%’ (s) at times.

Thus, for any given time interval, t| ande > 0, we can find an integer such that
the total number of transitions of all of the proces$é¥'(I'",s) : s > 0} over [0, ]
is at mostr with probability 1 — e. This will apply to all processes under discussion.
Moreover, the occurrence of thogéransitions is distributed ovés, t] according ta i.i.d.
uniformly random variables, using the classical propeftthe Poisson process. We can

thus take the number and the locations of the transitions as fixed, independent &Ye
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are then left with the product of DTMC transition matrices at time-varying locations,
as shown in[(5.1]1). These transition matrices here aretmfinatrices, but each has at
most5 positive entries in each row. For any giverand initial state, we can only reach a
finite number of states. So, at this point, these transitiatrices actually are equivalent
to finite matrices. Moreover, these transition matricesveage to the common limiting
transition matrix corresponding to the FTSP, uniformly.nige, we can uniformly bound
the difference between the product of thesmatrices and the corresponding product for
the FTSP, independent of their time-varying locations hit tvay, we can bound the total

error by an arbitrarily small quantity by choosing firsand them: to be suitably large.s

5.1.2 Proof of Theoreni4.5)5

By Corollary[4.8.5, the sequence of random variafle$,(t) : n > 1} is SB. Since SB
is equivalent to tightness iR, every subsequence has a converging subsequence. We show
that every such converging subsequence must convergerarttiem variableé (z(t), co),
which has the steady-state distribution of the FTI3Betermined by the fluid statgt) at
timet. That implies that the entire sequence must converge, socahapletes the proof.
To characterize the limit of a convergent subsequence, pleiexhe continuity of, first,
x(t) and, secondD(z(t), o), exploiting Lemmad 4.8]8. With these properties, we obtain

the following lemma, which relates the FTSP at finite timegd@teady-state distribution.

Lemma 5.1.1.For anyt, with0 < ty < §, whered is chosen to ensure that the ODE has a
unique solutione with z(t) € A for all ¢ € [0,0), and anye > 0, there exists, and({ > 0

such thatt, + ¢ < § and

D(x(tg),00) — € <g D(z(t),s) <g D(x(tg),00)+¢€ in R (5.1.2)

forall s > spand allt € (to — (,to + ().
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Proof: As stated above, Lemnia 4.B.8 establishes continuityahthe distributions of
the steady-state variablé¥z(t), co) of the FTSPD. It also establishes continuity for the
distribution of the return time to a fixed regeneration stateus, we can establish uniform
(geometric) rate of convergence to the steady state disivilbass — oo (uniform int
neart,) by exploiting a coupling construction, as in Lemma VII.2fq7]). The proof there
provides explicit expressions to provide uniform boundstmrate of convergence foin
a small neighborhood of arty. =

Next, by Theoreri 4.611X" = z in D([0,9)) asn — oo, wherez is a deterministic
continuous function with:(¢) € A forall ¢ € [0,6). (We do not apply Theorem 4.5.5 in the
proof of Theoreni 4.6]1.) Then we can apply Theoktem 4.5.8 puwved above, to obtain

D}, (X™(t),t + so/n) = DM(X"™(t), 50) = D(x(t),50) as n—o0.  (5.1.3)

From the proof of Theoref 4.5.3 we can conclude the convemenuniform fort in a
neighborhood of,. Hence we can apply Lemrha5.1.1 to conclude that there exjstsch
that

D(x(tg),00) — 2e <y DY'o(X"(t),t + s0/n) <g D(x(to),00) +2¢ in R (5.1.4)

forall t € (ty — (,to + () provided thatn > ny. Hence, the limit of the convergent
subsequence dfD7, (o)} must beD(z(ty), o0), as claimed. s
In closing, we remark that a minor variant of Lemma 4.8.1byed in the same way)

establishes the weaker limit for local averages:

1 t+€
lim lim - 1{Df2(s)§k}d<‘3 — P(D(.Tj(t), OO) < /{2) forall &k, (5.1.5)

£10 n—oo g "

but (5.1.5) and tightness alone are evidently insufficiemstablish the desired result.
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5.2 Remaining Proofs in Section 4.7

Proof of Theorem[4.7.2: Our proof is based on regenerative structure. The intervals
between successive visits to the stéliej) constitute an embedded renewal process for
the QBD. Since the QBD is positive recurrent, these cycle® liamite mean. Given the
regenerative structure, our proof is based on the obsenv#tiat, if the procesg were
continuous real-valued with an exponential tail, instebichteger valued with a geometric
tail, then we could establish the conventional convergémdaw of ||L||; — clogt to the
Gumbel distribution, which implies our conclusion. Henae, bound the process above
w.p.1 by another process, that is continuous real-valued with an exponential tail and
which inherits the regenerative structureof

We first construct the bounding proceSsand then afterwards explain the rest of the
reasoning. To start, choose a phase determining a spegioeeative structure for the
level proces<C. let S; be the epoch cycléends,: > —1, with S_; = 0, and letL(n)
be the set of states in level For each cycle, we generate an independent exponential
random variableX; and take the maximum betwedl{t) and X; for all S;_; < t < 5;
such thatC(t) ¢ L(0); i.e., letting{X; : < > 0} be an i.i.d. sequence of exponential
random variables independent Sfand lettingC'(¢) be the cycle in progress at tinte
Ly(t) = L(t) V Xowlicwero)y- Clearly, £, inherits the regenerative structure 6fand
satisfiesC < £, almost surely. Moreover, by the assumed independenceatire> 0

andt > 0,
P(Ly(t) >x) = P(L(t) >z)+ P(X >x)— P(L(t) > 2)P(X > ),

where X is an exponential random variable distributedgsthat is independent of (¢).
We now consider the stationary version&fwhich makes’, stationary as well. We let

the desired constantbe the mean of the exponential random variablesIf we makec
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sufficiently large, then we clearly hav&(L,(t) > z) ~ e~*/¢ asz — oo, because the first
and third terms become asymptotically negligibleras> oo. (We choose: to makeL ()
asymptotically negligible compared £6.)

It now remains to establish the conventional extreme-vhitoi for the bounding pro-
cessL,. For that, we exploit the exponential tail of the stationdistribution, just estab-
lished, and regenerative structure. There are two appesaichextreme-value limits for
regenerative processes, which are intimately relatedhasrs by Rootzén[[63]. One is
based on stationary processes, while the other is base@ aytte maxima, i.e., the maxi-
mum values achieved in successive regenerative cycles, fFive consider the stationary
version, then we can apply classical extreme-value liritstationary processes aslin|[53].
The regenerative structure implies that the mixing coaoditn [53] is satisfied; see Section
4 of [63].

However, the classical theory in [53] and the analysis if] fi®lies to sequences of
random variables as opposed to continuous-time procebsgeneral, the established re-
sults for stationary sequencesl|in[53] do not extend tomstatly continuous-time processes.
That is demonstrated by extreme-value limits for positeeurrent diffusion processes in
[15,[23]. Proposition 3.1, Corollary 3.2 and Theorem 3.71&][show that, in general, the
extreme-value limit is not determined by the stationaryrdistion of the process.

However, continuous time presents no difficulty in our seftbecause the QBD is con-
stant between successive transitions, and the transiiong in an asymptotically regular
way. It suffices to look at the embedded discrete-time paegransition epochs. That is
a standard discrete-time Markov chain associated with enéirtuous-time Markov chain
represented as a QBD. La&i(¢) denote the number of transitions over the intefvat|.
ThenLy(t) = L4(N(t)), whereL,(n) is the embedded discrete-time process associated
with £,. SinceN(t)/t — ¢ > 0 w.p.1 ast — oo for some constant’ > 0, the results

directly established for the discrete-time proc&ssare inherited with minor modification
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by £,. Indeed, the maximum over random indices already arises \ndlating extremes
for regenerative sequences to extremes of i.i.d. sequesees. 372 and Theorem 3.1
of [63]. In fact, there is a substantial literature on extesrwith a random index, e.g., see
Proposition 4.20 and (4.53) 6f [61] and al50l[64]. HencetlierQBD we can initially work
in discrete time, to be consistent with [53, 63]. After dosm we obtain extreme-value
limits in both discrete and continuous time, which are esaliyequivalent.

So far, we have established an extreme-value limit for theastary version oL, but
our process’, is actually not a stationary process. So it is natural toyapmpe second
approach based on cycle maxima, which is giveri in [63, 6] aaati@ VI.4 of [7]. We
would get the same extreme-value limit for the given versib, as the stationary ver-
sion if the cycle maximum has an exponential tail. Moreottag reasoning would apply
directly to continuous time as well as discrete time. HoweReotzén[[63] has connected
the two approaches (see p. 380[0of|[63]), showing that all grsions of the regenerative
process have the same extreme-value limit. Hence, the g®esion of the process,
has the same extreme-value limit as the stationary veralogady discussed. Moreover,
as a consequence, the cycle maximum has an exponentidlaad ionly if the stationary
distribution has an exponential tail. Hence, we do not neembnsider the cycle maximum

directly. =

Remark 5.2.1.(an alternative proof) An alternative proof of Theolem 4 would be based
on a direct demonstration that the cycle maximumni bias a geometric tail. That alternative
reasoning has the advantage that it applies directly inmmootis time; see [6] and Section
VI.4 of [[7]. However, we are unaware of such a result in theréiture. Evidently, it can
be derived from the known behavior of the first passage tiredsden levels. By Theorem
8.2.2 of [52], the probability of moving from levélto levelk + 1 before returning to level
0 is asymptotically geometric ds — oo. However, the return to leveél may not be in

the same phase as the initial phase. Hence, we must consedemdom evolution within
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level 0 until we either hit the initial phase or leave levgland then the random number of
those returns until we do return to levein the same phase as the initial phase. Evidently
that will not alter the geometric tail, but that remains toshewn.

In fact, if we show that the cycle maximum has a geometri¢ thiékn we need not
construct the bounding process. Instead, we can directly apply the extreme-value the-
orem for regenerative processes with geometric tail, Témaos in [4] or Problem 4.2 on
p. 185 of [7], from which our conclusion would follow. In paxtlar, it is well known that
the maximum queue length over a busy cycle in\dn\//1 is asymptotically geometric.
We can thus use Theorem 6, and, more directly, the example diilp in [4], for the
extreme-value bound for th&/ /M /1 queue-length process, which we apply in the proof
of Theoreni 4.714.

Proof of Lemmal4.7.2: By Assumptioii B, the condition »(0) > 0implies thatP(Z7,(0) >
0) — 1 asn — oo. Clearly, for everyn > 1, Z7, is stochastically bounded from below,
in sample-path stochastic order, by a procg&gswhich hasZzy(0) = Z7',(0), has only

departures and no new arrivals, .8, > Z; foralln > 1 andt > 0, where

240 = 200) = Ny (s [ 2065 d5)

with N7, being a ratet Poisson process.
Given the FSLLN for the Poisson proceds,, by applying the continuous mapping

theorem, we have’/n = z, in D, asn — oo, where

t
2p(t) = 2,(0) — u1,2/ z(s)ds, t>0.
0

It follows thatz, () > 2,(0)e~#12f, so that, (¢t) > O0forallt > 0. ThusP (info<s<; Z7'(s) >

0) — 1 asn — oo. The stochastic order bound implies that the same is trugiforwhich
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proves the first claim of the lemma. The second claim #igt = 0 asn — oo follows

from the first together with the one-way sharing rula.

Proof of Lemmal[4.7.3: When either of the conditions (i) or (ii) holdgy;(0) < 0,
whereds 1 (t) = r21¢2(t) — qi(t), t > 0. Under condition (i), by Assumptidd 3;d, 1(0) >
di12(0) = ¢1(0) — r12¢2(0) = k. If &K = 0 and Condition (ii) holds, them,,(0) <
r1,2¢2(0) — 1(0) = k = 0.

We will construct a sample-path stochastic-order bounihfadove forD; |, and show
that this bounding process is asymptotically strictly rizgeon an interval0, 7|, for some
7 > 0. To stochastically bound®s ,, we consider a sequence of systefi§' : n > 1} in
(4.7.3) initialized at timé) with X;'(0) = X™(0), n > 1. Thus,Q7,(0) = Q7(0), and both
service pools start full with only their own customers. (Rlethat we are considering the
caseZy,(0) = 0 for all n large enough.)

Let Dy = ry10Q35, — Q7 be the weighted difference processiiy. By construction,
Q1 <st QF anngvb >q 5, sothatDy > Dy,. Now, as was shown i@IZ,X’g‘ = 1
asn — oo, for z, in (@Z1). HenceDy = Di'/n = dy = 12142 — q1p SN — 00, With
dy(0) < 0.

The limit process, ,(t) may eventually become negativetdacreases, at which point
it becomes meaningless as a stochastic-order boungl.fefowever, the continuity of; ;,
together with the initial conditiony; ,(0) > 0, implies that we can find a timg > 0, such
thatg, ,(t) > 0 for all t € [0, 7]. Similarly, the continuity ofZ, implies that there exists
7 > 0, wherer, = inf{t > 0 : dy(t) = 0}. Then, forr;* = inf{t > 0 : D}(t) > 0},
by applying a version of Theorem 13.6.4 in[78], the contimimapping theorem gives
' = 7. Now, for 7" = inf{t > 0 : D3,(t) > 0} we have that™ >, 7;'. Taking

T = 11 A 73, gives the first claim of the statement.
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The second claim of the statement follows from the first, togiewith the initial con-

dition in Assumptio B, namely, thaty, (0) = Oforalln. =

Proof of Lemmal4.7.4: We will prove the lemma by constructing a QBD process that
serves as a stochastic-order bound for the probgsover some intervdD, 7]. The claims
will then follow from an application of the extreme-valumii in Theoreni 4.7J2. As a first
step, we define the following processes:

Fors > 0, let X7'(s) = (QF,(s),Q3.(s), Zj(s)), whereQ},, i = 1,2, are defined

in (4.7.4) andZ}" is defined in[(4.7]5). For a fixed > 0 and a fixedX”(s), define the

following processes:

L (XY (5),t) = Q7 ,(0) + Ny (ATt) — NY y (piamyt) — Ny o (122 ()t)

— N{ (61(Q7 4 (s) VO)E)

1,a

Q5. (X(5),1) = Q5.4,(0) + N3 (A3t) = N3 (p22(my — Z4'(s))1)

— N3 (62(Q5 () V 0)1)

where, as beforely, N7, and N}, i,j = 1,2, are independent ratePoisson processes.

EAT A

Then the process

DIH(X(s), 1) = r22Q5 (X[ (5), 1) — (@1 (X1 (s),1) — ") — nf DP(XI(s),u)

0<u<t

conditional onX(s), is a continuous-time Markov chain as a function of the timgua
mentt. (Thatis becaus&! is constructed independently 6f'.) The key observation here

is that the conditional procegs! (given X' (s)), can be analyzed as a QBD, just a§2¥.

In particular, ifr,; = j/k, wherej, k are positive integers with no common divisors, then
the procesP" = JQ5 . — kQ7, is a CTMC with state space in the nonnegative integers,

and can be represented as a QBD; §&8&. Moreover, the proceds” is positive recurrent
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if and only if D7 is.

Our next objective is to replace the family of proces§$ (X7(s),t) : t > 0} (there
is a different process for eacki!’(s)) with one positive-recurrent QBD which will bound
Dz, from above over an entire intervi@l 7|, for somer > 0, and then translate the scaling
by n in X to a scaling byn of the time argument. More specifically, we continue the
proof in two steps: in the first step we find a positive recur@BD D7 (X, t), such that
DX, ) >s DX (s),-) forall s € [0,7]. Inthe second step, the bounding process
D?(X],-)is shown to be equal in distribution to a rat&€BD on the interval0, a,, 7], for
some{a, } such that,/n — 1 asn — oo. The second step allows us to employ Theorem
[4.7.2 and show that the probability that the threshigldis crossed ovel0, 7] converges
to0 asn — oo.

However, before we find a QBD that uniformly bounds all thegesseD” (X (s), -),
for all s € [0, 7], we need to find alk > 0 for which D (X (s), -) is positive recurrent.
That will allow us to characterize. As mentioned abovd)” is positive recurrent if and
only if D” is positive recurrent. We thus analyze the family of proes$$D” (X (s),t) :
t>0}:s>0}. (Forevery fixeds > 0 and X”(s) we have a whole procegs” with time
argument.)

Given X" (s), the procesg D"(X"(s),t) : t > 0} has upward jumps of sizgwith
rateS\j(Xf(s)) = A}, and downward jumps of size(away from the boundary) with rate
(X)) = pep(my — Z7(s)) + 0.Q% ,(s). It has upward jumps of size with rate
Ne(XT(8)) = paam + 12 Z(s) +6:1Q7 . (s), and downwards jumps of size(away from
the boundary) with ratg,, (X" (s)) = A?. Now, by Theorem 7.2.3 ir_[52], for a given
X"(s), D"(X"(s),-) is positive recurrent if and only i, (X”(s)) < 0, where

0.(X2(8)) = J(XI () — iy (XI(5)) + RA(XI () — (X2 (5))).
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Since X! = X'/n = 2. = (qra) G20 %), fOr 2z, in @Z1) andg; ., i = 1,2 in
(@.7.8), we can define for every> 0 the functions\;(z,(s)), ji;(z.(s)), \(z.(s)) and
jir(.(s)) to be the limits of\; (X7 (s)) /n, ji;(X1(s)) /n, Ae(X2(s)) /n and i (X7 () /n,
respectively, ag — oc.

By the linearity ofd, and the continuity of the addition mapping when the limits ar

continuous, e.g. Theorem 12.7.1n][78], we have thak(s))/n = 0.(z.(s)), where

0u(.(5)) = J(\s(@(9)) = fiy () + k(A (a(5)) = fin(2(5)))-

Note that, by our construction of}, z(0) = z.(0) (that is becaus&”(0) = X/*(0) =
X"(0) for all n > 1). Itis easy to see that, i, ; = r, » (recall also that, »(0) = 0), then
0.(2.(0)) = —6_(2(0)) for 6_(z(0)) in @5.20). Since, by Assumptiéh &, (+(0)) > 0, it
holds that, (., (0)) < 0.

If 71 < 712, then necessarily;, (0) = ¢(0) = 0 (see the explanation before the
statement of the lemma). In that case we havedh(at, (0)) = 561 (A — p1,1my) + k(Ao —
2,2M3), SO thatS*(:):*(O)) < Oifand only if 61 (A; — p1.0mq) +ro1(Ae — p22msg) < 0. TO
see that this inequality must hold, observe that wittd) = ¢,(0) = 2,2(0) = 0, and by
Assumptioni B,

0_(x(0)) = 61( Ay — p1.1ma) — 11.2(Ag — p2ams) > 0,

which implies that\, > 115 2m,, since by Assumptionl L = A, — p1.1my > 0. It follows

from the latter inequality and the fact that; < 7 o, thatS*(:):*(O)) < 0. To summarize,

J.(x.(0)) < 0 in both cases considered in the statement of the lemma.
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Sincez, andd, () are continuous functions, we can find> 0 such that

sup 8, (z,(s)) < 0.
s€[0,7]

Hence, there existg > 0 such that

P ( s%p}gf(Xf(s)) < —7]1) —1 as n— oo.
selo,r
Thatis, for some > 0 there exists a sequence of seis* : n € N} satisfyingP(B™) — 1
asn — oo, such that the proceds? (X (s),t) : t > 0} is positive recurrent for all
s € [0, 7] and for every sample path &f]" contained inB™.

We now construct a single bounding QBD process that boudftisy”(s), -) for all
s € [0, 7]. For that purpose, leX;, = (Q7,,, Q3 .., Z,,), where

T = QM- @5, = inf Q5,(1) and Z = Z7|-

0<t<r

Applying the continuous mapping theorem for the supremunction, e.g., Theorem

12.11.7 in[[78], we have that”, = X" /n = 2., = (Q1.m; G2.m» Zm), With ¢1.n = || Q1.4

T
G2m = infoci<r q20(t) aNd 2, = || 2]

Let D, (t) = 7’2,1Q27* (t) — Ql,*(t) — infogugt D, (U), where

Q1+(t) = q1,a(0) + Ny (Mt) — Ny (paamat) — Ny (p122mt) — NY' (01q1,mt)
Q2,(t) = 42,a(0) + N3 (Aat) — N3 o(p2,2(m2 — zm)t) — Ny’ (O2g2,mt) -
By our choice ofz,,,, the QBD D, is positive recurrent. Observe that for every sequence

of sample pathg X : n € N}, the scaling inD?(X",-) is equivalent to scaling time

by a factor of ordeO(n) in D,. That is, for everyl’ > 0, and every sample path &f"
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contained in the set8™ defined abovd D (X, t) : 0 <t < T} L {D.(at) : 0 <t <
T}, witha,/n — 1 asn — oo.
Let M.(t) = sup,eqy D«(s) denote the running maximum of the positive recurrent

QBD D.. It follows from Theoreni 4.7]2 that there exists- 0 such that
1i_)m P(||Dy |-/ logn > c) < le P(||M*||a,~/logn > ¢) = 0.

The claim of the lemma then follows from the assumption tjay log n — oo asn — oo.

Proof of Theorem[4.7.8: By Lemmd4.7.R, we only need to consider the casg¢0) = 0.
By Lemmag$4.7]3 and 4.7.4, there exists 0 such that

Tim P (| D3, < k5,) = 1.

Hence, the claim of the theorem will follow from Lemrna 417r&larheoreni 4.611 if we
show that for some, satisfying0 < ¢, < § < 7 it holds thatz, »(ty) > 0, wherez, » is
the (deterministic) fluid limit on{fz asn — oo (shown to exist in the proof of Theorem
4.6.1 on[0,¢]). We will actually show a somewhat stronger result, namtlgt for any
0 < e < ¢ there existg, < e such thatz; 5(to) > 0. We prove that by assuming the
contradictory statement: for some< ¢ < ¢ and for allt € [0, €], 21 2(t) = 0.

Since, by our contradictory assumption,(t) = 0 over [0, ¢], we have that/’, =
op(n). Recall also thaZy, = op(1) over|0, €] (sincee < 7, andr is chosen according to

Lemmasg 4.7]3 anid 4.7.4). Define the processes

Li=Qi+ 20 + Zly—m and L} = Qi + 23, + 73y —mi, (5.2.1)
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representing the excess number in system for each class.thg{L?)™ = Q7,7 = 1, 2.

Then,

LE(t) = L2(0) + NEOR) — N, <u / (Lr(s) A 0) ds)
(5.2.2)

N (ez- /Ot(ms) v 0) ds) top(n), i=1,2

for0 <t <dasn — oo, whereN¢, N7, andN;* are independent ratePoisson processes.
Theop(n) terms are replacing the (random-time changed) Poissoesses related 47,
andZ3,, which can be disregarded when we consider the fluid limi@&.2).

Letting L = L?/n, i = 1,2, and applying the continuous mapping theorem for the
integral representation function in(5.P.2), Theorem A.[Ei7], (see also Theorem 7.1 and

its proof in [57]), we have thatL?, L3) = (Ly, Ly) asn — oo, where, fori = 1,2,

so that

(We denote the fluid limit ofL? by L;, i = 1,2, instead of our usual lower-case letters
notation in order to avoid confusion.)

It is easy to see that = (L;(t))*, i = 1,2, whereg; is the fluid limit of Q?. Now,
by Assumptioh.B, both pools are full at tifleso thatZ;(0) > 0. Moreover, fori = 1,2,
L¢ = (N — i) /0; is an equilibrium point of the ODE/, in the sense that, if;(¢,) = L¢,
thenZ;(t) = L¢ for all t > t,. (Thatis, L¢ is a fixed point of the solution to the ODE.)
It also follows from the derivative of.; that L; is strictly increasing ifL;(0) < L¢, and
strictly decreasing if; (0) > L¢,i = 1, 2.

Recall thatp; > 1, so that\; — p;10my > 0. Together with the initial condition,
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L.(0) > 0, we see that, in that casg, (t) > 0 for all t > 0. First assume that, > 1.
Then, by similar argumentd,,(¢) > 0 for all t > 0. In that case, we can replaég with

g, 1 = 1,2, and write

t

qi(t) = q1(0) = (A — p,om)t — 01 | qu(s) ds,

t

¢@2(t) = ¢2(0) — (A2 — praoma)t — 0y @(s) ds, t€l0,¢,

—

so that, fort € [0, €],

diao(t) = ¢ + (1(0) — g{)e™ " —r (45 + (g2(0) — q3)6_92t)

= (¢ —r43) + (q2(0) — ¢! )e™ " — r(qa2(0) — g3)e™"".

(5.2.3)

andd172(0) = K.

It is easy to see that

) d o L
dy (1) = Edl,z(t) = —01(q1(0) — g e """ + 162(g2(0) — ¢5)e” ™"

Hence,d| ,(0) = A\ — piamy — 61qi(0) — 7(A2 — pa2) + r62q2(0). If follows from
(4.5.20) and the assumption;(0) = 0, thatd},(0) = 6_(x(0)). By Assumptior(B,
x(0) € A, so thatd, ,(0) > 0, andd, » is strictly increasing a. Now, sinced, »(0) = &,
we can findt; € (0,¢], such thatd, »(¢) > « for all 0 < t < t;. This implies that
P(infoci<y, DYo(t) > 0) — 1asn — oo.
It follows from the representation ¢}, in (4.4.2) that for any < [0, ],
Ziy () — Naalami) o) (5.2.4)

n

The op(1) term follows from our assumption that’,(f) = 0 asn — oo. However,
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by the FSLLN for Poisson processes, the fluid limit of Z" in satisfies; »(t) =
p22mot > 0 for every0 < t < ¢,. We thus get a contradiction to our assumption that
z(t) =0forallt € [0, €.

For the case, < 1 the argument above still goes through, but we need to disithg
between two casest, = 0 andL, > 0. In both cased., is strictly decreasing. In the
first case, this implies that, is negative for every > 0. It follows immediately that
qi(t) — rqz2(t) > k for everyt > 0. If L,(0) > 0, then necessarily, (0) > 0, and we can
replaceL; with ¢;, i = 1,2, on an initial interval (beforel, becomes negative). We then

use the arguments used in the case 1 above. =

Proof of Theorem[4.7.4: We will start working with the processds’ and L} defined
in (6.2.1) (but recall that, by Theorelm 4723, = 0, and in particuIaIZA;f1 = 0). For
eachn > 1, we will bound the two-dimensional procegs}, L%) below in sample-path
stochastic order by another two-dimensional pro¢éss, L5 ;).

We construct the lower-bound proceds ,, Ly ,) by increasing the departure rates in
both processes} and L}, making it so that each goes down at least as fast, regamfless
the state of the other. First, we place reflecting upper &a&mn the two queues. This
is tantamount to making the death rate infinite in these statel all higher states. We
place the reflecting upper barrier @ff at <", wherex™ > 0; we place the reflecting upper
barrier onLj at0. With the upper barrier at”, the departure rate di} is bounded above
by i1,0m7 + 015" + p12275(t), based on assuming that pdois fully busy serving class
1 (sinceus, 1 25, (t) = o,(1) we ignore it), thatl} is at its upper barrier, and that, (t)
agents from poo® are currently busy serving classn the original system. Second, with
the upper barrier at, the departure rate df; is bounded above by, ymy — 112 27,(1),
based on assuming that pabis fully busy with Z1',(¢) agents from poa? currently busy

serving clasd, and thatLy is at its upper barrieo. Thus, we giveL}, and Ly, these
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bounding rates at all times.

Of course, as constructed, the evolution(af,, L ,) depends on the process’,
associated with the original system, which poses a probterfufther analysis. However,
we can avoid this difficulty by looking at a special linear dmmation of the processes.

Specifically, let

Uu" = ILL272(L711 — K,n) + IULQL;L and ng = M?,Z(L?,b — /in) + ILLLQL;L’I). (525)

By the established sample-path stochastic ofdér L3) >, (L7,, Ly,) and the mono-
tonicity of the linear map in[(5.215), we get the associatmth@e-path stochastic order
U" >4 Uy. Moreover, the stochastic proceSg is independent of the procegs,, be-
cause of the particular linear combination we have chosethi® one-dimensional pro-
cessed/” andU}" in (5.2.3). We have chosen that linear combination so tlentimber of
pool-2 agents working on clasisdoes not matter.

Now observe that the lower-bound stochastic pro¢&ss a BD process on the set of
all integers in(—oo, 0. The BD process will have both constant birth rafe= 15 2A7 +

11,225 and by the definitions above, the stochastic pro¢gshas death rate

py = pap(pramy + 0" 4 21 (t))
+1,2(p2,2my — p12277'5(t)))

= pa(pamy + O01K") + papizomy. (5.2.6)
As a consequence, for eagh> 1, the drift inU; is

0 = Ay =y = p2p(A —mip — 61k")

Fp12(Ay — My pia2). (5.2.7)
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Hence, after scaling, we gé&t/n — ¢, where
oy = M2,2(>\1 — Mifi1 — 91“) + M1,2(>\2 - m2,u2,2) >0, (5.2.8)

with the inequality following from Assumptidd 1.

Now we observe that- U} is equivalent to the number in system in a stabl¢)\//1
qgueueing model with traffic intensity! — p. < 1. Let @, be the number-in-system
process in anV//M /1 system having arrival rate equal }o = poa(mipiy + 61k) +
1,2Mafls 2, SEIVICE ratg, = 221 + 11 2\ @nd traffic intensity, = A./u. < 1. Observe
that the scaling i/} is tantamount to accelerating time by a factor of or@¢n) in Q..
Thatis,{—U;*(t) : t > 0} can be represented &§).(c,t) : t > 0}, wherec,/n — 1 as
n — oQ.

Let M. (t) = ||Q«|l:- We can now apply the extreme-value result in Thedrem 4c#.2 f
the M /M /1 queue above (since a/M/1 is trivially a QBD) to conclude thad/, (t) =
Op(log(t)). This implies that);* / log(n) is SB.

From the way that the reflecting upper barriers were cond,eve know at the outset
that L7 ,(t) < ™ andLj,(t) < 0. Hence, we must have both™ — L7,)" and(—Lj,)*
nonnegative. Combining this observation with the resuait th;") / log n is SB, we deduce
first that both(x™ — L7,)"/logn and(—L3,)*/logn are SB, so that botfi'/ logn and

1} /logn are SB as well. =

5.3 The Bounding QBD in Lemma 4.7.4

In this section we add some more supporting detafd. In particular, we now describe
how to present the proce$®’ = jQ" — kQ" in the proof of Lemm&4.714 as a QBD for
eachn. To that end, letn = j V k. We divide the state spa®é= {0,1,2,...} into level
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of sizem: Denoting level by L(i), we have

L(0) = (0,1,...,m—1)

L(1)=(m,m+1,...,2m —1) etc.

The states in.(0) are called the boundary states. Then the generator n@ftixof the

processD” has the QBD form

(All matrices are functions oX!. However, to simplify notation, we drop the argument

X7, and similarly in the example below.)

For example, ifj = 2 andk = 3, then

—o" 0 A\ A0 0
BW=| jm —m 0 |, A”=] Ay oo [,
a0 —o" 0 Az Az
—o" 0 X T
A= 0 —on o |, AP=| o0 m |
iz 0 —o" 0 0 g

wherefil, = ji + 3 ando™ = i + A\§ + AL,
Let A™ = A"+ A+ Al ThenA™ is anirreducible CTMC infinitesimal generator
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matrix. It is easy to see that its unique stationary prolitgbiector, v, is the uniform
probability vector, attaching probability/m to each of then states. Then by Theorem

7.2.3in[52], the QBD is positive recurrent if and only if
I/Agn)]_ < l/Agn)]_,

wherel is the vector of alll’s. This translates to the stability condition given in threqf
of Lemmd 4.7 K.

5.4 More on the Idleness Processes

In this section we present additional results about thengle processes, going beyond

Theoreni 4.7}4. We treat poolsand? in the following subsections.

5.4.1 The ldleness Process in Pool

We now show how to analyze the idleness in pbalithout paying attention to what hap-
pens in pool. This provides a more elementary derivation of the resolt$;f in Theorem
[4.7.4.

We start by showing thap7 is never “too much” below” if x" is large enough, where
“large enough” in our setting is" / log(n) — oo asn — oo. Since the thresholds in FQR-
T are of order greater than(,/n), this includes the case in which the thresholds are kept
throughout (i.e., they are not dropped once they are crossethats" = £7,), and the
case in which:" is the centering constant used in shifted FQR-T, whé&re, — « > 0.

Fort € Ry, let |t| be the integer part of i.e., the largest integer smaller thari_et

_ ama +bik

.= <1, 5.4.1
p N ( )
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where the inequality follows from Assumptibh 1.

We define the difference-process
ET = k" — QY. (5.4.2)

We will focus on the positive partE})*(t) = max { E{(t),0}.
Lemma 5.4.1.1f "/ log(n) — oo asn — oo, then(E})*/log(n) is SB.

Proof: To prove the statement, we will use a stochastic bound argufoe@?}. Specif-
ically, we will bound@7? from below in sample-path stochastic order by the queugtten
process of aV/ /M /m7 /"™ + M system having a finite buffer of size', arrival rate)?,
service ratg:; ; and abandonment rafle. This stochastic-order lower bound @QF allows
us to consider the service process in pbalone, ignoring poo?. The idea is tha®)7} is
the smallest possible (stochastically), when there araysdvavailable servers in podito
ensure that queuenever goes abowve™. In that caseQ)’ is equivalent to the queue-length
process in thé//M /m7 /k™ + M model.

In the bounding system, every arriving customer who fintlcustomers waiting in
queue is blocked and lost. L€} and Z; (the subscrip® is for blocking) denote the
number of customers in queue and the number of customersvicserespectively, in the
M/M/m? /™ + M system. LeQ? andZ denote the associated sequence of fluid-scaled
processes. Also let the initial condition B (0) = min{x", Q7(0)} andZ}'(0) = Z7,(0)
for all n. From the definition of);’(0) and Assumptiofl3, we see th@f (0) = " for all
n. Hence Q(0) — x andZ(0) — 2,(0) = 212(0) asn — oco.

We can bound the procegq from below by@); in the sense of sample-path stochastic
order; i.e., for each, it is possible to construct stochastic proceié?and@’f on a com-
mon probability space, witﬁ)g having the same distribution &%, Q’f having the same

distribution ag)?, and every sample path df;} lies below the corresponding sample path
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of Q7. The stochastic bound is constructed directly by genagatie same arrival pro-
cesses to both systems. We let departures from serviceideiimcboth systems whenever
Zy = Z1,. Similarly, we let abandonments fro@' coincide with abandonments fro@y
whenever both queues are equal. The argument follows tkemaays in Theorems 6 and
9in [74].

As explained above@);(0) = x" for all n. Consider the (nonnegative) difference
processE] = x" — @p. Similar to our construction of the bounding process aboues,
can boundE]’ from above, in sample-path stochastic order, byl\an\//1 system having
arrival ratep, ymY + 61" and service rata?, i.e., denoting sample-path stochastic order

by <, for eachn and for allt > 0, we have

t
B () <. @:<t>=N:<<m,1m?+9m“>t) N (A“ JRre ds), (5.4.3)
0

whereN? and N? are two independent raePoisson processes, a@X is the number-in-
system process in the" M /M /1 system (customers in queue and in service).

Let (). be the number-in-system process indi)/ /1 system having arrival rate equal
to 111.1m1 + 61k and service rate,, so thatp, in (5.4.1) is the traffic intensity t@)., and
p« < 1. Observe that the effect of increasing the size of heV/ /m7 /k™ + M system
and its arrival rate (by increasing?, " and A7) is tantamount to accelerating time by a
factor of orderO(n) in Q.. Thatis,{E]'(t) : t > 0} is stochastically bounded from above
(in sample-path stochastic order) b§.(c,t) : ¢ > 0}, wherec,/n — 1 asn — oo, for
everyt > 0. We can now apply extreme-value theory for thg A/ /1 queue. In particular,
if we let M, (t) = max{Q.(s) : 0 < s < t}, then||E}'||; is bounded from above, in the
sample-path stochastic-order sense, by the praegss,t).

Since the queue length is discrete, with a geometric statyodistribution, a standard

extreme-value limit does not exist. Nevertheless, we cambdahelim sup above; in
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particular, it follows from Theorem 6 in [4] and the exampédwing it, (see also Problem
4.2 pg. 185 ofl[V]), that, for = [(py.1my — 016)(1 — p.)] ™' > 0,

lim lim sup P(M.,(t) — alog(t) + b(t) > x)

T—00 ¢t 3y~

= 1— lim liminf P(M,(t) — alog(t) + b(t) < x)

r—00 t—o0
<1-— lim e e = 0,
Tr—r 00
where
1 b1) log(t) — log|t| — log(1 — p.)
—log(p.)’ —log(p)

a

andb(t) — —log(1 — p.)/log(p.) ast — oo. The last inequality is the result inl[4].
Hence, M. (t) = Op(log(t)). Sincel||E}||r is stochastically smaller thai/,(c,T),
wherec, /n — 1, we have thall £} ||/ log(n) is stochastically bounded for &l > 0. The
desired result then follows from the fact that] ) * is itself stochastically smaller thafj; .
n
From the fact thafE}") ", is at most of orde©p(log(n)) whenx™/log(n) — oo, we
deduce that, asymptotically, there are always customeitsgyén the classt queue. The

following corollary is immediate:

Corollary 5.4.1. Under the conditions of Lemnta4.], for anyT" > 0,

lim P | inf Q7(t) > 0) =1, sothat lim P ( sup I'(t) > 0) = 0.

n—00 <0§t§T n—00 0<t<T

We now treat the case in whical¥ / log(n) — ¢, wherec < oo, which is the only other
case withx > 0 by virtue of[2. Since the order of size of the thresholds in FQIR greater
thanO(4/n), we are mainly concerned with the case in which the threshald dropped

once they are crossed, and FQR is employed. That is, the raséis:" = 0 for all n.
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Proposition 5.4.1.1f "/ log(n) — ¢, where0 < ¢ < oo, thenI}/log(n) is SB.

Proof: The proof is similar to the proof of Lemnia 5.4.1. If we prove tiesult for any
bounded sequence, then the result will follow trivially fory unbounded sequence. We
thus assume that < " < M < oo. We use the same sample-path stochastic-order
M /M /1-bound@?” in (5.4.3) to bound7, only now we replace™ with M in the represen-
tation [5.4.8). Sincé/ becomes negligible relative to the scaling/bgsn increases, the
traffic intensity for the proces3., defined in the proof of Lemnia’5.4.1,ds = 1 1m1 /A1,
so thatp, < 1 by[d. Hence, the boundl/. in the proof of Lemm&5.4]l1, applies 1. =

We can combine Corollarly 5.4.1 and Proposition 3.4.1. To ¢&mal, we define the
process

LY =Qp + 27, —ml. (5.4.4)
Observe thatL?)* = Q7 and(L})~ = I}, so thatl] < (s" — L})™ w.p. 1.

Corollary 5.4.2. The sequencg:™ — L})*/log(n) is SB. Hence[}"/ log(n) is SB.

5.4.2 The ldleness Process in Podl

We now turn to the pool-idleness process. We establish a stronger property away fro

the time origin.

Proposition 5.4.2.For all e andT satisfyingd < e < T' < o0,

P(sup I}(t) >0)—0 as n — oo.
e<t<T

Proof: Much of the argument here repeats the proof of Thedrem|4Fbdthe first state-
ment, we will create a stochastic lower bound and show thettisfies the statement. We

will exploit a linear combination of processes associatéith Whe two queues. For that
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purpose, we define the process
Ly =Q5 + 27y + Z39 — my, (5.4.5)

representing the excess number in system for dasken letU™ be the linear combination
of the processes?, i = 1,2, defined in[(5.414) and (5.4.5):

U™ = o (L} — K") + o L. (5.4.6)

As we will explain below, this provides a one-dimensionawithat can be regarded as
independent of the customer assignments for pool

Because of our FQR (or shifted FQR) routing rul&(t) > " implies thatL3 () > 0.

If U"(t) > 0, then necessarily we must have eithért) > " or L3(t) > 0, and so
eitherQ7(t) > ™ or Q5(t) > 0. If either of those events holds, then necessarily we
must havell'(t) = 0. Hence, we will show thaf’(B") — 1 asn — oo, whereB" =
{sup.c;cp U™(t) > 0}.

Just as in the proof of Lemnmia 5.%.1, we will bound the prodéssn (5.4.6) below
in sample-path stochastic order by another prodégsa one-dimensional birth-and-death
(BD) process. As a first step, we gitg the same Poisson arrival processes as the original
system has. Thug];’ has constant birth rate] = 152\ + 111 2AS.

We next bound the pair of processés', L%) below in sample-path stochastic order by
another two-dimensional process; ,, Ly ). We construct the lower-bound proces$,, L ;)
by increasing the departure rates in both proces$esnd L7, making it so that each goes
down at least as fast, regardless of the state of the othest, fie place reflecting upper
barriers on the two queues. This is tantamount to making daghdrate infinite in these
states and all higher states. We place the reflecting uppeeiben L} atx" +¢;n; we place

the reflecting upper barrier afi; ate;n. With the upper barrier atn, the departure rate of
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L7 is bounded above by, ym! + 01" + 01e1n + 1112 Z7'5(), based on assuming that pool
Lis fully busy serving class, that L} is at its upper barrier, and that’,(¢) agents from
pool 2 are currently busy serving clagsn the original system. Second, with the upper
barrier ate;n, the departure rate dfy is bounded above by, ym5 + Oae1n — 1 2275(1),
based on assuming that pabis fully busy with Z7',(¢) agents from poa2 currently busy
serving clasd, and thatl; is at its upper barriet;n. Thus, we givelLy, and L3, these
bounding rates at all times

Of course, as constructed, the evolution(af',, L3 ,) depends on the procest’,
associated with the original system. However, we can avosdtifficulty by looking at the

special linear combination in (5.2.5); i.e., we define thebamted process

UgL = IMQ,Q(L?’b — l‘in) -+ M1,2L§L,b' (547)

By the sample-path stochastic ordéf, L3) >, (L}, Ly, ), we getthe associated sample-
path stochastic orddv™ >, U;'. Moreover, the stochastic proceS$ is independent
of the process<’7',, because of the particular linear combination we have chéwethe
one-dimensional process&¥ andU;" in (5.2.5) and[(5.4]7). We have chosen that linear
combination so that the number of pdb&gents working on clasisdoes not matter.

Now observe that the lower-bound stochastic pro¢gss a BD process on the set of
all integers in(—oo, (u22 + p112)ein]. The BD process will have both constant birth rate
Ay defined above and constant death ggteThe important point is that we will choose
so small that the constant drift = A}’ — ' is strictly positive for all suitably large. To

achieve the positive drift below, we will rely heavily on tbeerload assumptioh] 1.
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By the definitions above, the stochastic prodé8sas death rate

,MZL = u272(u1,1m? + le” + 8161% + /J/LQZILQ(t))
Fp1,2(po0my + Oze1n — 122 Z7'5(1)))

= foa(primy + 01K") + oo omy + (f2.2601 + p1202)ern. (5.4.8)
As a consequence, for eagh> 1, the drift inU; is

0 = AN =y = p2p(A —mip — 61k")

+/~01,2()\3 - mgﬂzg) + (/~L2,291 + M1,292)€1n- (5-4-9)

Hence, after scaling, we gé&t/n — ¢, where

O = poo(A — mapn 1 — 01k) + p1a(Ae — maping) + (fo201 + p12602)er.  (5.4.10)

By[dl, we see that we would havg > 0 if ¢; = 0. However, because of the strict inequality
in[, we can always choose sufficiently small, so thaf, > 0, and we do that.

Now we can establish a FWLLN fdy;'. Such a FWLLN is elementary since the BD
process has constant birth and death rates with positifte After exploiting the fact that

we start atL}(0) = <" and L5 (0) = 0, so thatU/]*(0) = U"(0) = 0, we see that

U'=u, in D as n— oo, (5.4.11)

where

UMt)=UlMt)/n and uy(t) =6t Ae for ¢ >0, (5.4.12)
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As a consequence, we deduce that, foraagd7 with 0 < ¢ < T < o0,

P( inf U"(t) >0) —1 as n — oo. (5.4.13)

e<t<T

Next, we recall that on the subset in the underlying proltsisipace for whichnf.<,<r U™(t) >
0, we must have, for each that eitherQ7(t) > ™ or Q4(t) > 0. However, either one
of these inequalities implies thd@§ (¢) = 0. Thus the idleness must lethroughout the

interval e, T'|. Hence we have established the propositio.

5.5 Remaining Proofs in Section 4.8

5.5.1 Remaining Proofs in§4.8.1

Proof of Lemmal4.8.1: For background on tightness, seel[13,57, 78]. We recall a few
key facts: Tightness of a sequencekeflimensional stochastic processedinis equiv-
alent to tightness of all the one-dimensional componerthststic processes iR. For a
sequence of random elementsf, C-tightness implieD-tightness and that the limits
of all convergent subsequences must bé&,insee Theorem 15.5 of the first 1968 edition
of [13]. Thus it suffices to verify conditions (6.3) and (6@f) Theorem 11.6.3 of [78].
Hence, it suffices to prove SB of the sequence of stochagitepses evaluated at tirhe
and appropriately control the oscillations, using the maslof continuity onC. We obtain
the stochastic boundedness at titnenmediately from Assumptionl 3 if4.3. We show
that we can control the oscillations below. The resultigbtiness implies that the sequence
of stochastic processes is SB.

We now show how to control the oscillations. For that purpdsew(z,(,T) is the
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modulus of continuity of the functiom € D, i.e.,
U)(JZ‘, C7T) = Sup{‘x(t2) - x(t1)| 10<t <ty < T7 |t2 - tl‘ < C}

Using the representatioris (4.4.0)-(414.4),#or- t; > 0 we have

Ai(t2) — At(t) n fttf Lipn(sy>oy dS™(s)
n n
¢ . . .
s 1{Dn<2<o} aSty | Up(t) - Up(t)

Q1 (t2) — Q1 ()] <

Y

Hence, for any, > 0 and7" > 0,

w(@7/n,(,T) < w(AY/n,(,T)+w(S"/n,¢,T) +w(St,/n, ¢, T)
+w(U'/n,(,T). (5.5.1)

Then observe that we can bound the oscillations of the sepriccesses;; by the oscil-
lations in the scaled Poisson procegs (n-). In particular, by[(4.4]1),

w(S:,Ly/nv ¢, T) < w(ij(n:ui,jmj')/n7 ¢, T) < w(st,y(n>/n7 C, T) (552)

)

for some constant > 0. Next for the abandonment process, we use the elementary

bounds

Qr(t) < QF(0)+ A1),
U (t2) = U (t)] = [Nu(: | Q7 (s) ds]

t1

< INi(nO(Q7(0) + AP (T)(t2 — t1))]- (5.5.3)

Let gg = 2(¢:(0)+T), whereQ?(0) = ¢;(0) by Assumptiof B, and le,, be the following
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subset of the underlying probability space:

{Q7(0) + AX(T) < qua}-

ThenP(B,) — 1 asn — oo and, on the seB,,, we have
w(U;/n, ¢, T) < w(Nj(ngpa-) /1, ¢, T) < w(N(n-)/n, eC, T) (5.5.4)

for some constant > 0.
Thus, there exists a constant- 0 such that, for any, > 0, there exists,; and{ > 0

such that, for alh > ng, P(B,) > 1 —n/2 and onB,

w(@!/n.¢,T) < w(Ni(n)/n,c,T)+2Y > w(N;;(n)/n,cC, T)

i=1 j=1

However, by the FWLLN for the Poisson processes, we knowtieatan control all these
moduli of continuity on the right. Thus we deduce that, foemwe > 0 andn > 0, there

exists¢ > 0 andn, such that
Pw(Q!/n,(,T)>¢€) <n forall n > n,.

Hence, we have shown that the sequefi@g} is tight.
We now turn to the sequendeZy,}. Let A7,(t) denote the total number of class-

arrivals up to timet, who will eventually be served by typgeservers in system. Let

Aty = At,/nandSy,(t) = St,(t)/n, for S7,(t) in @4.1). Since

Zﬁz(t) = ZILQ(O) + A’1‘72(t) - Sﬁz(t)a
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we have
| Z75(t2) — Z75(t1)] < AT5(t2) — AT o(t1) + STa(t2) — STa(th)-
However, forA? in (4.4.1),
Afo(t2) — ATo(t1) < AT(t2) — AY (1)

SinceA? = \;e in D, the sequencgA?} is tight. Together with[(5.512), that implies that

the sequencéZ;’,} is tight as well. Finally, we observe that the tightnes$Xif } follows

from (5.5.2), [5.514) and the convergence/jf =

Proof of Lemmal[4.8.2: Apply the bounds on the modulus of continuity involving Rois
son processes in the proof of Lemma 4.8.1 above. For a PojssoessN, let N =
Vn(N™ —e), whereN"(t) = N(nt)/n, t > 0. By the triangle inequality, for each, ¢,

andT, A
w(N™, ¢, T)

vn
Since,w(x,(,T) is a continuous function of for each fixed, and7’, we can apply this

bound with the inequalities in the proof of Lemma418.1 tout[4.8.11). =

w(N", ¢, T) < +w(e,(,T)=( as n— oc.

5.5.2 Remaining Proof in§4.8.3

Proof of Lemmal4.8.7: Consider the drift rates of the QBD-versionof in (4.5.6), and
observe that, by the linearity of the drift expressions asdumption B¢" (X" (0))/n =
5. (x(0)) andé™ (X™(0))/n = 6_(z(0)) for 5, andd_ in (£.5.20). Also by Assumptidd 3,
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x(0) € A so that[(4.5.21) holds. This implies that there exists 0 such that

lim P(6%(X"(0)) < —n and ¢"(X"(0)) >n) =1,

n—oo

i.e., (4.8.11) holds at = 0 with probability converging td asn — oc.
To prove the lemma, we bound the driftsfin (415.6). We do tlydidunding the change
in the components oX " (¢) in a short interval after time. To do that, we use the stochastic-

order bounds i (4.714)-(4.7.5). Recall the rather spexi@déring obtained there:
(—QV 4 Q30 Za) <ot (—QT, @3, Z15) <st (—QY4, Q2. Zy)). (5.5.6)
In particular, we will find two processes} and X" in D, such that
O3 (X"(1)) < O (XE(F),  0Z(X"()) Za 07 (XE(F)) (5.5.7)

and, for some > 0 andn > 0,

lim P | sup 07 (X7 () <—n and inf §"(X"(0)) >n| =1. (5.5.8)
n—00 t€[0,€] te[0,¢]

To construct the processes! and X with these properties, we use the bounding
processeX” and X" in (4.7.4) and[{4.7]5) (appearing again(in (5.5.6). Spealficwe let
X! =(Q1,.Q5,,21) and X" = (Q,, Qs . 2", (5.5.9)

1,a»

respectively, whereZ"! = Z7' if oo > 0, and 27 = Z7 otherwise. 7" = Z} if



CHAPTER 5. REMAINING PROOFS 246

peo > pu2, andZ" = Z;' otherwise. As a consequence, for each 0, the drifts satisfy

N (XE() = JIAY — mamy — (2 — po2) ZE(t) — poomy — 61Q7 ()]
— kAL — 0,08 (t
Ay — 0205, ()], (5.5.10)
O (X(1)) = JIAY — pamt — 61Q7 ()]

— KNS — (pa2 — p22) Z7(t) — poamy — 02035, (t)].

We have directly defined the processedin (5.5.9) to ensatetk inequalities in(5.5.7)
are satisfied.

Assume thatX" (0) = X"(0) = X"(0). By Assumptiod BX"(0) = z(0) asn — oo,
so that the condition in Lemnia4.7.1 holdg at 0. Hence, by Lemma4d7. X" = z, =
(10 G2.as 2+ ), Wherezy = z, if poo > pyo andz, = z, otherwise. Also X" = z_ =
(G1.as @2, 2— ), Wherez_ = z, if uso > 112 andz_ = z, otherwise. Hence, by the linearity

of the functions)’} andJ”,
(XY)/n= 01 (ry) and 6" (X")/n=6_(x_) inDasn— oco. (5.5.11)

Sincez, (0) = z_(0) = z(0) € A, and by the continuity 0f.,(-) andd_(-), we can
find¢ > 0 andn > 0, such thabt, (¢, (¢)) < —nando_(z_(t)) > n. forallt € [0,¢]. That
implies that we havd (5.5.8). Together wih (515.7), thatatodes the proof.=
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5.5.3 Remaining Proof in§4.8.5

Proof of Lemmal[4.8.9: We can apply essentially the same reasoning as in the proof of
Lemmd4.817. We only need to change the order. Now we aim tieaeh

01 (X7 (1) < 0T(X"(2)) < 0% (X} (¢), and

* * o (5.5.12)

0" (X (2)) < 07 (X™(2)) < 0% (X7 (1))
instead of[(5.5]7). Moreover, we will do so such that the twariding QBD’s are positive
recurrent over some intervdl, ¢] on the set$3, whereP(B,) — 1 asn — oo. In other
words, we will use random vectors;, and.X;, instead of full processes.

We again use the stochastic-order boundsin (#.7.4)-(¢ with the ordering in[(5.516).

To constructX7},, let

v = QU an Qs Ziy)  and Xj— = (QF 1, Q3015 Ziy- ), (5.5.13)

where
M = info;<¢ Qrf,b(t) V0, QS,M = ||Q3,b||57

Zy =infocice Z0(2), Zy- =122 e,

(5.5.14)

with Z7(t) = Zp and Z"(t) = Z} if pos > pno, andZ%(t) = Z} and 2" (t) = Zy
otherwise. Note that we can regdrdl},. () : £ > 0} as a stochastic process as a function
of ¢, but we work with the final valueX},. = X7},.(£), and similarly forXj},_. Let
{D?(X}3,s) : s > 0} have the rates determined B,  when D%} (X}, s) < 0, and the
rates determined b7, whenD} (X}, s) > 0.

We do a similar construction foX " . Let

no=(Q" n mi) and X7 = (QF,,, Q5. Zn-), (5.5.15)

mt — 1,m> ¢2m> “m+t
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where
tm =1Q7.le, Q3 = infocice Q5,(t) VO,

T =128 es 25, = infocice Z2(1).

(5.5.16)

with Z7(t) = Z7 and Z"(t) = ZJ if pos > o, andZ%(t) = Zy and 2% (t) = Z7
otherwise (the reverse of what is donefin (5.5.14)). {8 (X}, s) : s > 0} have the rates
from X7 whenD%(X},,s) < 0, and the rates fronX’ . whenD?(X,,s) > 0. By this
construction, we achieve the ordering[in (4.8.18). We ctiverates ofD7,(¢) too because
we can make the identification: the rates/gff,(¢) given X" (t) coincide with the rates of
DR(X™(1), ).

Itremains to find & such that both the process@s? (X7, s) : s > 0} and{ D} (X}, s)
s > 0} are positive recurrent. To do so, we will use a minor modificabf the reasoning
in the final step of the proof of Lemma 4.8.7. We use LeraimaWwhich concludes that
the bounding processes as functiong dfave fluid limits. By Lemma4.711, we can con-
clude thatX”, = n'X", = o}, X" =n'X"_ =z, X7, =n X}, = 2,
andX7,_ = n~'X¥,_ = z;,in D, wherez,,+, z,,, 3, andz;, are all continuous with
x5 (0) = z,,—(0) = 21,(0) = z;, = z(0) € A. Hence, we can find such thatr,,(¢) € A
andz (&) € Aforall £ € [0,¢']. Hence, we can choogesuch that the constant vectors
Tm = T (§) @andzy, = x),(€) both arbitrarily close ta:(0).

Finally, we use the linearity of the drift function to dedute positive recurrence of

the processes depending upams in (5.5.11), we have

(XN )/n = 0_(x,), OL(Xpy)/n = 0p(x)),

M (Xp-)/n = o_(xy), and 8 (X[.)/n=d4(x]). (5.5.17)

As a consequence, we can deduce the conclusion of the lemama.
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5.5.4 Remaining Proof in§4.8.6

Proof of Lemmal4.8.10: We start with the processé3; (X}, ,-) and D} (X}, -) already
constructed ig§4.8.5 and 5.5]3, with the understanding that the intervagtles will in
general need to be redefined, now depending.dBince the initial state has been frozen
in Dy (X}, ), DX}y, ) and D} (X™"(t), ), these three processes are stationary CTMC's
(have stationary transition rates), bf',(¢) is a nonstationary CTMC. In the following
we construct modified versions of these processes, but sotds alter their individual
distributions.. For the following, we regard all the prosesas CTMC’s and use the natural
order on the integer state space (instead of the special iorttee QBD structure).

As in the proof of Theorerh 4.5.3, we can apply uniformizatidts explained there,
without loss of generality, we can regard the transitioesah Dy, as being uniformly
bounded. Thus, for for alb suiitably large, and for each process under consideratien,
can generate all potential transitions from constantfatieson processes. Because of the
scaling byO(n) in (4.2.2), the Poisson processes for modehn be given ratean, n > 1,
for some positive constant. The constanty is chosen so that the rate. exceeds the
maximum total transition rate out of any state for any of thecpsses for each > 1.
Then the actual transitions of the process are governed byM@D The Poisson process
generates potential transitions. When there is not a raasition, that is captured in the
DTMC by a transition from that state back to itself. By chogsthe Poisson transition
rate sufficiently large, for every state in the state spduexetis positive probability of a
one-step transition immediately back to that same statacélehe DTMC is aperiodic as
well as ireducible and positive recurrent. Note that thes&m process captures the scaling
by n.

For the new construction, we use a regenerative approaiciy, e regenerative struc-

ture discussed i§4.8.4. Provided that the QBDB’} (X}, -) and D} (X, -) are positive
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recurrent, which will hold onB,, (£, n) by virtue of the construction i§4.8.5, successive
visits to any fixed state constitute regenerative cycleghese stationary CTMC'’s with
constant transition rates. It is convenient to let the regative state, denoted by, be
contained in the boundary of the QBD.

We use the common initial state, saty For simplicity, we initially assume that

Dy(X7,0) = D}(X3,0) = DHX™(1),0) = Diy(0) = 5", (5.5.18)

but we will later show that this initial condition is not neslj e.g., it can be replaced by
the SB condition imposed in Assumptidn 3. We then focus ooesgive visits to that fixed
state for the upper bound process.

For the new construction, we couple all four processes;we.start by constructing
all the processes together, starting in their common initetiestbased on the rate order
established in[(4.8.18). That means that we use a singlesdiojsrocess with raten
to generate potential transitions for all the processe®uodnsideration. We match the
actual transitions as much as possible in order to keep tieepses evolving together as
much as possible. We will choogeto ensure that the transition probabilities differ by
only a negligible amount, so the processes will only raralyehdifferent transitions during
a single regenerative cycle. Even though we cannot achigiedmple path stochastic
order for the stochastic processes over the full time iadewe can keep all the processes
together over each regenerative cycle, with high prolsbiliRecall that the number of
transitions in each regenerative cycle is of or@€t ), but the transitions are occurring at
rateO(n), so we araotsucceeding in keeping the process paths identical ovetiyosime
intervals, but that is not needed. Because we are conceritiethe integrals in[(4.8.23), it
suffices to have thproportionof time that the paths are identical be large. Also recall tha

the inequalities in[(4.8.23) need not hold w.p.1; we are afdyming that the probability
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that they hold should converge taasn — oc.)

Our general idea is to construct an alternating renewalgs®or eac, which in-

volves a sequencf(Ut,,Uy,) : k > 1} of i.i.d pairs of nonnegative random variables,

I'r andUy,. These variables measure times in the full process and $dewD(1/n).
The first random variabl€&7; is the geometric random sum of the cycle lengths of all the
regenerative cycles where the processes all coincidegwihd second intervdly, is a
subsequent interval on which the processes do not nedgssaincide. The second in-
terval ends when all processes are in the regenerativetetgther. We then repeat the
construction. We will make the first intervali’, much longer than the second interval

2> €nsuring that the proportion of time that the processesgaée is arbitrarily close to
1 (falling within the e gaps in[(4.8.23)). The cycles will have(1) transitions, but since
the transitions occur according to the Poisson processtatwg the cycle lengths are
asymptotically negligible, making the limiting proponti® all that matters.

With the general strategy laid out, it now remains to show & can make the first
intervalsUy',, suitably long and make the second intervils, relatively short. The con-
struction is more complicated for the second inteig]. The second interval is made
up of two parts. The first part df;, is the exceptional cycle on which the processes first
disagree. The second partl@f, starts at the end of that exceptional cycle, where the upper
process is in the regenerative state, but in general the ptbeesses are not. At that point,
we change the construction. We usdependenPoisson processes, all with rate, to
generate the transitions in the four processes. This squameénds when all the processes
are simultaneously together in the regenerative state t&keover after the second interval
ends, i.e., afterwards we again use a single Poisson priacgererate the transitions of all
processes, starting when they are all together in the reggreestate, and so forth. In this
way we produce the alternating renewal process structure.

We do a careful analysis to ensure that the second randoableiiy, is appropriately
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controlled, independent gf and then we choosesuitably small to make the first interval
relatively long, so that the long-run proportion of time tthiae process is in the second

interval, which is
E[U34]

E[UT ] + E[US,] 7

(5.5.19)

is as small as desired. In fact, our construction will m&Ke'?, ] 1 oo as{ 1 oo, while
E[U3,] ] 0as§ 1 oo. Since the Poisson rate: produces a time scaling of ordéx(n), the
cycles are occurring more rapidly as— oo. In that way we can achieve the inequalities
in (4.8.23) with probabiity converging tbasn — oo. Since we are working with indi-
cator functions in[(4.8.23), in computing the bound we altbe worst case, in which the
indicator functions differ byl throughout the second interval.

We now present the details. Let the random number of tramsitin a regenerative
cycle for the upper bound proces®: (X}, ) be N". Since the events are occurring at
rate of ordeiO(n), we can use a version of the time-expanded queue-diffefgocess for
D#( X}y, ), as in[45.J). By Theoren 4.5.3, we ha¥%é = N asn — oo, whereN is
the corresponding random number of transitions during arregative cycle for the FTSP
D(z, ), using the same designated regenerative state, whigre> x,; asn — oo, asin
44.8.5. Moreover, because of the special QBD structure wehase additional regularity
properties.

Let p,, be the probability mass function df”, i.e., p,(k) = P(N" = k). Asin
§4.8.4, From the convergencé” = N and the QBD structure of all processes, we know
that p, has a proper generating function (gfy-(z) = E [zN”} Combining the QBD
and gf structure, we can conclude that there is an intégsuch that we can bound the

probabilitiesp,, (k) above and below by

Cri" < pu(k) < Cyq® forall k> ko, (5.5.20)
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for positive constant§’;, Cy, ¢ andq with 0 < § < ¢ < 1, independent of for n suit-
ably large. That implies associated uniform integrahifitgym which we obtain associated
convergence of mean&[N"] — E[N]asn — oo, and higher moments as well if desired.

We now focus on the event, saly,, that any of the processes ever differ from the upper
bound process over a regenerative cycle ofittieupper bound process. In addition to the
upper bound process, it suffices to consider only the lowant@rocess, because the rate
order implies that we can construct the processes so thittiee bound process will differ
from the upper bound process at some transition wheneveofatine other intermediate
processes do, i.e., whenever the other processes do;henewerD’ (X" (t), -) or D7 ,(+)
do.

Both the upper and lower bound processes are constant radteCSTwith common
rates in the two regions—oo, 0] and (0, c0). Thus there are only two different cases to
consider: the two processes are either both in the uppearegiboth in the lower region.
To simplify the analysis, it is convenient to modify the ctyastion of the two processes
D%(X7,,-) and D}(X7y, ) in order to make the probability that the two processes wiffe
at any transition be the same in both regions foréaéind n, and thus the same for all
transitions for all¢ andn. That can be done by adjusting the bounds, while still kegpin
the rate order and the asymptotic properties ag 0. (For eachn, we can make the
difference in the total transition rate in each region theimam of what it was originally
in each of the two regions. Clearly, the maximum differenlse aonverges t6 as¢ | 0.)
That allows us to totally decouple the probability of a difiet transition at each transition
epoch from the evolution of the processes, and thus simgpta&ulations of bounds.

With that modified construction in place, 1&¢) = 1 if the lower bound process
D%(X7,,-) makes a different transition from the upper bound prode$6Xy,, -) at the
ith transition of the Poisson process, given that has not hagbsm far. Given our revised

construction above, we can assume that the sequgh¢e: i > 1} is a sequence of i.i.d
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random variables witl (W = 1) = ¢,,, whereg,, — ¢ asn — oo ande | 0 as | 0. To
see why, recall that, by Lemria4l7 X}, = z,, and X" = x,, in Ds asn — oo, where
xpm(0) = z,(0) = (2(0),2(0)). Hence, by taking small enough ana large enough,
we can makeXy, and X" arbitrarily close for alt € [0, £]. Consequently, the probability
that any of the processes differ at step> 1 during a regenerative cycle, depends on the

number of transitions during a regenerative cycle beingagtk. Hence,

P(A,) = P(any processes diffgr= i Pn(1 — )k ipn(j)

k=1 Jj=k
ko o0 00
< Z Cbn(l - ¢n)k_1 + Z Cbn(l - ¢n)k_1 Z Cqu
k=1 k=ko+1 j=k (5.5.21)
ko C 0o
= ¢n (Z(l — )+ g YN - cbn)Q]"”‘l)
k=1 q k=ko+1
< Ci¢

for a new constant’;, provided that1 — ¢)q < 1 andn is suitably large. The condition
(1—¢)q < 1 holds since; < 1, so that the overall probabilit]?( A,,) can be made arbitrarily
small, by makings small enough by choosingsuitably small and: suitably large.

The first intervalUy", is the random sum of)", i.i.d. exponential random variables,
each with mean /na (corresponding to the Poisson process with rat¢, where V",
is the geometric random sum, with meanP(A,,), of the numbers of transitions in the
successive cycles, in which no transitions disagree. Wegiesvan expression for a lower

bound for the means:

EV%] = for all suitably large n, (5.5.22)

whereCy, < 1/C4 for ¢4 in (5.5.21). We obtain the lower bound n_(5.5.22) by appdyin
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the convergence of the meaf$N"| — E[N] asn — oo, indicated above. Thus,

Co E[N]

">
E[Ul,k’] - ¢nO{

for all suitably large n, (5.5.23)

as well. The main point is that we can make these means ir?2)j.&nd [5.5.23) large in
the relevant scale by makingsuitably small, which we can achieve by the proper choice
of £.

We now want to show thaty’,, the number of transitions of the Poisson process with
rate na in the second interval’y’,, can be suitably controlled. To go with (5.5.22), it
suffices to show that’, is SB asn — oo. Equivalently, it suffices to show that’y; is
SB asn — oo. We will consider the two parts of this second interval imtur

First consider the exceptional cycle. L&t be the random number of transitions in
an exceptional regenerative cycle for the upper bound geodérst,N? is not distributed
the same a®vV", because longer cycles are more likely to become excepityokes than
shorter ones, because they generate more opportunitiagdifference. Nevertheless, we
can boundt/[ N7 above. To do so, we need to bouRdA,,) below, instead of above as in
(5.5.21). We can do so by using the lower bound for the prditiasip,, (k) = P(N"™ = k)
in (5.5.20).

We can now bound the medi{N!'] above for alln suitably large. In particular,

E[N™; A,]

E[N] = E[N"|A,] = PUA)

(5.5.24)
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We start with the numerator df (5.5]24):

WE
M?r

EIN" A, = kP(N = k;processes first differ at transitign

k 1

1

oo k
k=1 j=1 "
- [ 1_¢n kan 1_¢n [Nn]_Z"ddwNn(Z")’

wherez, = (1 — ¢,).

Note that, by Abel's Lemma (Lemma 5.1 pg. 64in[[4k}N~(z,) and, consequently,
%@b]\,n(zn) are continuous from the left at = 1. Also, z, — 1 (from the left) asp,, — 0.
Hence, the numerator df (5.5]24) converge$ &s ¢, — 0. We next show that the rate
of convergence t0 is the same as that of the denominatorof (5/5.24), so [(ha2®). is
bounded from above by a constant. By (5.5.21) and Fubirgsrm,

P(A, ):

0o J
(1= ¢n)" " an = pah) D on(l = 6n)!
j=1 k=1

Pl = (1= dn)] =1 = twn(2).

Mg nMg

1

<.
Il

Applying L'Hopital’s rule and Abel’'s lemma, we see that thmit of (6.5.24) asp,, — 0 (by

takingn to infinity and thert to zero) is bounded from above by a constant. Specifically,

d n(2pn) + an—2 n{Zn " )2
lim - Unn( d) 2N (2n) _ E[N ]—i—En[(N )?] e
nl 2N (2n) E[N7|

for some constants;. (Recall thatZ[N"] — E[N] andE[(N™)?] — E[N?] asn — oo by
(5.5.20).)

For the next step, we will also want to bound the tail probaésd of N'. By a minor
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variation of the argument i (5.5.24), we can show they atended by a random variable

with a geometric tail. Ifc; > kg, then

P(N" > kq; An] _ Zzozkl 25:1 an(l - an)j_lpn(k)
P(AN) Zzozl Zle ¢n(1 - Cbn)j_lpn(k)

Yk = (1= én)"Cuq* ik
< Sy < G- (5.5.25)

P(N! > k) =

for a new constant’, (depending upoR), provided that is close enough t0, which can
be ensured by makingsmall, and that is suitably large.

We now are ready to treat the second part of the second iht€fya focusing on the
number of transitiond’;’,. Our main idea now is to let the four processes evolve inde-
pendently with the transitions generated by independeistsBo processes. Thus, to be
concrete, let;", refer specifically to the number of transitions in the Pamsgmcess gen-
erating the upper bound proce3% (X7, -). To understand the essential point, we first con-
sider the relatively simple case in which there are four pahelent versions dD}L(X}\y, )
starting together in the regenerative state. But now wergéméhe vector-valued four-tuple
of processes together using the superposition of four ieid@gnt Poisson processes, which
is a Poisson process with raten. At each transition epoch of this Poisson process, we let
the transition correspond to each of the four individuatpsses independently with proba-
bility 1/4. We thus construct theindependent versions together. We can thus focus on the
vector-valued discrete-time Markov chain representirgtthnsitions of alk processes,
but each of these transitions corresponds to only one ofdheRoisson processes, and
the four processes remain independent. NowMgtbe the total number of transitions of
this Poisson process with raten before the interval ends with all four processes together
again in the regenerative state

Now observe that the intervals between successive visi#dl dbur processes to this
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regenerative state constitute a renewal process. In tigerlon each process will be in the
regenerative state a proportiafi(sx) of the time, for0 < n"(sx) < 1; i.e., 7" (s%) is the
steady-state probability of the regenerative state ssaye., 7" (s*) = P(D}(X}j, 00) =
s*), with 1/7"(s*) being the mean interval between successive visitd.t€onsequently,
in the long run, the four copies will all be in the statetogether a proportiom™ (sx)?

of the time. Since successive return timesstdorm a renewal process, the mean time
between successive returns of all four copies of the uppendbproces’; (Xj,, -) to s*

is 1/7"(s*)* for eachn.

By (i) the convergence o}, = z,, (ii) the convergence of the transition rates
of {D}(X},s) : s > 0} defined in [4.5.2)E(4.515) to the transition rates of the PTS
{D(xp,s): s > 0} defined in[[4.50)E(4.5.12) as— oo, which is justified by[(4.8]9) and
the following discussion, and (i) Lemnia 4.8.8, we deduta ™ (s*) — m(s*) asn —
oo, Wherer(s*) is the steady-state probability of the FTSP, ilds*) = P(D(xp,0) =
s*). Hence, for this special initial condition, we have estsitdid the boundZ[N”] <
Cr/m(s*)* < oo for C7 > 1 for all n suitably large (depending on our choice().

Of course, we do not actually have four copies of the uppentdqarocess and the
four processes we do have are not all starting in the regevestate. Hence we have to
do more. There is a further complication, because the psddgs is not a constant-rate
CTMC. However, we circumvent this difficulty by treatiral the independent processes
under consideration as independent copies of the uppedquogess} ( Xy, -), but with
different initial conditions. (This addresses the firsfidiflty.) In particular, we generate
four independent copies @b} (X7, -) with the given initial conditions at the end of the
exceptional cycle. And, together with the three procedsasare not actually the upper-
bound process, we also generate the other process usirgathePoisson process. Hence
three of the four independent Poisson processes will betaggherate two processes each.

We do those pairwise constructions as before, aiming to Keepwo processes as close
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together as possible, for each of the three pairs of proseddfe have already described
how to analyze the probability of a difference occurringroseccessive transitions, which
can be (and will be) made negligible.

We will succeed in using the four independent copies)gf X7, ) constructed as
above if none of the three independent versiérg X7, -) serving for other processes
make a different transition from the original process oberinterval under consideration.
Since we will be showing that the total interval is SB, thelyability of a different transition
here can be made arbitrarily small as well. We will thus do ¢bastruction until the
four processes meet again in the regenerative state, boing do, we also keep track of
whether or not any of the interior processes make any diftéransitions. If there were no
differences in transitions for the interior processesnttie cycle has ended when all the
processes first reach the regenerative state at the samiitraepoch.

For the moment, assume that no differences occur betweéhrdesoriginal processes
and the version oD} (X};,-). Hence, we now focus on the different initial conditions
actually holding at the end of an exceptional cycle. To fat# having these four indepen-
dent copies oD} (X7, -) with different initial conditions reach the regenerativgéther as
soon as possible, we couple each process with the uppedlpsaoess as soon as the two
processes are ever in the same state. From that hitting dimeuifd, we let both processes
be the upper bound process, generated by its Poisson prddesseaves the distribution
of the individual processes unchanged. We now proceedalhtiiree independent copies
of D%(X}y, -) have coupled with the upper-bound procégg X, -) and the upper-bound
process (and thus all four) processes have reached theeratjee state.

We can bound this expected number of transitions until the fsocesses reach the
regeneration state together if we can bound the first hitimg of s*. That is so, because
we can bound the expected number of transitions for all fadependent processes to

reach the regeneration state together, if at transiiah four processes have visited state
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s* at least once in the lagttransitions. That makes the other three discrete-timegss®s
distributed as index shifted versions of the upper-bounMoT

e now want to bound the first passage time*tfor each of the processes not starting in
s*. he first passage time can be controlled provided the imtiatlition can be controlled.
e thus control the separation between the processes thaiccan during the rest of the
exceptional cycle, after the first non-identical transitid\fter the first non-identical tran-
sition, we focus on the upper bound process. We say that tteparnal cycle ends when
the upper bound process next hits the regenerative stateie¢o, because of the non-
identical transitions, the other processes typically wit hit the regenerative state at that
same transition epoch. It is evident that, as long as theegeas stay together on the same
side of0, the probability of a second different transition during ttycle will be negligible.
However, we lose control when the processes are on diffsrdes of stat®. Fortunately,
it suffices to use a crude bound on the maximum possible d&pacd the processes during
the exceptional cycle. We can suppose that the maximumlgessparation is achieved at
each transition over the entire cycle. The worst case woaNe lthe separation increase by
K = 2(j Vv k) at every transition. (The two processes would have a tiansit the same
time going the maximum possible distance away from eachrythience, since the total
number of transitions of the upper bound process in the éxoeg cycle after the initial
non-identical transition i8V", then the other processes are in a state withi¥’ states of
the regenerative state, where the upper bound praeg&&y,, -) will be at the end of the
exceptional cycle. I (5.5.25) we have shown that this ramtbound on the initial differ-
ence has a geometric tail, so that the probability of lardferdinces are controlled. Since
the first passage time (number of transitions) from any fixatesos* has a generating
function, the number of transitions until all the procedsage hits* is SB. Consequently,
N!is SB.

We now specify what we do if there are differences within teaqu considered above.
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If there were any differences (an event of small probal)ilityen we repeat the construction
for the second part of the second interval using four inddpetversions oD} (X7, -)
until the four processes are again together in the regewerstate. This second try will
produce a number of transitiong’, different from !, = N in the first try, but actually
somewhat more favorable (tending to be smaller) becausmitied conditions are more
favorable, with three of the four processes likely to betstgrin the regenerative state
and the interior process differing at most by the gapy virtue of Corollanf4.84. (By
the independence of the pairs, two or more differences ilabymptotically negligible
compared to a single difference.) So, if the second try isleéewe will be able to control
N, just as we can contraV!;.

However, even the second try may be unsuccessful, becaageag may find that
one or more of the three processes makes a transition difféem its representation by
D%( X7}y, ). Thus we may possibly need to repeat the second-try cotisinian indefinite
number of times until we get all four processes togethererrdgenerative state. However,
these successive repetitions will be independent copid¢seofecond try, each with the
same initial conditions, yielding numbers of transitiogaia distributed asv;’,. Thus we
can representy’;, as the sum ofV." and an independent geometric random sum of i.i.d.
random variables distributed &€, where the geometric probability can be made very
small by choosing small enough. Thus we can control all'déf, if we can controlN;',
assuming that all four processes are four independent £apithe upper-bound process
D%(X}y, +), but with different initial conditions.

The final task is to show that the special initial conditiomposed in[(5.5.18) are actu-
ally not needed. However, given the assumed conditiond®)8it suffices to assume that
statej is the specified regenerative state. Alternatively, we @@ald an extra initial pe-
riod at the beginning. During this initial period we generatl processes from a common

Poisson process and proceed until the upper bound prodsseddesignated regenerative
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state. If all processes stay together in the designatedheegive state, then we can pro-
ceed with the construction above. With high probabilitypabcesses will move together
throughout this initial period. If that does not occur, wa teve a subsequent interval of
the kindUy3,, analyzed above, before we get to the regenerative stateniasstory will

hold if we generalize the initial conditions in a controlieedy. That completes the prook

5.5.5 Remaining Proof in§4.8.7

Proof of Lemmal[4.8.11: First, letd > 0, ¢ > 0 and¢ with 0 < ¢ < § be given, where
the ¢ is chosen so that < ¢ for £ in Lemmag 4.8]7, 4.8.9 and 4.8/10. Below we will be

introducing a new less than thig.

We start by observing that versions of Lemmas 4.8.9[and @ 8old on an interval
[t,t + £], wherel = £(t) satisfies) < ¢ < 0 — t. Before, we started with the conver-
genceX™(0) = z(0) in R? at time0 based on Assumptidd 3. Now, instead, we base the
convergenceX”(t) = X(t) at timet on the convergence we have along the converging
subsequence. Since the processes are Markov processean werstruct the processes
after timet, given only the value oX™(t), independently of what happens {@nt|]. We
apply Lemmd4.8]7 to deduce th&{ X (¢) € A) = 1 (which is justified by our choice of
9).

We now indicate how the proofs of Lemmias 418.9 and 4]8.10 nedme modified,

proceeding forward after time Let X} = (X};%,X/;%) be defined similar taX},
in G5.13) andX”¢ = (X5, X"*) be defined similar to an&?, in (55.15), but with
supremum and infimum taken over the interjal + £| (instead of over the interval, ¢|
as before (where the constagtseed not be the same for eaghe.,{ = £(t)). Recall that
the associated bounding quantities are constructed frparate processes related X&
only through their distributions. These too do not depentherevolution ofX™ after time

t.
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Reasoning as before, by virtue of Lemma4.7.1, the limis = (25,,,25, ) and
2§, = («f 2% ) of X};* and X7¢ exist. (SinceX(t) so far is a random variable, so
are x?w andz¢ . However, we can regard (t) as a constant by conditioning upon it,
without affecting the evolution after time because of the Markov property.) In particular,
Applying the continuous mapping theorem for the supremumecfem 12.11.7 in [78], we
have that\ [ /n = 25,4 = (¢} y. G.0p 23+) ANAX TS /1= 25,0 = (650005000 25s-)

asn — oo, where

G5y = inficsciie gi(s) VO,

qg,M = SUPj<s<ite q(s),
inficsciie 212(5)  p2 < pogo,
ot = sesre (5.5.26)
SUDs<gcrre 21,2(8) M1 > oo,
infics<ie 212(5)  p12 > pog2,
Y
SUPt<s<t+¢ z12(8) pap < pop,
Similarly, X70€ /1 = @, = (05 s Gms 25, ) ANAX)E 10 = 25 = (G5 s G50 75, ) @S
n — 0o, with
C.Iim = Supt§s§t+§ q1($)7
G = inficocive i2(s) VO,
infycscrre 212(5)  pa2 > pio2,
P oSt (5.5.27)
SUD < gcpre 21,2(8) 12 < pog,
inficscire 212(5)  p12 < pog,
e =

SUDy<ocite 21,2(8)  fl12 2> fa2,

The two bounding frozen difference processes{@?(){;ﬁ s) s> t}and{D}(X]¢, s) :

s > t}. As a consequence of this construction, we can concludétteeg existg > 0 and
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an integem; such that the drift rates of these bounding processesyshtsi the inequali-
ties in (4.8.1R) in order for them to be positive recurrert e rate order if(4.8.18) with
probability at least — ¢/6 for all n. > n;.

We next apply Lemma4.8.110 to conclude that there exists agdaken no bigger
than the one created so far, such that the following variahtee integral inequalities in

(4.8.23) hold with probability at least— ¢/6 as well:

g/ (Dr(xme ey 45 — o 6m2 g/ Lipp ,(s)>0y ds
€
. ds + ——.
N 5/ FX3i%15)>0) * G

(We divide bym, because we will be multiplying by, »().)

(5.5.28)

We now represent the bounding frozen queue-differencesgeas directly in terms of

the FTSP, using the relation (4.B.9):

{D}‘()\?,m?,X;i;g,th s):s >0} 4 {D(\}/n, m;-‘/n,X;ib’g/n,t—l— sn):s >0}
(DO, M2, Xpf b+ 5) 0 s > 0} < {DOAF/n,m? fn, X3 /n,t + sn) = s > 0}
(5.5.29)

Upon making a change of variables, the bounding integras.;m28) become

ds ds

t+n§
5 / {D" (AP,m?, X h¢ 5)>0} né” / {D()\"/n m? /n, X 1* fn,s>0}

s (5.5.30)
d
¢ / w200 B = T | L pog mmy x5 s>y 35
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For each integet, we have the iterated limits

lim lim P(D(X}/n,m/n, X525 /n, s) = k)

n—oo §s— 00

= lim lim P(D(X!/n,m}/n, X}5%/n, s) = k),
sreenTree (5.5.31)
lim lim P(D(X}/n,m}/n, X7 /n, s) = k)

n—o0 S—00

= lim lim P(D(A\!/n, m?/n,X;\L/}S/n» s) = k),

S§—>00 N—>00
where the first limit isP(D(25,, 00) = k) = P(D(\i, m;, 25, 00) = k), while the second
is P(D(x5,,00) = k) = P(D(\;, m;, 25, 00) = k).
By Corollary[4.8.8, we also have the associated double fionithe averages over in-
tervals of lengttO(n) asn — oo

ds = P(D()\;,m;, 25

m?

o) >0) = 7T1,2(.T§n),

1 t+ng
né /t 1{D(Azl/n,m?/anfv?g/"’S)>°}

1 t+né
n_f /t 1{D()\;L/n,m?/n,XXf/n,s)>0} ds = P(D()\Z, m;, .CL’?M, OO) > 0) = 7T1,2(.CL’§M).

(5.5.32)

(It is significant that for each we have different:$, and :L'ﬁ/[ Recall that we are now
considering a fixed.)

Invoking Lemmd 4.8]8, chooseless than or equal to the previous value agluch that

€

|2 (25,) — ma(X(1)] < Gy’

(5.5.33)
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For that¢, applying [5.5.3R), choose, > n; such that

1 t+né& €
P ( n_§/t ]'{D()\?/n,m’;/n,Xﬂ{‘E/n,s)>0} ds — ma(am)| > 6m2) <

(oA e)

(5.5.34)
€

t+né& .
and P | |— L poan fmmm fmx™ ds — > €
<| n€ /t {D(\] /n,mj /"’XME/n,s)>O} S 7T172(£23'M)| 6m2 G

for all n > n..
We now use the convergence along the subsequencélovetogether with the tight-
ness of the sequence of procesg&s' : n > 1} to control Z}', in an interval after time.

In particular, there existsless than or equal to the previous value apd> n, such that

P( sup {|X"(u) — X(#)|} > ¢€/6) <¢/6 forall n >ns. (5.5.35)

wt<u<t+4+€

For the current proof, we will use the consequence

P( sup  {|Z7,(u) — Z15(t)]} > €/6) < ¢/6 forall n > mns. (5.5.36)

wt<u<t+4+£€

We now show the consequences of the selections above. Waingitkly consider only
the upper bound; the reasoning for the lower bound is esdlgniine same. Without loss
of generality, we take < 1 A m,. From above, we have the following relations (explained
afterwards) holding with probability at least— ¢ (countinge/6 once each for (5.5.26),
(G.5.27), [(5.5.28)[(5.5.36) and twice for (5.3.34)):
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€ _ B c t+€
(a) / Lipp,(s)>0y 21 2(s) ds < (Zl,z(t) + 6) / Lipp,(s)>0} ds
t t

€§
/ Lipp o ma X35 >0}dS+6m2
§

3
d (7 < =
(c) = (Zm(t) TG /0 L0 g X3 om0y 4 6mz)

@ 2 (Zam (nig /0"5 b i 0y 85 6_%)
© = (Ze0+g)¢ (m,z@:i» T )

() = (Zab+3)¢ ”1,2<X<t>>+63—n;)

(9) < Zia(B)ma(X(4)E + Wl’Q(é_((t))eg . %eg ) 12 22

(5.5.37)

We now explain the steps i (5.5137): First, for (a) we repla¢,(s) by Z »(t) for
t < s < t+ & by applying [5.5.36). For (b), we apply Lemrha 4.8.10. For (@@ use
the alternative representation in terms of the FTSIP_in29)5.For (d), we use the change
of variables in[(5.5.30). For (e), we use (5.5.34), exphgitthe convergence i (5.5]32).
For (f), we use[(5.5.33). Step (g) is simple algebra, exipigiZ, »(t) < my. Step (h) is
more algebra, exploiting, »(X (¢)) < 1, ande < 1 A my,. That completes the proof of the

lemma. =



Chapter 6

Diffusion Refinements

In this chapter we use the fluid limit, together with the SS€ule to establish diffusion
limits when the system is overloaded and the fluid limit ig\inHowever, our results here
depend on Conjectufe 6.2.1, which we did not prove yet. Eisdlgn Conjecturd 6.2]1

strengthens the AP result to diffusion scale. We intend ¢é@ethis result in the future.

6.1 The Diffusion Limit

Letg,(t) be the sum of the two fluid-limit queueg:(t) = ¢1(t)+q2(t). Similarly, letQ? (t)
be the total queue-length process in systeror simplicity of exposition, we assume that
the thresholds are dropped once crossed, sdifhat « = 0 foralln > 1.

Fort > 0 we define the diffusion-scaled processes:

Q) —malt) g ) Aalt) = naalt)

Qu(t) = , 7
. vn ) vn (6.1.1)
o= BO =m0 5 QO ()
Vi Vi

268
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Let

r — 1 B 1
1+T7 P2 = pl_]_—l—’f’

pL= (6.1.2)

Theorem 6.1.1.Let 7" be such that:(t) € A over|[0,T"). (Hence,I' > ¢§ for § in Theorem
[4.6.1, and possibl§’ = cc.) Assume that
(Q2(0), 212(0)) = (Qs(0), 212(0)) i R, as n— oo

and that Conjecture 6.2.1 holds. Then we have the joint agenee

(Qr.Q1.@8.215) = (Qumi@Qu Qs Z12)  INDy((0,T)) aSn > 00, (6.1.3)

where(@s, ZAl,z) is the unique solution of the following two-dimensionatsimstic integral

equation:

waz@@+mm—mﬁAZMQ®—m&+mmAQ&Ms
+ B (m(?)) (6.1.4)

Zya(t) = Z1(0) — /0 (12,2 — p1,2)m12(2(8)) + p2) Z1,2(5) ds + Ba(y2(t)),

where, fori = 1,2, B; are independent standard BM’s, angare the following strictly-

increasing time-scale functions:

t
71(t) = (M + Ao +mapg 1 + prooma)t + (p161 + paba) / qs(u) du
0
t
+ (p12 — M2,2)/ 21 2(u) du,
0

alt) = / (12 — (s + p.2)m1.2(2())) 202(1) d + prnns / a2 (u)) du,

(6.1.5)
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It is easy to see that; and~, are indeed strictly increasing since their derivatives are

positive;

Y1(t) = At + Ao+ maping + praoma + (pr01 + paba)qs(t) + (11,2 — fi2,2)212(t)

> M+ Ao+ mapng + pagz12(t) >0,

where the first inequality is due to the fact thatt) > 0 and0 < z;4(t) < ms for all

t > 0. Similarly, sinced < m5(z(t)) < 1 andz; 5(t) < my for all t > 0 we have

Yo(t) = p12212(t) — (2,2 + pa2)m2(2(t))212(t) + p22mam 2 (2(t))

= p2(1 = ma(z(t)))212(t) + po2(ma — 212(t))m2(2(t)) > 0.

The stochastic proces€)., Z; ») is evidently difficult to analyze; Apart from being a
two-dimensional diffusion process, the time argumentshef Brownian-motion parts of
(Qs, ZLQ) have no closed-form solutions. However, if we know that th&lfsolution con-
verges to stationarity, then it does so exponentially &stording to Theorem 2.7.4. Since
we are mainly interested in the steady state variance of ithesidn limits, it is reason-
able to initialize “close” to this fluid stationary point imaer to simplify the expressions in
(6.1.4). We do this in the next corollary. We then furtheriifiy the diffusion expressions.
(see alsol[59] for more discussion on diffusion approxioragifor this model. In particu-
lar, for simple heuristics which are shown to approximatediffusion limits exceptionally

well.)

Corollary 6.1.1. If, in addition to the conditions of Theordm 6J1:40) = x* for z* in
(3.5.3)(so thatz is stationary, and henc€ = oo in the statement of Theordm 6]1.1), then

Yi(t) = &t, i = 1,2, fory4(t) in (6.1.8) where

2#1,2#2,2Zik,2(m2 - Z’f,2)

=2(A1 + A and = )
b= 20+ %) < 1,227 o + (Mg — 27 ) 22

(6.1.6)
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Then,Qs and 21,2 are the unique solutions to the following integral equation

Ou(t) = 0,(0) + (1122 — i1) / Z1a(s) ds — (1261 + paba) / O (s) ds
0 0
+ V& Bi(1) (6.1.7)
220 = 21(0) ~ ¢ [ Zials)ds + VBl
0

whereB; and B, are independent standard BM’s and

*
H1,2/2,2MM227 o

1,275 o + paa(ma — 27 5)

¢

(6.1.8)

Hence,ZLg can be expressed separately, without referringtq as a one-dimensional
Ornstein-UhlenbeckOU) process with steady-state distribution

. 2]
ZLQ(OO) i N (0, 1-— ﬂ) .

mo

Proof: By the definition of a stationary point, if(0) = =* thenz(t) = z* for all ¢t > 0.
Theng;(t) = ¢ andzy 5(t) = 27, andmy o(x(t)) = 77 ,, for 7 , in (3.5.4). The expressions
in (6.1.6) follow easily from the expressions [n_(6]1.5), teplacing the time-dependent
fluid quantities by their stationary values, described i5.8). Replacingr, »(z(t)) by the
expression forr; , in (3.5.4), andk; () by 27 ,, gives us the expression fé?rm, which is
well-known to be the equation of an OU process with the spEtgteady-state distribution

(e.g., see pg. 218 af [42]).=

Corollary 6.1.2. If, in addition to the assumptions of Theorem 6. Lidly = 112 = v, then

the two diffusion-limit processefgs and Zl,g are independent one-dimensional processes
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which satisfy the following integral equations

Ou(t) = Q[0 ?72/625 Jds+ By (n(8))
(6.1.9)

t
Z1a(t) = Z1(0) — vzt / Z1a(s)ds + B (3n(t))
0

where

F(t) = 2(A + Aot + <_ — gl ) ot

%(t)zz/<m2/0t7r12 du+/0 21o(u) du — 2 /Otm(x(u))zl,z(u)du).

(6.1.10)

= A+ A —mipny —mav, N2 = p101 + pabs, (6.1.11)
and B; and B, are independent standard BM’s.

Proof: It is immediate from the expressions@g andZALQ in (6.1.4) that whem; » = pi25
the two diffusion processes are independent. Now, since p;qs and o = jigo, it

follows from (4.5.18) that,(¢) satisfies the simple ordinary differential equation

Gs(t) = (M + Ao — mypn 1 — mopia2) — (p161 + p2ba)gs(t) = m — 120s(1),

whose solution is

771 T ot
() = + 0)— — e ™
a(t) = 2 <q( ) 772)

for n; andn, in (€1.11). Plugging,(t) in v, (¢) in (6.1.3) givesy, (¢).
The expressions of(t) is immediate fromy,(¢) in (6.1.5) whenu; » = 22 = v. Also
note that, in this cas€,= vz}, for ¢ in (6.1.8). =

The following corollary is immediate from the expressiorisga and Z, , in (6.1.9).
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Note that whenu, » = pz» = v thent* = 2, /ms.

Corollary 6.1.3. If, in addition to the conditions of Corollafy 6.1.2, thefiai conditions
are such that),(0) = ¢* and Z, »(0) = z; , (so thatr »(z(t)) = 71 ,), then@Q, and Z, ,

are independent one-dimensional Ornstein-Uhlenlj&ak) processes, i.e.,

Qs = q: — HQA QS(S) ds + 2()\1 + )\Q)Bl(t)

A t s Z*
Zyp =24 — yziQ/ Zy12(s)ds + \/21/21*72 (1 - 1’2)32(15)»
0

mo

for n, in @1.11)and 7}, in (3.5.4) and whereB; and B, are independent standard BM’s.

The two OU processes have the following steady-state lolisioins:

Ou(oo) L (0, BEDNF XN o 2 o) v (0,1 - 22
T81—|—¢92 '

Equivalently,Z; 5(c0) £ N (0, 1—mF,).

Remark 6.1.1. (Equivalence with the single-class model.) If, in additiorthe conditions

of Corollary[6.1.3, it also holds th# = 6, = 6, then the diffusion-limit proces§; is

the same as the limit obtained for thé/M /n + M model in the Efficiency Driven (ED)
regime, see [79]. That is@s is an Ornstein-Uhlenbeck process with infinitesimal mean
equal tod and infinitesimal variance\ = 2(\; + ). Thus, its steady-state distribution is

normal with mean zero and variansgd.

Theoreni6.1]1 and its corollaries illustrate the strengtine AP. A direct implication
of the AP is SSC for both the fluid-scaled and the diffusioalsd queue processes. But
the AP implies more than just SSC; As we have seen, thanksetéfh we can analyze
the diffusion-scaled service-procegs,(t) and its fluid counterpart; »(t). The AP also

implies thatZLQ(t) does not depend on the limiting diffusion queue processhis May
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seem surprising at first, sincg', () depends on the queu@$ (¢) andQ; (t) for eachn and
t, and in the fluid limit,z; »(¢) depends on the fluid-queuegt) andqg.(t), viam o(z(t)).

In particular, whernu; » = pq22 (service rates are pool dependent), the diffusion-limit
gueues are independent of the diffusion-limit service pseesZi,j, i,j = 1,2. To see
why this result is implied by the averaging principle, obsethat the indictor functions in
(6.2.8) below, which are functions of the two queues, aréasul by expressions involv-
ing m 2(x(t)), which do not depend on the queues. (This may be a little somgy but
m 2(z(t)) is a function of the deterministic fluid-limit queues, andedmot depend on the
actual queues.)

We can regard this result as a converse to SSC for the folgpréason: In our model,
SSC of the queues implies that the two-dimensional pro@@sg0,), which is in general
in Dy, exists in the one-dimensional hyperplaﬂ@g: rl,QQQ. That is, the two queues are
strictly correlated, and behave as a one-dimensional pspdéhe dimension of the state
space collapses to one.

On the other hand, Corollariés 6.11.2 dnd 6.1.3 and Remarf 6riply that the two-

dimensional proces@s, 21,2) € D? can be decomposed into its two components. We get
a “separation” of the state spaf® as each process existsIn independently of the other
process. (This illustrates why the condition that the rategpool dependent is sufficient to
maintain stability in[[29] and [31] for the X model, and morergrally, for models whose

routing graphs are cyclic.)

6.2 Proof of Theorem 6.1.11

We use the sample-path construction§fh4 to construct martingale representations for
the stochastic processes, aslinl [57]. The martingale reqtason is constructed without

specifying any filtration, since we will not use any martitggproperty. We call this “the
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martingale representation” for convenience. To achieigerttartingale representation, we
decompose the independent time-changed Poisson procéssas, and Ny, i = 1,2, in

the following way:

M7 (t) = Ny (my pat) — mi' it

t t
My(t) = Ny <ui72/ Z{fﬂs)ds) — ,ui,z/ Ziy(s)ds, =12,
0 0 (6.2.1)
M7 (t) = N (Ajt) = Ajt, i=1

727
M (t) = N* (@ /Ot Q?(s)ds) — 0, /Ot Qr(s)ds, i=1,2.

The processes if(6.2.1) can be shown to be square-integratstingales (with respect to
an appropriate filtration), and we thus refer to them as “mgaies”.

Unlike in the fluid-limit proof, which was carried out usiniget compactness approach,
the diffusion limits will be proved using the continuous rpag approach. It is signifi-
cant that the the continuity of the integral representatielow is due to the AP and SSC

established before.

Lemma 6.2.1. (Continuity of the two-dimensional integral representafi€onsider the

two-dimensional integral representation

1(t) = by + i (t) + 042/ xo(s) ds + a1/ x1(s) ds
A 0 (6.2.2)
ralt) = b+ 12t) + [ alo)aa(s) ds

whereg : R — R satisfiey(0) = 0 and is Lipschitz continuous with a Lipschitz constant

¢y The integral representatiof©.2.2)has a unique solutiofiz;, x,), so that the integral

representation constitutes a functigh: D, x Ry — D, mapping(zy, s, by, by) into

(x1,m9) = f(x1,72,b1,by). In addition, the functionf is a continuous mapping from
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D, x Ry to D,y. Moreover, ify, is continuous then, is continuous. If bothy; andy, are

continuous, then; is also continuous.

Proof: By the conditions on the functiopwe have for alll’ > 0

lgllr < g(0) + [lg(u) — g(0)|l7 < g(0) + ¢,T = ¢,T.

Note thatz, does not depend on;, hence we can prove the lemma iteratively by first
showing that the functiorf; : D x R mapping(yz, b2) into o = f2(ys, b2) iS continuous,
and then use this result to show that the functfon D, x R mapping(y1, 2, b1) into
x1 = f1(y1, 2, b1) IS continuous.

To show thatf, is continuous we use Theorem 2.11[inl[67] Witlxs (u), u) = g(u)xe(u).
Clearly, condition (1) in that theorem holds, sing@®) = 0, and it remains to show that
Condition (2) holds as well. For that purpose, chabse 0 and let\ be a homeomorphism

on [0, 7] with strictly positive derivative\. Then, for everyp;, p, € D

/ gwes () — gA@)a(\w) | du

</ Jo(wer(e) — g(u)ea(Aw)] du+ / (A1) — 9O\w)pa(Aw)| du
< llglz / 1) — pa(A(w))] du + lpallr / l9(u) — 9(Mw)) | du

<l [ loa0) = Nl du+ TlgalelghrIA = el

— A — el + e / o1(1) — ea(A(w))] du

wherec; = ¢, 7?2/l andcy = |g||7-
For x1y = fi(y1,72,b) we can apply Theorem 4.1 in [567] with inpyt = y; +
Qo fot xo(u) du. It follows from Theorem 2.11 in [67] that if, is continuous then so is

x». If, in addition,y; is continuous, thep is continuous and, by Theorem 4.1(in[57], so is
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1. =

Proof of Theorem[6.1.1: Following (4.4.8)-{(4.4]4), we write the total queue-lénpto-
cessQ"(t) = Q(t) + Q3(t) using the martingale decomposition, aslin/[57]. Observe

that the indicator functions in the representation (4.4:3) [4.4.4) do not appear in the

representation af)” (t).

Q5 (t) = QL(0) + N (ATE) + N3 (Agt) — Ny 1 (mipat)

t t
—NHOM/ZH@W%—N%@M/Z%@@)
0 0
t t
— N} (91/ Q7 (s) ds) — Ny (6’2/ Q5(s) ds) , >0
0 0
t t
=Qﬂ®+&?+£ﬁ—mﬁmﬁ—Mg/Zb@w&—Mg/Z%@MS
0 0

—mlm@ww%@%m+ww

where
2

M (t) = Z M? (t) — Z MP(t) — Z MPy(t) — M7 (). (6.2.3)

=1
From (4.5.18) it follows that, = ¢; + g2, the fluid counterpart of)”, evolves according

to the integral equation:

t t
qs(t) = ¢s(0) + (A1 + A2)t — pgamat — ,Ul’g/ 21 9(u) du — ,u272/ 299(u) du
0 0

¢ ¢
-0, / ¢ (u) du — Oy / q2(u) du,
0 0
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so that, substituting; with p;qs(u) andgs(u) with pags(u), we get

qs(t) = qs(0) + (A1 + o)t — pg gt — pigomat
t t
+ (M2,2 - M1,2)/ 21,2(U) du — (p191 —|—p292)/ qs(u) du
0 0
We get

(AT +23) = n( + M)t pa(my — nmy)t

Qu(t) = Q3 (0) +

n 0
g fy (Zia(s) —nzia(s))ds  pas fy (Z5a(s) — nzaa(s)) ds
vn vn
01 Jy (@(s) = nai(s))ds 0 fy (QB(s) — nga(s)) ds
vn vn
ME(t)
+

N4D

Obviously, the second and third terms in the expressioneborverge to zero. Recall that,
by Theorerm:ln_l/z ||Z£L72 — (mg — Z{L’Z) || = 0IinD asn — oo SO that2’272 = Mgy —212-

Also, (m%/n —ms) — 0 asn — oo by assumption. Hence,

~

Q" = Q™(0) + (120 — pi12) / 77(s) ds
0 (6.2.4)

—91/0 Q?(s)ds—ezfo Q7 (s)ds + M"(t).

Define

A

V() = Q7(0) + (a2 — pns) / Z7(s) ds — piby / O (s) ds

t
— pg@g/ Q?(S) ds + Msn(t)
0

By applying the continuous-mapping theorem and the SSQtresliheorem’4.56, we
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have that|Q” — Y| = 0 in D asn — co. Hence we can write

O"(t) = O™ (0) + (a2 — pin2) / Z05(s) ds — (p16s + pa) / G"(s) ds
0 0 (6.2.5)

+ M (t) 4 op(1).

The next Lemma identifies the limit of the martingalg® (¢). It's proof is given in the end

of this section.

Lemma 6.2.2.Under the conditions of Theordm 61 (t) = B(y1(t)) in D asn — oo,
where{B(t) : t > 0} is a standard brownian motion, and(¢) is defined in(6.1.5)

To finish the proof, we apply Lemnfa6.2.1 to the integral reprgation ofQ” (t).
Assuming thatZ}’, = Z, » (as will be shown next, building on Conjectire 612.1), weehav
that [6.2.5) is a continuous mapping frdnto itself, and the convergence @f:(¢) to the
limit in (6.1.3) is implied by the limit of\/”(¢) in Lemm&6.2.2.

We now turn to theZ, (t) process. We start with the representatfon (4.4.2J0f(t).

t
Z05(8) = Z25(0) + iz / 1 e eyo0y (8 — Z05(5)) ds
0 (6.2.6)

t
- /~L1,2/0 Lipp,(s)<0y Z12(8) + M7Z(t),

where

t t

Mz, ,(t) = Ny, </~LL2 Lipy,(s)<01 Z12(5) ds,

t t

1{D?’2(5)20}Z§’2(S) ds 1{D{’72(S)ZO}Z§,2(S) ds

1{D711,2(5)§0}Z{L,2(S> dS) — M1,2
) — 2,2

o— S—
o— S—

My, ,(t) = N3, <M2,2

and
My(t) = Mgm (t) — Mgm(t). (6.2.7)
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Let Z{‘g(t) have the same representatior¥gs (t), but with the indicator functions;pr_ (5)>03
andlipn (s<0y replaced byr, »(x(s)) and1l — 1 »((s)), respectively. Similarlyﬁg(t) is
the same as if (6.2.7), with the indicator functions repldnethe appropriate counterparts.

Zry = Z0,(0) + ra / o ((8)) (ml — Z0y(s)) ds
(6.2.8)

~ / (1 = ma(w(5)) Zyals) ds + N(2).

If Conjecturd 6.21 below indeed holds, then for&lt> 0, n /2| 27, — Zﬁ2||T =0inD
asn — oo. Assuming Conjecturig 6.2.1, we work wif »(¢) and M2 (t) = M"/+/n, but
with the indicator functions replaced by the,(z(s)) expressions.

From [4.5.1B) we see that

z19(t) = M2,2/0 mi2(z(s))(ma — 212(s)) ds — /~01,2/0 (1 —mi2(x(s)))21,2(5) ds.

Upon centering?{fZ(t) about the fluid limit, and dividing by/n as in [6.1.1),

B

fiza(mf — nmy) [o ma(z(s))ds  My(t) (6.2.9)
Vi TV

— 7m,(0) - / (22 — pin2)moa (2(5)) + pine) Z2a(s) ds + NIB(1),

where the last inequality follows from the fact thaty — nms)/y/n — 0, asn — oc.
Now, m »(z(s)) is locally Lipschitz continuous if as a function of:(s) by Theorem

2.5.1, and is thus Lipschitz continuous over compact seterebver,z(s) is Lipschitz

continuous, as a function of the time argumeby Lemmd 4.8]1. It follows that; 5(x(s))

is Lipschitz continuous as a function of the time argumens well. We can thus apply
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Lemmd®6.2.l1 and conclude that the representatidn in {62#¢ontinuous mapping from
D to itself. The convergence to the Iimit-proc£§2(t) is implied by the next lemma,

whose proof is similar to that of Lemrha 6.2.2 and is thus aditt

Lemma 6.2.3.Under the conditions of Theordm 611 (t) = B(y»(t)) in D asn — oo,
where{B(t) : t > 0} is a standard Brownian motion, and(t) is defined in(6.1.5)

Lemmd6.2.B completes the proofs

Proof of Lemmal6.2.2 Let

M) = (N (0, M0, M55(0) - M) = (May(8), Mo (1)), and

a = (M@, M, 0)

To compress the notation, fore D,, andt € [0, co0)™, we definec(t) = (z1(t1), x2(t2), . . ., Tn(tn))-

We start by proving that

(a3, 3120). 3130)) = (BAut),Bs (u / 2(s) ds) B, (e / 4(s) d)) ,

(6.2.10)
in D7, asn — oo. HereB,(t), Bs(t) and B, (t) are, respectively2-, 3- and2-dimensional
independent Brownian motions. Using our compressed ootate have\t = (\1t, Aqt),
pz(s) = (m,1211(8), p2212(8), H2222,2(5)), Ba(s) = (61q1(s),02q2(s)). For example,
Ba(t) = (Ba, (AMt), Ba,(Aat)), and similarly forBs(-) and B, (+).

The result of the lemma then follows from the definition)af(¢) in (6.2.3), and the
continuity of addition under continuous limits, e.g., Céaoy 12.7.1 in [78].
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For the Poisson processes definedin (4.4.1), let

M = , " and
ai Jn i, NG

~ N*(nt) — nt

Mg Z(n> z ’ 17]2172
7 \/ﬁ

Let M7 (t), M2 (t) and M"(t) be the corresponding vector-valued processes. By the in-
dependence of all the unit-rate Poisson proces&ds), N;;(-) and N}(-), the following

joint convergence holds:

(Mg(t), (1), M“(t)) N <BA(t),BS(t), Bu(t)> . inD;, asn — oo,

whereB,, Bs and B, are, respectively2-dimensional 3-dimensional an@-dimensional
independent Brownian motions. See Theorem 4.2t8ntin [57].
Let
3 n
Hij Jo Z7y(s) ds

(1) = , P, () = n’ and

o (1) ij=1,2.

Then, by the condition on the arrival ratds;. = A;¢, ¢ = 1,2. From the initial conditions
in the statement of Theordm 6.11.1, the fluid limit and the icwritly of the integral mapping,
it follows that &% = pu;; [ zi;(s)ds and @7 = 6; [ ¢i(s)ds, i,j = 1,2in D as
n — oQ.

Let @7 (¢), @3, . (¢) and®7 (¢) be the corresponding vector-valued processes. Then

(w5005, 94,0) = (3 [ =050 [ ato)5).
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in D;, asn — oo. By definition,
(Az o), 2130, 0120 = (35 (@50)), a1 (@5(0). Az (@) )

and the result follows from the continuity of the compositraapping at continuous limits,
Theorem 13.2.1ir[78]. =

As we stated above and as was made clear by the proof of Thé&ieln the conver-
gence of the processes n (6]1.1) to the diffusion limitsethelon the following conjecture,

which we intend to prove in the future.

Conjecture 6.2.1.ConsiderZy, in 6.13)and 2}, in 6.2:8) Then||Z}, — Z7,|| = 0in

D asn — oo.
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