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Abstract: We study a single-product fluid-inventory model in which the procurement price of the product fluctuates according to a
continuous time Markov chain. We assume that a fixed order price, in addition to state-dependent holding costs are incurred, and that
the depletion rate of inventory is determined by the sell price of the product. Hence, at any time the controller has to simultaneously
decide on the selling price of the product and whether to order or not, taking into account the current procurement price and the
inventory level. In particular, the controller is faced with the question of how to best exploit the random time windows in which the
procurement price is low. We consider two policies, derive the associated steady-state distributions and cost functionals, and apply
those cost functionals to study the two policies. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 00: 000–000, 2017
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1. INTRODUCTION

We consider a continuous review, single product, pricing-
and-inventory problem in a random environment, where the
purpose of the seller is to maximize his expected profit by
determining an order policy and sell prices. At the procure-
ment side, the seller faces randomly fluctuating prices at
which he can acquire new items, but also holding costs and
fixed order costs. Based on these quantities, the seller needs to
decide when to order new items, and how many. At the sales
side, in accordance with current practice if dynamic pricing,
the seller can change the sell price at any moment.

More specifically, the procurement price at which new
items can be acquired is modeled as a finite-state Markov
chain, where each state represents a different procurement
price. Every time an order is placed, the seller pays some
fixed order cost K, and any moment that the inventory-level
is x > 0, the seller faces holding costs at a rate h(x). We ini-
tially assume that ordered items arrive instantaneously and
later generalize the model to include exponential lead times.
The seller needs to determine an order policy (when to order
new items, and how many), and a sell price policy (which sell
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price to charge at which moment), in order to optimize the
expected profit.

Determining optimal order policies and sell prices is typ-
ically treated as separate problems, but it is intuitively clear
that it may be beneficial to consider these problems simulta-
neously. For example, if the procurement price of new items
is time-dependent and is currently high, it may be profitable
to increase the sell price, so that the moment at which all
inventory is sold-out is delayed. This increases the probabil-
ity that, in the mean time, the procurement price of new items
decreases, so that new items can be ordered at considerably
lower costs.

A Fluid Analysis

The complexity of the stochastic model we consider ren-
ders exact analysis prohibitively hard, and we therefore
resort to fluid approximations. In our setting here, the fluid
approximation is a piecewise-continuous process having a
deterministic evolution between jump epochs.

Fluid models are prevalent approximations for complex
stochastic systems in general, and queueing and inventory
systems in particular. In a fluid inventory model, each item
becomes an “atom” in a continuous content process, and
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the random depletion rate of inventory is replaced by the
mean demand rate, ignoring variability. Thus, fluid analysis
is appropriate whenever the number of items sold between
decision epochs, as well as the number of items ordered, is
large, such that each single item is relatively negligible.

By aggregating the effect of a large number of events, a
fluid inventory model provides the time-dependent average
behavior of the system. Although this view can often be made
rigorous (under appropriate regularity conditions) by proving
that the fluid model arises as a functional weak law of large
numbers for the stochastic inventory process under study (see,
e.g., [10] and [21]), fluid dynamics are typically assumed
directly in inventory systems, without any reference to an
underlying discrete system. For example, one of the most
fundamental inventory models - the (purely deterministic)
economic order quantity (EOQ) model—can be thought of
as a fluid approximation for a stochastic inventory system.
For a recent application, see [19] and references therein.

Other than their tractability and relative simplicity, fluid
approximations have the advantage of being less sensitive to
distributional properties of the stochastic system they approx-
imate, making fluid analysis robust to variations in the mod-
eling assumptions. However, we emphasize at the outset that
our fluid model is itself a stochastic process, whose random-
ness emanates from that of the environment. We elaborate
below.

A Class of Stationary Markovian Policies

Our goal is to find an effective control for the inventory
process. Since the random environment must clearly be taken
into account when making ordering decisions, the fluid model
is a stochastic process. To facilitate long-run analysis, we limit
attention to a class of stationary and Markovian policies,
so that, in particular, the fluid model is a stationary Markov
process under the control (namely, it achieves a unique steady
state). It is well known that, if a Markov process has a contin-
uous segment, then it is either a transformation of a Brownian
motion or it is deterministic [13]. Since our model has non-
increasing sample paths between jumps, it must exhibit a
deterministic motion between jump epochs, so that it is a
piecewise-deterministic Markov process, as in [15].

Now, in order for the controlled fluid process to be Markov,
decisions must be made based on the current state of the
process and the environment. Furthermore, for the process to
be ergodic (so that a unique stationary and limiting distrib-
ution exists), the fluid process must be regenerative. There-
fore, the class of controls we consider is continuous-review
policies of (s, S) type. It is significant that, in addition to
being mathematically attractive, these policies are also easy
to employ and are prevalent in practice; see, for example,
[25]. Note also that, with no lead times, (s, S) policies are
equivalent to (r, Q) policies in which a fixed quantity Q > 0 is

ordered whenever the inventory level falls below some level
r ≥ 0.

In particular, for the order policy, we study two variants
of an (s, S)-policy. In the first order policy, which we denote
by OP1, S−s items are ordered if the inventory-level is at or
below some s > 0 and at the same time the procurement price
is low. If the inventory hits zero and the procurement price
is high, Q items are ordered. Here s, S, Q are decision vari-
ables, with 0 ≤ s < S, 0 < Q ≤ S. The second order policy,
denote by OP2, orders are never placed when the procurement
price is high. If the inventory-level hits zero, the seller waits
until the procurement price becomes low, at which moment
he orders S items. We allow the sell price to change with the
inventory level. Note that either policy takes advantage of
the low procurement price, and we thus refer to the (random)
time periods of low procurement price as random windows
of opportunity (for the seller).

We consider the pricing-and-inventory problem in station-
arity. Under mild assumptions on the relation between the
demand rate and sell price, we show that the joint process of
inventory level and procurement price admits a unique sta-
tionary distribution. For a fixed order policy OP1 or OP2, we
derive balance equations for the stationary distribution of the
inventory-level process, as in [5] and [14], from which the
stationary distribution can be numerically computed. This
enables us to express the long-run profit for both policies,
as function of (s, S, Q, p(·)) in case of OP1, and (s, S, p(·))
in case of OP2, where p(·) : [0, S] → R+ is the sell price
function.

For practical purposes, one uses a piecewise constant sell-
price function p(·). For example, if p(·) has only two values,
pl (for “low” price) and ph (for a “high” price), then when-
ever the inventory level exceeds some (switching) thresh-
old q, a sell price ph is charged, whereas a sell price pl is
charged whenever the inventory level is below q. In that case,
(pl , ph, q) is a vector of finite decision variables which sat-
isfy 0 < pl < ph and 0 ≤ q ≤ S; see Section 2 below for an
elaboration.

To determine the optimal values of the decision variables,
one needs to solve a (rather complicated) nonconvex nonlin-
ear optimization problem. We conduct a numerical study to
compare the performance of OP1 and OP2. We also compare
them to a standard (s, S)-policy OP0, which does not take
into account the random nature of the procurement price
process. By studying several instances, it turns out that OP1

in general performs better or equal than both OP2 and OP0.
The difference in performance, especially between OP1 and
OP0, can be quite large. This shows that it is beneficial to
take into account random changes in the procurement prices.
As should be expected, the policies OP0 and OP2 have no
clear “best”: for some instances, the first is outperformed
by the latter, while for other instances it is the other way
around.
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1.1. Related Literature

Threshold policies have been shown to be optimal in
numerous settings, including under Markovian-demand envi-
ronments. A detailed development and literature review is
found in [4]. An early result by Iglehart and and Karlin [20]
considers a discrete-time inventory model with demand that
is governed by a discrete-time Markov chain (DTMC). In
particular, at each period the demand distribution is set by
the state of the DTMC. Song and Zipkin [30] analyze a
continuous-time inventory model having Markov-modulated
Poisson demand and backlogging, and prove that a state-
dependent (s, S) policy is optimal under the assumption of
fixed ordering costs. See also [11], which considers a discrete-
time version of the problem, and [12] which extends the
model to include lost sales. Related to [30] are the two papers
[2] and [3], which consider EOQ-type models with Markov-
modulated demand process. A multistage serial inventory
model with Markov modulated demand in stage 1 is ana-
lyzed in [9] and it is shown that, under linear holding and
ordering costs, an echelon base-stock with state-dependent
order-up-to levels policy is optimal.

The paper [6] considers a fluid-inventory model in which
the demand rate changes according to a CTMC; whenever
the inventory content hits 0 an order of size Qi is placed
if the governing CTMC is at state i, i = 1, 2. See also [8]
which considers a fluid inventory model in which the pro-
curement prices change according to an exogenous CTMC
and, unlike our model, this also affects the demand. (We
assume that demand is affected by the sell price, which is con-
trolled by the decision maker.) In [28], the authors consider
an inventory model which replenishes at a constant determin-
istic rate, but decreases randomly (via jumps) when demand
arrives (according to a compound renewal process); imply-
ing that the demand at each arrival epoch is relatively very
large. In contrast, in our model demand arrives continuously
and is infinitesimal in the fluid model, and the orders are
relatively large, causing the jumps in the fluid model; see
also [29].

Threshold policies for EOQ-type fluid inventory models
are considered in [18] and [24]. In both references it is
assumed that discounts are offered by a supplier to a reseller
randomly in accordance with a Poisson process, but there are
no “windows” openings. In these cases, the reseller has to
decide at any discount epoch whether to replenish his inven-
tory or not. In [27] a firm purchases a product in an auction
in order to satisfy its own demand in each period. In partic-
ular, each period consists of two phases: in the first phase,
the firm participates in N auctions, and in the second it sells
the purchased products in its own market. The probability of
the firm winning an auction is assumed to be a function of
its own bid as well as of the number of its opponents in the
auction. In particular, there is no a-priori fixed procurement

price, although the firm does have some control over that
price via its bidding strategy.

Price-Regulated Demand

Starting with the seminal work of Naor [26], a standard
assumption in the economic analysis of queues is that cus-
tomers’ arrival rate to a service system is completely deter-
mined by the price and expected reward of joining the system
to get served. For example, one often assumes that the poten-
tial arrival rate, known as the market size, is a constant �,
and the arrival process to the system is a nonhomogeneous
Poisson process having an instantaneous rate �f (p(t)) at
time t when the price is p(t), where for 0 ≤ pm < pM ≤ ∞,
f : [pm, pM) → [0, 1] is a known market response func-
tion. In particular, f (p(t)) is the fraction of customers that
are expected to join the system when the price is p(t) ∈
[pm, pM); see, for example, [1, 16, 22] and references therein.
The market response function is determined by the proba-
bility that a generic arrival will choose to buy a product at
the given sell price. In practice, that probability, and thus
the response function, are not known in complete certainty,
although they can typically be evaluated via past demand
data; see [17] and the reference therein. In the aggregate time-
dependent (functional) average approximation that the fluid
model provides, the market size and response function com-
pletely determine the depletion rate of the fluid content for
any given sell price.

Organization

The remainder of this article is organized as follows: In
Section 2, we describe the model and motivate the structure
of the control policies. In Section 3, we develop the steady-
state equations for the content level process. Those equations
are then applied in Section 4 in a numerical study, as described
above. In Section 5, we extend the model and consider cases
in which the procurement price of the item changes after non-
exponential random time in states, and we also consider lead
times.

2. THE MODEL

We consider a fluid inventory model of one product with
zero lead time of the (s, S) type, operating in a stochastically
changing cost environment. We use C := {C(t) : t ≥ 0} to
denote the content-level process, assumed to be right con-
tinuous with jumps at ordering epochs. As there are no lead
times, the right continuity of C implies that, if t is a jump
epoch, then C(t−) < C(t), where C(t−) denotes the left
limit at t.

Following the terminology in [7] and [30], we refer to
procurement price as the “state of the world.” In particular,
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the procurement price of the product changes according to
a two-state continuous-time Markov chain (CTMC) W :=
{W(t) : t ≥ 0}, with W attaining two values: wλ (high) and
wμ (low). Naturally, wλ is strictly larger than wμ. (Other-
wise, the state of the world is irrelevant.) More specifically,
W moves between the two states wλ and wμ, and remains
at wλ for an exponential amount of time with rate λ, and in
wμ for an exponential amount of time with rate μ. When
W = wλ the controller faces a regular (expensive) price, and
when W = wμ, the controller faces a discounted (cheap) pro-
curement price. It is thus clear that the “state-of-the-world”
process W may affect the decision of the controller whether
or not to buy at each decision epoch in order to replenish his
inventory.

We assume that a holding cost is incurred at rate h(x)dx

whenever C(t) = x, t ≥ 0, and that a fixed set-up cost K
is incurred when an order is placed, independent of the
order size. In addition, we assume that the demand rate is a
known one-to-one and onto function of the sell price. Under
this assumption, the controller can dynamically regulate the
release rate of inventory by changing the sell price. There
can be several policies for determining the sell price. In this
study, we focus on the state of the content level C. More
precisely, since the more inventory present, the higher instan-
taneous holding cost is paid, the controller has an incentive
to drain inventory at a higher rate when C is high, by low-
ering the sell price. In the continuous settings, the optimal
release rate may change continuously as a deterministic func-
tion of C, so that infinitely many pricing policies can be
applied. For practical purposes, the optimal pricing policy
can be approximated by searching for a finite set of sell
prices p1 < p2 < · · · < pk (with k fixed) and thresholds
q1 > q2 > · · · > qk−1, such that the sell price is pi at time t
if qi−1 < C(t) < qi , i = 1, 2 . . . , k −1. Clearly, as the num-
ber of decision variables increases, the optimization problem
becomes more complicated.

In the simple (s, S) model, the optimal control is com-
prised of two factors: when to place an order (in the sense
of fixing s) and how much to order (fixing level S). Thus, if
the procurement price was always wμ we would have been
looking for a level s such that, whenever the content-level
process C hits s, an order of size S–s is placed. In light of
the randomness of the procurement price and zero lead-time
assumptions, it is desirable to place most of the orders, if not
all of them, when the procurement price is wμ. In particular,
the distinction between “most” and “all” depends on whether
it is optimal to place an order whenever both C(t) = 0 and
W(t) = wλ, that is, whenever the content level drops to zero
at the time of an expensive cost-price period. In that case,
one should consider two options: (i) order up to level Q ≤ S

or (ii) wait for the procurement price to change from wλ

to wμ.
We thus consider two natural ordering policies:

Order Policy 1 (OP1)

Determine two levels s and S. If the content level C hits
s and at the same time the procurement price is low, that is,
C(t−) = s and W(t−) = wμ, then place an order of size S–s
(so that C(t) = S. If, conversely, upon hitting level s the pro-
curement price is high, that is, C(t−) = s and W(t−) = wλ,
then wait until either (i) the procurement price changes to
wμ, at which point order up to S, or (ii) the content level hits
0, at which point order up to level Q, where Q ≤ S

Order Policy 2 (OP2)

Similarly to OP1, except that never place an order while the
procurement price is high, that is, whenever W = wλ. When
level 0 is hit (and it can only be reached during expensive
periods) wait until the procurement price changes to cheap
(wμ), at which point order up to level S. Note that, under OP2,
there is no extra level Q (alternatively, Q ≡ S).

We further assume that there is a cost incurred for letting C
stay at state 0 for an interval. This cost can be due to unsatis-
fied demand and loss of good will of customers and so forth.
In particular, if C(t) = 0 on some interval [t1, t2], then a cost
a(t2 − t1) is incurred.

To fully describe the control, we need also to charac-
terize the threshold q and the sell prices pl and ph. That
is, under OP1 the control is determined by the decision
variables (s, S, q, Q, pl , ph), while under OP2 the control is
determined by the decision variables (s, S, q, pl , ph). Alter-
natively, because of the equivalence between the sell prices
and the demand rate, we can replace pl and ph by dl and dh,
respectively.

To distinguish between the two policies, we let C1 :=
{C1(t) : t ≥ 0} denote the content-level process under OP1,
and C2 := {C2(t) : t ≥ 0}, denote the content-level process
under OP2. We still use the notation C in discussions in which
no specific process is considered (if the same is true for both
C1 and C2).

2.1. The Fluid Process Achieved via Asymptotic
Considerations

In our model, the content-level process C is assumed
to decrease deterministically and continuously in between
orders, with the instantaneous decrease rate determined by
the sell price. To see that this assumption follows from stan-
dard assumptions in the literature (as was reviewed in Section
1.1 above), recall that a fluid inventory model is achieved as
a relaxation to a stochastic system, building on asymptotic
considerations, as described in Section 1. In particular, our
model is appropriate as an approximation for a large inven-
tory system in which large orders are placed rarely relative to
the interarrival times of customers that purchase those items.
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For example, orders of several hundreds of items may be
made once every few weeks, and tens of items are sold daily.
We now provide a quick overview of the arguments that can
be used to prove the limiting result.

Formally, the fluid model can be achieved as a stochastic-
process limit of a sequence of stochastic inventory systems
indexed by n. With each n ≥ 1, there are associated parame-
ters sn, Sn, qn, and Qn that increase linearly with n, so that, for
example, Sn/n → S > 0 as n → ∞, and an arrival process
of customers purchasing the items with an arrival rate that
increases proportionally to n as well.

Let Cn := {Cn : n ≥ 1} denote the content level process
in system n, and let C̄n(t) := C(nt)/n, t ≥ 0. The fluid
process C is an approximation for Cn in the sense that
C̄n(t) ≈ nC(t) for large-enough n. Observe that the fluid
approximates a large system Cn by accelerating time by a
factor of n in C̄n. This implies that the state-of-the-world
process should be “slowed-down” (relative to the demand
process) in order for it to have the same time scale as the
interorder times. Specifically, in system n, the procurement
price evolves according to a CTMC Wn := {Wn(t) : t ≥ 0},
which spends an exponentially-distributed amount of time in
state wλ and in wμ with mean nλ and nμ, respectively.

It remains to describe the demand process that leads to
the deterministic demand rate in the fluid model. To this
end, assume that the arrival process of customers consti-
tutes a Poisson process with some rate � > 0. Assume
further that each customer has a private valuation for the item
under consideration, and that the valuations of customers
are random variables that are independent across the cus-
tomers and are identically distributed. Let V denote a generic
random variable that has the customers’ valuation distribu-
tion, and let FV denote its cumulative distribution function
(cdf). Then an arrival will purchase an item with probability
Fc

V (p(x)) := P(V > p(x)) when the price is p(x), so that
Fc

V (p(x)) is the proportion of all arrivals that purchase items
when the price is p(x). Given these assumptions, the instan-
taneous demand rate when the content is x and the price is
p(x), is

d(x) := �Fc
V (p(x)), (1)

so that the demand process is

N
(∫ t

0
�Fc

V (p(x))dx

)
, t ≥ 0,

where N is a unit-rate Poisson process. It follows from the
functional strong-law of large number for the Poisson process
(e.g., section 3.2 in [32]) and the continuity of the com-
position mapping at continuous limits (e.g., [31], Theorem
13.2.1]) that, uniformly over compact intervals,

N ◦ ∫ t

0 n�Fc
V (p(x))dx

n
:=

N
(∫ t

0 n�Fc
V (p(x))dx

)
n

→
∫ t

0
�Fc

V (p(x))dx

as n → ∞ w.p.1.

In particular, we obtain that the fluid model C(t) is differ-
entiable at all its continuity points, namely, at all points in
which no orders arrive, and evolves according to the differ-
ential equation C ′(x) = −d(x) between orders, for d(x) in
(1). We thus see that the random demand process in the pre-
limit is replaced with a deterministic demand process in the
fluid limit.

3. STEADY-STATE ANALYSIS

We will analyze the inventory system in stationarity.
Hence, we need to argue that a unique stationary distribution
indeed exists for our system. We will analyze a system having
a general demand-rate function, which allows for a general
pricing policy analysis in our setting. Let p1 : [0, S] → R+
and p2 : [0, S] → R+ be the pricing policies under OP1 and
OP2, respectively. For x ∈ [0, S], let d1(x) := d(p1(x)) and
d2(x) := d(p2(x)) denote the respective demand functions.

We make the following assumption, which will be shown
to ensure that the system possesses a unique stationary
distribution. Let

Di(x) :=
∫ x

0

1

di(y)
dy, 0 ≤ x ≤ S. (2)

ASSUMPTION 1: The pricing policy employed is such
that Di(S) < ∞ for i = 1, 2.

Note that Di(x) is the time to reach level 0 from level x,
for all 0 < x ≤ S, if the input is shut off, that is, if there
are no new inventory orders during Di(x) time units. Then
Assumption 1 simply states that the content level can reach
state 0 in finite time, provided no new orders are placed during
the time interval [0, Di(S)] and Ci(0) = S. This assumption
holds trivially whenever di is a simple function, i = 1, 2, which
is the case amenable to numerical studies and optimizations.

Note that, for i = 1, 2, the content level Ci is not Markov,
but

Xi := {Xi(t) : t ≥ 0} := {(Ci(t), W(t)) : t ≥ 0}
is a two-dimensional Markov process with state space S :=
[0, S] × {

wλ, wμ

}
. It is simple to show that X is regen-

erative and possesses a unique stationary distribution. Let
W(∞) denote a random variable having the stationary dis-
tribution of the process W, and let Ci(∞) be a random vari-
able having the stationary distribution of Ci , i = 1, 2. Then

Naval Research Logistics DOI 10.1002/nav
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Xi(∞) := (Ci(∞), W(∞)) is a random variable with the
stationary distribution of the process X i , i = 1, 2. All these
random variables exist by the following theorem.

PROPOSITION 3.1: If Assumption 1 holds, then for i = 1,
2, the joint process Xi = (Ci , W) is a (possibly delayed)
regenerative process admitting a unique stationary distribu-
tion.

PROOF: It is easy to see that X i , i = 1, 2, is nonlattice, and
will return to state x∗ := (S, wμ) in finite expected time,
given our assumptions on the model. In particular, let Eμ and
Eλ denote two generic exponential random variables repre-
senting the times that W spends in each of its states wμ and
wλ, respectively, and let T denote the return time of C1 to S,
and take X1(0) = (S, wμ). Then

E[T ] = E[T |W(D(S − s)) = wμ]P(W(D(S − s) = wμ)

+ E[T |W(D(S − s)) = wλ]P(W(D(S − s)) = wλ)

≤ D(S − s) + E[T |W(D(S − s)) = wλ].
Now, if at time D(S − s) the state of the world is wλ, then the
content process will either jump back to S if Eμ ≤ s, namely,
with probability 1 − e−μD(s), or it will jump to Q if Eμ > s,
that is, with probability e−μD(s). Therefore, letting TQ denote
the time to return to x∗ when starting in (Q, wλ), the second
term in the right-hand side of the equality above satisfies

E[T |W(D(S − s)) = wλ] ≤ D(S)(1 − e−μD(s))

+ E[TQ]e−μD(s).

Observe that TQ is a geometric sum with success probability
P(Eλ > D(Q)) = e−λD(Q) of random variables, where each
of the random variables in the sum is bounded from above
by D(Q) w.p.1. The statement of the proposition follows for
X1 from Assumption 1. Similar arguments can be employed
to prove the result for X2. �

REMARK 3.1: It is clear from the arguments in the proof
of Proposition 3.1 that it is sufficient to assume that D1(y) <

∞ for some y > S − s, that is, the content level can go
below level s. However, OP2 requires that the content level
can reach level zero in finite time.

3.1. Steady-State Equations

We now compute the unique stationary distribution of the
processes C1 and C2. In some models, simplifications occur
due to a form of asymptotic independence between the con-
tent level C and the “world” process W (using our notation),
that is, C(∞) is independent of W(∞), so that the stationary
distribution of X is the product of the stationary distribu-
tions of C and W. Such is the case, for example, when W

is a “well-behaved” Markov process which determines the
demand process; see, for example, [7] and references therein.
However, such simplification cannot be expected to hold in
our model, since the position of C(t) contains significant
information on the value of W (t) at each t, even when the
joint process X is stationary (that is, if X(t) is distributed as
X(∞) for all t ≥ 0). For example, if C(t) < s, then neces-
sarily W(t) = wλ. However, there is still simplification in
our case, which stems from the fact that the world process W
does not depend on the content level C, and can be analyzed
separately. We can thus find the stationary distribution of C
by computing relevant stationary quantities of W.

We next introduce integral representations for the steady-
state density functions of the content level process. Let
f1 : [0, S] → R+ and f2 : [0, S] → R+ denote the steady-
state density functions of C1 and C2, respectively. The next
theorem provides an integral representation for the steady-
state densities f 1 and f 2. We present two equations for the
density under OP1, for the two cases s < Q and s ≥ Q.

Consider the case s < Q, and take x > s. Let k1 denote the
long-run rate of upcrossings of level x, that is, the long-run
average number of jumps from s to S. For the case s ≥ Q,
let k̃1 denote the long-run rate of upcrossing of level x,
s ≤ x ≤ S. We denote by k2 the long-run rate of upcrossings
of level x, x ≥ s, caused by jumps from level s under OP2.

The main difficulty in our model is in determining the long-
run rate of jumps from level s, that is, the values of k1, k̃1,
and k2. We first present the integral equations for the steady-
state densities without specifying these constants: their values
are computed in Lemma 3.4 below, after the solutions to the
steady-state densities, and their respective cdf’s are computed
in terms of these constants.

Let π2 denote the atom at 0 of the stationary content level
C2, that is,

π2 := P(C2(∞) = 0) > 0. (3)

LEMMA 3.1 (integral equations for steady-state densities)
The steady-state densities f1(x) of C1 and f2(x) of C2 exist.

Furthermore, f1(x) satisfies one of the following integral
equations, depending on whether s ≤ Q or s > Q:

If s ≤ Q : d1(x)f1(x)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ
∫ x

0 f1(w) dw + d1(0)f1(0), 0 ≤ x < s,

λ
∫ s

0 f1(w) dw + d1(0)f1(0) + k1, s ≤ x < Q,

λ
∫ s

0 f1(w) dw + k1, Q ≤ x ≤ S.

If s > Q : d1(x)f1(x)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ
∫ x

0 f1(w) dw + d1(0)f1(0), 0 ≤ x < Q,

λ
∫ s

0 f1(w) dw, Q ≤ x < s,

λ
∫ s

0 f1(w) dw + k̃1, s ≤ x ≤ S.

(4)
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The steady-state density f2(x) satisfies the integral equa-
tion

d2(x)f2(x) =
{

λ
∫ x

0 f2(w) dw + λπ2, 0 ≤ x < s,

λ
∫ s

0 f2(w) dw + λπ2 + k2, s ≤ x ≤ S.

(5)

PROOF: Existence of the stationary densities follows from
Corollary 4.1 in [23]. We explain the derivation of the inte-
gral equation for f 1 for the case s ≤ Q. The other equations
are derived similarly.

First, d1(x)f1(x) in the left-hand side of (4) is the long-run
rate of downcrossings level x, while the right-hand side rep-
resents the long-run rate of upcrossings of level x, 0 ≤ x ≤ S.
In steady state, the rate of downcrossing must equal to rate of
upcrossing that level, which is what (4) states. For a rigorous
definition of “rate” we again refer to [23]. Here, the mean-
ing will become clear from the proof. To see this, assume

that C1(0)
d= C1(∞), namely, C1(0) has the steady-state dis-

tribution of the content level. That makes C1 a stationary

process, so that C1(t)
d= C1(∞) for all t ≥ 0. Let τ be an

arbitrary point of a jump. Since jumps can only occur when
0 ≤ C1 ≤ s, we separate the analysis into three cases as
follows:

1. 0 ≤ C1(τ−) < x < s. The last jump in the cycle
brings the content level up to level Q, and the other
jumps, if any, bring the content to level S (where
S ≥ Q). Thus, if C1(τ−) > 0, τ is a beginning of a
cheap period and C1(τ ) = S. If C1(τ−) = 0, then
τ is a time of depletion and C1(τ ) = Q. Both types
of jumps imply that the jump is an upcrossing of
level x. Since the expensive period is exponentially
distributed with rate λ, it follows by the well-known
PASTA (Poisson Arrivals See Time Average [33])
property that if C1(τ−) > 0, then C1(τ−) and C1

are equal in distribution, and the rate at which level
x is upcrossed is λ. The rate at which C1(τ−) = 0 is
d(0)f1(0). Thus, the rate at which level x is upcrossed
is λ

∫ x

0 f1(w)dw + d(0)f1(0).
2. 0 ≤ C1(τ−) ≤ s and s ≤ x < Q. Again, every

jump is an upcrossing of level x. However, in addi-
tion to the previous case (i), there is also a possibility
to jump above level x from level s (when level s is
reached during a cheap period). That long-run rate is
denoted by k1 (and will be computed in Lemma 3.4
below).

3. 0 ≤ C1(τ−) ≤ s and Q ≤ x ≤ S. In this case, level
x cannot be upcrossed by a jump from level 0. Thus,
the rate d1(0)f1(0) is removed. �

The arguments for f 1 in the case s > Q and for f 2 are similar.
(Note however that f 2 has an atom π2 at level 0.)

3.2. Solutions to f 1 and f 2

We solve for f 1 and f 2 in (4) and (5) in terms of unknowns
k1, k̃1 and k2 whose values are determined by the transient
distribution of the state of the world process W. We compute
these unknowns explicitly in Lemma 3.4.

LEMMA 3.2 (Steady-state distribution). The steady-state
density functions f 1 and f 2 satisfy

f1(x) =

⎧⎪⎨
⎪⎩

c0
d1(x)

eλD1(x), 0 < x < s,

(c0e
λD1(s) + k1)D1(x), s ≤ x < Q,

(c0e
λD1(s) + k1)D1(Q)/d1(x), Q ≤ x ≤ S,

and

f2(x) =
⎧⎨
⎩

λπ2
d2(x)

eλD2(x), 0 < x < s,

(λF2(s) + λπ2 + k2)D2(x), s ≤ x < S,

where the constant k1, k̃1, and k2 are given in Lemma 3.4
below, and c0 and π2 are the unique constants for which

∫ S

0
f1(s)dx = 1 and π2 := 1 −

∫ S

0
f2(x)dx.

PROOF: Let F1(x) := ∫ x

0 f1(s)ds denote the cdf, associ-
ated with the density f 1. Let c0 := d1(0)f1(0). For 0 ≤ x < s,
we write f1(x) − λ/d(x)F1(x) = c0/d1(x). Then, multiply-
ing that equation by exp {−λD1(x)} and integrating (recall
that d

dx
D1(x) = 1/d1(x)), we get

e−λD1(x)F1(x) =
∫ x

0

c0

d1(s)
e−λD1(s)ds = −c0

λ
e−λD1(x) + C1,

so that

F1(x) = −c0

λ
+ C1e

λD1(x), x ∈ [0, s),

for some constant C1. Using the initial condition F1(0) = 0
(and D1(0) = 0), we see that C1 = c0/λ. It follows that

F1(x) = c0

λ
(eλD1(x) − 1), 0 ≤ x < s,

so that

f1(x) = c0

d1(x)
eλD1(x), 0 ≤ x < s.

Hence,

f1(s−) = c0

d1(s)
eλD1(s) and F1(s) = c0

λ
[eλD1(s) − 1].
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Next, consider x ∈ [s, Q). Then

d1(x)f1(x) = λF1(s) + c0 + k1

= c0e
λD1(s) + k1.

Since the right-hand side of (4) over [Q, S] is a constant, the
expression for f 1 follows. Finally, the constant c0 is obtained
by applying the normalization condition

∫ S

0 f1(x) dx = 1,
and is given in terms of k1.

The solution for f 2 is computed similarly. �

3.3. Jumps from Level s

It remains to find the constants k1, k̃1, and k2. To that end,
we define the following conditional probabilities: Let θ1(s, S)

and θ2(s, S) denote the conditional probabilities that level s
is downcrossed during a cheap period, under OP1 and OP2,
respectively, given that the last jump prior to hitting s was
to level S. Let γ1(s, Q) denote the conditional probability
that level s is downcrossed during a cheap period under OP1,
given that the last jump prior to hitting s was to level Q (which
under OP1 corresponds to the beginning of a regenerative
cycle). The closed-form expressions for θ1(s, S), θ2(s, S) and
γ1(s, Q) are computed in Lemma 3.3 below. These expres-
sions depend only on the (known) parameters of the cost
process C, and on the function D.

Observe that γ1(s, Q) = 0 if Q < s. Let 1 {s < Q} be the
indicator function which equals 1 if s < Q and 0 otherwise.
The proof of the following lemma is straightforward, and is
thus omitted.

LEMMA 3.3:

θ1(s, S) = θ2(s, S) = λ

λ + μ
+ μ

λ + μ
e−(λ+μ)[D1(S)−D1(s)],

γ1(s, Q) =
(

λ

λ + μ
− λ

λ + μ
e−(λ+μ)[D1(Q)−D1(s)]

)
1{s < Q} .

In the next lemma, we express the constants k1, k̃1 and k2.

LEMMA 3.4: Consider x ∈ (s, S]. Then the long-run rate
of upcrossings of level x under OP1 is given by k1 if s ≤ Q

and k̃1 if s ≥ Q. It is given by k2 under OP2, where

k1 := γ1(s, Q)d1(0)f1(0) + θ1(s, S)d1(S)f1(S),

k̃1 := θ1(s, S)d1(S)f1(S),

k2 := θ2(s, S)d2(s)f2(s), (6)

for γ1(s, Q), θ1(s, S) and θ2(s, S) in Lemma 3.3.

PROOF: We find k1. The computations of k̃1 and k2 are
similar. (See also Remark 3.2 below.) Consider the state of the

content level immediately after a jump. Clearly, the process
between jumps is a DTMC with two states – S and Q. The
transition matrix of that DTMC at jump epochs is

P : =
[
PS,S PS,Q

PQ,S PQ,Q

]

=
[
θ1 + (1 − θ1)(1 − e−λD1(s)) (1 − θ1)e

−λD1(s)

1 − (1 − γ1)e
−λD1(s) (1 − γ1)e

−λD1(s)

]
.

(7)

We now explain the entries of the transition matrix, starting
with the first row. The content level jumps to state S only
when the environment is cheap. There are two possibilities
to make a transition from S to S: Either the content level
started at S and arrived at level s during a cheap period, in
which case there is a jump immediately back to level S—
this event occurs with probability θ1. Else, the content level
arrives at level s during an expensive period and there is no
jump at s, but the expensive period is terminated before the
content level reaches level 0. The probability of that latter
event is (1 − θ1)(1 − e−λD1(s)). This explains the first row of
the transition matrix (7).

Turning to the second row, recall that the content level
reaches level 0 only when the environment is expensive, in
which case the content level jumps to level Q. Thus, the
DTMC at jumps epochs moves from Q to Q only if level s
was reached during an expensive period, and the environment
remained expensive till the content level reached 0. The event
occurs with probability PQ,Q = (1−γ1)e

−λD1(s). To see why,
note that 1−γ1 is the probability of reaching s at “expensive”,
given that the last jump was to Q, and e−λD1(s) is the prob-
ability that the environment did not change to “cheap” after
level s was downcrossed, and before level 0 was reached.

We denote the stationary probabilities of the above Markov
chain by νS and νQ, with ν := (νS , νQ). Calculating νP = ν

and νS + νQ = 1 gives

νS = 1 − (1 − γ1)e
−λD1(s)

1 − (θ1 − γ1)e−λD1(s)
and νQ = 1 − νS , (8)

where νS and νQ are interpreted as the limiting proportion of
jumps to levels S and Q, respectively. Hence,

k1 = (νSθ1 + νQγ1)d1(s)f1(s) (9)

is the long run rate of jumps from level s.
We next show that the expression for k1 in (6) gives the

same expression as in (9): From (4) (the case s < Q) we see
that

d1(0)f1(0) = d1(S)f1(S) − d1(s)f1(s) =: c0,
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and from the solution to f 1 we see that d1(s)f1(s) =
c0e

λD(s) + k1. Substituting for d1(0)f1(0) and d1(S)f1(S)

in the expression for k1 in (6), we rewrite k1 to get

k1 = γ1c0 + θ1c0e
λD1(s) − θ1c0

1 − θ1
. (10)

It is then a matter of simple algebra to show that the expression
for k1 in (10) is equal to

(1 − νSθ1 − νQγ1)
−1(νSθ1 + νQγ1)c0e

λD1(s),

for νS and νQ in (8). We now use the solution for f 1 once
more to replace c0e

λD1(s). In particular, from c0e
λD1(s) =

d1(s)f1(s)− k1 we get the desired equality, that is, k1 in (10)
is equal to the expression (9). This proves the claim. �

REMARK 3.2: The values of the terms in (6) have an
intuitive interpretation. For example, the value of k1 can
be computed by conditioning on the last jump prior to hit-
ting s, namely we condition on whether we started at level
Q or S, where these conditional probabilities are γ1(s, Q)

and θ1(s, S), respectively. Then the long-run rate of hitting s,
when starting in Q, is also the long-run rate of hitting level 0
from above, which is equal to d1(0)f1(0). The long-run rate
of hitting s when starting in S, is the long-run rate of down-
crossing S, which is equal to d(S)f1(S). This logic gives
the expression for k1 in (6). Similar reasonings give us the
expressions for k̃1 and k2.

3.4. Profit Functions Under OP1 and OP2

We can use the solutions for f 1 and f 2 and compute the
long-run profit functions for both policies. We denote by
R1 := R1(s, S, Q, p(·)) the long-run average profit function
generated by OP1, and by R2 := R2(s, S, p(·)) the long-run
profit function generated by OP2.

PROPOSITION 3.2: We have

R1 =
∫ S

0
[p(w)d1(w) − h(w)]f1(w)dw

− [K + wμ(S − s)]k1 − λ

∫ s

0
[K + wμ(S − w)]

× f1(w)dw − (K + wλQ)d1(0)f1(0) (11)

and

R2 =
∫ S

0
[p(w)d2(w) − h(w)]f2(w)dw

− [K + wμ(S − s)]k2 − λ

∫ s

0
[K + wμ(S − w)]

× f2(w)dw − (K + wμS)λπ2 − a
d(0)f2(0)

λ
, (12)

for π2 = 1 − ∫ S

0 f2(x)dx in (3).

PROOF: The first terms on the right-hand sides of (11)
and (12),

∫ S

0 [p(w)di(w) − h(w)]fi(w)dw, i = 1, 2, are the
average income flowing into the system, since [p(w)di(w)−
h(w)]dw is the infinitesimal flow into the system whenever
the content level is w.

The cost [K + wμ(S − s)] is incurred every time level s is
downcrossed and W(t) = wμ, that is, the state of the world
is “cheap.” Conditioning on the state of the content level just
after the last jump, gives the long-run rate of downcrossing
level s during a cheap period, as explained in the proof of
Lemma 3.1.

The average ordering costs (Textranslationfailed), i = 1, 2,
are paid after level s is downcrossed during an expensive
period and the next cheap period starts before the content
level drops to 0. The fact that the expensive period is exponen-
tially distributed with rate λ implies that cheap periods arrive
in accordance with a Poisson process with rate λ. Hence,
the conditional ordering cost, given that the state is w, is
K +wμ(S −w) and the deconditioning is taken with respect
to the steady state density by PASTA.

The last term on the right-hand side of R1 is the ordering
cost when the content level drops to 0 during an expensive
period and an immediate order of size Q is placed. Again,
d(0)f1(0) is the long-run average number of hitting level 0
from above.

The last two terms on the right-hand side of R2 are asso-
ciated with the atom of C at state 0. First, under OP2 the
controller will wait for the next cheap period to arrive, and
then will place an order of size S. The rate of those ordering
costs is λπ2 by PASTA. Second, there is a cost a(t2 − t1) for
staying at state 0 over the interval [t1, t2]. Since the long-run
average time between two hits of level 0 is d(0)f2(0), we
have by renewal reward that

1/λ

1/(d(0)f2(0))
= d(0)f2(0)

λ

is the long-run proportion of time spent in state 0. �

Under OP1, the average ordering cost is K +wμE(S−C1)

when W = wμ, but the last order of each cycle is placed
in an expensive period with the ordering cost being K +
wμE(S−C1). Under OP2, all orders are placed in cheap peri-
ods with the expected ordering cost being K +wμE(S−C1).
In particular, the set-up cost of the last order in the cycle is
K + wμS.

4. NUMERICAL STUDY

We consider models with two sell prices, denoted by ph

and pl , so that only one threshold q for switching from the
high price ph to the lower one pl should be determined. Note
that q = S or q = 0 is possible, in which case only one sell
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price is employed. Letting dl and dh denote the demand rate
whenever the sale price is pl and ph, respectively, we have that
C > q implies a demand rate dl , and C ≤ q implies a demand
rate dh. We use a linear demand model d(p) = 50 − p, with
domain [0, 50 − 10−3], and linear holding costs h(x) = hx,
for h > 0. In the plots in Fig. 1, we plot the sensitivity of the
optimal profit with respect to changes in one of the parame-
ters (h, K , wμ, wλ, μ, λ, a). For different parameter values,
we calculate the optimal (ph, pl , q, s, Q, S) under the poli-
cies OP1 and OP2. We also compare their performance with
an (s, S) policy, denoted by OP0, under which an order of size
S−s is placed whenever the content process hits level s. In par-
ticular, under OP0 the parameters (s, S, ph, pl) are optimized
without taking the stochastic fluctuations of the procurement
price into account. Instead, the procurement price under OP0
is taken to be weighted average of wμ and wλ.

4.1. Scenario 1:
(h, K , wμ, wλ, μ, λ, a) = (7, 233, 3.4, 43, 0.7, 0.05, 5)

In this scenario, the cheap periods are relatively rare, with
a very cheap price. OP2 performs slightly better than OP1,
and both outperform OP0. Table 1 lists the optimal profit and
decision variables for the order policies OP0, OP1, and OP2.
Figure 1 shows sensitivity of the optimal profits w.r.t. changes
in the parameters (h, K , wμ, wλ, μ, λ, a). For all policies, the
profit is decreasing in h, K, wμ, wλ, and μ, and increasing
in λ. The profit of OP0 and OP1 does not depend on a; for
OP2, the optimal profit is decreasing in a. Clearly, taking the
fluctuating procurement prices into consideration make a big
difference, as no profit can be make under OP0.

4.2. Scenario 2:
(h, K , wμ, wλ, μ, λ, a) = (5, 100, 20, 25, 0.1, 0.05, 1)

Here the difference between cheap and expensive price
is less extreme, and cheap periods last longer. OP1 per-
forms slightly better than OP0, and both outperform OP2.
Table 2 lists the optimal profit and decision variables for the
order policies OP0, OP1, and OP2. Figure 2 shows sensi-
tivity of the optimal profits w.r.t. changes in the parameters
(h, K , wμ, wλ, μ, λ, a). For all policies, the profit is decreas-
ing in h, K, wμ, wλ, and μ, and increasing in λ. The profit
of OP0 and OP1 does not depend on a; for OP2, the optimal
profit is decreasing in a.

5. GENERALIZATIONS

In this section, we present two generalizations for the basic
model analyzed above for the OP2 policy. We first consider a
model having the same structure as the basic model, but with
a random environment process that is more general. We then

consider a model with exponential lead times, that is, when
there is a positive random time from the moment an order is
made by the controller until the commodity arrives.

5.1. Phase-Type Expensive Periods

Our analysis can be extended to the case in which one of
the periods, either the cheap or the expensive period, follows
a phase-type distribution; in particular, the state-of-the-world
process W evolves as a CTMC with more than two states. We
employ simple martingale arguments (the optional stopping
theorem for an appropriate Wald’s martingale; see below)

For simplicity of exposition, we consider a model in which
the expensive period is distributed as the sum of two indepen-
dent exponential random variables. Specifically, assume that
the cheap period is exponentially distributed with rate μ, and
that the expensive period is a sum of two independent expo-
nential random variables X1 and X2, with X i having mean
1/λi , i = 1, 2. We refer to X1 and X2 as the first and second
phase of the expensive period, respectively.

We designate the probabilities that level s is downcrossed
at stationarity by the first phase and the second phase of the
expensive period, respectively, by ξ1 and ξ2. In the next theo-
rem, we introduce the balance equation of the content level in
terms of f (S), ξ1, and ξ2. The computations of these quantities
is carried out below.

LEMMA 5.1: For T := D(s) − D(x) it holds that

d(x)f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d(S)f (S)
[
ξ1

(
λ1

λ1−λ2
e−λ2T − λ2

λ2−λ1
e−λ1T

)
+ ξ2e

−λ2T
]

0 < x < s,

d(S)f (S) s ≤ x ≤ S,

PROOF:

(i) s ≤ x ≤ S. In this region, every downcrossing of
level x is followed by a downcrossing of level S with
no jump in between. Thus, the long-run average num-
ber of downcrossings of level x is equal to that of the
long run average number of downcrossings of level
S, so that d(x)f (x) = d(S)f (S).

(ii) 0 < x < s. For every x, we mark a downcrossing
of level s as a downcrossing of type i if level s is
downcrossed during phase i of the expensive period,
i = 1, 2. It follows from the definition that ξ1 is the
probability that the time until the next jump is a con-
volution of two exponential random variables with
rates λ1 and λ2. Similarly, ξ2 is the probability that
the time to the next jump is exponential with rate λ2.

The probability of a type-1 downcrossing is therefore the
probability that the next jump will occur of two indepen-
dent exponential random variables with rates λ1 and λ2, is
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Figure 1. Sensitivity analysis for scenario 1. [Color figure can be viewed at wileyonlinelibrary.com]
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Table 1. Profit and optimal solution under different order policies
for scenario 1

Order policy Profit pl ph q s Q S

OP0 −1.76 46.79 50.00 0.25 0 3.20
OP1 37.92 33.10 50.00 0.09 6.01 0.09 61.05
OP2 38.45 33.10 50.00 0.01 5.94 60.97

Table 2. Profit and optimal solution under different order policies
for scenario 2

Order policy Profit pl ph q s Q S

OP0 68.93 37.90 40.37 9.51 0 21.46
OP1 69.12 37.78 40.37 9.99 0 20.5741 23.53
OP2 38.85 37.32 50.00 0.01 0.01 25.06

larger than T := D(s) − D(x), conditional on level s being
downcrossed during the first phase X1. This gives the first
expression in the square brackets. Similarly, with probabil-
ity ξ2 level s is downcrossed during the second phase of the
expensive period, and with probability e−λ2T no jump occurs
between the latter two downcrossings. �

Computing ξ1 and ξ2

To compute the probabilities ξ1 and ξ2, we construct an
auxiliary proces

χ(t) := t + S1 + · · · + SN(t), t ≥ 0, with χ(0) = 0,

where Si , i ≥ 1, are independent and identically distributed
random variables, each having the distribution of the expen-
sive period, in particular, the Laplace transform of each Si

is

G̃(α) = λ1

λ1 + α
· λ2

λ2 + α
,

and {N(t) : t ≥ 0} is a Poisson process with rate μ. Then∑N(t)
j=1 Sj is a compound Poisson process and χ is a non-

decreasing process that increases either linearly at rate 1
between jumps, or by positive jumps of (random) size S,
where S is a generic random variable with the distribution
of S1.

We can think of each jump of χ as having two phases: The
first phase is distributed exponentially with rate λ1, and the
second exponentially with rate λ2. The process χ can thus
leave the interval [0, D(S) − D(s)) in three ways: (i) attain-
ing the boundary point D(S) − D(s) on a linear segment of
the path, (ii) upcrossing level D(S)−D(s) by the first phase
of the jump, and (iii) upcrossing level D(S) − D(s) by the
second phase of the jump.

Define the stopping time

τ := inf {t > 0 : χ(t) ≥ D(S) − D(s)}

and consider Wald’s martingale associated with the process χ

Mα(t) := e−αχ(t)

E[e−αχ(t)] = e−αχ(t)−ϕ(α)t , α /∈ {−λ1, −λ2} ,

(13)

where

ϕ(α) := −
[
α + μ

(
1 − λ1

λ1 + α
· λ2

λ2 + α

)]
. (14)

Clearly Mα(t) is bounded, so the optional stopping the-
orem can be applied, yielding E[Mα(0)] = E[Mα(τ)], so
that

1 = E[e−αχ(τ)−ϕ(α)τ ]. (15)

Let B0, B1, and B2 be the events that χ reaches level
D(S) − D(s) by the drift, upcrossed by the first phase of
the jump and upcrossed by the second phase of the jump,
respectively. It follows from the memoryless property of
the exponential random variable that if level D(S) − D(s)

is upcrossed by the first phase of the jump, then χ(τ)
d=

D(S) − D(s) + X1 + X2, where
d= denotes equality in dis-

tribution. If level D(S) − D(s) is upcrossed by the second

phase of the jump, then χ(τ)
d= D(S) − D(s) + X2. Finally,

if level D(S) − D(s) is upcrossed by the continuous drift of

χ , then χ(τ)
d= D(S) − D(s). Hence, by (15),

1 =
2∑

i=0

E[e−αχ(τ)−ϕ(α)τ 1Bi
]

= e−α(D(S)−D(s))E[e−ϕ(α)τ 1B0 ]
+ λ1

λ1 + α

λ2

λ2 + α
e−α(D(S)−D(s))E[e−ϕ(α)τ 1B1 ]

+ λ2

λ2 + α
e−α(D(S)−D(s))E[e−ϕ(α)τ 1B2 ], (16)

for ϕ(α) in (14).
To obtain the probabilities ξ0, ξ1, and ξ2 we substitute

ϕ(α) = 0 in (16). It is easy to see from (14) that ϕ(α) has
three roots, with one of them, denoted by α0, being 0. The
other two roots, denoted by α1 and α2, are the solutions to
the quadratic equation

α2 + (λ1 + λ2 + μ)α + λ1μ + λ2μ + λ1λ2 = 0. (17)

Inserting the roots αi into (16) yields three equations with the
three unknowns ξi , i = 1, 2, 3. Formally,

1 = e−αi(D(S)−D(s))E[1B0 ]
+ λ1

λ1 + αi

λ2

λ2 + αi

e−αi(D(S)−D(s))E[1B1 ]
Naval Research Logistics DOI 10.1002/nav
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Figure 2. Sensitivity analysis for scenario 2. [Color figure can be viewed at wileyonlinelibrary.com]
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+ λ2

λ2 + αi

e−αi(D(S)−D(s))E[1B1 ]

= e−αi(D(S)−D(s))ξ0 + λ1

λ1 + αi

λ2

λ2 + αi

e−αi(D(S)−D(s))ξ1

+ λ2

λ2 + αi

e−αi(D(S)−D(s))ξ2, (18)

where the equation associated with α0 = 0 gives the
normalizing condition ξ0 + ξ1 + ξ2 = 1.

Computing f(S)

With ξ0, ξ1, and ξ2 in hand, we can express f (x) in terms
of f (S) via the equations in Lemma 5.1. Finally, we use the
normalizing condition

∫ S

0
f (x)dx = 1 − π ,

where π is the atom at 0. Specifically,

f (x) =
⎧⎨
⎩

k d(s)

d(x)
f (S) 0 < x < s,

d(s)

d(x)
f (S) s ≤ x ≤ S,

(19)

where

k = ξ1

(
λ1e

−λ2(D(S)−D(s))

λ1 − λ2
− λ2e

−λ2(D(S)−D(s))

λ1 − λ2

)
− ξ2e

−λ2(D(S)−D(s)). (20)

To compute π , let I be the interval of time in which the
inventory system is empty. Then

π = d(0)f (0)E[I ],

since 1/d(0)f (0) is the expected cycle length so that, by
renewal theory, E[I ]d(0)f (0) is the long run proportion of
time that the inventory system is empty.

To compute E[I ], we consider the possibilities of reaching
level 0.

1. Level s is reached during the first phase of the expen-
sive period and from here during the next D(s) time
units the first phase is not changed. The probabil-
ity of the latter event is ξ1e

−λ1D(s). Once level 0 is
reached, the expected time until an order is placed is
1/λ1 + 1/λ2.

2. Level s is reached during the first phase of the expen-
sive period, but during the next D(s) time units the
first phase end, so that level 0 is reached during the
second phase. The probability of the latter event is

ξ1

∫ D(s)

0
λ1e

−λ1ue−λ2(D(s)−u)du

= ξ1λ1

λ1 − λ2

(
e−λ2D(s) − e−λ1D(s)

)
.

Once level 0 is reached, the expected time at level 0
is 1/λ2.

3. Level s is reached during the second phase of the
expensive period and during the next D(s) time units
the second phase does not end. The probability of
the latter event is ξ2e

−λ2D(s). Then level 0 is reached
during the second phase, and the expected time at 0
is 1/λ2.

Therefore,

E[I ] =
(

1

λ1
+ 1

λ2

)
ξ1e

−λ1D(s)

+ 1

λ2

ξ1λ1

λ1 − λ2

(
e−λ2D(s) − e−λ1D(s)

)
+ 1

λ2
ξ2e

−λ2D(s),

so that

π = d(0)f (0)

[ (
1

λ1
+ 1

λ2

)
ξ1e

−λ1D(s)

+ 1

λ2

ξ1λ1

λ1 − λ2

(
e−λ2D(s) − e−λ1D(s)

) + 1

λ2
ξ2e

−λ2D(s)

]
,

where by (19),

f (0) = k
d(s)

d(0)
f (S),

for k in (20), and f (S) is obtained via

1 − π = kd(s)f (S)

∫ s

0

1

d(x)
dx + d(s)f (S)

∫ S

s

1

d(x)
dx.

In particular,

f (S) = 1 − π

kd(s)
∫ s

0
1

d(x)
dx + d(s)

∫ S

s
1

d(x)
dx

.

5.2. Exponential Lead Times

We assume exponential leadtime with parameter η. When
there are positive leadtimes, it makes sense to modify the con-
trol by considering two levels in which, when downcrossed,
the controller should place an order. We thus have three crit-
ical levels 0 < s0 < s1 < S. The cycle starts with C(0) = S.
Then the content level decreases at rate d(x) without any
jumps until it reaches level s1. If level s1 is reached during a
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cheap period, an order is placed and it takes an exponential
amount of time with rate η until it arrives. Otherwise, if level
s1 is reached during an expensive period, no order is placed
and the content level decreases until the expensive period is
terminated and replaced by a cheap period or until level s0 is
reached. In any case, when level s0 is reached (either during
a cheap period or an expensive period) an order is placed and
arrives after an exponential period of time with rate η.

THEOREM 5.1: Let f(x) denote the steady state density
of the content level C, and let F(x) denote the correspond-
ing cumulative distribution function. Then f(x) satisfies the
integral equation

d(x)f (x)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ηF(x), 0 ≤ x < s0,

ηF(s0) + η[γ + (1 − γ )(1 − e−λ[D(s1)−D(x)])]
[F(x) − F(s0)], s0 ≤ x < s1,

ηF(s0) + η[γ + (1 − γ )(1 − e−λ[D(s1)−D(s0)])]
[F(s1) − F(s0)], s1 ≤ x ≤ S,

where γ is the probability that level s1 is downcrossed during
the cheap period.

PROOF:

(i) 0 ≤ x < s0. In this region, the order is on its way.
Since the lead time is exponentially distributed the
arrival process can be interpreted as a Poisson process
with rate η.

(ii) s0 ≤ x < s1. The jump may occur below s0 or
above s0. If the content level is below s0, jumps arrive
with rate ηF(s0). If the content level is above s0,
then there are two possibilities: With probability γ

level s1 is downcrossed during a cheap period and
an order is placed immediately; it will arrive after an
exp(η) period of time. With probability 1 − γ level
s1 is downcrossed during an expensive period and no
order is placed. However, if during the time period
from downcrossing of level s1 until level x is reached
the procurement price is changed from expensive to
cheap an order will be placed and it will take an
exp(η) period until the order arrives (the probability
of the latter event is 1 − e−λ[D(s1)−D(x)]). For either
possibility, the probability that the jump occurs at
some level between s0 and x is F(x) − F(s0).

(iii) s1 ≤ x < S. In this region, we note that no jumps
starts when the content level is above level s1. We
thus have to distinguish between two possibilities.
If the content level is below level s0 the rate of the
jumps is ηF(s0). If the content level is above level s0

the rate of the jumps is

η[γ + (1 − γ )(1 − e−λ[D(s1)−D(s0)])][F(s1) − F(s0)].
�

To compute γ , we extend the argument of the previous
section. Level S can be reached either during a cheap period
or an expensive period. Since after every jump the content
level is equal to S we define the embedded chain

P =
(

pcc 1 − pcc

1 − pee pee

)
,

where pcc is the conditional probability that the next jump
occurs during a cheap period given that the present procure-
ment price is cheap and the state is S. Similarly, pee is the
conditional probability that the next jump occurs during an
expensive period given that the present procurement price is
expensive and the state is S. Then the solution (ζ1, ζ2) to the
equations

(ζ1, ζ2)

(
pcc 1 − pcc

1 − pee pee

)
= (ζ1, ζ2) and ζ1 + ζ2 = 1,

is the solution of the conditional steady state probability—
ξ1 (ξ2) that level s1 is downcrossed during a cheap period
(expensive period), given that at the starting point, that is, at
level S, the procurement price is cheap (expensive). Finally

γ = ζ1pcc + ζ2(1 − pee).

Computing pcc and pee is similar to the computations in
Lemma 3.3.

6. SUMMARY

We considered Markovian fluid-inventory models operat-
ing in a random environment, governed by the procurement
price. For the first model, in which the procurement price
changes in accordance with a CTMC, two natural (s, S)-type
policies were considered, and the respective stationary distri-
butions for the random fluid content process were computed.
In turn, those stationary distributions can be used to optimize
the control parameters for each policy. Two generalizations,
the first involving a more complex random price environment,
and the second incorporating lead times, were also analyzed.

There are two immediate related problems to address. First,
the complexity of the optimization problem requires develop-
ing an efficient algorithm to solve for the optimal solutions in
more complex settings than those considered in our numerical
examples here. Second, since it is unlikely that an overall opti-
mal policy can be found, Brownian approximations for the
underlying regenerative process may be developed to obtain
asymptotically-optimal control mechanisms. We leave those
problems for future research.
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