
Submitted to Operations Research
manuscript (Please, provide the manuscript number!)

Stability of Parallel Server Systems

Pascal Moyal
LMAC–UTC and IECL–Université de Lorraine, Vandoeuvre-les-Nancy, pascal.moyal@univ-lorraine.fr

Ohad Perry
Department of Industrial Engineering and Management Science, Northwestern University, ohad.perry@northwestern.edu

The fundamental problem in the study of parallel-server systems is that of finding and analyzing routing

policies of arriving jobs to the servers that efficiently balance the load on the servers. The most well-studied

policies are (in decreasing order of efficiency) join the shortest workload (JSW), which assigns arrivals to the

server with the least workload; join the shortest queue (JSQ), which assigns arrivals to the smallest queue;

the power-of-d (PW(d)), which assigns arrivals to the shortest among d≥ 1 queues that are sampled from

the total of s queues uniformly at random; and uniform routing, under which arrivals are routed to one of

the s queues uniformly at random.

In this paper we study the stability problem of parallel-server systems, assuming that routing errors may

occur, so that arrivals may be routed to the “wrong” queue (not the smallest among the relevant queues)

with a positive probability. We treat this routing mechanism as a probabilistic routing policy, named a p-

allocation policy, that generalizes the PW(d) policy, and thus also the JSQ and uniform routing, where p is

an s-dimensional vector whose components are the routing probabilities. Our goal is to study the (in)stability

problem of the system under this routing mechanism, and under its “non-idling” version, which assigns new

arrivals to an idle server, if such a server is available, and otherwise routs according to the p-allocation rule.

We characterize a sufficient condition for stability, and prove that the stability region, as a function of the

system’s primitives and p, is in general smaller than the set {ρ < 1}. Our analyses build on representing the

queue process as a continuous-time Markov chain in an ordered space of s-dimensional real-valued vectors,

and employing a generalized form of the Schur-convex order.

1. Introduction

We consider a parallel-server system with s≥ 2 statistically-homogeneous servers, each providing

service at rate µ, that is fed by a rate-λ Poisson arrival process of statistically identical jobs (or

1

Moyal and Perry: Stability of Parallel Server Systems
2 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

customers). For each server there is a dedicated infinite buffer in which jobs queue, waiting for

their turn to be served. Upon arrival, a job is routed to one of the s servers according to some pre-

specified dispatching (routing) rule, with no jockeying between the queues allowed. In this setting,

one seeks a “good” routing policy of jobs to the servers, e.g., a policy ensuring that steady state

waiting times are minimized, or that the total throughput rate is maximized. If the workload at

each queue can be computed, then it is natural to employ the Join the Shortest Workload (JSW)

routing policy, under which an arriving job is routed to the server with the least workload among

all s servers (together with some tie-breaking rule). However, if the workload is unknown, as is

often the case in practice, one may opt to employ the Join-the-Shortest Queue (JSQ) control, which

routes an arriving job to the server with the smallest number of jobs. Indeed, JSW was shown to

minimize the workload process in [13], whereas JSQ has been shown to be throughput maximizing

in terms of stochastic order, when the service-time distribution has a non-decreasing failure rate

[50], and in particular, when the service times are exponentially distributed [53].

However, even the queue at each server is not always known: In some settings, the number of

customers in each queue is estimated, either by the arriving customers who are free to choose which

queue to join (as in a supermarket or security lanes in airports), or by a central dispatcher (as is

often the case in passport-checking stations, for example). Even in automated settings the queue

lengths may not be known. For example, information regarding the queues to each of the servers

in web-server farms requires constant communication between the servers and the job dispatchers,

slowing down the response time, and is thus not always available; e.g., see [33].

For this reason, other routing policies have been considered in the literature, most notably the

“power-of-d” policy, which gives rise to the so-called “supermarket model” [37]. Under this policy,

upon each arrival d servers are chosen uniformly at random, and that arrival is routed to the

server with the smallest number of jobs among the d sampled queues, with ties broken uniformly

at random. We denote this routing rule by PW(d) and note that d = 1 corresponds to uniform

routing (i.e. any incoming job is sent to a queue that is chosen uniformly at random), whereas

d= s corresponds to JSQ.

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 3

1.1. Motivation and Goals

We are motivated by the fact that, unlike the idealized settings considered in the literature, routing

errors can occur in practice. In this regard, our main goal is to gain an understanding of how the

frequency at which such errors occur affects the overall system’s stability. To this end, we study

a particular form of error, under which arrivals are sent to the “wrong” queue (not the smallest)

with a fixed probability, and show that the system might not be stable in this case, even if its total

service rate is larger than the rate at which work arrives, i.e., if the traffic intensity to the system

is smaller than 1.

Routing errors are likely to occur when JSW is employed, because the actual workload at each

server can only be estimated, unless the server is idle. Similarly, such errors are likely to occur

under JSQ when customers are free to choose which queue to join, or when a central dispatcher

has only partial information about the queue lengths. Here we focus on the latter JSQ policy, since

under appropriate distributional assumptions (Poisson arrival process and exponentially distributed

service times), the queue process evolves as a continuous-time Markov chain (CTMC), whereas

under JSW, the analysis of the queue process requires a continuous-space Markov representation.

(Even under JSQ, exact analyses and steady-state computations of the queue are intractable, and

most of the literature is concerned with asymptotic approximations; see Section 2 below.) The

simulation examples in Section 6 suggest that our results extend to the JSW case.

Even though our main motivation is to study the impact of routing errors, we treat the allocation

of jobs to servers as a probabilistic routing policy. We do this for mathematical convenience, as

it allows us to treat PW(d), and therefore also JSQ and uniform routing, as a special case of the

family of allocation policies we consider. Specifically, we assume that the dispatcher (or the arriving

customer) chooses correctly the shortest queue with probability p1, the second-shortest queue with

probability p2, and so forth. We also consider a “non-idling” version, in which routing errors are

made only when all servers are busy, so that the dispatcher (or arriving customer) always chooses

an idle server, if such a server is available, and otherwise makes errors as was just described. To

Moyal and Perry: Stability of Parallel Server Systems
4 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

show that such errors can lead to extreme departures from the desired behavior under JSQ, we

characterize the stability region under the allocation policy as a function of the system’s parameters

and the error probabilities, and prove that the usual traffic condition ρ := λ/(sµ) < 1 does not

guarantee that the system is stable, even in the non-idling case.

1.2. Background: PW(d) and Related Routing Policies

Note that it is not immediately clear that the condition ρ< 1 does not imply that the system under

a p-allocation policy is stable, especially under the non-idling mechanism, because such policies

leave a lot of “room” for making routing errors, as can be seen by comparing a system operating

under either one of the two extremes—JSQ and uniform routing. Clearly, uniform routing induces

a lot of “avoidable” idleness in the system, because arrivals are often routed to busy servers even

if there are idle servers present. Nevertheless, by symmetry, the rate at which jobs arrive at each

server is the same under this policy, implying that the traffic intensity at each server separately

is smaller than 1 whenever the traffic intensity ρ to the whole system is smaller than 1. When

the arrival process to the system is Poisson, this follows directly from the splitting property of the

Poisson process, which implies that each server operates as an M/G/1 queue independently of all

other servers. Indeed, if service times are exponentially distributed, in addition to having a Poisson

arrival process, so that the queue process evolves as a CTMC, the improvement that JSQ provides

over uniform routing follows from existing results, which we now review.

Let Q
(d)
Σ (t) denote the total number of jobs in the system at time t≥ 0 under PW(d). Theorem

4 in [47] implies that1, if d1 > d2, then Q
(d1)
Σ ≤st Q(d2)

Σ , where ≤st denotes sample-path stochastic-

order. (That is, there exists a coupling of the two processes, such that Q
(d1)
Σ (t)≤Q(d2)

Σ (t) w.p.1 for

all t > 0, provided that the inequality holds at time t= 0.) In particular, for s > 2,

Q
(s)
Σ ≤st Q

(d)
Σ ≤st Q

(1)
Σ , 1<d≤ s. (1)

The stability of a parallel-server system under PW(d) readily follows. To state this result formally,

we say that a parallel-server system is “Markovian” if its multi-dimensional queue process evolves

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 5

as a CTMC. In particular, the arrival process is Poisson and the service times are independent and

identically distributed (i.i.d.) exponentially distributed random variables, that are independent of

the arrival process and of the state of the system.

Corollary 1. For a Markovian parallel-server system with s servers operating under PW(d),

1≤ d≤ s, the condition ρ := λ/(sµ)< 1 is necessary and sufficient in order for the queue process

to be an ergodic CTMC.

Proof. It is easy to see that Q
(d)
Σ is an irreducible CTMC. If ρ ≥ 1, then Q

(d)
Σ is either null

recurrent or transient, because it is bounded from below, in sample-path stochastic order, by the

number-in-system process in an M/M/1 queue with arrival rate λ and service rate sµ. On the

other hand, if ρ< 1, then Q
(1)
Σ is ergodic, because it evolves as s independent M/M/1 queues, each

with arrival rate λ/s and service rate µ. In particular the empty state (zeroth vector) is positive

recurrent for the CTMC Q
(1)
Σ , and, by virtue of (1), also for Q

(d)
Σ , 1<d≤ s. �

A more quantitative analysis can be carried out asymptotically, by taking the number of servers

s to infinity, assuming that the arrival rate grows proportionally to s. As was shown in [37, 49],

the steady-state probability that an arrival is routed to a queue of length at least k is ρd
k
, i.e., it is

doubly exponential in k for d≥ 2, as opposed to exponential when d= 1 (which is tantamount to

uniform routing). The dramatic differences between the maximum queue length in stationarity in

the cases d= 1 and d≥ 2 is demonstrated in [34], which shows that the maximum queue length is of

order ln(s)/ ln(1/λ) when d= 1, and of order ln ln(s)/ ln(d) when d≥ 2 with probability converging

to 1 as s−→∞. Further, heavy-traffic analysis shows that the performance under PW(d), for any

fixed d< s, is substantially worse than under JSQ. In particular, considering a sequence of systems

indexed by the number of servers s, and letting λs denote the arrival rate to system s, [16] and

[17] analyze a system operating under JSQ and PW(d), respectively, in the heavy-traffic limiting

regime, where λs = sµ−Θ(
√
s). It is proved in [16] that, under JSQ, only a negligible proportion

(which converges to 0) of the customers encounter a queue upon arrival, and those customers that

have to wait encounter only one customer in queue. Thus, asymptotically, no queue is larger than

Moyal and Perry: Stability of Parallel Server Systems
6 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

2. (This result holds only after some transient period, because the initial condition may have many

larger queues.) On the other hand, [17] proves that, in the supermarket model with d > 1, the

fraction of queues that are of order logd
√
s approaches 1 as s→∞.

To conclude, the dimensionality of the queue process, and the fact that it is not reversible,

render exact analysis of parallel-server systems intractable, even under Markovian assumptions.

Other than stability results and stochastic domination, as in (1), little can be said about the

systems’ dynamics and steady-state distributions. Nevertheless, the aforementioned asymptotic

results suggest that JSQ is substantially more efficient than PW(d) for d < s, which, in turn, is

substantially more efficient than uniform routing, namely, than PW(1).

Of course, the possibility of experiencing congestion collapse in parallel-server systems can nev-

ertheless be considered a triviality for vacuous choices of the control. For example, if the arrival

rate λ is larger than the service rate µ (but is smaller than sµ), then the policy that routes all

arrivals to the same server is clearly unstable. Here, however, we perform a refined analysis of the

(in)stability region for the non-idling version of JSQ when routing errors occur with a nonnegligible

probability.

1.3. Notation

We use R to denote the set of real numbers, with R+ = [0,∞), Z+ to denote the set of non-negative

integers, and Z∗+ := Z+−{0} the subset of (strictly) positive integers. For any q ∈ Z+ and all sets

A, we denote by Aq the set of vectors of dimension q having elements in A, e.g., Rq is the set

of q-dimensional real-valued vectors. Vectors are in general denoted by bold letters. For a vector

x = (x1, ..., xq) in Rq, we denote by R (x) the ordered version of x, i.e. R (x) = (x(1), x(2), . . . , x(q))

is any permutation of the elements of x such that x(1) ≤ x(2) ≤ · · · ≤ x(q). The set of ordered vectors

in Aq is denoted by R (Aq); for example, R (Rq+) := {x∈Rs+ : x1 ≤ · · · ≤ xq}.

We let a◦x∈Rq denote the Hadamard product of two vectors x= (x1, ..., xq) and y = (y1, ..., yq)

in Rq, i.e., y ◦ x = (y1x1, ..., yqxq). For x ∈ Rq+, we define n+(x) to be the number of positive

coordinates of x, which is 0 if x is the zeroth vector 0 := (0, . . . ,0). Let Jp, qK =Z+ ∩ [p, q]. For any

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 7

i∈ J1, qK, let ei denote the vector having all coordinates equal to 0 except the ith coordinate, which

is equal to 1, and let e denote the unit vector whose components are all equal 1; e := (1, . . . ,1). For

any x ∈Rq+ we denote by ‖ x ‖=
∑q

i=1 xi and ‖ x ‖2=
√∑q

i=1 x
2
i . For any two real numbers a and

b, let a∨ b and a∧ b denote the maximum and the minimum of a and b, respectively, and denote

a+ := a∨ 0.

1.4. Organization

The rest of the paper is organized as follows: We provide a detailed literature review in Section

2. The model, including the family of allocation policies, which we call p-allocation policies, is

formally introduced in Section 3. In Section 4 we study a class of p-allocation policies for which

the condition ρ < 1 implies that the system is stable. The insufficiency of this traffic condition to

imply stability in general is demonstrated in Section 5. In Section 6 we present simulation results

which suggest that our main results extend to workload-based routing policies. We Summarize in

Section 7. Some of the technical proofs, together with auxiliary results, appear in an appendix.

2. Related Literature

Non-monotonic parallel queues. Under JSW, the dynamics of the system, as well as the sojourn

time of jobs, coincide with those of a single-queue s-server system operating under the First In

First Out (FIFO) service policy. In particular, that ρ< 1 is a necessary and sufficient condition for

the stability of the system under JSW follows from from the basic stability theory of the GI/GI/s

queue, first proved in the seminal paper [27]. The sufficiency of the condition ρ< 1 for stability of

the G/G/s queue was generalized in [8] to the stationary ergodic framework, namely, when both

the inter-arrival and service-time sequences are time-stationary and ergodic, but not necessarily

independent; see also §2.2 of [3]. This general result was proved using a backwards scheme of the

Loynes type [31], building on the fact that the (random) updating map of the stochastic recursive

sequence representing the system is non-decreasing for the coordinate-wise vector ordering. For

the same reason, JSW is the unique routing rule within the class of semi-cyclic policies introduced

Moyal and Perry: Stability of Parallel Server Systems
8 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

in [46], which renders the total workload to be a non-decreasing function of s at all times; see

[39]. Therefore, the stability region under allocation policies other than JSW cannot simply be

characterized via a Loynes-type construction, and we must therefore adopt a different approach.

JSQ systems. The JSQ policy was first introduced in [25] for a system with two servers, each

having a different service rate. The first proof that the condition ρ < 1 is necessary and sufficient

for a Markovian parallel-server system under JSQ to be stable (admit a steady state) appears in

[28, Theorem 1] for a system with s = 2 servers, building on a straightforward Lyapunov stabil-

ity argument. The main goal of [28] is to characterize the stationary distribution of the (stable)

system via generating functions; an explicit computation of this distribution is provided in [19].

Reference [15] studies a system with finite buffers, and provides closed-form expressions for the

loss probabilities. A non-idling version of JSQ was proposed and analyzed in [33] which considers

systems with more than one dispatcher, and analyzes how to balance information regarding idle

servers among those dispatchers.

There are several papers that study JSQ in asymptotic regimes. In addition to [16], which was

discussed above, we mention [23], which identifies a mean-field limit, and shows the chaoticity of

the system as N increases. An Ornstein-Uhlenbeck limit for the same model is obtained in [24].

In general, Lyapunov-stability arguments, as in [28], can be hard to generalize to higher-

dimensions, because of the need to control the drifts of the process at all states outside some

compact subset of the state space. Our proof of Theorem 1 below, that ρ < 1 implies that the

system is stable for a certain subset of control parameters, is a generalization of [28, Theorem 1],

both because it allows any number of servers s, and because it considers a larger family of routing

policies, for which JSQ is a special case. In the latter regard, it also generalizes Corollary 1. Our

proof is achieved by employing a certain partial-order relation (see Definition 2 in Section 4) in

conjunction with a Lyapunov-stability argument.

Power-of-d allocations. The PW(d) policy was first studied in [49] and [37], which also coined

the term “supermarket model” to describe a system operating under this control. The supermarket

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 9

model has since received substantial attention due to its practical and theoretical significance.

Both [17] and [11] study the supermarket model in heavy traffic, namely, as the traffic intensity

approaches 1. The rate at which the equilibrium distribution of a typical queue converges to the

limiting one in the total-variation distance is studied in [35], which also quantifies the chaotic

behavior of the system, asymptotically, namely, the rate at which the joint distribution of any

fixed number of queues converges to the limiting product-form distribution. We also mention a

recent game-theoretic supermarket model in [54], which is analyzed asymptotically, as the number

of servers and arrival rate increase to infinity.

It is significant that the asymptotic result regarding the doubly exponential decay rate of the

queue size in equilibrium does not necessarily hold for general service-time distributions. Indeed,

[6] shows that, for some power-law service-time distributions, the equilibrium queue sizes decay at

an exponential, or even polynomial, rate, depending on the power-law exponent and the number

of sampled queues d.

In a recent paper [2], the PW(d) policy is studied (together with other policies) in a time-

varying setting and with non-homogeneous servers when both the arrival and service rates scale

proportionally to n, as n→∞; in particular, the system need not be in heavy traffic, and the queues

may be of fluid scale, at least some of the time. A sufficient condition is given, guaranteeing that the

difference between the largest and smallest queue is subdiffusive (namely, is o(
√
n)), a phenomenon

known in the queueing literature as state-space collapse (SSC). (The authors in [2] reserve the term

SSC for the heavy-traffic setting, and use the term subdiffusivity of the deviation process in their

more general setting.) Under this condition, it is proved that PW(d) is asymptotically optimal in

the sense that the diffusion-scaled nominal workload process under this policy may be larger than

under any other policy by a random quantity that converges to 0 as n→∞; see Proposition 1 in

this reference.

Robustness of Control. The dynamics of a system under a given control are typically studied in

idealized settings, which do not fully hold in practice. In particular, even small deviations from the

Moyal and Perry: Stability of Parallel Server Systems
10 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

theoretical implementation of a control (due to, e.g., human or measurement errors, discretization

of a continuous control process, delays in making or applying a decision, etc.) can in turn lead

to substantial perturbations from theoretically predicted performance. Such discrepancies between

theory and implementation constitute an important area of research in dynamical control theory

(see, e.g., [26, §14] and [30]), but received little attention in the queueing literature. In [42] it

is shown how the implementation of a control, that has theoretically desirable performance in a

certain asymptotic regime, can lead to chattering of the queue process and, in turn, to congestion

collapse, namely, to a severe overload that is solely due to the implementation of the control.

We refer to [42, Section 9] for a detailed (informal) discussion on how small perturbations from

idealized control settings can have substantial impacts on the performance of queueing systems.

Instability of Subcritical Systems. Congestion collapse is related to the more general research

area regarding instability of subcritical networks, which initialized with the presentation of the

(deterministic) Lu-Kumar network studied in [32], and its stochastic counterpart, the Rybko-

Stolyar network [45]; see also [5] and [40] for applications and literature reviews. A non-idling

policy is considered in [38], in which an arrival is routed to the queue having the 2nd smallest

workload. A sufficient condition for stability, that is strictly stronger than ρ < 1, is provided, and

it is conjectured that the latter condition is also necessary.

3. The Model

We consider the following class of parallel systems: There are s servers, each having its own infinite

buffer for waiting jobs. Jobs arrive to the system following an homogeneous Poisson process with

intensity λ, and join one of the servers according to a routing policy from a class of policies that

will be formally defined immediately. If the server to which a job is routed is idle, that job enters

service immediately; otherwise, it joins the end of the server’s dedicated queue, waiting for its turn

to be served (there is no jockeying between queues). All jobs are statistically equivalent, requiring

i.i.d. service times that are exponentially distributed with mean 1/µ, regardless of the server. We

let ρ := λ/(sµ) denote the traffic intensity to the system.

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 11

Recall that our goal is to study the possible impacts that departure from the idealized modeling

assumptions that are taken in the analyses of load-balancing controls has on the systems’ load. It

is nevertheless analytically convenient to carry-out this study by treating the erroneous execution

of the different policies as a control, since this allows us to study the different routing mechanisms

(both in the “idealized” and in our “erroneous” settings) simultaneously. In particular, we study

a probabilistic routing mechanism which we call a “p-allocation policy”, where p is the allocation

probability vector p= (p1, p2, ..., ps). For example, if JSQ is exercised, then the controller sends each

new arrival to the shortest queue with probability p1, to the second shortest queue with probability

p2, and so on. Of course, this routing-with-error mechanism is mathematically equivalent to a

controller that routes new arrivals according to the same p-allocation vector by choice. With this

view, the PW(d) policy, and therefore also JSQ and uniform splitting, becomes a special case of

the p-allocation policies; see (2)–(4) below.

Specifically, the class of allocation policies we consider depends only on the queue sizes (number

of customers in service plus the number of customers waiting in line) of the servers. To determine

the server allocations without ambiguity, we assume that the servers are re-labeled as 1,2, ..., s

upon each event (arrival or departure), such that i < j if the queue size for server i is no larger than

the queue for server j. Servers having the same queue size have consecutive labels; the labeling

within each such group of servers can be arbitrary, but for concreteness, we assume that it is made

uniformly at random. Therefore, with Qi(t) denoting the queue size of server i at time t≥ 0, the

vector Q(t) := (Q1(t), ...,Qs(t)) is an element of R
(
Zs+
)
. We let QΣ(t) =

∑d

i=1Qi(t) denote the

total number of customers in the system at time t.

Let Πs denote the family of probability vectors on [0,1]s, namely, a vector p := (p1, . . . , ps) is in

Πs if pi ∈ [0,1], 1≤ i≤ s, and
∑s

i=1 pi = 1.

Definition 1. We call a routing policy a p-allocation policy, and call p the allocation (prob-

ability) vector, p ∈Πs, if, upon arrival, a customer is sent to server i with probability pi, inde-

pendently of everything else. A p-allocation policy is said to be non-idling if an incoming job is

Moyal and Perry: Stability of Parallel Server Systems
12 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

routed to an idle server, whenever there is one upon that job’s arrival, and is otherwise routed to

server i with probability pi, independently of everything else.

In particular, for each p-allocation policy there is a corresponding non-idling version which uses

the same allocation vector to route jobs that arrive when all servers are busy, and otherwise route

the arrivals to one of the idle servers.

Observe that if two or more queues have equal size upon an arrival, a p-allocation policy assigns

the incoming customer to one of those queues with an equal probability. Indeed, if a customer enters

the system at t and the consecutive indices j, j + 1, ..., k− 1, k are such that Qj−1(t−)<Qj(t
−) =

Qj+1(t−) =Qk−1(t−) =Qk(t−)<Qk+1(t−), then by uniformity of the choice of labeling, server

` is chosen with the probability

1

k− j+ 1

k∑
i=j

pi, for any `∈ Jj, kK.

A particular class of p-allocation policies is the PW(d) policy, and its special cases, uniform

splitting and JSQ.

� For uniform splitting, the allocation vector is

p(1) := (1/s, ...,1/s) . (2)

� For JSQ, we have

p(s) := (1,0, ...,0). (3)

� More generally, under PW(d) an arriving job is routed to server i if it is one of the d draws,

and the other d− 1 servers drawn have indices in Ji+ 1, sK. Then the allocation vector for this

policy is (with ties broken uniformly at random)

p(d) :=
(
p

(d)
1 , ..., p(d)

s

)
=


p

(d)
i =

(
s−i
d−1

)
/
(
s
d

)
, i∈ {1, ..., s− d+ 1};

p
(d)
i = 0, i∈ {s− d+ 2, . . . , s},

(4)

Observe that (2) and (3) are consistent with (4), and are achieved by taking d = 1 and d = s,

respectively.

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 13

3.1. The Stability Regions of the Allocation Policies

It is immediate that for any probability vector p ∈ Πs, the process Q is an R
(
Zs+
)
-valued

continuous-time Markov chain (CTMC). The stability region of the parallel-server system corre-

sponding to the p-allocation policy, which we denote by S(p), is then defined as the set of values of

the traffic intensity ρ= λ/(sµ) under which Q is stable in the sense that it is a positive recurrent.

Then for any p-allocation vector we define

S(p) := {ρ∈ [0,1) : Q is positive recurrent under the p-allocation policy} ;

Sni(p) := {ρ∈ [0,1) : Q is positive recurrent under the non-idling p-allocation policy} .

It is intuitively clear that the stability region under a non-idling p-allocation policy cannot be

smaller than the stability region under the same allocation vector when the policy is not non-idling.

In other words, we have that

Proposition 1. S(p)⊆Sni(p) for all p∈Πs.

The proof of Proposition 1 is given in Appendix A.

As an immediate consequence of Proposition 1 we see that, if stability is proved for given system’s

parameters and for a specific p-allocation policy (a specific allocation vector p), then the system

is also stable under the non-idling version of that policy. On the other hand, a system is unstable

if operated under a p-allocation policy, if it is shown to be unstable under its non-idling version.

4. Maximal p-Allocation Policies

In this section we identify a sub-class of p-allocation policies under which the stability region is

the interval [0,1). We call such an allocation policy maximal, since its stability region is the largest

possible. To this end, we introduce the following partial order on Rs+.

Definition 2. Let a= (a1, ..., as) and b= (b1, ..., bs) be two elements of Rs+, s≥ 1. We say that a

is smaller than b in the “generalized Schur-convex” order, and write a�gsc b, if

s∑
i=k

ai ≤
s∑
i=k

bi for all k≤ s.

Moyal and Perry: Stability of Parallel Server Systems
14 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

The relation “�gsc” defines a partial ordering on Rs+ that is a variant (for non-necessarily ordered

vectors) of the partial semi-ordering “≺cx” introduced in Definition 3 of [39], which itself generalizes

the well-known Schur-convex partial semi-ordering “≺scx” (see e.g. [36]) to vectors of different total

sums. Specifically, we have a�gsc b if and only if a≺cx b for any a,b ∈ R
(
Rs+
)
, and a�gsc b if

and only if a ≺scx b for any a,b ∈ R
(
Rs+
)

such that ‖ a ‖=‖ b ‖. Observe that, for any random

variables X and Y having respective probability mass functions pX and pY in Πs and values in

J1, sK, it holds that X ≤st Y if and only if pX �gsc pY .

To state and prove the main result of this section, Theorem 1 below, we need the following

property of the generalized Schur-convex order. We remark that further properties of this order

are proved in Lemma 4 in Appendix A.

Lemma 1. Let a and b be two vectors in Rs+ such that a�gsc b, and let x∈R
(
Rs+
)
. Then,

x ◦a�gsc x ◦b.

Proof. As a�gsc b and x is ordered, we have that, for any k≤ s,
s∑
i=k

xiai = xkak +
s∑

i=k+1

i−1∑
j=k

(xj+1−xj)ai +
s∑

i=k+1

xkai

= xk

s∑
i=k

ai +
s∑

i=k+1

(xi−xi−1)

s∑
j=i

aj

≤ xk
s∑
i=k

bi +
s∑

i=k+1

(xi−xi−1)

s∑
j=i

bj =
s∑
i=k

xibi. �

Theorem 1. If p satisfies

p�gsc p
(1), (5)

for p(1) = (1/s, ...,1/s) in (2), then S(p) = [0,1), namely, the p-allocation policy is maximal.

Proof. For n ≥ 0, let Tn denote the nth transition epoch of the CTMC Q, with T0 = 0, and

consider the embedded discrete-time Markov chain (DTMC) {Qn : n≥ 0} defined via Qn :=Q (Tn).

We prove the result via a Lyapunov stability argument, employing the Lyapunov function V :

R
(
Zs+
)
−→R+ defined by V (x) = ‖x‖22. Let

K=

{
x∈R

(
Zs+
)

:
s∑
i=1

xi ≤
s(λ+ sµ)

2(sµ−λ)

}
.

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 15

Then, for any n≥ 1 and x= (x1, ..., xs)∈Kc ∩R
(
Zs+
)

we have

E [V (Qn+1)−V (Qn) |Qn = x]

=
s∑
i=1

λ

λ+n+(x)µ
pi
(
(xi + 1)2− (xi)

2
)

+
s∑
i=1

µ

λ+n+(x)µ

(
((xi− 1)+)2− (xi)

2
)

=
1

λ+n+(x)µ

(
2

(
λ

s∑
i=1

pixi−µ
s∑
i=1

xi

)
+λ+n+(x)µ

)
.

(6)

Applying Lemma 1 with a := p, b := p(1), where p(1) is the uniform distribution on J1, sK in (2), and

the ordered vector x, we obtain that x◦p�gsc x◦p(1), and in particular, that
∑s

i=1 pixi ≤
1
s

∑s

i=1 xi.

As n+(x)≤ s, this entails that the last expression in (6) is less than or equal to

1

λ+n+(x)µ

(
2

(
λ

s
−µ
) s∑

i=1

xi +λ+ sµ

)
,

which is strictly negative for x /∈K. In particular, for all x= (x1, ..., xs)∈Kc ∩R
(
Zs+
)

and all n,

E [V (Qn+1)−V (Qn) |Qn = x]< 0.

We deduce from the Lyapunov-Foster Theorem (see, e.g., [10, §5.1]) that the DTMC {Qn : n≥ 1} is

positive recurrent. In turn, this implies that the CTMC Q is positive recurrent as well, by Theorem

6.18 in [29], as the rate of the exponentially distributed holding time in each of the states is bounded

from below by λ. �

As discussed in Section 2, the maximality of PW(d) follows from (1) which is proved via coupling

arguments. Theorem 1 can be used to provide an independent proof of this result.

Corollary 2. JSQ, uniform splitting, and PW(d), d≥ 2, are maximal allocation policies.

Proof. Recall (2), (3) and (4). As p(s) �gsc p
(1) (and p(1) �gsc p

(1) by definition), both the JSQ

and uniform splitting policies satisfy the assumptions of Theorem 1.

To prove the statement for PW(d) policies, d ∈ J2, s− 1K, fix such d and observe that, for any

k ≤ s− d+ 1, the quantity
∑s

i=k p
(d)
i is the probability that the d uniformly drawn servers have

indices in Jk, sK, which is equal to
(
s−k+1
d

)
/
(
s
d

)
. From this, we deduce that

p(d) �gsc p
(2). (7)

Moyal and Perry: Stability of Parallel Server Systems
16 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Indeed, for any k≥ s− d+ 2 we have
∑s

i=k p
(d)
i = 0, whereas for any k≤ s− d+ 1, we have that

∑s

i=k p
(d)
i∑s

i=k p
(2)
i

=

(
s−k+1
d

)(
s
2

)(
s
d

)(
s−k+1

2

) =
(s− d)...(s− d− k+ 2)

(s− 2)...(s− 2− k+ 2)
≤ 1,

whence (7). Now,
∑s

i=s p
(2)
i = 0 and for all k≤ s− 1, so that

s∑
i=k

p
(2)
i =

1(
s
2

) s∑
i=k

(s− i) =
s− k
s− 1

s− k+ 1

s
≤ s− k+ 1

s
=

s∑
i=k

1

s
,

implying that p(2) �gsc p
(1). This, together with (7) and the transitivity of “�gsc”, shows that

p(d) �gsc p
(1). Thus, PW(d) is maximal by Theorem 1. �

Theorem 1, Corollary 2 and Proposition 1 also imply

Corollary 3. Sni(p) = [0,1) for any p satisfying (5). In particular, the non-idling versions of

uniform splitting and PW(d) allocation policies are maximal.

5. Insufficiency of the Condition ρ< 1

Theorem 1 requires, in addition to the usual traffic condition ρ< 1, that the allocation probability

p is smaller, in the generalized Schur convex order, than the uniform probability distribution on

J1, sK. We now demonstrate that the latter condition is not futile, and that the traffic condition

by itself does not imply stability of a system. To provide simple counter-examples, we consider

pp,2-allocation probabilities, with pp,2 := (1− p, p,0, ...0), for 0< p< 1. In other words, any arrival

is routed to the shortest queue with probability q := 1− p, or to the second-shortest queue with

probability p (ties broken by a uniform draw from the relevant queues.) We interpret p as the

probability that the controller (or the arriving customer) is making an error in distinguishing

between the shortest and the second shortest queue. We denote this pp,2-allocation policy by

J2SQ(p), and its corresponding non-idling version by J2SQni(p).

Under the non-idling version of the latter policy, the controller identifies idle servers, but oth-

erwise has a probability p of making an error by sending an arrival to the second-shortest queue.

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 17

Thus, when all the servers are busy, errors are made according to a Bernoulli trial with a probability

p of “success.” Observe that, for p(1) in (2),

pp,2 �gsc p
(1) if and only if p≤ 1− 1/s. (8)

For a given number of servers s≥ 1 and an error probability p > 0, let

Vcr(p) :=
s− 1

2s

(
1 +

√
1 +

4

p(s− 1)

)
. (9)

We refer to Vcr(p) as the critical value (for stability; see Theorem 2 below). Simple algebra shows

that

Lemma 2. For any s≥ 2 and any p∈ [0,1] we have that

Vcr(p)< 1 if and only if p > 1− 1/s. (10)

In this case, we have that

Vcr(p)>
s− 1

sp
. (11)

Moreover, Vcr(p) is the only positive root of the polynomial x 7→ s2px2− s(s− 1)px− (s− 1).

We can now state our main result regarding the insufficiency of the condition ρ < 1 to ensure

stability.

Theorem 2. Sni(pp,2)⊆ [0, Vcr(p)∧ 1) for any p∈ [0,1].

We defer the proof of Theorem 2 to §5.4. In view of (8) and (10), Theorems 1 and 2 immediately

imply the following.

Corollary 4. J2SQni(p) is maximal if and only if p≤ 1− 1/s.

In view of Proposition 1, Corollary 4 implies that the stability region under the pp,2-allocation

policy is also characterized by the value of p.

Corollary 5. S(pp,2)⊆ [0, Vcr(p)∧ 1) for all p ∈ [0,1]. In particular J2SQ(p) is maximal if and

only if p≤ 1− 1/s.

Moyal and Perry: Stability of Parallel Server Systems
18 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

5.1. Sni(pp,2) and S(pp,2) in Two-Server Systems

A characterization of the stability regions under J2SQ(p) and J2SQni(p) is difficult, because it

requires controlling the drifts of the multi-dimensional CTMC corresponding to the queue process.

However, we can characterize the stability regions of J2SQ(p) and J2SQni(p) in the special case

s= 2. (Observe that in the special case p= 1, these policies then correspond to the join the longest

queue policy when s= 2.) Corollaries 4 and 5 imply that both J2SQni(p) and J2SQ(p) are maximal

if and only if p≤ 1/2. The following two propositions, whose proofs are deferred to Appendices B.1

and B.2, characterize the stability regions under these two policies.

Proposition 2. For s= 2, it holds that

Sni(pp,2) = [0, Vcr(p)∧ 1) for any p∈ [0,1]. (12)

Proposition 3. For s= 2, it holds that

S(pp,2) =

[
0,

1

2p
∧ 1

)
for any p∈ [0,1].

In particular, when p > 1/2, a system operating under J2SQni(p) is stable if and only if ρ< Vcr(p)<

1, and a system operating under J2SQ(p) is stable if and only if ρ< 1/(2p)< 1. It is easily checked

that, in this case, Vcr(p)< 1/(2p), so that Sni(pp,2)(S(pp,2). Thus, the containment in Proposition

1 cannot be replaced with an equality.

5.2. Join the 2nd Shortest Queue Allocation Policy

The proof of Theorem 2 involves some technical details that obscure the main intuition for the

instability whenever the error probability p is greater than 1 − 1/s. Simplicity is achieved by

considering the special case p= 1, which is tantamount to having the allocation vector be p1,2 :=

(0,1,0, ...,0). In this case, the routing policy is simply join the second shortest queue, which we

denote by J2SQ; we denote its non-idling version by J2SQni. (As was mentioned above, this latter

policy is also the join-the-longest-queue policy in the spacial case s= 2.) It follows from (10) that

Vcr(1), defined in (9) with p= 1, satisfies Vcr(1)< 1.

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 19

Proposition 4. Sni(p1,2)⊂ [0, Vcr(1)). In particular, J2SQni is non-maximal.

Proof. Let

A := {x∈Zs+ : x1 ∈ {0,1}, xi ≥ 2, i∈ J2, sK}, (13)

and note that Q ∈ A if and only if queue 1 (the smallest queue) has no jobs waiting for service,

whereas queue 2 (and thus all other queues) have waiting jobs.

Let s := (0,2, . . . ,2) ∈ A, and for k = 1,2, . . . , define the time tk := inf{t ≥ 0 : Q(t) = s}, where

the event {tm =∞} for some m≥ 1 (and then for all k ≥m) may have a positive probability. We

say that the kth visit (to A) begins at time tk and ends when Q exits the set A, namely, at a

random time tk + Tk such that Q((tk + Tk)−) ∈A and Q(tk + Tk) /∈A. We henceforth refer to Tk

as the length of the kth visit.

We prove the result by making the contradictory assumption that Q is positive recurrent, and

thus ergodic. Under this ergodicity assumption, P (tk <∞) = 1 for all k ≥ 1, and the lengths of

the visits {Tk : k ≥ 1} are i.i.d. by virtue of the strong Markov property, with P (0< T1 <∞) = 1

and E[T1] <∞. Now, during the kth visit, namely, during the intervals Ik := [tk, tk + Tk), the

(ordered) queue process Q operates as follows: Any arrival is routed to server 1, if this server is

idle. Otherwise, the arrival is routed to server 2. Hence, over each interval Ik, we can view server

1 as a single-server loss system (to which we refer as the front server), with the overflow from this

front server constituting the arrival process to a system with s− 1 homogeneous servers operating

under the JSQ routing policy (to which we refer as the back servers).

If the first arrival during the kth visit finds the system in state s, then that arrival is routed

to server 1 (which is idle). Let Ak denote this latter event: with ak denoting the time of the first

arrival after time tk, Ak := {Q(ak−) = s}. By the strong Markov property, the events A1,A2, . . .

are independent and have the same probability, and it clearly holds that P (A1)> 0.

By Lemma 5 in Appendix C, the first arrival to a single-server loss system puts this system

in steady state. In particular, on [a1, t1 + T1) the instantaneous probability that an arrival finds

server 1 busy, and is therefore “overflowed” to the back system, is λ/(λ+ µ). Thus, due to the

Moyal and Perry: Stability of Parallel Server Systems
20 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

PASTA (Poisson Arrivals See Time Average) property, the “arrival rate” to the back servers during

[a1, t1 +T1) is α := λ2/(λ+µ). It follows that the process Q−1 := (Q2, ...,Qs) coincides in distribution

with the ordered queue-length process of a JSQ system with s− 1 servers and arrival rate α.

Next, observe that Vcr(1) < 1 by (10), and that Vcr(1) is thus the only positive root of the

polynomial x 7→ s2x2− (s− 1)sx− (s− 1). It then readily follows that, for any ρ> 0,

(sρ)2

1 + sρ
> (s− 1) if and only if ρ> Vcr(1). (14)

Therefore, if ρ = λ/sµ > Vcr(1), then α > (s− 1)µ, and so the probability that the process Q−1

will never reach a state in which the smallest of the s− 1 queues is equal to 1 is strictly positive,

implying that P (T1 =∞)> 0. If α= (s− 1)µ (so that ρ= Vcr(1)), then Q−1 is null recurrent, and

the expected time until a state with the smallest queue being 1 is reached is infinite. In either

case, the expected length of a visit is infinite, namely, E[I1] =E[T1] =∞, in contradiction to the

assumed ergodicity of Q. �

The proof of Proposition 4 makes the reason for the instability of the system we consider appar-

ent: Eventually, the system must split into a front loss single-server system whose overflow process

constitutes the arrival process to a back (s− 1) parallel-server system operating under the JSQ

policy. If the overflow process is larger than the service capacity of the “back servers”, then the

system as a whole is unstable, because the expected time for it to exit this split structure is infinite.

In particular, once the system splits, the expected time until Q reaches states that are not in the set

A defined in (13) is infinite. In fact, the regenerative structure of Q implies that, if the traffic inten-

sity is strictly larger than the critical value, i.e., if ρ> Vcr(p, s), then P (Tk =∞ for some k≥ 1) = 1

and ‖Q(t)‖ −→∞ w.p.1 as t→∞.

Remark 1. We note that the (in)stability of the back system is solely determined by the arrival

rate to that system and mean service time µ, and is independent of any other distributional

assumptions; in particular, it does not rely on the service time distribution. Furthermore, the

blocking probability of a loss system is insensitive to the service-time distribution, so that the

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 21

overflow rate from the front server at stationarity is α= λ2/(λ+ µ) regardless of the assumption

that service times are exponentially distributed. Thus, a generalization of Proposition 4 can be

proved for a system with general service time distributions having a finite mean µ.

5.3. Join the m-Shortest Queue Allocation Policy

The arguments in the proof of Proposition 4 can be easily extended to the case in which there

are several “front servers” instead of just one such server, a scenario which arises when the p-

allocation policy follows the “join the mth shortest queue” assignment rule, corresponding to the

allocation vector p1,m = (0, ...,0, 1︸︷︷︸
m

,0, ...,0). Under this allocation policy, which we denote by

JmSQ, an incoming customer is routed to the mth shortest queue (2≤m≤ s) with probability 1.

The non-idling version of this policy is denoted by JmSQni.

For m∈ J2, sK, define

G (m) :=

{
ρ∈ (0,1) :

sρ (sρ)
m−1

/(m− 1)!∑m−1

i=0 (sρ)
i
/i!

< (s−m+ 1)

}
; (15)

Vcr(1,m) := sup G (m). (16)

Note that the set G (m) is not empty, since it contains all the positive numbers that are smaller

than (s−m+ 1)/s. In particular, Vcr(1,m) is finite. Further, the inequality in the definition of

G (m) reduces to (14) when m= 2, so that Vcr(1,2)≡ Vcr(1), for Vcr(1) in (9).

Lemma 3. Vcr(1,m)< 1 for all m∈ J2, sK.

The proof of Lemma 3 appears in Appendix B.3. Given Lemma 3, the following result generalizes

Proposition 4.

Proposition 5. Sni(p1,m)⊂ [0, Vcr(1,m)); In particular, JmSQni is non-maximal.

Proof. Fix m∈ J2, sK and let

Am := {x∈Zs+ : xi ∈ {0,1}, i∈ J1,m− 1K, and xj ≥ 2, j ∈ Jm,sK}.

Moyal and Perry: Stability of Parallel Server Systems
22 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

As in the proof of Proposition 4, the statistical homogeneity of the s servers implies that any vector

x ∈ Zs+ that has exactly m− 1 coordinates with values in {0,1} can be considered in Am since

R (x) ∈ Am. Further, as long as the system is in Am, it is essentially split into two systems: the

first m− 1 servers operate like an M/M/(m− 1) loss system, and the remaining s−m+ 1 servers

operate like a parallel system under the JSQ routing policy, whose arrival process is the overflow

from the first m− 1 “front servers.” Let s =

0, . . . ,0︸ ︷︷ ︸
m−1

,2, . . . ,2︸ ︷︷ ︸
s−m+1

 . We say that a visit begins when

the system transitions into state s, and ends when it exists the set Am, namely, when the splitting

into a front and back servers ends.

Let Lm := {Lm(t) : t≥ 0} denote the number-in-system process in the M/M/(m−1) loss system,

and let Lm(∞) denote a random variable having the stationary distribution of L, which we denote

by πm, i.e., πm(j) := P (Lm(∞) = j). Note that, during a visit, the number of busy servers in the

aforementioned m−1 front-servers is distributed like Lm. By Lemma 6 in Appendix C, there exists

a random time τ , such that Lm(t)
d
=Lm(∞) for all t≥ τ , and therefore, the number of busy servers

among those front servers is also distributed like Lm(∞) for all t≥ τk on the event Ek := {τk <Tk},

where Tk denotes the length of the kth visit, and {τk : k ≥ 1} are i.i.d. with τ1
d
= τ . By the strong

Markov property, all the visits are i.i.d. and P (E1)> 0. Therefore, {Ek : k≥ 1} must occur infinitely

often, unless one of the visits is infinite, i.e., finitely-many Ek’s will occur if and only if Tk =∞,

for some k≥ 1.

Now, if Ek occurs for the kth visit, then the overflow process from the front servers, which is

the arrival process into the back servers, has rate λπm(m− 1) after time τk, due to PASTA. If

ρ≥ Vcr(1,m), then λπm(m− 1)≥ µ(s−m+ 1), i.e. the arrival rate to the “back servers” is larger

than the maximum total service rate of those s−m+ 1 servers after time τk as long as the kth

visit is in process. Therefore, P (Tk =∞)> 0 on the event Ek. We conclude that

P (Tk =∞ for some k≥ 1) = 1,

so that Q is either transient or null recurrent. �

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 23

5.4. Proof of Theorem 2

The proofs of Propositions 4 and 5 build on the fact that each time a splitting of the system

occurs, the front “loss system” has a positive probability of reaching stationarity in finite time,

after which PASTA is employed to characterize the overflow rate into the “back servers.” In the

setting of Theorem 2 with p < 1 the splitting is as follows: There is one “front server” and s− 1

“back servers”, as in the proof of Proposition 4. However, the front server does not operate as a

loss system. Instead, during each “visit” (splitting event), the front server operates as an M/M/1

queue with an infinite buffer, having a Poisson arrival process with rate λ. Each arrival to this

M/M/1 queue enters service if the server is idle, and otherwise joins its queue with probability

1− p, and the back servers with probability p, independently of everything else. In particular, the

arrival process to the s−1 back servers constitutes all the arrival who did not join the front server.

For the particular M/M/1 queue we obtain during a splitting event, the time to reach stationarity

is infinite, so that PASTA cannot be directly employed as in the proofs of Propositions 4 and 5.

Proof of Theorem 2. Consider p ∈ (1− 1/s,1], and fix λ,µ such that ρ = λ/sµ ∈ [Vcr(p, s),1).

Let Y f(t) ∈ Z+ be the number of customers in the front server at time t, and for i ∈ J1, s− 1K, let

Y ni
i (t) be the size of the ith queue among the back servers, in the increasing order of queue lengths.

It is easily seen that both processes Y f and Y :=
(
Y f, Y b

1 , ..., Y
b
s−1

)
(as functions of t) are CTMCs

on Z+ and Zs−1
+ , respectively. In particular, Y f is a Birth and Death (BD) process on Z+ with

respective birth and death rates λ and 0 at state 0, and λ(1− p) and µ at all other states. By the

assumed values of p and ρ, Y f is ergodic with stationary distribution

πf(0) =
µ−λ+λp

µ+λp
;

πf(i) =

(
λ(1− p)

µ

)i−1
λ

µ
πf(0), i≥ 2.

In particular the stationary probability that the front server is busy is

πf
(
Z∗+
)

= 1−πf(0) =
λ

µ+λp
=

sρ

1 + sρp
. (17)

Moyal and Perry: Stability of Parallel Server Systems
24 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Now, it is well-known that an ergodic BD process with birth and death rates that are uniformly

bounded is exponentially ergodic; e.g., see [48, §4]. Then letting ‖ · ‖TV denote the total-variation

norm (e.g., see [1]),

‖P (Y f(t)∈ ·)−π(·)‖TV <C0e
−βt, t≥ 0, (18)

for some C0 ∈ [0,∞) that depends on the initial condition only, and for some β > 0 that is inde-

pendent of the initial condition.

For a given y ∈ Z+, Let P y
t denote the one-dimensional marginal distribution of the random

variable Y f(t) when Y f(0) = y. It follows from (18) that, for any ε > 0, there exists a T yε <∞ that

depends on the initial condition y, such that

‖P y
t −πf‖TV < ε for all t > T yε . (19)

Consider the Z2
+-CTMC X(t) := {(Y f(t),Np(t)) : t≥ 0}, where Np is a Bernoulli splitting of the

Poisson arrival process to the system. In particular, each arrival to the system is an event in Np

with probability p, independently of all other events and of time. Next, define f : Z2
+ ×Z2

+ −→ R

via

f((i, j), (i′, j′)) := 1{i>0,i=i′,j=j+1}. (20)

It follows from Lévy’s formula (e.g., Equation (2.2) in [9, p.5]) that, for f in (20),

E

[∑
s≤u≤t

f(X(u−),X(u))

]
= λpE

[∫ t

s

1{Y f(u)>0}

]
. (21)

Now, As in (14), one can easily check that ρ> Vcr(p,2) if and only if λpπf(Z∗+)> (s− 1)µ, so that

we can take ε > 0 for which λp
(
πf
(
Z∗+
)
− ε
)
> (s−1)µ. Let Nof(a, b] denoting the overflow process

from the front server (which is the arrival process to the back servers) over the time interval (a, b],

0≤ a< b. Then (19) and (21) imply that, for f in (20) and for all t > 0,

t−1E [Nof(Tε, Tε + t]] = t−1E

[∑
Tε≤u≤Tε+t

f(X(u−),X(u))

]
= λp

∫ Tε+t

Tε

P y
udu> λp

(
πf
(
Z∗+
)
− ε
)
.

(22)

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 25

The rest of the proof is similar to the arguments in the proof of Proposition 4: Taking the (contra-

dictory) assumption that Q is ergodic, a splitting to a forward and backward servers must occur

infinitely often. Letting a visit begin when, during such a splitting, the front server first reaches

the empty state, we have that the visits are i.i.d. and each lasts for at least Tε time units with

a strictly positive probability, for any ε satisfying the inequality in (22). (Note that, since a visit

begins at a fixed state, we can choose the same Tε in (19) for all the visits.) More specifically, with

Ik denoting the time interval during the kth visit beginning when the front server is empty and

ending when the visit ends, we have that P (Ik >Tε)> 0, so that {Ik >Tε}, k ≥ 1, must occur i.o.

However, since the overflow process from the front server is guaranteed to be larger than the total

service rate µ(s− 1) of the back servers after time Tε, there is a positive probability that a visit

will never end, contradicting the ergodicity assumption. The proposition is proved. �

6. Simulation Experiments for Workload-Based Allocation Policies

As discussed in Section 1.1, our results and analyses provide insights for systems operating under

allocation policies that are based on the workload (as opposed to the queue length). Indeed, it is

intuitively clear from the proofs of our main results that a system under JSW also experiences

random “splitting” into front and back subsystems, and that the back subsystem may be unstable

(so that the whole system is unstable) even if ρ < 1. In this section we present simulation experi-

ments to support this intuition. In fact, the simulations indicate that the bounds we obtained for

the stability regions in Theorem 2 and Propositions 4 and 5, are tight estimates of the stability

regions for the corresponding workload-based allocation policies, which are formally defined below.

Fix an integer m∈ J2, sK, and Let W (t) := (W1(t), . . . ,Ws(t)), t≥ 0, denote the ordered workload

process, namely, Wi(t) is the workload at time t at queue i, 1≤ i≤ s, and W1(t)≤W2(t)≤ · · · ≤

Ws(t). For m ∈ J1, sK and p ∈ [0,1], we say that the allocation policy is Join the mth shortest

workload with probability p, denoted by JmSW(p), if each arrival is sent to the queue having the

smallest workload with probability 1− p (i.e., to the server having workload W1(t) at the arrival

time t), and is otherwise sent to the queue with the mth smallest workload (i.e., to the server

Moyal and Perry: Stability of Parallel Server Systems
26 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

having workload Wm(t)) with probability p. In the non-idling version of JmSW(p), denoted by

JmSWni(p), an arrival is sent to an idle server w.p.1, if such a server is available, and is otherwise

routed to a server according to JmSW(p).

Cases Considered. We simulated a system with 4 servers, each providing exponentially dis-

tributed service with mean 1, that is operating under J2SWni(p) (join the second-smallest workload

with probability p), where p ∈ {0.8,0.9,1}. In addition, we simulated the system when it is oper-

ating under J3SWni(1), namely, m = 3 and p = 1. For each of these four systems we simulated

the corresponding embedded DTMC over 107 arrivals for two values of the traffic intensity ρ, one

that is slightly above, and the other slightly below, the critical values Vcr(p) (for J2SWni(p)) and

Vcr(1,3) (for the system under J3SWni(1)). The critical values are computed via (9) and (15)–(16),

respectively. In particular, for each of the four examples we considered a traffic intensity that is

larger than the critical value of ρ by 2/103 = 0.002, and a traffic intensity that is smaller than

the corresponding critical value by 0.002. We emphasize that the critical values are for the same

system operating under J2SQni(p) and J3SWni(1), and so we do not know whether they are also

the critical values for the system under the simulated scenarios.

In Figure 1 we show a sample path of the most loaded server (in terms of workload) for each of the

six cases considered for the system under J2SWni(p), namely, two examples, each with a different

ρ for each of the three different values of p, as described above. Two sample paths simulated for

the system operating under J3SWni(1), one for each value of ρ, are shown in Figure 2.

We remark that, whenever ρ is equal to its critical value, the queue process is null recurrent,

and it is therefore hard to determine from simulation whether a system is stable when ρ is “too

close” to its critical value. (For any value of ρ in a small-enough neighborhood of the critical value,

the stochastic fluctuations are large, and one may observe a return to the empty state over any

finite time interval, even in the transient case.) Nevertheless, for each of the four simulated routing

policies, the system seems to be unstable for the larger value of ρ, and to be stable for the smaller

value of ρ. This, together with the fact that the difference between the two traffic intensities is

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 27

Figure 1 Sample paths of the largest workload process generated for 107 arrivals of a system with four servers operating
under J2SWni(p). The two figures in each row depict one value of p, with the left figure having ρ= Vcr(p)+0.002,
and the right figure having ρ= Vcr(p)− 0.002. Upper panel: a system operating under J2SWni(0.8), for which
Vcr(0.8) ≈ 0.9874. Middle panel: a system operating under J2SWni(0.9), for which Vcr(0.9) ≈ 0.9657. Lower
panel: a system operating under J2SWni(1), for which Vcr(1) ≈ 0.9478.

Moyal and Perry: Stability of Parallel Server Systems
28 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Figure 2 Sample paths of the largest workload process generated for 107 arrivals of a system with four servers

operating under J3SWni(1), for which Vcr(1,3) = 0.87. The left figure depicts a sample path when

ρ= Vcr(1,3)− 0.002, and the right figure depicts a sample path when ρ= Vcr(1,3) + 0.02.

just 0.004, suggests that the critical value of ρ for the system operating under the queue-based

allocation policy is very close (and may be equal) to critical value of ρ for the system operating

under the corresponding workload-based allocation policy.

7. Summary

Stability of a queueing system is the cruder performance measure and it is therefore among the

simplest performance measures to characterize. On the other hand, while more refined performance

measures, such as those corresponding to the queue length and waiting times, can be effectively

estimated via simulation, estimating the stability region of a stochastic system via simulation is

difficult, even for fixed parameters of the system’s primitives. (Of course, estimating the stability

region of a system as a function of these parameters is clearly harder.)

In this paper we considered the (in)stability problem of parallel server systems with s > 1 sta-

tistically homogeneous servers, to which jobs are routed upon arrival according to a family of

random-assignment rules, which we named p-allocation policies. That family of policies includes

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 29

the PW(d) routing rule, and its special cases JSQ and uniform routing, as well as their “non-idling”

versions, under which an arrival is always routed to an idle server, if one is available at that arrival

time. Our motivation for this study was the fact that in practice, and unlike the ideal settings that

are typically considered in the literature, routing errors are likely to occur, so that jobs are not

necessarily routed to the shortest among the relevant queues.

We started by characterizing a sufficient condition for stability (Theorem 1) which, in addition

to the usual traffic condition ρ < 1, requires the p-allocation vector to be smaller, in the general-

ized Schur convex order, than the uniform distribution on J1, sK. In particular, under this latter

assumption on p, the p-allocation policy (and its non-idling version) is guaranteed to be maximal.

We then demonstrated that the condition ρ < 1 by itself does not guarantee that the system

is stable, even when a non-idling p-allocation policy is employed. Specifically, we considered the

stability region of the policy J2SQni(p), under which arrivals are always routed to an idle server,

if one is present, and are otherwise routed to the shortest queue with probability 1− p, and to

the second shortest queue with an “error probability” p. Theorem 2 proves that ρ must be smaller

than a positive number Vcr, which is strictly smaller than 1 for a range of values of p, implying

that the stability region under the control may be strictly contained in [0,1). Corollary 5 proves

that p must satisfy p≤ 1− 1/s in order for J2SQni(p) to be maximal.

Finally, simulation examples in §6 demonstrate that our results are insightful also for systems

operating under JSW, for which routing errors are more likely to occur, even in automated environ-

ments, because the actual workload in each queue can typically only be estimated. We conjecture

that the stability regions under JSQ and JSW are the same.

Further Implications of the Results. The fact that the p-allocation policy may not be maximal

has important implications well beyond the possibility of experiencing congestion collapse. Indeed,

even though the risk of instability caused by erroneous routing decisions is small when the prob-

ability of making an error is small, or when the number of servers is large, routing errors cause

any system to effectively be in “heavier traffic” than planned. Thus, if the system is designed to

Moyal and Perry: Stability of Parallel Server Systems
30 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

operate in heavy traffic, so that ρ≈ 1, even a small probability of making routing errors may lead to

harmful departures from the desired performance, and may even lead to instability. In particular,

SSC as in [2] and [43], may not hold asymptotically, even if it should hold under idealized modeling

assumptions (that ignore erroneous routing decisions). As a result, the goal of balancing the load

among the servers may not be achieved, even if the system is stable. We again refer to Sections 1

and 9 in [42] for a general discussion on congestion collapse caused by SSC-inducing controls.

Acknowledgements

We thank Area Editor Amy Ward, AE and two anonymous referees for carefully reading the paper

and making many useful comments and suggestions that helped improve the paper. In particular,

the use of Lévy’s formula in the proof of Theorem 2 was proposed by one of the referees. Ohad

Perry received support from National Science Foundation (NSF) Grant CMMI 1763100.

Appendix.

The appendix is organized as follows: We prove Proposition 1 in §A, after establishing several

properties of the generalized Schur-convex ordering in Lemma 4 below. We prove the Remaining

results from Section 5—Propositions 2 and 3, and Lemma 3— in §B. Finally, we state and prove

two auxiliary results in §C.

A. Proof of Proposition 1

In this section we prove Proposition 1, building on the next lemma.

Lemma 4. Let a and b be two vectors of R
(
Rs+
)
∩Zs+ be such that a�gsc b. Then,

1. for any i′ ≤ i≤ s we have that

R (a+ ei′)�gscR (b+ ei) ;

2. for any i≤ s such that ai ≥ 1 and bi ≥ 1, we have that

R (a− ei)�gscR (b− ei) ;

3. for any i≤ s such that ai = 0 and bi > 0,

a�gscR (b− ei) .

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 31

Proof. The proof is reminiscent of the arguments in the proofs of Lemma 2 in [39] and Lemma

A.15 in [14]. Fix a and b∈Zs+ ∩R
(
Rs+
)

such that a�gsc b.

1. Fix i′ ≤ i≤ s, and let ã :=R(a + ei′) and b̃ :=R(b + ei). Fix k ≤ s. We need to show that
s∑
j=k

ãj ≤
s∑
j=k

b̃j for all k≤ s. The key relations are the following: for all k≤ s,

s∑
j=k

ãj =

(
s∑
j=k

aj

)
∨

(
ai′ + 1 +

s∑
j=k+1

aj

)
; (23)

s∑
j=k

b̃j =

(
s∑
j=k

bj

)
∨

(
bi + 1 +

s∑
j=k+1

bj

)
. (24)

Consequently, for any k≤ i′, we get that

s∑
j=k

ãj =
s∑
j=k

aj + 1≤
s∑
j=k

bj + 1 =
s∑
j=k

b̃j,

and whenever i′ < i, for any i′ <k≤ i, we obtain that

s∑
j=k

ãj ≤
s∑
j=k

aj + 1≤
s∑
j=k

bj + 1 =
s∑
j=k

b̃j.

Only the case where k > i remains to be treated. We have the following alternatives:

(i) if ai′ <ak, then it immediately follows from (23)–(24) that

s∑
j=k

ãj =
s∑
j=k

aj ≤
s∑
j=k

bj ≤
s∑
j=k

b̃j.

(ii) if ai′ = ak, we have three sub-cases:

(iia) If there exists `∈ Ji′, kK such that b` >a` = ak = ai′ (take the first such ` in increasing

order), then (23)–(24) imply that

s∑
j=k

ãj = ai′ + 1 +
s∑

j=k+1

aj ≤ b` +
s∑

j=k+1

bj ≤
s∑
j=k

bj ≤
s∑
j=k

b̃j.

(iib) If aj ≥ bj for all j ∈ Ji′, kK, and there exists ` ∈ Ji′, kK such that b` < a` = ak, then, we

have that
k−1∑
j=`

aj >
k−1∑
j=`

bj and thus, as
s∑
j=`

aj ≤
s∑
j=`

bj, we must have that
s∑
j=k

aj <
s∑
j=k

bj. Therefore,

s∑
j=k

ãj = ai′ + 1 +
s∑

j=k+1

aj ≤
s∑
j=k

aj + 1≤
s∑
j=k

bj ≤
s∑
j=k

b̃j.

(iic) If aj = bj for all j ∈ Ji′, kK, then bi = bk = ak = ai′ , and so

s∑
j=k

ãj = ai′ + 1 +
s∑

j=k+1

aj ≤
s∑
j=k

aj + 1≤
s∑
j=k

bj + 1 = bi +
s∑

j=k+1

bj + 1 =
s∑
j=k

b̃j.

Moyal and Perry: Stability of Parallel Server Systems
32 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

We conclude that ã�gsc b̃, and the first assertion follows.

2. To prove the second assertion, let â :=R(a− ei) and b̂ :=R(b− ei). First, for any k > i we

easily get that
s∑
j=k

âj =
s∑
j=k

aj ≤
s∑
j=k

bj =
s∑
j=k

b̂j.

Now, for any k≤ i, we have that

s∑
j=k

âj =

(
s∑
j=k

aj − 1

)
∨

(
s∑

j=k−1; j 6=i

aj

)
; (25)

s∑
j=k

b̂j =

(
s∑
j=k

bj − 1

)
∨

(
s∑

j=k−1; j 6=i

bj

)
. (26)

Then there are two sub-cases to consider:

(i) If ai >ak−1, we deduce from (25)–(26) that

s∑
j=k

âj =
s∑
j=k

aj − 1≤
s∑
j=k

bj − 1≤
s∑
j=k

b̂j.

(ii) If ai = ak−1, we also have that ai = ak, and it follows from (25) that

s∑
j=k

âj =
s∑

j=k−1; j 6=i

aj =
s∑
j=k

aj.

We are thus in the following alternative:

(iia) If bk−1 = bi, then from (26) we get that

s∑
j=k

âj =
s∑
j=k

aj ≤
s∑
j=k

bj =
s∑
j=k

b̂j.

(iib) If
s∑
j=k

aj <
s∑
j=k

bj, then we obtain that

s∑
j=k

âj =
s∑
j=k

aj ≤
s∑
j=k

bj − 1≤
s∑
j=k

b̂j.

(iic) If
s∑
j=k

aj =
s∑
j=k

bj and bk−1 < bi, then observe, first, that it must be the case that bk−1 ≥

ak−1. Indeed, bk−1 < ak−1 would imply that
s∑

j=k−1

aj >
s∑

j=k−1

bj, a contradiction to the assumption

that a�gsc b. Recalling that a and b are ordered, this implies, first, that bj ≥ bk−1 ≥ ak−1 = ai = aj

for all j ∈ Jk, i− 1K (whenever i > k), and second, that bi > bk−1 ≥ ak−1 = ai. We thus obtain that

s∑
j=k

âj =
s∑
j=k

aj =
i−1∑
j=k

aj + ai +
s∑

j=i+1

aj ≤
i−1∑
j=k

bj + bi− 1 +
s∑

j=i+1

bj =
s∑
j=k

bj − 1 =
s∑
j=k

b̂j,

where sums over the set Jk, i− 1K, k= i, are defined to equal 0.

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 33

This shows that â�gsc b̂.

3. Regarding the third assertion, fix i ≤ s such that ai = 0 and bi > 0, and denote again b̂ =

R(b− ei). Then, for any k > i we clearly have that

s∑
j=k

aj ≤
s∑
j=k

bj =
s∑
j=k

b̂j,

whereas for k≤ i, as
s∑

j=i+1

aj ≤
s∑

j=i+1

bj, we have

s∑
j=k

aj =
s∑

j=i+1

aj ≤
i∑

j=k

bj − 1 +
s∑

j=i+1

bj =
s∑
j=k

bj − 1≤
s∑
j=k

b̂j,

where we used (26) in the last inequality.

�

Proof of Proposition 1. Consider two s-server systems, one operating under a stable p-

allocation policy, and the other operating under its non-idling counterpart; let Q and Qni denote

the ordered queue processes (CTMCs) under the corresponding control. We couple the two sys-

tems (to which we refer as the “idling” and “non-idling” system) as follows: First, we feed both

systems by the same arrival process. Second, upon each arrival, a common draw of the distribution

p determines, independently of everything else, the targeted queue of the incoming customer in

the idling system, and in the non-idling system only if no idle server is present. If there is an idle

server in the non-idling system, then that arrival is routed according to the realization of p in the

idling system, but to the idle server in the non-idling system.

Finally, we couple the service times in both systems, so as to satisfy the following property:

for any i≤ s, at each time point t such that Qi(t)> 0 and Qni
i (t)> 0, the remaining service time

at server i is equal in the two systems. In particular, ongoing services at the servers with the

same indices in both systems are synchronized. To this end, it suffices to reset the service times

of the customers in service at server i using a common realization of the exponential service times

whenever there is a change concerning server i in either system, e.g., a re-ordering of the queues,

or an arrival to server i at a time when server i is idling in one system but not in the other. Note

that resetting the service times does not change the distribution of the service times, due to the

memoryless property, and does not impact the overall distribution of the systems, due to their

strong Markov property.

Denote by Q̂ and Q̂ni the coupled ordered CTMCs of the two systems. From the construction

above it is clear that both these CTMCs are defined on the same probability space and that Q̂
d
=Q

and Q̂ni d
=Qni, although the joint distributions of (Q̂, Q̂ni) is different than the joint distribution of

Moyal and Perry: Stability of Parallel Server Systems
34 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

the original systems. (In fact, the original systems may not have any specified joint distribution.)

Take Q̂(0) = Q̂ni(0). We argue that

Q̂ni(t)�gsc Q̂(t), for all t≥ 0 w.p.1. (27)

As both processes are constant between event times, it suffices to show that (27) holds at event

times (arrivals and departures). Therefore, for T̄0 = 0, and T̄n denoting the time of the nth event,

we need to show Q̂ni(T̄n)�gsc Q̂(T̄n) for all n≥ 0 w.p.1. We prove this by induction on n. This is

true by assumption for n= 0, and if this is true at a given n ∈ Z+, then we are in the following

alternatives:

(i) If T̄n+1 is an arrival time in both systems and the common draw following the distribution p

draws index i, then:

(ia) if server 1 is busy in the non-idling system (i.e. the first coordinate of Q̂ni
(
T̄n
)

is non-

zero), then in view of the induction assumption, and by applying assertion 2 of Lemma 4 to i′ = i,

we have

Q̂ni
(
T̄n+1

)
=R

(
Q̂ni
(
T̄n
)

+ ei

)
�gscR

(
Q̂
(
T̄n
)

+ ei

)
= Q̂

(
T̄n+1

)
.

(ib) If server 1 is idling in the non-idling system (that is, Q̂ni
(
T̄n
)

= 0), then from the induction

assumption, and by applying assertion 2 of Lemma 4 to i′ = 1, we have

Q̂ni
(
T̄n+1

)
=R

(
Q̂ni
(
T̄n
)

+ e1

)
�gscR

(
Q̂
(
T̄n
)

+ ei

)
= Q̂

(
T̄n+1

)
.

(ii) If T̄n+1 is a departure time from server i in both systems, then in view of the induction

assumption and applying assertion 1 of Lemma 4, we have

Q̂ni
(
T̄n+1

)
=R

(
Q̂ni
(
T̄n
)
− ei

)
�gscR

(
Q̂
(
T̄n
)
− ei

)
= Q̂

(
T̄n+1

)
.

(iii) If T̄n+1 is a departure from server i in the non-idling system, and if server i is idling at this

time in the idling system, then

Q̂ni
(
T̄n+1

)
=R

(
Q̂ni
(
T̄n
)
− ei

)
�gsc Q̂

ni
(
T̄n
)
�gsc Q̂

(
T̄n
)
,

where we utilized the inductive assumption in the last inequality.

(iv) If T̄n+1 is a departure time from server i in the idling system, and server i is idling at this

time in the non-idling system, then necessarily, Q̂ni
(
T̄n
)
i

= 0 and Q̂
(
T̄n
)
i
> 0. Thus, using the

induction assumption together with assertion 3 of Lemma 4, we have

Q̂ni
(
T̄n+1

)
= Q̂ni

(
T̄n
)
�gscR

(
Q̂
(
T̄n
)
− ei

)
= Q̂

(
T̄n+1

)
.

Therefore, (27) holds, and in turn,
∑s

i=1Q
ni(t)i ≤st

∑s

i=1Qi(t) for all t≥ 0. Thus, if Q is positive

recurrent, then so is Qni. �

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 35

B. Remaining Proofs of Results in Section 5

In this section, we prove Propositions 2 and 3, and Lemma 3.

B.1. Proof of Proposition 2

We now turn to the proof of Proposition 2. We consider a J2SQni(p) system with s = 2 servers.

Thanks to Proposition 4 and Theorem 1, only the right inclusion in (12) for p > 1/2 needs to

be proved. To this end, assume that p > 1/2 and ρ < Vcr(p). It is useful in this case to label

the two servers, say server 1 and server 2, and to consider the CTMC Q̃(t) :=
(
Q̃1(t), Q̃2(t)

)
,

t ≥ 0, where for all t ≥ 0, Q̃i(t) denotes the queue at server i at time t, i = 1,2. (In particular,

Q̃ is not an R
(
Zs+
)
-valued process.) Let {Q̃n} denote the embedded DTMC, i.e., the process{(

Q̃1(T−n), Q̃2(T−n)
)

: n≥ 1
}

, where Tn is the time of the nth event of the CTMC Q̃.

Under the J2SQni(p) policy, the planar chain {Q̃n} has the following transitions on the positive

quadrant: 

Origin: P(0,0),(0,1) = 1/2, P(0,0),(1,0) = 1/2,

x-axis: P(x,0),(x−1,0) = µ

λ+µ
, P(x,0),(x,1) = λ

λ+µ
, x∈Z∗+,

y-axis: P(0,y),(0,y−1) = µ

λ+µ
, P(0,y),(1,y) = λ

λ+µ
, y ∈Z∗+,

Interior: P(x,y),(x−1,y) = µ

λ+2µ
, P(x,y),(x,y−1) = µ

λ+2µ
, x, y ∈Z∗+,

P(x,y),(x,y+1) = λ(1−p)
λ+2µ

, P(x,y),(x+1,y) = λp

λ+2µ
, x, y ∈Z∗+; x> y,

P(x,y),(x,y+1) = λp

λ+2µ
, P(x,y),(x+1,y) = λ(1−p)

λ+2µ
, x, y ∈Z∗+; x< y,

P(x,x),(x,x+1) = λ/2
λ+2µ

, P(x,x),(x+1,x) = λ/2
λ+2µ

, x∈Z∗+.

(28)

As the above transitions are not space-homogeneous, the DTMC {Q̃n} is not directly amenable

to the ergodicity criteria in Theorem 3.3.1 of [18]. To circumvent this difficulty we consider two

auxiliary DTMCs {Q̃1
n} and {Q̃2

n}, having the respective sets of transitions P 1 and P 2 defined via

Origin: P 1
(0,0),(0,1) = P 2

(0,0),(0,1) = 1,

x-axis: P 1
(x,0),(x−1,0) = P 2

(x,0),(x−1,0) = µ

λ+µ
, P 1

(x,0),(x,1) = P 2
(x,0),(x,1) = λ

λ+µ
, x∈Z∗+,

y-axis: P 1
(0,y),(0,y−1) = P 2

(0,y),(0,y−1) = µ

λ+µ
, P 1

(0,y),(1,y) = P 1
(0,y),(1,y) = λ

λ+µ
, y ∈Z∗+,

Interior: P 1
(x,y),(x−1,y) = P 2

(x,y),(x,y−1) = µ

λ+2µ
, P 1

(x,y),(x,y−1) = P 2
(x,y),(x−1,y) = µ

λ+2µ
, x, y ∈Z∗+,

P 1
(x,y),(x,y+1) = P 2

(x,y),(x+1,y) = λ(1−p)
λ+2µ

, P 1
(x,y),(x+1,y) = P 2

(x,y),(x,y+1) = λp

λ+2µ
, x, y ∈Z∗+.

(29)

The transitions of the three chains {Q̃n}, {Q̃1
n} and {Q̃2

n} are represented in Figure 3.

Moyal and Perry: Stability of Parallel Server Systems
36 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

1/2

1/2

λ

λ+µ

µ

λ+µ

λ/2

λ+2µ

λ/2

λ+2µ

µ

λ+2µ

µ

λ+2µ

λ(1−p)
λ+2µ

λp

λ+2µ

µ

λ+2µ

µ

λ+2µ

λp

λ+2µ

λ(1−p)
λ+2µ

µ

λ+2µ

µ

λ+2µ

λ

λ+µ

µ

λ+µ

1/2

1/2

λ

λ+µ

µ

λ+µ

λp

λ+2µ

λ(1−p)
λ+2µ

µ

λ+2µ

µ

λ+2µ

λ

λ+µ

µ

λ+µ

1/2

1/2

λ

λ+µ

µ

λ+µ

λ(1−p)
λ+2µ

λp

λ+2µ

µ

λ+2µ

µ

λ+2µ

λ

λ+µ

µ

λ+µ

Figure 3 Transitions of the Planar chains {Q̃n} (left) {Q̃1
n} (middle) and {Q̃2

n} (right) for the J2SQni(p) system.

For a planar Markov chain {Un} = {(Ux
n ,U

y
n)}, the mean horizontal (respectively, vertical) drift at u =

(ux, uy) is defined to be E
[
Ux
n+1−Ux

n |Un = u
]

(respectively, E
[
Uy
n+1−Uy

n |Un = u
]
). Denote by (∆1

x,∆
1
y),

(∆1′

x ,∆
1′

y) and (∆1′′

x ,∆1′′

y) the mean (horizontal/vertical) drifts of the chain {Q̃1
n}, starting from, respectively,

the interior, the x-axis and the y-axis of the quarter plan. Similarly, denote by (∆2
x,∆

2
y), (∆2′

x ,∆
2′

y) and

(∆2′′

x ,∆2′′

y) the mean (horizontal/vertical) drifts of the chain {Q̃2
n}, respectively, in the interior, the x-axis,

and the y-axis. It follows from (29) that these drifts are as follows.

{Q̃1
n} :


x-axis: ∆1′

x =− µ

λ+µ
, ∆1′

y = λ
λ+µ

;

y-axis: ∆1′′

x = λ
λ+µ

, ∆1′′

y =− µ

λ+µ
;

Interior: ∆1
x = λp−µ

λ+2µ
, ∆1

y = λ(1−p)−µ
λ+2µ

.

{Q̃2
n} :


x-axis: ∆2′

x =− µ

λ+µ
, ∆2′

y = λ
λ+µ

;

y-axis: ∆2′′

x = λ
λ+µ

, ∆2′′

y =− µ

λ+µ
;

Interior: ∆2
x = λ(1−p)−µ

λ+2µ
, ∆2

y = λp−µ
λ+2µ

.

As λ(1− p)−µ< λ/2−µ< 0, we have that ∆1
y = ∆2

x < 0. Recalling (11), there are two sub-cases:

Case 1: ρ< 1/(2p). In this case we also have that ∆1
x = ∆2

y < 0. Then we have that

∆1
x∆

1′

y −∆1
y∆

1′

x = ∆2
y∆

2′′

x −∆2
x∆

2′′

y =
µ2

(λ+µ)(λ+ 2µ)

(
4pρ2− 2pρ− 1

)
, (30)

∆1
y∆

1′′

x −∆1
x∆

1′′

y = ∆2
x∆

2′

y −∆2
y∆

2′

x =
µ2

(λ+µ)(λ+ 2µ)

(
4(1− p)ρ2− 2(1− p)ρ− 1

)
. (31)

Now, the right-hand side in (30) is strictly negative, due to the facts that 0 < ρ < Vcr(p), and that Vcr(p)

is the only positive root of the polynomial x 7→ 4px2 − 2px− 1, as mentioned in Lemma 2. Similarly, by

replacing p with (1−p) in Lemma 2, we see that the right-hand side of (31) is also strictly negative. It follows

from Assertion (a-i) in Theorem 3.3.1 of [18] that the DTMC’s {Q̃1
n} and {Q̃2

n} are both positive recurrent.

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 37

More specifically, applying the argument leading to assertion (3.15) in [18] shows that, for any ε < 0, there

exist three real numbers u, v,w, such that u, v > 0, w2 < 4uv and

2u∆1
x +w∆1

y = 2u∆2
y +w∆2

x <−ε ;

2v∆1
y +w∆1

x = 2v∆2
x +w∆2

y <−ε ;

2u∆1′

x +w∆1′

y = 2u∆2′′

y +w∆2′′′

x <−ε ;

2v∆1′′

y +w∆1′′

x = 2v∆2′

x +w∆2′

y <−ε.

(32)

It is then clear that (32) also holds when replacing both u and v by u∨v throughout. Consequently, defining

the Lyapunov function F : (x, y) 7→
√

(u∨ v)x2 + (u∨ v)y2 +wxy, Lemma 3.3.3 in [18] implies that, for some

compact set K in the positive quadrant, for some ε′ > 0, for any (x, y) 6∈K and any n∈Z+,

(
E
[
F (Q̃1

n+1)−F (Q̃1
n) | Q̃1

n = (x, y)
])
∨
(
E
[
F (Q̃2

n+1)−F (Q̃2
n) | Q̃2

n = (x, y)
])
<−ε′.

Fix (x, y) 6∈K and n∈Z+, and recall (28–29). If x> y≥ 0, we get that

E
[
F (Q̃n+1)−F (Q̃n) | Q̃n = (x, y)

]
=E

[
F (Q̃1

n+1)−F (Q̃1
n) | Q̃1

n = (x, y)
]
<−ε′;

if 0≤ x< y, we get

E
[
F (Q̃n+1)−F (Q̃n) | Q̃n = (x, y)

]
=E

[
F (Q̃2

n+1)−F (Q̃2
n) | Q̃2

n = (x, y)
]
<−ε′.

Finally, if x> 0, we obtain

E
[
F (Q̃n+1)−F (Q̃n) | Q̃n = (x,x)

]
=

1

λ+ 2µ

(
λ

2
(F (x+ 1, x)−F (x,x)) +

λ

2
(F (x,x+ 1)−F (x,x))

+µ (F (x− 1, x)−F (x,x)) +µ (F (x,x− 1)−F (x,x))

)
=

1

2(λ+ 2µ)

(
λp (F (x+ 1, x)−F (x,x)) +λ(1− p) (F (x,x+ 1)−F (x,x))

+µ (F (x− 1, x)−F (x,x)) +µ (F (x,x− 1)−F (x,x))

)
+

1

2(λ+ 2µ)

(
λ(1− p) (F (x+ 1, x)−F (x,x)) +λp (F (x,x+ 1)−F (x,x))

+µ (F (x− 1, x)−F (x,x)) +µ (F (x,x− 1)−F (x,x))

)
=

1

2
E
[
F (Q̃1

n+1)−F (Q̃1
n) | Q̃1

n = (x,x)
]

+
1

2
E
[
F (Q̃2

n+1)−F (Q̃2
n) | Q̃2

n = (x,x)
]

<−ε′.

It follows from the Lyapunov-Foster Theorem that the DTMC {Q̃n} is positive recurrent, and in

turn, so is the CTMC Q̃ by, e.g., [29, Theorem 6.18].

Moyal and Perry: Stability of Parallel Server Systems
38 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Case 2: 1
2p

≤ ρ< Vcr(p). In this case ∆1
y = ∆2

x ≥ 0. Moreover, (30) still holds, so both chains

are again positive recurrent (applying respectively cases (b-i) and (c-i) of Lemma 3.3.1 in [18]).

Again, (32) is satisfied for some ε > 0 and some u, v,w such that u, v > 0 and w2 < 4uv. One

can easily check that (32) still holds when replacing u by u ∧ v and v by u ∨ v. Therefore, by

[18, Lemma 3.3.3], there exist Lyapunov functions F 1 : (x, y) 7→
√

(u∧ v)x2 + (u∨ v)y2 +wxy and

F 2 : (x, y) 7→
√

(u∨ v)x2 + (u∧ v)y2 +wxy for {Q̃1
n} and {Q̃2

n}, respectively, two compact sets K1

and K2, and an ε′ > 0, such that for all (x, y) 6∈K1 ∪K2 and all n,

(
E
[
F 1(Q̃1

n+1)−F 1(Q̃1
n) | Q̃1

n = (x, y)
])
∨
(
E
[
F 2(Q̃2

n+1)−F 2(Q̃2
n) | Q̃2

n = (x, y)
])
<−ε′. (33)

Let

F : (x, y) 7→ F 1(x, y)1{x≥y}+F 2(x, y)1{x<y}.

It follows from (33) that for all n≥ 1 and (x, y) 6∈K1 ∪K2,

E
[
F (Q̃n+1)−F (Q̃n) | Q̃n = (x, y)

]
=


E
[
F 1(Q̃1

n+1)−F 2(Q̃1
n) | Q̃1

n = (x, y)
]
<−ε′ if 0≤ x< y;

E
[
F 2(Q̃2

n+1)−F 2(Q̃2
n) | Q̃2

n = (x, y)
]
<−ε′ if 0≤ y < x.

Only the case of a starting point (x,x), for x ∈ Z∗+, remains to be treated. Then, simple algebra

shows that, for some positive constant C,

F 2(x+ 1, x)−F 1(x+ 1, x) =C ((u∨ v)− (u∧ v)) (2x+ 1)≥ 0,

and we obtain similarly that the quantities F 1(x,x+ 1)−F 2(x,x+ 1), F 2(x,x− 1)−F 1(x,x− 1)

and F 1(x−1, x)−F 2(x−1, x) are non-negative. Therefore, if (x,x) 6∈K1∪K2, it follows from (33)

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 39

that

E
[
F (Q̃n+1)−F (Q̃n) | Q̃n = (x,x)

]
=

1

λ+ 2µ

(
λ

2

(
F 1(x+ 1, x)−F (x,x)

)
+
λ

2

(
F 2(x,x+ 1)−F (x,x)

)
+µ

(
F 2(x− 1, x)−F (x,x)

)
+µ

(
F 1(x,x− 1)−F (x,x)

))
=

1

2(λ+ 2µ)

(
λp
(
F 1(x+ 1, x)−F 1(x,x)

)
+λ(1− p)

(
F 1(x+ 1, x)−F 2(x,x)

)
+λ(1− p)

(
F 2(x,x+ 1)−F 1(x,x)

)
+λp

(
F 2(x,x+ 1)−F 2(x,x)

)
+µ

(
F 2(x− 1, x)−F 1(x,x)

)
+µ

(
F 2(x− 1, x)−F 2(x,x)

)
+µ

(
F 1(x,x− 1)−F 1(x,x)

)
+µ

(
F 1(x,x− 1)−F 2(x,x)

))

≤ 1

2(λ+ 2µ)

(
λp
(
F 1(x+ 1, x)−F 1(x,x)

)
+λ(1− p)

(
F 1(x,x+ 1)−F 1(x,x)

)
+µ

(
F 1(x− 1, x)−F 1(x,x)

)
+µ

(
F 1(x,x− 1)−F 1(x,x)

))
+

1

2(λ+ 2µ)

(
λ(1− p)

(
F 2(x+ 1, x)−F 2(x,x)

)
+λp

(
F 2(x,x+ 1)−F 2(x,x)

)
+µ

(
F 2(x− 1, x)−F 2(x,x)

)
+µ

(
F 2(x,x− 1)−F 2(x,x)

))
=

1

2
E
[
F 1(Q̃1

n+1)−F 1(Q̃1
n) | Q̃1

n = (x,x)
]

+
1

2
E
[
F 2(Q̃2

n+1)−F 2(Q̃2
n) | Q̃2

n = (x,x)
]

<−ε′,

which, by virtue of the Lyapunov-Foster Theorem, implies the result. �

B.2. Proof of Proposition 3

We use the same notation as in the proof of Proposition 2. Without the non-idling assumption,

the chain {Q̃n} has mostly the same transitions as in (28), except for


x-axis: P(x,0),(x−1,0) = µ

λ+µ
, P(x,0),(x,1) = λ(1−p)

λ+µ
, P(x,0),(x+1,0) = λp

λ+µ
, x∈Z∗+,

y-axis: P(0,y),(0,y−1) = µ

λ+µ
, P(0,y),(1,y) = λ(1−p)

λ+µ
, P(0,y),(0,y+1) = λp

λ+µ
, x∈Z∗+.

The transitions of the three chains {Q̃n}, {Q̃1
n} and {Q̃2

n} are then represented in Figure 4.

Then the interior drifts ∆1
x, ∆1

y, ∆2
x and ∆2

y < 0 are all strictly negative, and the equalities in

(30-31) become

∆1
x∆

1′

y −∆1
y∆

1′

x = ∆2
y∆

2′′

x −∆2
x∆

2′′

y =
µ

(λ+µ)(λ+ 2µ)
(λp−µ) , (34)

Moyal and Perry: Stability of Parallel Server Systems
40 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

1/2

1/2

λ(1−p)
λ+µ

µ

λ+µ

λp

λ+µ

λ/2

λ+2µ

λ/2

λ+2µ

µ

λ+2µ

µ

λ+2µ

λ(1−p)
λ+2µ

λp

λ+2µ

µ

λ+2µ

µ

λ+2µ

λp

λ+2µ

λ(1−p)
λ+2µ

µ

λ+2µ

µ

λ+2µ

λ(1−p)
λ+µ

µ

λ+µ

λp

λ+µ

1/2

1/2

λ(1−p)
λ+µ

µ

λ+µ

λp

λ+µ

λp

λ+2µ

λ(1−p)
λ+2µ

µ

λ+2µ

µ

λ+2µ

λ(1−p)
λ+µ

µ

λ+µ

λp

λ+µ

1/2

1/2

λ(1−p)
λ+µ

µ

λ+µ

λp

λ+µ

λ(1−p)
λ+2µ

λp

λ+2µ

µ

λ+2µ

µ

λ+2µ

λ(1−p)
λ+µ

µ

λ+µ

λp

λ+µ

Figure 4 Transitions of the Planar chains {Q̃n} (left) {Q̃1
n} (middle) and {Q̃2

n} (right) for the J2SQ(p) system.

∆1
y∆

1′′

x −∆1
x∆

1′′

y = ∆2
x∆

2′

y −∆2
y∆

2′

x =
µ

(λ+µ)(λ+ 2µ)
(λp−µ) . (35)

If ρ< 1
2p

, then the quantities in (34) are strictly negative; as in Case 1 in the proof of Proposition

2, this implies that the queue process is positive recurrent. If ρ≥ 1
2p

, then we are in case (a-ii) in

[18, Theorem 3.3.1], implying that the DTMC {Q̃n} cannot be positive recurrent. Specifically, by

[18, Theorem 3.3.2], if ρ= 1
2p

(respectively, if ρ > 1
2p

), then the embedded DTMC is null recurrent

(respectively, transient), and so is the queue process Q̃. �

B.3. Proof of Lemma 3

For m ∈ J2, sK let πρ,m denote the loss probability of a M/M/m− 1/0 queue (a loss system with

m− 1 servers), having traffic intensity sρ= λ/µ; then

πρ,m :=
(sρ)

m−1
/(m− 1)!∑m−1

i=0 (sρ)
i
/i!

.

Observe that ρ∈ G (m), for G (m) in (16), is equivalent to sρπm < (s−m+1). Also, we clearly have

that

1

πρ,m+1

= 1 +
m

sρπρ,m
, m= 2, ..., s− 1. (36)

First, Vcr(1,2) = supG (2)< 1 from (10). We then proceed by induction. Suppose that supG (m)< 1

for some m∈ J2, sK. Let ρ∈ G (m+ 1). If ρ≥ (s−m)(s+1)

(s−m+1)s
, then we have that

sρπρ,m+1 < (s−m)≤ sρs−m+ 1

s+ 1

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 41

which, after an immediate computation using (36), is equivalent to sρπρ,m < s−m+1, i.e. ρ∈ G (m).

By the induction assumption, this implies that

supG (m+ 1)≤
(

supG (m)∨ (s−m)(s+ 1)

(s−m+ 1)s

)
< 1,

which concludes the proof. �

C. Auxiliary results

Let L1 := {L(t) : t≥ 0} denote the queue process in an M/M/1/0 queue (one-server loss system)

having a Poisson arrival process with rate λ and service rate µ. The proof of the following lemma

is a simple application of a standard coupling argument which we bring here for completeness.

Lemma 5. Consider the process L1, and let τ1 denote the time of the first event after time 0 (arrival

or departure). Then L1 is stationary for all t ≥ τ1; in particular, P (L1(t)) = 0) = 1− P (L1(t) =

0) = µ/(λ+µ), t≥ τ1.

Proof. Let Le := {Le(t) : t≥ 0} denote a stationary version of the process L1, namely, P (Le(0) =

0) = 1−P (Le(0) = 1) = µ/(λ+µ). Let T denote the first time L1 and Le are equal; T := inf{t≥ 0 :

L(t) =Le(t)}, and define the process

L0(t) :=


L1(t) t < T,

Le(t) t≥ T.
(37)

Since T is a stopping time that is finite w.p.1, the strong Markov property implies that L0
d
= L1.

The coupling inequality (e.g., [1, VII 2a] gives

‖P (L1(t)∈ ·)−π(·)‖TV ≤ P (T > t).

Clearly, L0 and Le are equal when the first event (arrival or departure) in either of the two processes

occurs, and in particular, when the first event in L0 occurs. �

Similarly to the proof of Lemma 5 we can prove the following result. Recall that Lm :−{Lm(t) :

t≥ 0} denotes the number-in-system process in an M/M/(m−1)/0 queue–a loss system with m−1

servers and no buffer. Let τm := inf{t≥ 0 : Lm(t) =m− 1}, namely, τm is the first time instant in

which all servers are busy. Note that τm is a proper random variable, i.e., P (τm <∞) = 1.

Moyal and Perry: Stability of Parallel Server Systems
42 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Lemma 6. If Lm(0) = 0, then Lm is stationary for all t≥ τm; in particular, for all t≥ τm,

P (L(t) = k) = πm−1 :=
ρk/k!∑m−1

j=0 ρ
j/j!

, k ∈ J1,m− 1K.

Proof. Let L∞ denote the stationary version of Lm, namely, L∞(0)
d
= πm, for πm in the state-

ment of the lemma. We couple Lm and L∞ on the same probability space and allow them to evolve

independently of each other until they couple, after which the two processes follow the path of L∞

(similarly to the construction of L0 in the proof of Lemma 5). Since Lm(0) = 0, the two processes

must have coupled by τm, and so the result follows from the strong Markov property. �

References
[1] S. Asmussen. (2003). Applied probability and queues. Springer Verlag.

[2] R. Atar, I. Keslassy, and G. Mendelson. (2019). Subdiffusive load balancing in time-varying queueing systems.
Operations Research, 67(6), 1678–1698.

[3] F. Baccelli and P. Brémaud. (2002). Elements of Queueing Theory (2nd ed.). Springer.

[4] M. Bramson. (1994). Instability of FIFO queueing networks. Ann. Appl. Probab. 4(2), 414–431.

[5] M. Bramson. (2008). Stability of queueing networks. Springer.

[6] M. Bramson, Y. Lu, and B. Prabhakar. (2010). Randomized load balancing with general service time distribu-
tions. ACM SIGMETRICS performance evaluation review 38(1), 275–286.

[7] M. Bramson. (2011) Stability of join the shortest queue networks. The Annals of Applied Probability, 21(4),
1568–1625.

[8] A. Brandt. (1985). On stationary waiting times and limiting behavior of queues with many servers I: the general
G/G/m/∞ case. Elektron. Inform. u. Kybernet. 21, 47–64.

[9] P. Brémaud. (1981). Point Processes and Queues: Martingale Dynamics. Springer, new York.

[10] P. Brémaud. (1999). Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Texts Appl. Math.
31. Springer, new York.

[11] G. Brightwell and M. Luczak (2012). The supermarket model with arrival rate tending to one. arXiv preprint
arXiv:1201.5523.

[12] J.G. Dai. (1995). On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid
limit models. The Annals of Applied Probability, 5(1), 49–77.

[13] D.J. Daley. (1987). Certain optimality properties of the first-come first-served discipline for G/G/s queues.
Stochastic Processes and their Applications, 25, 301-308.

[14] L. Decreusefond and P. Moyal. (2012). Stochastic Modeling and Analysis of Telecom Networks. ISTE Wiley.

[15] P.S. Dester, C. Fricker and D. Tibi. (2017). Stationary analysis of the shortest queue problem. Working paper.
Available at: arXiv: 1704.066442v3.

[16] P. Eschenfeldt and D. Gamarnik. (2015). Join the shortest queue with many servers. The heavy traffic asymp-
totics. Working paper. Available at: arXiv:1502.00999.

[17] P. Eschenfeldt and D. Gamarnik. (2016). Supermarket queueing system in the heavy traffic regime. Short queue
dynamics. Working paper. Available at: arXiv:1610.03522.

[18] Fayolle, G., Malyshev, V. A. And Menshikov, M. (1995). Topics in the Constructive Theory of Countable
Markov Chains. Cambridge University Press.

[19] L. Flatto and H.P. Mc Kean. (1977). Two queues in parallel. Comm. Pure Appl. Math., 15, 255-263.

[20] G.J. Foschini and J. Salz. (1978). A basic routing problem and diffusion. IEEE Trans. on Comm. 26, 320–327.

[21] S. Foss. (1981). Comparison of service disciplines in multichannel service systems. Siberian Math. Zh., 22(1),
190–197.

[22] S. Foss and N. Chernova. (1998). On the stability of a partially accessible multi-station queue with state-
dependent routing. Queueing Systems, 29(1), 55–73.

[23] C. Graham. (2000). Chaoticity on path space for a queueing network with selection of the shortest queue
among several. Journ. Appl. Prob. 37, 198-211.

Moyal and Perry: Stability of Parallel Server Systems
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 43

[24] C. Graham. (2005). Functional central theorems for a large network in which customers join the shortest among
several queues or a queueing network with selection of the shortest of several queues. Probab. Theory Relat.
Fields. 131, 97-120.

[25] F.A. Haight. (1958). Two queues in parallel. Biometrika 45, 401–410.

[26] H.K. Khalil. (2002). Nonlinear Systems. Prentice Hall, New Jersey.

[27] J. Kiefer and J. Wolfowitz. (1955). On the theory of queues with many servers. Trans. Amer. Math. Soc. 78,
1–18.

[28] J.F.C. Kingman. (1961). Two Similar Queues in Parallel. The Annals of Mathematical Statistics 32(4), 1314–
1323.

[29] V.G. Kulkarni. (2017). Modeling and analysis of stochastic systems. Chapman and Hall/CRC.

[30] Liberzon, D. (2003). Switching in Systems and Control. Birkäuser.

[31] R.M. Loynes. (1962). The stability of queues with non-independent interarrivals and service times. Proceedings
of the Cambridge Philosophical Society, 58, 497–520.

[32] S.H. Lu and P.R. Kumar. (1991). Distributed scheduling based on due dates and buffer priorities. IEEE Trans.
Automat. Control. 36(12), 1406–1416.

[33] Y. Lu, Q. Xie, G. Kliot, A. Geller, J.R. Larus and A. Greenberg. (2011). Join-Idle-Queue: A novel load balancing
algorithm for dynamically scalable web services. Performance Evaluation 68(11), 1056–1071.

[34] M.J. Luczak and C. McDiarmid. (2006). On the maximum queue length in the supermarket model. The Annals
of Probability, 34(2), 493–527.

[35] M.J. Luczak and C. McDiarmid. (2007). Asymptotic distributions and chaos for the supermarket model.
Electronic Journal of Probability 12, 75–99.

[36] A.W. Marshall and I. Olkin. (1979). Inequalities: Theory of Majorization and Its Applications, Academic Press,
New York.

[37] M. Mitzenmacher. (1996). The Power of Two Choices in Randomized Load Balancing, PhD thesis, Univ. of
California, Berkeley.

[38] P. Moyal. (2017). On the Stability of non-monotonic systems of parallel queues. Discrete Events Dynamic
Systems, 27(1), 85–107.

[39] P. Moyal. (2017). A pathwise comparison of parallel queues. Discrete Events Dynamic Systems, 27(3), 573–584.

[40] P. Moyal and O. Perry. (2017). On the instability of matching queues. The Annals of Applied Probability, 27(6),
pp. 3385-3434.

[41] G. Pang, R. Talreja and W. Whitt. (2007). Martingale proofs of many-server heavy-traffic limits for Markovian
queues. Probability Surveys 4, pp. 193–267.

[42] O. Perry and W. Whitt. (2016). Chattering and Congestion Collapse in an Overload Switching Control.
Stochastic Systems, 6(1), pp. 132–210.

[43] M.I. Reiman. (1984). Some diffusion approximations with state space collapse. In Modelling and performance
evaluation methodology, 207–240. Springer, Berlin, Heidelberg.

[44] P. Robert. (2003). Stochastic networks and queues. Springer-Verlag.

[45] A.N. Rybko and A.L. Stolyar. (1992). Ergodicity of stochastic processes describing the operations of open
queueing networks. Problems Inform. Transmission 28, 3–26 (in Russian).

[46] A. Scheller-Wolf. (2003). Necessary and sufficient conditions for delay moments in FIFO multiserver queues
with and application comparing s slow servers with one fast one. Operations Research 51(5): 748–758.

[47] S.R. Turner. (1998). The effect of increasing routing choice on resource pooling. Probability in the Engineering
and Informational Sciences, 12(1), 109–124.

[48] R.L. Tweedie. (1981). Criteria for ergodicity, exponential ergodicity and strong ergodicity of Markoc processes.
Journal of Applied Probability, 18(1), 122–130.

[49] N.D. Vvedenskaya, R.L.V. Dobrushin, and F.I. Karpelevich. (1996). Queueing system with selection of the
shortest of two queues: An asymptotic approach. Problemy Peredachi Informatsii, 32(1), 20–34.

[50] R.W. Weber. (1978). On the optimal assignment of customers to parallel servers. Journal of Applied Probability
15(2), 406–413.

[51] W. Whitt. (1985). Deciding which queue to join: some counterexamples. Operations Research, 34(1), 55–62.

[52] W. Whitt. (2002). Stochastic Process Limits, Springer, New York.

[53] W. Winston. (1977). Optimality of the shortest line discipline. Journal of Applied Probability 14(1), 181–189.

[54] J. Xu and B. Hajek. (2013). The supermarket game, Stochastic Systems, 3(2), 405–441.

