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We consider a large service system with two customer classes that are distinguished by their urgency

and service requirements. In particular, one of the customer classes is considered urgent, and is therefore

prioritized over the other class; further, the average service time of customers from the urgent class is

significantly larger than that of the non-urgent class. We therefore refer to the urgent class as “slow,” and to

the non-urgent class as “fast.” Due to the complexity and intractability of the system’s dynamics, our goal

is to develop and analyze an asymptotic approximation, which captures the prevalent fact that, in practice,

customers from both classes are likely to experience delays before entering service. However, under existing

many-server limiting regimes, only two of the following options can be captured in the limit: (i) either the

customers from the prioritized (slow) customer class do not wait at all, or (ii) the fast-class customers do

not receive any service. We therefore propose a novel Fluid-Diffusion Hybrid (FDH) many-server asymptotic

regime, under which the queue of the slow class behaves like a diffusion limit, while the queue of the fast

class evolves as a (random) fluid limit that is driven by the diffusion process. That FDH limit is achieved

by assuming that the service rate of the fast class scales with the system’s size, while the service rate of the

slow class is kept fixed. Numerical examples demonstrate that our FDH limit is accurate when the difference

between the service rates of the two classes is sufficiently large. We then employ the FDH approximation to

study the costs and benefits of de-pooling the service pool, by reserving a small number of servers for the

fast class. We prove that, in some cases, a two-pool structure is the asymptotically optimal system design.
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1. Introduction

We consider a large-scale service system that handles two classes of customers with substantially

different service requirements: a class of “urgent” (or “guaranteed”) customers, that should be

served quickly, and a class of “non-urgent” (or “best effort”) customers, that can be delayed for

relatively long time periods. Due to the practical relevance, variants of such systems were studied

extensively in the literature in various settings and application domains. For example, in healthcare

settings, “urgent” may refer to high-acuity patients that should be prioritized over lower-acuity

(non-urgent) patients. In economic models, “urgent” may refer to customers who pay a premium

in order to receive service within a guaranteed time period, and are thus prioritized over “non-

urgent” customers, who receive only the remaining service capacity (which is not allocated to the

guaranteed customers), and can therefore experience long delays.

Our aim in this paper is to capture the following ubiquitous phenomenon: Despite the fact that

the urgent customers are prioritized over the non-urgent ones, they may nevertheless experience

delay. As we elaborate below, this phenomenon presents modeling and analytical challenges, since it

cannot be captured by standard many-server asymptotic regimes. Further, delays for both customer

classes can co-exist in the asymptotic approximation only if the high-priority customers require

longer services than the low-priority customers. We therefore consider systems in which the average

service time of the urgent class is substantially longer than that of the non-urgent one, and we

refer to the former as the “slow class,” and to the latter as the “fast class.” We will also refer to

the slow- and fast-class customers as “slow customers” and “fast customers,” respectively.

1.1. Motivation

The main motivation for this work comes from the observation that the setting just described

applies in several important systems, in which the customers who receive high priority also require

long service times. For example, contact centers employing “blending” of inbound calls with other

types of jobs, such as outbound calls or emails, are prevalent in practice, see Gans et al. (2003),

Pang and Perry (2014). While service-level constraints for inbound calls require that they be replied
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to relatively quickly (often within several seconds), the other type of jobs can be delayed for long

time periods (hours or even days) before being processed. Further, the average duration of an

inbound call is typically several minutes long, while email replies may follow a generic template,

and require only several seconds to process. Similarly, the average duration of outbound calls is

often short, because those calls are not initiated by the customers, who may not be interested in

having a conversation with the agent.

Other important cases to which our setting applies are healthcare systems that treat patients

with different levels of severity. In such cases, the level of severity is typically positively correlated

with the length of the treatment, as well as the prioritization of the different patient types. For

example, emergency rooms (ER)1 in the US employ a five-level Emergency Severity Index (ESI)

to rank the acuity of patients during the triage stage Gilboy et al. (2012). Patients granted ESI-1

are in need for an immediate, life-saving treatment, while ESI-2 patients require treatment “as

soon as possible” due to risk of deterioration. Patients with ESI levels 3-5 (the particular ESI level

of those patients differ by the amount of resources the triage nurse estimates they will need) can

wait until a bed is available in the ER. Since ESI-1 patients constitute approximately 1-3% of all

ER patients, Eitel et al. (2003), and since large ERs typically reserve resources (beds) for those

patients, one can consider the ER as a two-class service system with our modeling characteristics,

with ESI-2 patients being the “slow-class customers” (as those patients require long treatment

times), and the lower-acuity patients with ESI 3-5 being the “fast-class customers.” Indeed, ESI-2

patients are prioritized over the lower-acuity patients, and thus experience relatively short waiting

times, whereas the waiting times for the ESI 3–5 patients are long (can be measured in hours)

relative to the waiting times of ESI-2 patients, and relative to their own treatment times; see Song

et al. (2015). A similar characteristic can be found in Inpatient Units (IPs) that treat Observation

patients in addition to the Inpatients, since the former type of patients has lower priority during

bed assignments, and shorter average treatment times than the latter patient type.

An immediate question for the above examples is whether it is beneficial to split the service pool

into two separate pools—one that is dedicated to the slow (urgent) class, and the other that can
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serve both classes. Specifically, a fundamental implication of many-server asymptotic analysis is

that pooling reduces waiting times of all customers, due to associated economies of scales Whitt

(1992). However, in the multi-class setting, significant improvements, in terms of waiting times,

can be achieved for the fast class with only minor impacts on the slow class. We therefore study

a two-server-pool system as well, and show that de-pooling may be asymptotically optimal, in our

proposed asymptotic regime, when abandonment, holding and staffing costs are incurred.

1.2. Modeling and Analytical Approaches

To repeat, the examples discussed above all share the two features that we aim to model, namely,

(i) the service requirements of the prioritized (urgent) class is substantially longer than that of

the lower-priority class, and (ii) a non-negligible proportion of the customers from either class

experiences delays in queue before entering service. Unfortunately, exact analysis of the system is

intractable, even if it evolves as a continuous-time Markov chain (CTMC), as one must keep track

of the number of customers from each class in service and in queue, so that the minimal Markov

representation of the system is four-dimensional in the single-pool case, and five-dimensional in

the two-pool case. Furthermore, little insight can be obtained from numerical computations of the

system’s steady-state, or from simulations that aim to approximate steady-state performance met-

rics, and it is therefore natural to resort to a Many-Server Heavy-Traffic (MSHT) approximation.

However, under existing MSHT limiting regimes, only the following four scenarios are possible in

the limit:

(I) The system is underloaded, in which case both classes are served, and neither class experi-

ences any delay.

(II) The system is critically loaded, in which case both classes are served, and the urgent (pri-

oritized) class experiences negligible delays.

(III) The system is overloaded, but there is sufficient service capacity to serve the urgent class

alone. In this case, the urgent class experiences negligible delays, and a significant proportion

of the non-urgent class abandons the queue.
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(IV) The system is overloaded, and there is at most a negligible service capacity left for the

non-urgent class. In this case, the urgent class may experience non-negligible delays, and most

non-urgent customers abandon the queue.

(See §2 for a more rigorous discussion on the four scenarios above.) Therefore, in order to capture

our desired dynamics, we propose a new MSHT regime for a system with sufficient service capacity

to handle all customers (unlike in scenario (IV) above), such that both customer classes experience

non-negligible delays asymptotically (unlike scenarios (I)–(III)). We achieve this by considering a

properly-scaled sequence of queueing systems in which, in addition to the arrival rates and the

number of servers, the service rate of the fast class is accelerated appropriately. Under that scaling,

the queue of the fast class converges to a (random) fluid limit, whose dynamics are governed by

the resulting diffusion limit of the slow class. We therefore refer to this limiting approximation as

a Fluid-Diffusion Hybrid (FDH).

As usual, a limiting approximation for an intractable stochastic system is useful because, in

addition to providing quantitative estimations for key performance measures, it also provides qual-

itative insights that are not available otherwise. Here, we demonstrate this by employing the FDH

limit to consider the impacts of de-pooling, namely, of splitting the service pool to two separate

pools—one that handles both classes, and the other that is dedicated to the fast class. Since the fast

class requires short service times, the size of the dedicated pool is an order of magnitude smaller

than that of the shared pool. Motivated by the ER setting, in which a relatively small pool of

beds that are dedicated to patients who have low priority in the general ER is referred to as “fast

track,” we refer to the dedicated pool by the same name. A schematic representation of the single-

and the two-pool system is depicted in Figure 1, which clarifies why the single-pool system is often

referred to as the V -model (or V -system), while the two-pool system is known as an N -model.

To summarize, the contribution of this paper is threefold:

(1) We propose a new asymptotic regime for a two-class many-server queueing system (the V -

model) in which the service rates of the two classes are significantly different. In that new FDH
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Figure 1 A single-pool “V -system” (left), and a two-pool “N -system” with a fast track (right).

limit (i) both classes, including the high-priority class, have a non-negligible probability of waiting

for service, and (ii) both classes, including the low-priority class, receive service.

(2) We employ the FDH limit to study the potential benefits of de-pooling (the N -model). We

show that a small number of dedicated servers, that is an order of magnitude smaller than the

total number of servers, can substantially reduce the overall congestion in the system by reducing

the delay of the fast-class customers at the expense of a negligible increase in the delay of the

slow class. Our analysis thus confirms existing evidence, that having a small fast track can reduce

overall waiting times for patients in the ER; see e.g., Sanchez et al. (2006) and Cooke et al. (2002).

(3) Finally, we demonstrate how the FDH limit can be used to optimize the system’s topology

when a holding and staffing cost is incurred. In particular, we prove important structural results

for the optimal system-design problem in the FDH limit, and prove that the FDH-optimal system

topology is asymptotically optimal in an appropriate sense (see Proposition 1 in Section 6).

1.3. Conventions About Notation

All random variables and processes are defined on a probability space (Ω,F , P ). We let Z+ :=

{1,2, . . .} denote the positive integers, R denote the real numbers, and Rk, k > 1, denote all the

k-dimensional vectors with components in R. We use e to denote the identity function, e(t) = t.
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The indicator function of a set A, denoted by 1A, is the function that equal to 1 on A and to

0 otherwise. We denote by Dk :=D([0,∞),Rk) the space of Rk-valued right-continuous functions

with limits from the left, endowed with Skorohod J1 topology; see, e.g., Whitt (2002), and write

D for D1.

In the subspace Ck ⊂ Dk of Rk-valued continuous functions, the J1 topology reduces to the

topology of uniform convergence over compact intervals, which is induced by the uniform metric

‖x‖t := sup
0≤s≤t

‖x(s)‖ := sup
0≤s≤t

max
1≤i≤k

|xi(t)|, x= (x1, . . . , xk)∈Ck;

note that we have used ‖ · ‖ to denote the maximum norm in Rk. We use ⇒ to denote weak

convergence (convergence in distribution).

For a sequence of positive real numbers {an : n ∈ Z+} and a sequence of real numbers {bn :

n ∈ Z+}, we write (i) bn = o(an) if |bn/an| → 0 as n→∞; (ii) bn = O(an) if |bn/an| is bounded

from above; (iii) bn = Θ(an) if |bn/an| is bounded from above and from below by strictly positive

numbers, namely, if m≤ |bn/an| ≤M for some 0<m<M <∞ and for all n.

For a sequence of random variables {yn : n ∈ Z+} and a sequence of positive real numbers {an :

n∈Z+}, we write (i) yn = oP (an) if ‖yn‖/an⇒ 0 as n→∞; (ii) yn =OP (an) if {‖yn‖/an : n∈Z+} is

a tight sequence in R; and (iii) yn = ΘP (an) if yn is OP (an), but not oP (an). Finally, for a sequence

of stochastic processes {Y n : n ∈ Z+} and a sequence of positive real numbers {an : n ∈ Z+}, we

write (i) Y n = oP (an) if for any t≥ 0, ‖Y n‖t/an⇒ 0 as n→∞; (ii) Y n =OP (an) if for any t≥ 0,

{‖Y n‖t/an : n ∈ Z+} is a tight sequence in R; and (iii) Y n = ΘP (an) if Y n is OP (an), but not

oP (an).

Organization. The rest of the paper is organized as follows: We provide background on rel-

evant many-server heavy-traffic asymptotics, and expand on the theoretical need to develop the

FDH regime in Section 2. A review of related literature is presented in Section 3. Sections 4 and

5 are dedicated to analyzing the “V -system” and the “N -system,” respectively. In Section 6 we

consider the V and N models under a cost structure, and establish the asymptotically optimal

system design. We present numerical examples in Section 7, and summarize in Section 8.
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The paper includes an appendix. Appendix A is dedicated to generalizations to the setting of the

main paper. In particular, we consider more general scaling regimes, as well as systems with time-

varying arrival processes and systems with non-exponential service time distributions. Appendices

B–E are devoted to the proofs of the results in the main paper.

2. Background on MSHT Asymptotics and Relevant Insights

In this section, we provide background information on heavy traffic limiting approximations and

relevant insights for the FDH regime. Since we are interested in systems with many agents (or

servers), we focus on the MSHT limiting regime, which is achieved by considering a sequence of

queueing systems in which the number of servers increases to infinity, and the traffic intensity is

scaled appropriately so that non-trivial limits are achieved.

Existing MSHT Limiting Regimes. In their seminal paper, Halfin and Whitt (1981) classi-

fied three heavy-traffic regimes, which were later named in Garnett et al. (2002) as Quality-Driven

(QD), Quality-and-Efficiency Driven (QED), and Efficiency-Driven (ED) regimes. Under the QD

regime, an arrival will—with probability converging to 1—find an idle agent, and will therefore

not be delayed in queue. Thus, a pool of servers operating under the QD regime is asymptotically

equivalent to an infinite-server queue, as in Iglehart (1965). In contrast, under the ED regime, an

arrival—with probability converging to 1—will need to wait in a queue to be served. Under the

QED regime, which was first identified in Halfin and Whitt (1981), and is therefore also called the

Halfin-Whitt regime, the probability that an arrival will find all servers busy is, asymptotically,

strictly between 0 and 1, even though most servers are working at any given time. More specif-

ically, at most order
√
n servers can be idle as n→∞, where n is the number of servers in the

pool. In this regime, the queue is of order
√
n so that waiting times, as well as the proportion of

abandonment, are decreasing to 0 at rate 1/
√
n. For a single class and single-pool system with no

abandonment, it was shown in Halfin and Whitt (1981) that the QED regime is achieved via the

square-root staffing rule, stipulating that

lim
n→∞

√
n(1− ρn) = β,
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for some β > 0, where ρn < 1 is the traffic intensity (arrival rate divided by the total service rate

of the pool). This result was extended in Garnett et al. (2002) to include abandonment, in which

case ρn ≥ 1 (and β ≤ 0) is allowed.

For a single-class, single-pool system with abandonment, we can therefore distinguish between

the three different regimes according to the value of β: For β = +∞, β ∈ R, or β = −∞, the

system operates in, respectively, the QD, QED or ED asymptotic regime. Further, abandonment

and waiting times are asymptotically negligible in all cases, unless lim inf
n→∞

ρn > 1 (and in particular,

when ρn→ ρ > 1 as n→∞), in which case the proportion of abandonment is asymptotically non-

negligible, and waiting times are of the same order as service times. Note that this latter case

corresponds to having a genuinely overloaded system, because the traffic intensity is bounded away

from its critical value 1. The queue process is then well-approximated by a fluid limit; see Whitt

(2004).

A fourth MSHT regime, named non-degenerate slowdown (NDS), was proposed in Atar (2012).

The NDS regime is of “ED-type,” because arrivals are delayed in queue with a probability con-

verging to 1, but, unlike previous ED approximations, waiting times are of the same order as the

service times while simultaneously, the abandonment proportion is negligible. In particular, the

proportion of abandonment is of order 1/
√
n, as in the QED regime. The NDS asymptotic regime

is achieved by scaling the number of agents, as well as the service rate of each individual agent, by

√
n.

In practice, engineering consideration is required in order to determine which regime is an appro-

priate approximation for a given system. If most customers enter service immediately upon arrival,

then the QD approximation is appropriate. If a non-negligible proportion (which is not too close to

1) of the arrivals is delayed in queue, but waiting times of delayed customers are short relative to

their average service times, then the QED regime is an appropriate asymptotic approximation. On

the other hand, if almost all arrivals are delayed in queue, then the ED approximation should be

employed. (The exact type of ED approximation can be chosen based on the proportion of aban-

donment, e.g., NDS when abandonment is negligible, and a fluid approximation when abandonment

is substantial.)
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Traffic Intensity Slow Class Fast Class

√
n(1− ρnS − ρnF )→+∞ QD QD

1− ρnS − ρnF =O(n−1/2) QD QED

ρS + ρF > 1 and ρS < 1 QD ED

ρS + ρF > 1 and ρS ≥ 1 QED or ED No Service

Table 1 Summary of existing MSHT regimes for two-class priority systems

Relevant Insights. With the insights obtained from the single-class single-pool setting, we

can explain why the four scenarios in §1.2 are the only possible ones. Consider a sequence of single

server-pool systems indexed by the number of servers n, and for i= S,F , let λni , µi and θi denote

the arrival rate, service rate and abandonment rate of the class-i customers, respectively, in system

n. (S and F are mnemonic for “fast” and “slow.”) Assume that λni /n→ λi as n→∞, but that the

service and abandonment rates are kept fixed along the sequence. Note that abandonment keeps

the two queues stable even if the total arrival rate to the system is higher than its total processing

rate. Let ρni := λni /(nµi) denote the traffic intensity of class i and ρi := λi/µi denote the limit, so

that ρni /n→ ρi as n→∞, for i= S, F .

If ρS + ρF < 1, then the system operates in the QD regime, and neither class experiences any

waiting, asymptotically. The same continues to hold if ρS + ρF = 1, but 1− ρnS − ρnF converges to 0

at a slower rate than
√
n, namely, if

√
n(1− ρnS − ρnF )→∞ as n→∞; see Iglehart (1965) and the

discussion in the introduction of Halfin and Whitt (1981). These two cases correspond to scenario

(I). Scenario (II) arises when ρS + ρF = 1, but 1− ρnS − ρnF converges to 0 at rate
√
n or faster,

while Scenario (III) arises when ρS + ρF > 1, but ρS < 1. In this case, the delay in queue of the

slow class is negligible asymptotically with respect to the delay of the fast class; see, e.g., Theorem

3 and the discussion following it in Maglaras et al. (2017). Finally, if ρS ≥ 1, then, asymptotically,

there is no service capacity left to handle the low-priority (fast) class, so that the proportion of

fast customers that are served is negligible, and practically all those customers leave the system

via abandonment, as in scenario (IV). Table 1 summarizes the four scenarios.
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2.1. A Singular Perturbation Approach

The discussion above shows that a different MSHT approach is required in order to have an

asymptotic approximation for the system under which customers from either class are delayed, but

most customers (from either class) are eventually served. Since we want the probability that a slow

customer is delayed in queue to be strictly positive, we should assume that ρS ≥ 1, but then only

a negligible service capacity can be allocated to the fast class. One might try to circumvent this

problem by exploiting the fact that the fast class requires short service times, and take 1/µF = 0.

This perturbation approach can be effective in some cases, as in Whitt (2005), but it is easy to see

that it trivializes the problem in our setting. Indeed, if the fast class is served instantaneously, then a

single dedicated server for that class would suffice to ensure that no queueing of fast-class customers

ever occurs. Asymptotically, the system is then equivalent to the single-class M/M/n+M (Erlang-

A) queue, serving the slow class only. Further, prioritizing the fast customers in this case does not

impact the service quality of the slow customers at all. Therefore, such an approximation has no

useful implication for the practical settings we consider.

Instead, we propose a singular perturbation approach, in which the service time of the fast class

approaches 0 (equivalently, the service rate increases without bound), but remains strictly positive

along the sequence of systems. We achieve our modeling goals by letting the service rate of the

fast class increase with n at an order O(
√
n), while maintaining the service rate of the slow class

fixed. Under an appropriate spatial scaling, the queue of the fast class converges to a diffusion

process, and the queue of the slow class to a fluid limit whose dynamics are governed by those of

the diffusion limit.

3. Literature Review

The V and N models have both been studied extensively in the conventional heavy traffic setting,

e.g., see Whitt (1971), Bell and Williams (2001), Ghamami and Ward (2013) (with customer

abandonment), and Harrison (1998), as well as in the MSHT setting, which is our focus here; see,

e.g., Atar et al. (2010), Harrison and Zeevi (2004), Atar et al. (2004) and Gurvich et al. (2008),
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for works related to V -systems, and Tezcan and Dai (2010) for an N -system. Also related are the

papers Gurvich and Perry (2012), which considers overflow from a main pool of agents to a second

pool (or pools), and Perry and Whitt (2009, 2011, 2015), which consider an automatic control

designed to transform an X-model (with two-way sharing) into an N -model. Unlike our FDH limit,

the limits in all these works (and also in other works considering heavy traffic approximations for

queueing systems) are either fluid or diffusion processes. Further, the numbers of servers in the two

pools in the N -systems are of the same order, whereas the fast track in our N -system is an order

of magnitude smaller than in the main pool.

Our work relates to the literature on service systems that handle two types of customers: guar-

anteed and best effort. The service quality for the former customer class (in terms of delay times

in queue or in terms of service rates) is guaranteed, whereas for the latter class, the allocation of

service capacity is based on availability; see Afeche (2013), Maglaras and Zeevi (2004), Maglaras

and Zeevi (2005) and references therein.

Assuming that customers are strategic and seek to maximize their utility, Maglaras et al. (2017)

shows that firms providing a service to a market consisting of several customer classes should

offer a menu of delays and costs in order to maximize their profits. In particular, optimal market

segmentation might require that low-priority classes are delayed in queue, even when such delays

can be eliminated due to having sufficient service capacity. In this case, the optimal staffing is to

have the high-priority class operate in the QD regime, and the low priority in the ED regime. Here

we do not consider a customer choice model, but it is intuitively clear that having the low-priority

class operate in the QED (instead of the QD) regime might be optimal in some cases; the FDH

approximation can be used to study such cases when the service times of guaranteed and best-

effort customers are substantially different. (Note that longer service times can be offered as part

of a delay, service-time and cost menu.) We also refer to Nazerzadeh and Randhawa (2018), which

considers a related problem in the single-server setting, and Gurvich et al. (2018), which compares

the priority schemes of revenue-maximizing firms to those of a social planner.
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Another closely related paper is Ata and Van Mieghem (2009), which considers a queueing system

in which an “express class” is served by a fast service pool, and a “standard class” is served by a

slow service pool. The problem considered in this paper is whether letting the fast servers process

customers from the standard class is beneficial, namely, whether the system should operate two

independent dedicated service pools, or an N -system with a shared service pool and a second pool

dedicated to the slow class.

Perturbation and Singular-Perturbation Techniques. Perturbation of a (possibly stochastic)

dynamical system is an analytical method in which a “small” parameter or process ε is replaced

by 0 (0 may be the zeroth function, depending on the setting). If the limit point ε= 0 differs in

important ways from the approach to the limit as ε→ 0, then a singular perturbation technique is

required, in which ε (which is fixed for the given system) is taken to 0 in a suitable way, so as to

achieve a meaningful limiting approximation; see, e.g., Hinch (1991).

Whitt (2005) considers the heavy-traffic limit for the G/H∗2/n/m queue, in which the service-

time distribution H∗2 is exponential with mean 1/ν with some probability p, and has point mass at

0 with probability 1−p. Thus, the system with the H∗2 service-time distribution can be considered

as a perturbation for a system with an hyperexponential service-time distribution H2 (a mixture

of two exponentials) in which the service time is, with probability 1 − p, small relative to ν.

This perturbation technique was shown to be useful for developing closed-form expressions for

performance measures for the M/G/n model in Whitt (1983). Maglaras and Zeevi (2004) employs

a perturbation approach, in which the service rates of different customer classes are perturbed

about a single value in order to develop a diffusion limit that approximates the intractable diffusion

limit of the original system with arbitrary service rates.

Singular perturbation techniques have been used extensively in the study of stochastic systems.

An example for a fluid limit of a queueing model can be found in (Perry and Whitt 2016, §6),

where one of the control parameters is replaced by 0 in certain states of the system. The resulting

singularly perturbed dynamical system is then amenable to qualitative long-run analysis that is
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intractable for the original fluid limit. Perhaps the most prevalent technique is the method of time

scales, under which a small and “fast” process is replaced by its local stationary behavior; see, e.g.,

Yin and Zhang (2005), Yin and Zhang (2012) and Khasminskii and Yin (2005). In the queueing

literature, we mention pointwise stationary approximations, as in Bassamboo et al. (2009) and

Whitt (1991), and stochastic averaging principles, as in Hunt and Kurtz (1994) and Coffman Jr

et al. (1995). We refer to Gurvich and Perry (2012) and Perry and Whitt (2012) for detailed dis-

cussions and literature reviews; see also Wu et al. (2018) and Moyal and Perry (2017). However,

we emphasize that our singular-perturbation approach here is different than in any of the afore-

mentioned papers, since our diffusion process evolves in the same time scale as the fluid process,

so that no separation of time scales occurs.

Finally, scaling of service times was proposed in Atar (2012) to develop the NDS regime. See

Atar and Gurvich (2014) for an application of the NDS regime in multi-class multi-pool systems.

However, unlike our setting, the number of agents in the NDS regime scales in the same order

as the service rates, and the service times of all customer classes scale in the same fashion. More

importantly, the NDS regime was developed so as to have the service time and delay in queue of

a typical customer decay at the same order n1/2; in particular, both are comparable to each other.

In the FDH regime, however, the service time of a fast customer decays at rate n−1/2, whereas the

average delay is bounded away from 0 as n→∞. Thus, the fast customers experience delays that

are an order of magnitude larger than their service times, and so the corresponding queue does not

operate in the NDS regime.

4. The FDH Limit for the V -System

We consider a single pool of many statistically-homogeneous agents that handle two customer

classes, as depicted in the left panel of Figure 1. The service times of class-i customers are assumed

to be Independent and Identically-Distributed (IID) exponential random variables with mean 1/µi,

i= S or i= F , and to satisfy 1/µF � 1/µS; see Assumption 1 below. We refer to class-S and to

class-F customers as “slow” and “fast,” respectively.
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We let the arrival process of class-i customers follow a Poisson process with rate λi. A class-i

customer that is not routed to an agent immediately upon arrival is placed in an infinite buffer

(there are two buffers, one for each class), and waits for his turn to be served. We assume that each

class-i customer has a finite patience time that is exponentially distributed with mean 1/θi, and

will abandon the queue if his delay in queue exceeds his patience time. All random variables are

assumed to be independent from each other, as well as from the two independent Poisson arrival

processes.

Agents are non-idling, namely, an agent does not idle if a customer is waiting in either queue,

and give strict priority to the slow class. For tractability, we assume that the routing policy is

preemptive, so that a slow customer never waits in queue if there are fast customers in service.

A fast customer who is replaced by a slow customer is put back at the head of his designated

queue, and resumes his service at a later time. As we explain in Section 7.3, the difference between

the queueing dynamics under the preemptive and the non-preemptive priority policies diminishes

as the size of the system increases, so that our results are meaningful also if the non-preemptive

priority policy is employed.

4.1. The FDH Scaling

The FDH approximation is obtained in a MSHT limiting regime for a sequence of systems indexed

by the number of servers n, as n increases without bound. We append with a superscript n the

arrival, service, and abandonment rates, as well as the stochastic processes corresponding to system

n. We let λnS and λnF increases proportionally to n, so that neither one is asymptotically negligible,

but take the abandonment rates of both classes, and the service rate of the slow class, to be fixed

along the sequence. The aforementioned singular-perturbation technique corresponds to letting the

service rate of the fast class scale with n so as to achieve a non-trivial limit. It will become clear

(see the discussion below Theorem 1) that, since we consider the slow class to be operating in the

QED regime, µnF must increases at a rate
√
n. We formalize our MSHT scaling in the following

assumption.
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Let rnF denote the scaled offered load of the fast class; in particular,

rnF :=Rn
F/
√
n where Rn

F := λnF/µ
n
F . (1)

Assumption 1 (FDH scaling). For β ∈R and θS > 0, the following holds for the slow class.

lim
n→∞

(n−λnS)/
√
n= β, µnS = 1, and θnS = θS for all n≥ 1.

For strictly positive real numbers λF , rF and θF , the following holds for the fast class

lim
n→∞

λnF/n= λF , lim
n→∞

rnF = rF , and θnF = θF for all n≥ 1.

We remark that the assumption µnS = 1 is taken without loss of generality, because we can also

measure time in terms of the expected service-time of the slow class.

Let Xn
i (t) and Qn

i (t) denote the number of class-i customers in the system and in queue at

time t, respectively, and let Xn(t) := (Xn
S (t),Xn

F (t)) and Qn(t) := (Qn
S(t),Qn

F (t)). Note that Xn is

a CTMC, but that Qn is not Markov. The FDH-scaled processes are defined via

X̃n :=
(
X̃n
S , X̃

n
F

)
=

(
Xn
S −n√
λnS

,
Xn
F

λnF

)
and Q̃n := (Q̃n

S, Q̃
n
F ) =

(
Qn
S√
λnS
,
Qn
F

λnF

)
. (2)

Notice that the processes corresponding to the slow class, Xn
S and Qn

S, are diffusion-scaled, whereas

the processes corresponding to the fast class, Xn
F and Qn

F , are fluid-scaled.

4.2. The FDH Limit

The FDH limit of X̃n in (2) depends on having the sequence of initial conditions X̃n(0) converge

in R2. We therefore must guarantee that the initial conditions in the limit and the pre-limit are

“legitimate” as in the following assumption.

Assumption 2 (initial condition for the V -system). Qn
S(0) = (Xn

S (0) − n)+ and Qn
F (0) ≥ 0

for all n≥ 1.

Both Assumptions 1 and 2 are assumed to hold throughout this section.
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Below is the main result for the V -system—the FDH limit for the scaled sequence {X̃n : n ≥

1}. This limit is characterized via a stochastic differential equation (SDE) whose solution is a

fluid-diffusion hybrid, and we thus refer to that SDE as a Hybrid Stochastic Differential Equation

(HSDE).

Theorem 1 (FDH limit for the V -system). If X̃n(0)⇒ X(0) in R2, then X̃n ⇒ X in D2,

where X := (XS,XF ) is the unique solution to the following HSDE with initial condition X(0)

dXS(t) = (−β+XS(t)−− θSXS(t)+)dt+
√

2dB(t), (3)

dXF (t) = (1− r−1F XS(t)−− θFXF (t))dt+ dI(t) and XF (t)≥ 0, (4)

where B is a standard Brownian motion, and I is the unique non-decreasing process satisfying

I(0) = 0 and

∫ t

0

1{XF (s)>0}dI(s) = 0, for all t≥ 0. (5)

Observe that the expression characterizing the process XS in (3) does not involve XF ; it is the

piecewise Ornstein-Uhlenbeck (OU) process that was shown in Garnett et al. (2002) to arise as the

limit for the Erlang-A model operating in the QED regime. However, XF and XS are dependent

processes, as is clear from (4). (Observe that XS and XF (0) are the only sources of randomness

in the equations for XF in (4) and (5).) From the fact that XS is the Garnett diffusion, it follows

that the number of agents working with fast customers is OP (
√
n) in the pre-limit. This explains

why the service rate of the fast class must scale at a rate
√
n. Further, due to the fluid scaling

of X̃n
F , the limit process XF is therefore reflected at 0, and its non-negativity is preserved by the

regulator process I in (5). It is also easy to see that XF is bounded w.p.1 by max{XF (0), θ−1F },

and in fact, one can show that if XF (0)> θ−1F , then XF will decrease towards [0, θ−1F ) and will be

absorbed in this interval.

It is easy to see that the limit process X in Theorem 1 also characterizes the FDH limit of

{Q̃n : n≥ 1}: For each n≥ 1, we have Qn
S = (Xn

S −n)+ and Qn
S +Qn

F = (Xn
S +Xn

F −n)+. Therefore,

Theorem 1 and the continuous mapping theorem imply that Q := (QS,QF ) := (X+
S ,XF ) is the
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FDH limit of {Q̃n : n≥ 1}. (Notice that X̃n
F and Q̃n

F both converge weakly to the same limit XF

due to the fact that the number-in-service process of the fast class is OP (
√
n).)

Now consider the pre-limit cumulative idleness process

In(t) =

∫ t

0

(n−Xn
S (s)−Xn

F (s))+ds,

and its scaled version Ĩn = In/Rn
F . Note that the integrand in the above expression represents the

number of idle agents at time s. Since idleness is non-decreasing and “accumulates” only when the

queue of the fast class is empty, we have∫ t

0

1{Q̃n
F
(s)>0}dĨ

n(s) = 0, for all t≥ 0,

which is analogous to (4), due to the aforementioned asymptotic equivalence of QF and XF . Indeed,

we can prove that I is the FDH limit of Ĩn. We summarize in the following corollary to Theorem

1.

Corollary 1. If X̃n(0)⇒ X(0) in R2, then (X̃n, Q̃n, Ĩn)⇒ (X,Q, I) in D5 as n→∞, where

(XS,XF , I) is characterized in (3)–(5).

4.3. FDH Approximation for Limiting Distributions

Due to the abandonment, the process Xn, which is clearly an irreducible CTMC, is positive recur-

rent for each n≥ 1, and thus ergodic; in particular, it possesses a unique stationary distribution

which is also its limiting distribution. One expects to have the FDH-scaled sequence of stationary

distributions converge weakly as n→∞, to the stationary distribution of the FDH limit, but such a

result is not guaranteed to hold in general. We note that the (marginal) stationary distributions of

the processes X̃n
S , n≥ 1, have been shown to converge to the stationary distribution of the limiting

Garnett diffusion in (Garnett et al. 2002, Appendix C). Here, however, we must prove the result

for the sequence of joint stationary distributions of the processes (X̃n
S , X̃

n
F ).

For a sequence of ergodic CTMCs that converges to a fluid limit, it is typical to have the

corresponding sequence of stationary distributions converge to a stationary point of the fluid limit.
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(A point x∗ is stationary, if XF (t) = x∗ for all t≥ 0, whenever XF (0) = x∗.) However, the fluid part

of the FDH limit XF clearly keeps oscillating indefinitely, and therefore cannot possess a stationary

point. Nevertheless, XF is a stochastic fluid limit, and its driving diffusion process XS does possess

a stationary distribution, as was just mentioned. We use this latter fact to show that the FDH limit

X is regenerative with a finite expected cycle length, thus possessing a unique limiting distribution.

We then show that this limiting distribution is the weak limit of the stationary distributions of

{X̃n : n≥ 1} as n→∞.

Let (Xn(∞),Qn(∞)) denote an R4 random variable having the limiting distribution of (Xn,Qn),

and define the FDH-scaled random variables

X̃n(∞) := (X̃n
S (∞), X̃n

F (∞)) =

(
Xn
S (∞)−n√

λnS
,
Xn
F (∞)

λnF

)
, and

Q̃n(∞) :=
(
Q̃n
S(∞), Q̃n

F (∞)
)

=

(
Qn
S(∞)√
λnS

,
Qn
S(∞)

λnF

)
.

Theorem 2. The following hold:

1. The FDH process (X,Q) possesses a unique stationary distribution, which is also the limiting

distribution, namely, (X(t),Q(t))⇒ (X(∞),Q(∞)) in R4 as t→∞, with

Q(∞) := (QS(∞),QF (∞)) = (XS(∞)+,XF (∞)).

2. (X̃n(∞), Q̃n(∞))⇒ (X(∞),Q(∞)) in R4 as n→∞. In particular,

lim
n→∞

lim
t→∞

E[f(X̃n(t), Q̃n(t))] = lim
t→∞

lim
n→∞

E[f(X̃n(t), Q̃n(t))] =E[f(X(∞),Q(∞))],

for any bounded and continuous function f :R4→R.

3. {Q̃n
i (∞) : n≥ 1} is Uniformly Integrable (UI) for i= S,F , so that

lim
n→∞

E[Q̃n
i (∞)] =E[Qi(∞)].

The random variables XS(∞) and QS(∞) are the steady-state distributions of the Garnett

number-in-system and queue process, respectively; see part (2) of Theorem 2* in Garnett et al.

(2002). Note that, just like the process XF , the corresponding limiting distribution XF (∞) has
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support on [0, θ−1F ), with a positive probability mass on state 0. Indeed, Xn
F can be bounded from

above, in sample-path stochastic order, by an infinite server queue having service rate θF , giving

the upper bound of the support of the limiting process XF (see the proof of Theorem 4). Further,

it follows from (4) that, if XS(t)<−rF , then XF is strictly decreasing at time t. Since XS is an

ergodic diffusion process, it almost-surely experiences excursions below −rF for sufficiently long

time intervals so as to allow the (bounded) process XF to empty, and then remain at state 0 until

XS experiences an excursion in the set [−rF ,∞), which causes XF to increase.

It is also worth noting that, since XF (∞) has a positive probability mass at 0, the probability

that a fast-class customer does not need to wait is positive asymptotically (as n→∞). Thus, even

though the fast class is highly congested, and has fluid queue building up over much of the time,

it does not strictly operate in the ED regime, as defined in Garnett et al. (2002); see Table 1 in

this reference.

Approximating Performance Measures. Due to Theorem 2, we can use the limiting distri-

bution of the FDH limit, as well as the expected values of the limiting FDH queues, to approximate

key performance measures for the pre-limit stochastic system. For i = S,F and for n large, we

consider the following measures: the probability of delay in queue P (W n
i > 0); the average wait-

ing time of delayed customers (including the waiting of the customers who eventually abandon

the queue, but excluding customers who are not delayed) E[W n
i |W n

i > 0]; and the probability of

abandonment P (Abni ).

The approximation of P (W n
S > 0) is straightforward: Since the event {W n

S > 0} is equivalent

to the event {Xn
S ≥ n}, both events have the same probability. Since XS(∞) is a continuous

random variable, the event {XS(∞) = 0} has probability 0, and so we can approximate the limiting

probability that the slow customers are delayed by P (XS(∞)> 0) = P (QS(∞)> 0).

The approximation of P (W n
F > 0) is more intricate, although it too can be approximated by the

probability that the corresponding queue is strictly positive, namely, by P (QF (∞)> 0). The intri-

cacy here is that Q̃n
F (∞)⇒QF (∞) in R does not directly imply that P (Qn

F (∞)> 0)→ P (QF (∞)>
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0) as n→∞, because QF (∞) ≡XF (∞) has a probability mass at 0; hence, the cumulative dis-

tribution function (cdf) of XF (∞) is discontinuous at state 0. (Recall that weak convergence is

defined to hold in continuity points of the limit cdf.) Nevertheless, we claim that P (QF (∞) = 0)

approximates P (Qn
F (∞) = 0) for large n, so that P (QF (∞)> 0) also approximates P (Qn

F (∞)> 0).

To see why, note that {QF (t) = 0} implies that {XS(t)≤−rF}, because QF is bounded from below

by 0 and is strictly increasing whenever XS >−rF . Specifically, idleness appears in the system (so

that QF is fixed at 0) immediately once QF reaches state 0 and XS < −rF , whereas QF begins

to increase immediately when XS crosses −rF from below. Therefore, in the limit, either the fluid

queue of the fast class is strictly positive, and waiting times are positive, or the queue is empty, in

which case there is idleness, and so no waiting.

The approximation for the expected waiting of delayed customers builds on the equality E[W n
i ] =

E[Qn
i (∞)]/λni which holds by virtue of Little’s law, from which it follows that

E[W n
i |W n

i > 0] =E[W n
i ]/P (W n

i > 0) = (λni )−1E[Qn
i (∞)]/P (Qn

i (∞)> 0).

Finally, we define the abandonment rate from queue i to be θiE[Qn
i (∞)].

To summarize, we have the approximations

P (W n
S > 0)≈ P (QS(∞)> 0), E[W n

S |W n
S > 0]≈ (λnS)−1/2E[QS(∞)]

P (QS(∞)> 0)
, P (AbnS)≈ θS

E[QS(∞)]√
λnS

;

(6)

P (W n
F > 0)≈ P (QF (∞)> 0), E[W n

F |W n
F > 0]≈ E[QF (∞)]

P (QF (∞)> 0)
, P (AbnF )≈ θFE[QF (∞)]. (7)

4.4. An Example

We now demonstrate the effectiveness of the FDH approximation by comparing its predictions

to simulation of a stochastic system. The system we consider has n= 50 servers that are fed by

two independent Poisson processes having arrival rates λnS = 46 and λnF = 15. The service rates are

µnS = 1 and µnF = 5, and the abandonment rates are θS = 0.1 and θF = 0.3. Note that the traffic

intensity of the slow class (λnS/(nµ
n
S) = 0.92) is close to 1, and that the service rate of the fast class
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is 5 times larger than that of the slow class. For the computation of the FDH approximation, we

take

β = (n−λnS)/
√
λnS and rF = λnF/(µ

n
F

√
λnS). (8)

The computation of the FDH limit is carried out numerically by generating 400 independent

sample paths via the Euler scheme, as in Asmussen and Glynn (2007, Chapter X.3), using step

size 0.002. To estimate the stationary performance measures of the stochastic system we averaged

400 independent simulation runs, each was ran for 1,000 time units, and considered after a warm-

up period of 100 time units. The results, given in Table 2, show that the FDH approximation is

accurate for the four performance measures, and for each customer class. In particular, the relative

errors of the limiting approximations for the expected queue lengths E[Qn
i (∞)] and waiting times

E[W n
i |W n

i > 0], i= 1,2, are less than 3%.

Slow (i= S) Fast (i= F )

simulation FDH simulation FDH

E[Qn
i (∞)] 3.42 (0.03) 3.28 (0.02) 14.06 (0.07) 13.57 (0.07)

E[W n
i |W n

i > 0] 0.18 (9e-4) 0.18 (8e-4) 1.28 (0.005) 1.29 (0.005)

P (W n
i > 0) 0.41 (0.001) 0.39 (0.001) 0.73 (0.001) 0.70 (0.001)

P (Abni ) 0.01 (6e-5) 0.01 (5e-5) 0.28 (0.001) 0.27 (0.001)

Table 2 Comparison of performance measures for a stochastic system and its FDH approximation. The
“simulation” columns give the results for the stochastic system, and the “FDH” columns show the results for the

FDH approximation. Standard errors are presented in parentheses.

It is useful to contrast the simulation results with existing many-server asymptotic approxima-

tions. Specifically, recall from Section 1.2 that, under existing MSHT limiting regimes, one of the

following three scenarios must hold asymptotically: (I) neither class experiences any delay; (II)

both classes are served, and all the delay is experienced by the lower-priority class; (III) the slow

class experience delay, in which case the fast class receives no service, asymptotically. Clearly, none

of these three scenarios is consistent with the simulation results presented in Table 2, as the slow
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class has a significant delay (0.18 time units) while most of the customers (72%) of the fast class

are served.

To demonstrate that the limiting distribution of the FDH approximates well the limiting dis-

tribution of the stochastic system (beyond the means), we compared the (marginal) limiting cdf’s

of the two simulated queues to the corresponding FDH distributions. The results are depicted in

Figure 2.
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Figure 2 The marginal cdf’s computed from simulations of Qn
S(∞) and Q̃n

F (∞) (solid, starred line) and the
corresponding cdf’s computed for the FDH approximation (

√
λn
SQS(∞), λn

FQF (∞)) (dashed, circled
line).

5. The FDH Limit for the N-System

We now consider the FDH approximation for the N -system. For comparison purposes, we think

of the single pool of the V -system as being split into two distinct pools: a “regular track” which,

as before, serves both classes with strict priority to the slow class, and a “fast track,” which is

dedicated to serving the fast class. Such a system design often makes sense, because it provides

some of the benefits of pooling while requiring only part of the agents to be cross-trained. As we

show below, the N -system design is especially useful in our setting, since a small number, that is

asymptotically negligible, of dedicated agents can dramatically decrease the waiting times of the

fast class, while maintaining good service levels for the slow class.
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The benefits of having a fast track are especially pronounced when the dedicated pool is cheaper

to operate, which is often the case in practice. For example, in the hospital setting, residents can

replace physicians in the ER’s fast track, and the required nurse-to-patient ratio in observation

units is lower than in general inpatient units. In the contact-center setting, agents that handle

inbound calls (slow customers) and emails, may receive higher pay and be more costly to train,

than agents that only respond to emails.

The Setting. We assume that the arrival processes, patience and service times are as in

Section 4. We further assume that the service time distribution of the fast class is the same in both

pools, namely, the service times are class-dependent, and are not pool-dependent. As before, the

slow customers receive preemptive priority over the fast customers in the regular track. However,

an interrupted service due to preemption can be resumed in the fast track. We let zn denote the

number of servers in the fast track in system n, and assume that

lim
n→∞

zn/Rn
F = z, for some z ∈ [0,1],

so that z is the limiting capacity of the fast track. In particular, the case z = 0, corresponding to

having no fast track, will be seen shortly to agree with the corresponding limit for the single-pool

V model. On the other hand, when z = 1, all the fast customers are served in the fast track. Note

that the number of servers assigned to the fast track is zn =O(
√
n) and in particular, zn/

√
n→ rF z

as n→∞ by Assumption 2.

We let Xz,n := (Xz,n
S ,Xz,n

F ) denote the number-in-system process, Qz,n := (Qz,n
S ,Qz,n

F ) denote the

queue-length process, and Iz,n(t) :=
∫ t
0
(n−Xz,n

S (s)−Xz,n
F (s))+ds denote the cumulative idleness

process for a given z in system n (so that the fast track size in that nth system is zn). The FDH

scaling is as follows

X̃z,n := (X̃z,n
S , X̃z,n

F ) :=

(
Xz,n
S − (n− zn)√

λnS
,
Xz,n
F

λnF

)
;

note that we center the process Xz,n
S about the number of servers in the regular track n− zn.

Let Q̃z,n and Ĩz,n be the FDH-scaled versions of the processes just defined, as in (2). We make

the following assumption in order to avoid a jump at time 0 in the limiting process.
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Assumption 3 (Initial condition for the N-system). Qz,n
S (0) = (Xz,n

S (0) − (n − zn))+ and

Qz,n
F (0)≥ 0 for all n≥ 1.

The following theorem provides the FDH limit for the N -system as the solution to an HSDE.

Theorem 3 (FDH limit for the N-system). If X̃z,n(0) ⇒ Xz(0) in R4 and, in addition,

Assumptions 1 and 3 hold, then
(
X̃z,n(t), Q̃z,n(t), Ĩn(t)

)
⇒
(
Xz(t),Qz(t), Iz(t)

)
in D5 as n→∞,

where the component process of Xz is the unique solutions to the HSDE

dXz
S(t) =

(
−β+ rF z+Xz

S(t)−− θSXz
S(t)+

)
dt+

√
2dB(t), (9)

dXz
F (t) = (1− z− r−1F Xz

S(t)−− θFXz
F (t))dt+ dIz(t) and Xz

F (t)≥ 0, (10)

where B is a standard Brownian motion, Qz := ((Xz
S)+,Xz

F ), and Iz is the unique non-decreasing

process satisfying

Iz(0) = 0 and

∫ t

0

1{Xz
F
(s)>0}dI

z(s) = 0, for all t≥ 0. (11)

Observe the similarity between the FDH limit for the N -system and for the V -system in Theorem

1. In particular, (9) becomes (3) if we replace β−rF z by β, while (10) becomes (4) if we scale both

sides by 1− z. Thus, (Xz
S, (1− z)−1Xz

F ) is the FDH limit for a sequence of V -systems, in which the

number of servers in the nth system is reduced by zn, while the fast-class arrival in the nth system

is reduced by µnF z
n.

It is useful to consider the two extreme values of z, z = 0 and z = 1, to see how the FDH limit

Xz depends on z: (i) When z = 0, the N -system reduces to the V -system; indeed, the expressions

in (9) and (10) reduce to the expressions in (3) and (4), respectively. Therefore, the FDH limit for

the single-pool model is a special case of the FDH limit for the N -system. (ii) When z = 1, (10)

implies that Xz
F (∞) is identically zero. In this case, both classes have asymptotically negligible

delay, implying that only a relatively negligible proportion of the arrivals abandon asymptotically.

Compared to the V -system, in which a non-negligible portion of fast-class customers abandon the

system, we conclude that a fast track can significantly increase the throughput of the system; a

numerical example is presented in Appendix A.4.
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We note that having no fluid queue for the fast class may not be desirable, because, in this case,

the delay of the fast class may not be sufficiently larger than the delay of the slow class, which

should receive high priority. Given the imposed priority, this implicitly means that too much of the

service resources are taken from the high-priority class in order to reduce delays for the low-priority

class. There are therefore clear tradeoffs that must be taken into account when deciding whether

a fast-track should be operated, and what its size should be. We formalize this problem under a

cost structure in Section 6.

5.1. FDH Approximation for the Limiting Distribution

Similar to Theorem 2, we can show that the limiting distribution of the FDH limit exists and is

also the limit of the sequence of stationary versions of the processes, (X̃z,n, Q̃z,n), which we denote

by (X̃z,n(∞), Q̃z,n(∞)), respectively.

Theorem 4. For each z ∈ [0,1], the following hold:

1. The FDH process (Xz,Qz) possesses a limiting distribution (Xz(∞),Qz(∞)), namely,

(Xz(t),Qz(t))⇒ (Xz(∞),Qz(∞)) as t→∞ in R4, where

Qz(∞) := (Qz
S(∞),Qz

F (∞) = (Xz
S(∞)+,Xz

F (∞)). (12)

2. (X̃z,n(∞), Q̃z,n(∞))⇒ (Xz(∞),Qz(∞)) in R4 as n→∞. In particular,

lim
n→∞

lim
t→∞

E[f(X̃z,n(t), Q̃z,n(t))] = lim
t→∞

lim
n→∞

E[f(X̃z,n(t), Q̃z,n(t))] =E[f(Xz(∞),Qz(∞))],

for any bounded and continuous function f :R4→R.

3. For i= S,F the sequences {(Q̃z,n
i (∞)) : n≥ 1} are UI, so that

lim
n→∞

E[Q̃z,n
i (∞)] =E[Qz

i (∞)].

Analogously to (6) and (7), Theorem 4 allows us to employ the limiting distribution of FDH

limit to approximate key performance measures for each class when z < 1. When z = 1, there is

sufficient service capacity in the fast track to ensure that the fast queue is not overloaded under
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fluid scaling, namely, Qz
F (∞) = 0 w.p.1, so that more refined asymptotic analysis is required in

order to approximate the queue of the fast class. As before, the established UI can be used to

approximate performance measures corresponding to the limiting distributions of the queues. In

Section 6 below we use it to optimize expected costs.

6. Employing the FDH Limit to Optimize System Design

It is often the case that a fast track is considered because the slow customers must receive strict

priority in the regular pool over the fast customers. The fast track is then used in order to “circum-

vent” this policy constraint, by having a small pool that is dedicated to the low-priority customers.

On the other hand, the fast track is taking resources away from the regular pool, and so introduces

a non-trivial cost-benefit tradeoff. Indeed, in a private communication with the management of a

large hospital in Chicago, we were told that a fast track is operated in order to attract low-acuity

patients, since those patients provide large revenues, but require simple (and thus, cheaper) treat-

ments. In a different hospital, we were told that the fast track was recently eliminated, in order to

deter low-acuity patients from arriving to the ER.

We now demonstrate how the FDH approximation can be employed to optimize (asymptoti-

cally) systems’ design when holding, abandonment, and staffing costs are incurred. Specifically,

we consider an N -system, and employ the FDH limit to establish the size of the fast track that

asymptotically minimizes the incurred cost (where we recall that z = 0 corresponds to having no

fast track).

For i= S,F , let ani denote the cost incurred per abandoning class-i customer, and hni denote the

rate at which holding costs are incurred in system n. Let dnR and dnF be the per-server cost in the

regular track and the fast track, respectively. For a system with zn fast track servers and n− zn

regular-track servers, the cost has the form of:

∑
i=S,F

(hni E[Qz,n
i (∞)] + ani θ

n
i E[Qz,n

i (∞)]) + dnR(n− zn) + dnF z
n.
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Let dn := dnF − dnR and cni := hni + θia
n
i . Since the term ndnR has no impact on the optimal solution,

we consider the objective function

Cn(zn) :=
∑
i=S,F

cni E[Qz,n
i (∞)] + dnzn. (13)

Minimizing Cn(·) is clearly prohibitive because the stationary distribution of the system is hard

to compute for any given value of zn. However, an asymptotically optimal system design can be

efficiently computed by utilizing the FDH limit, as we show below. The interesting (non-trivial)

case to consider is when the total costs of queueing for both classes are proportional, implying that

the cost incurred due to queueing of the slow class is significantly higher than the cost incurred

by the fast class. Indeed, unlike low-acuity patients, the condition of high-acuity patients may

deteriorate if they do not receive treatment in a timely manner. Similarly, there is typically more

flexibility regarding when to process outbound work in contact centers than there is regarding

inbound customers, who expect to receive service quickly. Since the fast queue is OP (n) while the

slow queue is OP (
√
n) in the FDH scaling, we therefore assume that cnF/c

n
S =O(n−1/2). We further

assume that the staffing costs corresponding to agents working only with the fast class are lower

than those corresponding to the slow class. Formally,

Assumption 4. cnS = cS, cnF = cF/µ
n
F , and dnF − dnR = d≤ 0.

Then by virtue of Assumption 4 and Theorem 4(3), we have that

C(z) := lim
n→∞

n−1/2Cn(Rn
F z) = cSE[Qz

S(∞)] + cF rFE[Qz
F (∞)] + drF z, (14)

where we utilized the fact that n−1/2
√
λnS→ 1 as n→∞. Let

z∗ := arg min
z∈[0,1]

C(z). (15)

For z∗ to be well-defined, we need the following lemma.

Lemma 1. z 7→E[Qz
i (∞)] is continuous in [0,1] for i= S,F .
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The value of z∗ can be numerically computed using grid search; it is relevant for the pre-limit

stochastic system since it asymptotically minimizes the operating cost (under the control we con-

sider), as we prove next.

Consider a sequence of systems with a corresponding sequence of fast tracks {zn : n ≥ 1}. To

avoid having redundant service capacity in the fast track, which is clearly sub-optimal, we assume

that

limsup
n→∞

zn

Rn
F

≤ 1. (16)

For x∈R, let bxc denote the largest integer that is smaller than or equal to x.

Proposition 1. zn∗ := bRn
F z
∗c asymptotically minimizes Cn(zn), in the sense that

limsup
n→∞

1√
n

(Cn(zn∗)−Cn(zn))≤ 0

for any sequence {zn : n≥ 1} that satisfies (16).

6.1. Structural Results

We can say more about the limiting cost function C(·) in (14) and z∗ if we impose more assumptions

on the system’s parameters. First, we require that θS <µS. This condition tends to hold in service

systems, as reviewed in Gans et al. (2003) (which mentions that the rate of abandonment rate

of customers tends to be about half that of their service rate). This also suggests our second

requirement, that θS < θF (because µnS� µnF ). Finally, consistent with the imposed priority rule, we

assume that the cµ-type condition cnSµ
n
S > cnFµ

n
F holds. (Loosely speaking, this condition suggests

that delaying a slow-class customer is more costly than delaying a fast-class customer, even after

incorporating their service times.) Due to Assumption 4, this cµ condition is equivalent to the

assumption that cS > cF . We summarize these three conditions in the following formal assumption,

which is assumed to hold throughout this section, in addition to Assumptions 1, 3 and 4.

Assumption 5. θS <µS, θS < θF and cS > cF .

Under this extra assumption, we can prove important structural results for the limiting cost

function C(·) in (14).
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Proposition 2. C : [0,1]→ R is strictly convex. Hence, there exists a unique minimizer z∗ to

(15).

Together with the continuity of C(·), Proposition 2 implies that a simple binary search can effi-

ciently find the global minimizer z∗.

Quantifying the Tradeoffs of Having a Fast-Track. Even though a fast track reduces the waiting

time of the fast class and increases the throughput of the system, it increases the delays of slow

class, and thus the overall delay cost. Specifically, let

Cq(z) := cSE[Qz
S(∞)] + cF rFE[Qz

F (∞)],

and note that C(z) = Cq(z) + drF z. The second term drF z corresponds to the fast-track staffing

cost, whereas Cq(·) is the cost corresponding to the queues (holding and abandonment costs), and

thus the delays. Since the fast-track staffing cost is smaller than the staffing cost of the main pool,

the following proposition demonstrates that there is a clear tradeoff in operating a fast-track, as it

increases the overall queueing cost.

Proposition 3. Cq : [0,1]→R+ is convex and strictly increasing.

In ending we remark that, unlike the function C in the limit, the function Cn need not be convex

for any given n∈Z+. For example, take n= 2, λnS = 10, λnF = 3, µnS = 1, µnF = 2, θS = 0.999, θF = 5,

cnS = 3, cnF = 1, and dn = 0. (Note that n is too small for the FDH approximation to be accurate).

One can check that Assumption 5 is satisfied. We take zni = i for i= 0,1,2 and let

∆ :=Cn(zn0 ) +Cn(zn2 )− 2Cn(zn1 ).

A discrete event simulation with 400 replications reports ∆ =−0.12 with standard deviation 0.0003,

suggesting that Cn is not convex in zn.

7. Numerical Studies

We now present a numerical and simulation study in which we compare the FDH predications to

simulations of the stochastic system it approximates. In particular, in §7.1 we demonstrate how the
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accuracy of the FDH approximation increases together with the size of the system. We perform a

sensitivity analysis in §7.2, which demonstrates the robustness of the FDH approximation. Finally,

in §7.3 we explain why the dynamics under the non-preemptive version of the strict-priority policy

are asymptotically indistinguishable from the dynamics under the preemptive priority policy we

considered. We support that explanation with simulation.

7.1. A Numerical Demonstration of the Convergence to the FDH Limit

Since the FDH approximation is obtained as a weak limit for stochastic systems with many servers,

one expects its accuracy to improve as the size of the system increases. The following example

shows that this is indeed the case, although the limit provides a good approximation also for a

relatively small system, with only n = 25 agents. For the examples we consider, we take µS = 1,

β = 0.5, rF = 0.3, θS = 0.1, and θF = 0.3 and vary the number of agents n, giving it the values in

{25,100,400}. For each n we consider two values of the fast service rate, µnF =
√
n and µnF = 0.5

√
n.

We take these two values of µnF because µnF =
√
n is extremely large when n= 400, and µnF = 0.5

√
n

is quite small when n= 25. The values of λnS and λnF are chosen so as to satisfy (8). We compare the

simulated values of E[Q̃n
i (∞)] and P (W n

i > 0), i= S,F , to their respective FDH approximations,

where, for each of the six systems, we employ the same procedures as in the numerical example

in Section 4.4 for the simulation of the stochastic system and the numerical solution for its FDH

approximation. The results are shown in Table 3.

We observe that the accuracy of the approximations increases with n. The error is relatively large

when n= 25 and µnF = 0.5
√
n= 2.5, as should be expected. Nevertheless, despite the lesser accuracy

in this case, the limit still captures the key feature for which the FDH approximation is developed;

in particular, the high-priority (slow) class operates in a QED-type fashion (its probability of delay

is substantially larger than 0 and smaller than 1), while the low-priority (fast) class operates in

an ED-type fashion. Note that, since the FDH approximation for the fast class is based on a fluid

limit, the lesser accuracy for small systems is to be expected, because the stochastic fluctuations

(which are not captured by the fluid approximation), are substantial relative to the “predictable
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dynamics” of the fluid limit. (Loosely speaking, the fluid limit captures dynamics that are ΘP (n),

while the stochastic fluctuations are ΘP (
√
n). For n small, the two orders are indistinguishable.)

Discrete-Event Simulation
FDH

n= 25 n= 100 n= 400

µn
F =
√
n

E[Q̃n
S(∞)] 0.62 (0.005) 0.61 (0.005) 0.60 (0.004) 0.59 (0.004)

P (W n
S > 0) 0.47 (0.002) 0.46 (0.002) 0.45 (0.001) 0.44 (0.001)

E[Q̃n
F (∞)] 0.97 (0.005) 0.94 (0.005) 0.93 (0.005) 0.92 (0.005)

P (W n
F > 0) 0.71 (0.001) 0.70 (0.001) 0.68 (0.001) 0.67 (0.001)

µn
F = 0.5

√
n

E[Q̃n
S(∞)] 0.62 (0.005) 0.61 (0.004) 0.60 (0.004) 0.59 (0.004)

P (W n
S > 0) 0.47 (0.002) 0.46 (0.001) 0.45 (0.001) 0.44 (0.001)

E[Q̃n
F (∞)] 1.03 (0.005) 0.96 (0.005) 0.93 (0.005) 0.92 (0.005)

P (W n
F > 0) 0.74 (0.001) 0.71 (0.001) 0.70 (0.001) 0.67 (0.001)

Table 3 Comparison of the FDH predictions to simulation results for three components of a sequence of
systems. Standard errors for the simulations are presented in parentheses.

We used the simulation experiments to approximate the cdf’s of the stationary distributions

of the fast-class queue in the three systems with µnF = 0.5
√
n, and compare these cdf’s to the

corresponding cdf of the limiting distribution for the FDH approximation. The result, depicted

in Figure 3, illustrates the weak convergence of the stationary distribution of the queue to the

corresponding distribution of the FDH limit.

7.2. Sensitivity Analysis

Recall that the FDH limit was achieved by assuming that 1−ρnS =O(n−1/2) (where ρnS := λnS/(nµS)

and µS = 1), and µnF =O(
√
n). Therefore, the FDH limit may not be a proper approximation when

ρnS is significantly smaller than 1, or when µnF is not sufficiently larger than 1. To test how the values

of ρnS and µnF affect the accuracy of the FDH approximation, we conduct a sensitivity analysis with

three values of ρnS and µnF , for a total of nine different examples. We fix the number of agents to be

n= 50 and take the offered load to be equal to the service capacity, namely, λnS/µ
n
S + λnF/µ

n
F = n.
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Figure 3 Empirical cdf’s of Q̃n
S(∞) (left panel) and Q̃n

F (∞) (right panel) for n∈ {25,100,400}, plotted together
with the empirical cdf of QS(∞) (left panel) and QF (∞) (right panel).

The abandonment rates are fixed at θS = 0.1 and θF = 0.3. The results for the nine combinations

are shown in Table 4. To facilitate the comparison between the different experiments, we show the

expected values of the FDH-scaled queues.

The results in Table 4 make it clear that, as expected, the accuracy of the FDH approximation is

sensitive to the value of µnF . In particular, the FDH approximations for E[Q̃n
F (∞)] and P (W n

F > 0)

have the largest errors when µnF = 2, while the error is significantly smaller for the larger two

values of µnF . (Note that the FDH approximation for E[Q̃n
S(∞)] and P (W n

S > 0) does not depend

on µnF .) Nevertheless, the FDH limit still exhibits the behavior and the main qualitative features

it is designed to capture in this case.

On the other hand, the accuracy of the FDH approximation is not very sensitive with respect to

ρnS. For small ρnS, i.e., ρnS = 0.75, the results show that the slow class does not operate in the QED

regime, because the probability of delay is close to 0. Of course, this is simply an indication that

the traffic intensity of the slow class is too low for the QED regime to be an appropriate limiting

approximation. In particular, an Erlang-A model with the same parameters λS, µS, θS and n as

in this example is better approximated by the QD regime. Despite this, the FDH approximation

is still a good quantitative approximation, especially for the larger values of µnF , and it clearly

captures the qualitative behavior of the simulated stochastic systems well.
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Discrete-Event Simulation
FDH

µn
F = 2 µn

F = 5 µn
F = 10

ρnS = 0.75

E[Q̃n
S(∞)] 0.02 (0.002) 0.02 (0.002) 0.02 (0.002) 0.01 (0.002)

P (W n
S > 0) 0.03 (0.001) 0.03 (0.001) 0.03 (0.001) 0.02 (0.001)

E[Q̃n
F (∞)] 0.47 (0.002) 0.44 (0.002) 0.43 (0.002) 0.41 (0.002)

P (W n
F > 0) 0.77 (0.001) 0.77 (0.001) 0.77 (0.001) 0.76 (0.001)

ρnS = 0.85

E[Q̃n
S(∞)] 0.14 (0.003) 0.14 (0.003) 0.14 (0.003) 0.12 (0.003)

P (W n
S > 0) 0.18 (0.001) 0.18 (0.001) 0.18 (0.001) 0.16 (0.001)

E[Q̃n
F (∞)] 0.75 (0.003) 0.71 (0.003) 0.69 (0.003) 0.68 (0.003)

P (W n
F > 0) 0.79 (0.001) 0.78 (0.001) 0.77 (0.001) 0.76 (0.001)

ρnS = 0.95

E[Q̃n
S(∞)] 0.84 (0.006) 0.84 (0.006) 0.84 (0.006) 0.82 (0.005)

P (W n
S > 0) 0.54 (0.001) 0.54 (0.001) 0.54 (0.001) 0.53 (0.001)

E[Q̃n
F (∞)] 1.38 (0.006) 1.31 (0.006) 1.29 (0.006) 1.27 (0.005)

P (W n
F > 0) 0.83 (0.001) 0.81 (0.001) 0.79 (0.001) 0.78 (0.001)

Table 4 Sensitivity analysis for the accuracy of the FDH approximation. Standard error of the simulation
experiments are presented in parentheses. The expected queue lengths are scaled according to the FDH scaling.

7.3. Non-Preemptive FDH Approximation

We now provide a high-level explanation as to why the queueing dynamics under the priority policy

with no preemption are asymptotically (as n→∞) indistinguishable from the dynamics under the

preemptive policy we analyzed. The explanation is given for the V -system, as similar arguments

apply for the N -system.

Let ZnF (t) and ZnS (t) denote the number of agents at time t that are working with fast and slow

customers, respectively, in system n. Now, the scaling of µnF implies that ZnF =OP (
√
n). Therefore,

if a queue of slow customers is building up, then OP (
√
n) fast customers are removed from service

and added to their queue under the preemptive policy, a quantity that is negligible under the

spatial fluid scaling of that queue. In particular, even if all the fast customers in service were

removed and put back in their queue instantaneously, there would be no impact on the limiting
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queue Q̃F . Further, ZnF = oP (n) under either policy (indeed, Q̃F = X̃F ), showing that the processes

corresponding to the fast class are indistinguishable under the two policies in the FDH limit.

The reasoning as to why the processes corresponding to the slow class under the non-preemptive

policy are unchanged asymptotically is more intricate, but again follows from the scaling of µnF .

Due to this scaling, the total output rate of fast customers from service is ΘP (n) whenever ZnF (t) =

ΘP (
√
n). This suggests that, if a queue of slow customers is starting to build up, the number of fast

customers in service will drop to oP (
√
n) in oP (1) time under the non-preemptive policy, because

no new fast customers will be routed into service. In fact, the total service rate of all fast customers

in service combined is always an order
√
n larger than the order of the number of those customers.

Specifically, if ZnF (t)> 0 and Qn
S(t)> 0 for all t ∈ [tn1 , t

n
2 ], 0≤ tn1 < tn2 <∞, then ZnF behaves like a

pure death process over this time interval, with death rates kµnF = Θ(k
√
n), k= 1,2, . . . . It follows

that for any ε > 0, the sequence of events

Bn(ε) := {{ZnF (t)> 0}∩ {Qn
S(t)> 0} : t∈ [tn1 , t

n
2 ], tn2 − tn1 > ε},

satisfies P (Bn(ε))→ 0 as n→∞, where P is the probability measure in the underlying probability

space. In other words, having fast customers in service and slow customers in queue simultaneously

over an interval is an asymptotically null event. (It is significant that the events Bn(ε) are defined

in terms of the unscaled processes ZnF and Qn
S.) In turn, whenever a queue of the slow class builds

up in the limiting system, the number of fast customers in service drops to 0 instantaneously, so

that all the service capacity is dedicated to the slow class, just like the case in which preemption

is exercised.

We do not attempt to rigorously prove the asymptotic equivalence between the policies. Instead,

we demonstrate that the dynamics of the queues are similar under both policies via simulation.

Figure 4 plots two sample paths for the system considered in Section 4.4, with n = 50, λnS = 46,

λnF = 15, µnS = 1, µnF = 5, θS = 0.1 and θF = 0.3. The two sample paths shown in the figure were

generated by giving both the same arrival process of customers, with each customer having the

same patience and service-time requirement. As can be seen, the two sample paths are in close
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Figure 4 Sample path comparison of Xn
S (left) and Xn

F (right) in a system with n= 50 agents, operating under
the preemptive and non-preemptive priority policy. The starred lines plot the sample paths under the
preemptive policy, and the circled lines plot the sample paths under the non-preemptive policy.

agreement with each other. We also mention that the stationary performance measures are similar

under the two policies. In particular, the values of (E[Xn
S (∞)], E[Xn

F (∞)]) are estimated to be

(49.1,16.2) for the preemptive policy, and (49.7,14.6) for the non-preemptive policy, with standard

errors smaller than 0.04.

8. Summary

In this paper, we proposed a fluid-diffusion hybrid process to approximate two-customer class many-

server systems that operate under a priority policy. We assumed that the high-priority (“slow”)

customers require substantially longer service times than the low-priority (“fast”) customers. The

need to develop the FDH approximation stems from the fact that existing MSHT approximations

cannot capture the setting in which both customer classes are delayed in queue with a non-negligible

probability, and yet most customers, from either class, end up receiving service.

We first considered the V -system, in which the two customer classes are served by a single

pool of agents, and then the N -system, in which one pool handles both customer classes (giving

strict priority to the slow class), and the other pool, which we named “fast track,” is dedicated to

the fast class. For both systems, we characterized the FDH limit, and proved that it possesses a

limiting distribution, which is also the weak limit for the sequence of stationary distributions of the

underlying sequence of systems. As we demonstrated via numerical examples, the FDH limit can



Yu, Iravani, and Perry: Fluid-Diffusion-Hybrid Approximation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 37

be used to approximate key performance measures of the underlying stochastic system when the

basic assumptions of the model hold. Sensitivity analysis demonstrated the robustness of the FDH

approximation in that the main qualitative insights remain to hold even when it is questionable

whether these assumptions are satisfied.

In Section 6 we demonstrated how the FDH limit can be employed to determine the asymptot-

ically optimal system topology. In particular, we considered whether it is beneficial to split the

server pool into two pools, and to determine the optimal size of the “fast-track” pool in the limit,

assuming a linear holding and abandonment cost is incurred. One can employ the FDH regime and

the framework we developed here in other optimization settings, such as in finding an asymptot-

ically optimal control for either the one- or the two-pool system, when the priority policy is not

enforced. Such implementations are currently under investigation.
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Endnotes

1. We use ER instead of the now-common ED (for Emergency Department) to avoid confusion

with the acronym for Efficiency Driven, which will be used repeatedly throughout the paper

Appendices:

The appendix is organized as follows: In Appendix A we consider three generalizations to the

setting considered in the main paper: (i) generalized FDH scaling for the prelimit; (ii) implications

of our analysis to systems with time-varying arrival processes; (iii) systems with general service-

time distributions. Appendices B–E are devoted to the proofs of the results in the main paper.

Appendix A: Generalizations to the FDH Approximation

We consider several generalizations to the FDH regime. In Section A.1 we consider a general FDH

scaling, assuming the service rate of the fast class scales like Θ(nα), for 1/2 ≤ α < 1; In Section

A.2, we consider the FDH regime with time-varying arrival process; In Section A.3, we consider

the FDH regime with general service time distributions. With each generalization, we show how

we can apply the FDH approximation to the non-standard system settings.
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A.1. Other Scalings of the Fast Class

In the FDH regime we assume the service rate of the fast class is scaled like
√
n, µnF =O(

√
n). This

singular perturbation approach of the service times is a technical artifact that is taken to achieve a

non-trivial limiting process with desirable characteristics, whenever the slow class operates in the

QED regime (which is itself achieved by carefully balancing the arrival and service rates). Indeed,

the assumption that µnF =O(
√
n) (which is carried out in Assumption 1 through λnF/n→ λF and

rnF → rF as n→∞) can be relaxed, as long as Rn
F keeps its O(

√
n) order. In particular, all results

in the paper remain valid with the same proof, under the following generalized assumption:

Assumption 6 (generalized FDH scaling). For β ∈ R and θS > 0, the following holds for the

slow class.

lim
n→∞

(n−λnS)/
√
n= β, µnS = 1 and θnS = θS for all n≥ 1.

For strictly positive real numbers λF , rF and θF , the following holds for the fast class

lim
n→∞

µnF =∞, lim
n→∞

rnF = rF , and θnF = θF for all n≥ 1.

Notice that λnF/n→ λF in Assumption 1 is replaced by the generalized condition µnF →∞ in

Assumption 6. In particular, Assumption 6 holds if µnF =O(nα) and λnF =O(nα+1/2) for any α> 0.

Now we assume Assumption 6 instead of Assumption 1. Again scale the process (Xn,Qn) by (2).

Recall the limit process (X,Q) and the stationary distribution from Section 4, we have

Theorem 5. As n → ∞, (i) if X̃n(0) ⇒ X(0), then (X̃n, Q̃n) ⇒ (X,Q) in D4; (ii)

(X̃n(∞), Q̃n(∞))⇒ (X(∞),Q(∞)) in R4; and (iii) E[Q̃n
i (∞)]→E[Q̃n

i (∞)] for i= S, F .

In other words, all results in Section 4 remain unchanged. We omit the detailed proof of Theorem

5, as it follows from the same arguments as of Theorem 1 and Theorem 2.

A.2. Time-Varying Arrivals

Service systems in practice are typically non-stationary because the arrival processes are time-

varying (and, as a response, so are the staffing levels). Nevertheless, stationary analysis for such sys-

tems is still useful, because it provides guidance regarding how to staff (or control) so as to stabilize

desirable performance measures. In this section, we consider two different prevalent methods—the

Infinite-Server (IS) approximation and the Pointwise Stationary Approximation (PSA)—to deter-

mine the appropriate time-dependent staffing levels. We note that PSA works well when the arrival

rates change slowly relative to the mean service times (as in typical contact centers), whereas the

IS approximation is appropriate when this is not the case (as in healthcare systems which tend

to have large service times). We refer to Whitt (2018) for a comprehensive review of time-varying

queues, including the IS and PSA methods. Note that, in our setting, the relative changes in the

arrival rates should naturally be compared to the service times of the slow class.
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A.2.1. Piecewise Stationary Approximation As reviewed in Gans et al. (2003), a prevalent

approach in practice to deal with time-varying systems is to divide the day into time segments, and

treat the system as being stationary over each of those segments. Specifically, the arrival rates are

approximated by piecewise-constant (step) functions, and stationary analysis is carried out over

each interval over which the arrival rate is fixed. This approach is a special case of PSA, which

prescribes treating the system as being stationary at each time t with a stationary distribution

corresponding to the arrival rates at that time.

In our setting, we assume that, for m≥ 2, there are time points 0 = t0 < t1 < t2 < · · ·< tm = T ,

such that values of λS(t) and λF (t) are fixed over each of the time intervals [tj, tj+1), 0≤ j ≤m−1,

where T is the period of the arrival rate. We then treat the system as stationary in [tj, tj+1), and

choose a staffing level so as to keep E[Qi(∞)] fixed for both i= S and i= F .

To demonstrate the effectiveness of PSA with piecewise constant rates, we consider a simulation

example with arrival rate

λS(t) = 30(1 + 1{t∈[0,50)}) and λF (t) = λS(t)/3, t∈ [0,150),

where λi(150+ t) = λi(t), for each t∈R. We take the other system parameters to be µS = 1, µF = 5,

θS = 0.1, and θF = 0.3, and the number of servers s(t) at time t to be

s(t) = 34 + 33× 1{t∈[0,50)}, t∈ [0,150], with s(t+ 150) = s(t) for t≥ 0.

With these parameters, the FDH approximation is computed separately for each of the two time

intervals [0,50) and [50,150). Figure 5 compares the simulated average queue processes to their PSA

approximation. As expected, the system is temporarily congested (overloaded) when the arrival

rate and staffing levels drop at time 50, but nevertheless stabilizes quickly. We note that such

“predictable spikes” due to changes in the arrival rate and staffing levels can be smoothed out by

changing the staffing levels gradually, as is done in practice.

We next consider an optimal system design problem in the PSA setting with the same parameters

as in the example above, and with cost parameters cS = 1, cF = 1, and d = −0.8. To this end,

we solve for the optimal value z∗j in (15), j = 1, . . . ,m, corresponding to the assumed stationary

distribution associated with the time interval [tj, tj+1), where, in our numerical example, t1 = 50

and t2 = T = 150.

Solving the two stationary distributions corresponding to the two values of the arrival rates, we

find that the optimal fast-track sizes are zn∗1 = 3, and zn∗2 = 1. In particular, the fast-track staffing

function satisfies

z(t) = 1 + 2× 1{t∈[0,50)}, t∈ [0,150),



Yu, Iravani, and Perry: Fluid-Diffusion-Hybrid Approximation
40 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

0 30 60 90 120 150
0

2

4

6

8

10

12

14

16

18

20

Time

Q
ue

ue
 L

en
gt

h

 

 

E[Q
S
(t)]

PSA

0 30 60 90 120 150
0

2

4

6

8

10

12

14

16

18

20

Q
ue

ue
 L

en
gt

h

Time

 

 

E[Q
F
(t)]

PSA

Figure 5 The simulated queue lengths and its piecewise stationary approximation.

and z(t+ 150) = z(t) for t≥ 150.

To check the effectiveness of the system design, we conducted 100 independent simulation, each

having length 300,000, and averaged the results for both system designs, namely, single pool, and

with a fast track. The resulting simulated total cost was C = 3.35 for the system with the fast

track (with standard error 0.003), and C = 3.87 (standard error 0.004) for the single-pool design;

in particular, operating a fast track provides a 13.4% reduction in cost relative to the single-pool

design.

A.2.2. Infinite-Server Staffing Rule The QED limiting approximation is effective when the

proportion of delayed customers (in the customer class operating under QED) is non-negligible,

but is sufficiently smaller than 1. To achieve QED-type behavior in time-varying setting, one can

take the number of agents s(t) at time t be such that

s(t) =m(t) + γ
√
m(t), t≥ 0, (17)

where m(t) is the fluid limit of a corresponding IS queue having the same arrival rate function

and service-time distribution as the system under consideration, and γ is a quality-of-service (QoS)

constant chosen appropriately so as to maintain desirable performance measures. In our two-class

setting, m takes the form of

m(t) =
∑
i=S,F

(∫ t

0

eµi(t1−t)λi(t1)dt1 +Qi(0)e−µit
)
.

To demonstrate that the insights from our stationary analysis remain to hold in time-varying

setting, we consider a numerical example. We take the arrival rates to be of the form

λi(t) = λi(1 +α sin(At)), i= S,F,
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Figure 6 Time-varying queue lengths under the IS staffing rule.

where λS = 9.2, λF = 3, A = 2π/24 and α = 0.7. The other parameters are µS = 0.2, µF = 1,

θS = 0.02 and θF = 0.06. We further take γ = 0.15 and the staffing function s(t) in (17).

Figure 6 plots the time-dependent queue processes, averaged over 100 independent simulation

runs of periods 500 to 5000. Note that the time-dependent average queue of the slow class varies

in the interval (2.5,4) and that of the fast class has values in (10,16), despite the fact that the

maximum arrival rate is 5 times greater than the minimum arrival rate within a period. We further

note that the probability that a slow-class customer is delayed is 0.31 (with standard deviation

0.001), indicating that its queue operates in a time-varying QED regime.

The example above demonstrates that the IS staffing rule can stabilize a system qualitatively

in a time-varying FDH regime. In order to perform quantitative analysis, we propose a heuristic

FDH approximation that builds on the limit for the stationary system. Specifically, we consider

the stationary FDH limit with arrival rates λ̄i := T−1
∫ T
0
λi(s)ds, i= S,F (where T is the period)

and staffing level (17) (after replacing λi(t) by its average λ̄i).

Table 5 compares the heuristic FDH approximation to the simulation results for the time-varying

setting just described. In the table, E[QS] and E[QF ] are the simulated long-run average queue

lengths, computed by averaging the queue-length processes from time 500 to 5000. To check how

the accuracy of the heuristic dependence on the predictable variability, we consider four different

values of α: α∈ {0,0.3,0.5,0.7}. We observe that the heuristic averaging approach to compute the

FDH approximation is effective.

A.3. Non-Exponential Service Time

We now provide a simulation experiment to demonstrate the robustness of the FDH limiting

approximation to the assumption that service times are exponentially distributed. The parameters
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FDH α= 0.0 α= 0.3 α= 0.5 α= 0.7

E[QS] 3.31 (0.04) 3.35 (0.02) 3.27 (0.02) 3.26 (0.02) 3.19 (0.02)

E[QF ] 13.70 (0.1) 13.96 (0.07) 13.69 (0.06) 13.64 (0.06) 13.39 (0.06)

Table 5 Comparisons of the heuristic time-varying FDH to simulations for different values of α

we consider are the same as in Section 4.4, namely, n= 50, λnS = 46, λnF = 15, θS = 0.1 and θF =

0.3. We compare two service-time distributions to the exponential distribution—one that is more

variable, and the other that is less variable, than the exponential distribution, whose coefficient

of variations (CoV) equals 1. In particular, we fix the values of the service rates to be µnS = 1

and µnF = 5, and consider all the nine different combinations of the service time distributions,

where each distribution is gamma with the specified mean and with CoV in {0.5,1,2}. Since the

exponential distribution is a special case of the gamma, in which the CoV is equal to 1, the other

gamma distributions we consider represent distributions with variability that is half or twice that

of the exponential distribution. (Note that the mean and CoV completely determine the gamma

distribution.)

Table 8 compares the FDH approximation to simulations results. Each simulation experiment

consists of 100 independent simulation runs for 1000 time units with a warmup period of 100 time

units. Since we consider extreme differences in the variability of the service times, and since the

system is relatively small, the difference between the sizes of the slow-class queue in the different

cases can be relatively large. However, the fast-class queue is much less sensitive to the service-time

distribution, both due to its relative size (that is larger than that of the slow queue), and the fact

that it behaves like a fluid model.

In ending we remark that one can replace the limiting approximation XS, which is the Garnett

diffusion limit for the M/M/n + M queue, by the limiting approximation for the G/G/n + G

queue. This can be done in two steps using existing results: First, the service-time distribution

is approximated with a phase-type distribution (this can always be done, because the class of

phase-type distributions is dense in the family of probability distributions on R). Second, for that

specific phase-type distribution, XS in the FDH limit is replaced with the diffusion limit for the

G/Ph/n+G queue in Dai et al. (2010).

A.4. A Numerical Comparison Between V -system and N-system.

We provide a numerical example comparing the performance metrics of systems with different

fast-track sizes. We consider the same example as the one in Section 4.4 and take n= 50, λnS = 46,

λnF = 15, µnS = 1, µnF = 5, θS = 0.1 and θF = 0.3. Table A.4 presents various performance metrics for
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zn = 0 (V -system) zn = 1 zn = 2

simulation FDH simulation FDH simulation FDH

E[Qz,n
S (∞)] 3.40 (0.03) 3.25 (0.02) 4.77 (0.04) 4.67 (0.03) 6.65 (0.04) 6.59 (0.04)

E[W n
S |W n

S > 0] 0.18 (8e-4) 0.18 (8e-4) 0.21 (10e-4) 0.21 (10e-4) 0.25 (0.001) 0.25 (0.001)

P (W n
S > 0) 0.41 (0.001) 0.39 (0.001) 0.50 (0.002) 0.48 (0.002) 0.58 (0.001) 0.57 (0.002)

P (AbnS) 0.01 (5e-5) 0.01 (5e-5) 0.01 (7e-5) 0.01 (7e-5) 0.01 (9e-5) 0.01 (10e-5)

E[Qz,n
F (∞)] 13.96 (0.07) 13.51 (0.06) 10.73 (0.06) 10.36 (0.05) 6.48 (0.03) 5.81 (0.03)

E[W n
F |W n

F > 0] 1.28 (0.005) 1.28 (0.004) 1.00 (0.004) 0.98 (0.004) 0.62 (0.002) 0.55 (0.002)

P (W n
F > 0) 0.73 (0.001) 0.70 (0.001) 0.72 (0.001) 0.71 (0.001) 0.70 (0.001) 0.71 (0.001)

P (AbnF ) 0.28 (0.001) 0.27 (0.001) 0.22 (0.001) 0.21 (0.001) 0.13 (6e-4) 0.12 (6e-4)

Table 6 Accuracy of approximation for different fast-track size. Numbers in parentheses are the standard error
in the simulation.

systems with different fast-track sizes. In particular, the case zn = 0 is the V -system considered in

Section 4.4.

In this example, as the size of the fast-track grows, we see an increase in the queue of the slow

class and a decrease in the queue of the fast class. This observation is expected since the fast track

is essentially taking capacity away from the slow class. We also see that the approximation errors

for E[Qz,n(∞)] and E[W n
F |W n

F > 0] are increasing in zn. This too is to be expected, because the

FDH approximation for the fast class is a (random) fluid limit that does not capture stochastic

fluctuations of the fast-class queue, and its accuracy is thus decreasing as the queue decreases.

For the optimal system-design problem, we consider the parameters cnS = 10, cnF = 1, and dn =

−15. We have cS = 10 and cF = 5, so that Assumption 4 holds, implying that C(z) is convex. For

these parameters, we computed the value z∗ = 0.5 so that zn∗ = 1. From Table A.4, we see that

Cn(zn) takes the values 47.0, 43.4, and 43.0 for zn = 0,1,2, respectively. In particular, the cost for

the N -system with one or two fast-track servers is approximately 8% lower than the cost for the

V system.

A.5. The Non-preemptive Optimal System Design Problem

In this section, we provide additional numerical experiments to illustrate how we can use the FDH

approximation to solve the optimal system design problem, when the scheduling policy is non-

preemptive. We consider the same system as in Section 4.4 with n= 50, λnS = 46, λnF = 15, µnS = 1,

µnF = 5, θS = 0.1 and θF = 0.3.
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Let zn∗P and zn∗N be the optimal solutions corresponding to the preemptive and the non-preemptive

policies, respectively. Notice that Rn
F = λnF/µ

n
F = 3, so that the possible value of zn∗i , i=N , P , is

in {0,1,2,3}. Also let z∗ be the optimal fast-track value for the FDH limit, and zn∗FDH :=Rn
F z
∗ be

the (unscaled) value. We normalize the cost parameters relative to cS by fixing cS = 1 and vary

the values of cF and d.

The results for zn∗i , i= FDH, N , P , are summarized in Table 7. Observe that the optimal size

of the fast track under the preemptive and the non-preemptive policies are the same in all cases,

except for the two cases cF = 0.8 when d= 0.8 and d= 2. Even though this is a relatively small

system the differences between the two systems are not large, as can also be seen by the numerical

experiment Section 7.3, which compares the stationary queues under the two policies.

cF = 0.4 cF = 0.8 cF = 1.2 cF = 1.6

d zn∗
FDH zn∗

P zn∗
N zn∗

FDH zn∗
P zn∗

N zn∗
FDH zn∗

P zn∗
N zn∗

FDH zn∗
P zn∗

N

0.4 0 0 0 0 0 0 0 0 0 1.1 1 1

0.6 0 0 0 0 0 0 0.6 1 1 2.0 2 2

0.8 0 0 0 0.3 0 1 1.4 1 1 2.6 2 2

1.0 0.2 0 0 1.1 1 1 2.0 2 2 2.9 2 2

2.0 2.25 2 2 2.85 2 3 3 3 3 3 3 3

Table 7 Numerical Computations of zn∗
i , i=N , P , and its FDH approximation zn∗

FDH.

We also note that the FDH approximation tends to overestimate zn∗, because the fast class is

approximated via a fluid limit, which is oblivious to the stochasticity of this class’ queue. To see

why, note that if the fast-track has sufficient service capacity to handle all of the fast class, then

the respective queue will be null in the limit, unlike in the actual system, which will experience

stochastic fluctuations.

Appendix B: Preliminaries for the Proofs

The remaining appendices are dedicated to the proofs of the results in the paper. In this section,

we establish supporting results that are employed in the proofs of the main results in Section C.

Additional technical results are further deferred to Section D and Section E.

We use the following notation, in addition to the notation introduced in the main paper. We

write x∨ y and x∧ y to denote max{x, y} and min{x, y}, respectively. We denote the state space

of the FDH limit processes X and Xz by S := R × [0,∞). We let D+ ⊂ D denote the space
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CoVF = 0.5 CoVF = 1 CoVF = 2

CoVS = 0.5
Slow 2.52 (0.02) 2.51 (0.02) 2.52 (0.02)

Fast 13.08 (0.06) 12.79 (0.06) 12.02 (0.06)

CoVS = 1
Slow 3.43 (0.03) 3.42 (0.03) 3.34 (0.02)

Fast 14.27 (0.07) 13.97 (0.07) 13.01 (0.06)

CoVS = 2
Slow 5.84 (0.06) 5.71 (0.05) 5.78 (0.06)

Fast 15.72 (0.1) 15.42 (0.09) 14.72 (0.09)

Table 8 The Expected Queue Lengths E[Qn
i (∞)], i= S, F .

of right-continuous functions with limits everywhere, having a nonnegative initial value, namely,

D+ := {w ∈ D : w(0) ≥ 0}. Similarly, C+ := {w ∈ C : w(0) ≥ 0}. We use
d
= to denote equality in

distribution, and use ≤st to denote stochastic dominance under the usual stochastic order. In

particular, for two random variables X1 and X2 we write X1 ≤stX2 if P (X1 >x)≤ P (X2 >x), for

all x∈R. Finally, ‖ · ‖tv denotes the total-variation norm; e.g., see (Asmussen 2008, A8).

We prove the convergence of the stochastic queueing processes to the FDH limit by representing

these processes as a continuous mapping of their primitives. We therefore begin by introducing two

continuous mappings in Section B.1, which we use in Section B.2 to characterize the stochastic

systems.

B.1. Continuous Mappings

Let φ :D→D be the map defined via φ(y) = x, where y,x∈D satisfy

x(t) =

∫ t

0

x(s)−ds− θS
∫ t

0

x(s)+ds+ y(t). (18)

Define the mapping η :D+→D2 via η(y′) = (q, `), where y′ ∈D+ and (q, `)∈D2 is the solution to

a generalized Skorohod problem

q(t) = y′(t)− θF
∫ t

0

q(s)ds+ `(t);∫ ∞
0

1{q(t)>0}d`(t) = 0; (19)

q(t)≥ 0, `(0) = 0, and `(t) is non-decreasing.

The following lemma guarantees that the mappings above are well defined and continuous.
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Lemma 2 (continuity). There exists a unique solution x in D to (18). Further, φ is continuous

in D, and is Lipschitz continuous as a mapping from C[0, T ] into itself, for any T > 0. Similarly,

there exists a unique solution (q, `) in D2 to (19); the map η is continuous in D+, and is Lipschitz

continuous as a mapping from C+[0, T ] into C2[0, T ], for any T > 0.

Proof. The statements regarding the solution x to (18), and the map φ follow from Theorem

4.1 Pang et al. (2007), by taking b = 0 and h(a) = −θSa+ − a− in this theorem. The Lipschitz

continuity of φ on C[0, T ] (with ecT as a Lipschitz constant) follows from the proof of the cited

theorem. The statements regarding (q, `) and η follow from Theorem 7.3 in the same reference, by

taking b= 0, y=−y′, κ= 0, h(q) =−θF q and u(t) =−`(t). Once again, the Lipschitz continuity of

η as a mapping from C+[0, T ] follows from the proof of the cited theorem. �

We remark that the Lipchitz continuity of φ and η in the proofs of Theorems 4.1 and 7.3 in Pang

et al. (2007) in shown to hold in the space D endowed with the uniform topology, and it therefore

holds for the space C with the same topology. However, we endow D with the J1 topology, which

is why we only state the Lipschitz continuity when the domain (and the codomain) of φ and η is

C.

B.2. Process Characterization

Consider the setting in Section 5, where system n operates with zn fast-track servers. Notice that

this setting reduces to the one in Section 4.2, by taking zn = 0 for all n ≥ 1. To simplify the

notation, we drop the superscript z in this section, and let (Xn,Qn) denote the number-in-system

and queue-length processes (as opposed to (Xz,n,Qz,n)). Further, we assume that X̃n(0)⇒X(0)

in R2, as n→∞.

Recall that Zn := (ZnS ,Z
n
F ) is the number-in-service process, i.e., Zni (t) is the number of class-i

customers that are in service at time t. Clearly,

Qn
S =Xn

S −ZnS and Qn
F =Xn

F −ZnF . (20)

Further, the (preemptive) priority policy to the slow class indicates that

ZnS =Xn
S ∧ (n− zn) and ZnF = (n−ZnS )∧Xn

F . (21)

Employing standard arguments, as reviewed Pang et al. (2007), we can represent Xn
i , i= S,F ,

as follows

Xn
i (t) =Xn

i (0) +Ai(λ
n
i t)−Si

(
µni

∫ t

0

Zni (s)ds

)
−Ri

(
θni

∫ t

0

Qn
i (s)ds

)
, t≥ 0, (22)

where Ai(t), Si(t), and Ri(t) are 6 independent unit-rate Poisson processes, which are also inde-

pendent of Xn(0). It follows immediately from (22) and (21) that Xn
S is the number-in-system

process of an M/M/(n− zn) +M queue. (Compare, e.g., to Equation (97) in Pang et al. (2007).)
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For i= S,F and t≥ 0, we define the “martingale terms”

Mn
iA(t) :=A(λni t)−λni t, Mn

iS(t) := S

(
µni

∫ t

0

Zni (s)ds

)
−µni

∫ t

0

Zni (s)ds,

Mn
iR(t) :=Ri

(
θi

∫ t

0

Qn
i (s)ds

)
− θi

∫ t

0

Qn
i (s)ds, (23)

and

W n
i (t) :=

∑
k=A,S,R

Mn
ik(t).

(For the fact that the above terms are indeed martingales with respect to an appropriate filtra-

tion see Pang et al. (2007); since this fact is irrelevant for our analysis, we do not dwell on this

issue.) Subtracting the intensity from each of the Poisson processes in (22) and then adding those

intensities back, and employing the martingale terms in (23) gives the “martingale representation”

Xn
i (t) =Xn

i (0) +λni t−µni
∫ t

0

Zni (s)ds− θi
∫ t

0

Qn
i (s)ds+W n

i (t). (24)

To represent X̃n
S via the map φ, let

z̃n := zn/
√
λnS, βn := (n−λnS)/

√
λnS and W̃ n

S := (λnS)−1/2W n
S ,

so that z̃n→ rF z and βn→ β as n→∞. It follows from (24) and Theorems 7.2 in Pang et al.

(2007), that

X̃n
S = φ

(
X̃n(0)− (βn− z̃n)e+ W̃ n

S

)
. (25)

Further, from the proof of Theorem 7.1 in Pang et al. (2007), we have

(W̃ n
S , X̃

n(0))⇒ (
√

2B,X(0)) in D×R2 as n→∞, (26)

where B is a standard Brownian motions that is independent to X(0).

To represent Q̃n
F via the map η, let

Z̃nS := (ZnS −n)/
√
λnS and r̃nF :=Rn

F/
√
λnS,

so that r̃nF → rF as n→∞. Scaling Xn
i in (24) when i= F gives

X̃n
F (t) = X̃n

F (0) + W̃ n
F (t) + (1− z̃n/r̃nF )t− (r̃nF )−1

∫ t

0

X̃n
S (s)−ds

+ µnF

∫ t

0

(
X̃n
F (s) + (r̃nFµ

n
F )−1Z̃nS (s)

)−
ds− θF

∫ t

0

Q̃n
F (s)ds. (27)

Since In(t) :=
∫ t
0
(n−ZnS (s)−ZnF (s))ds and Ĩn := In/Rn

F , (21) gives

Ĩn(t) = µnF

∫ t

0

(
X̃n
F (s) + (r̃nFµ

n
F )−1Z̃nS (s)

)−
ds. (28)



Yu, Iravani, and Perry: Fluid-Diffusion-Hybrid Approximation
48 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Let W̃ n
F :=W n

F /λ
n
F . Using (20), (27), and (28), we have

Q̃n
F (t) =

(
W̃ n
F (t) + X̃n

F (0)−ZnF (t)/λnF + (1− z̃n/r̃nF )t− (r̃nF )−1
∫ t

0

X̃n
S (s)−ds

)
−θF

∫ t

0

Q̃n
F (s)ds+ Ĩn(t).

On the other hand, plugging (21) in (20) gives

Q̃n
F =

(
X̃n
F + (r̃nFµ

n
F )−1Z̃nS

)+

. (29)

It follows from (28) and (29) that∫ t

0

Q̃n
F (s)dĨn(s) = 0, for all t≥ 0.

Since Ĩn(0) = 0, Ĩn is non-decreasing, and Q̃n
F ≥ 0, we conclude that

(Q̃n
F , Ĩ

n) = η

(
W̃ n
F + X̃n

F (0)−ZnF/λnF + (1− z̃n/r̃nF )e− (r̃nF )−1
∫ ·
0

X̃n
S (s)ds

)
. (30)

Proposition 4. W̃ n
F ⇒ 0e in D as n→∞.

Proof. Using the functional central limit theorem for the Poisson process, e.g., (Pang et al.

2007, Theorem 8.1), we have(
AF (n2t)−n2t

n
,
SF (n2t)−n2t

n
,
RF (n2t)−n2t

n

)
⇒ (B1,B2,B3) in D3, as n→∞, (31)

where (B1,B2,B3) is a three-dimensional Brownian motion.

Define the functions T nj ∈D, j =A,S,R, as follows

T nA(t) :=
λnF
n2
t, T nS (t) :=

µnF
n2

∫ t

0

ZnF (s)ds and T nR(t) :=
θF
n2

∫ t

0

Qn
F (s)ds, t≥ 0.

By Assumption 1, T nA ⇒ 0e in D as n→∞. To see that T nS and T nR also converge weakly to the

zeroth function, note that

0≤ µnF
n2

∫ t

0

ZnF (s)ds≤ µnF
n
t, and (32)

0≤ θF
n2

∫ t

0

Qn
F (s)ds≤ θF

n2

(
Xn
F (0)t+

∫ t

0

AnF (s)ds

)
. (33)

It follows from (32) and the scaling of µnF in Assumption 1 that T nS ⇒ 0e in D as n→∞. For T nR ,

we first employ the functional strong law of large number for the Poisson process to obtain that

AnF/n
2⇒ 0e in D. Therefore, the continuity of the integral (e.g., Theorem 11.5.1 in Whitt (2002))

implies that, as n→∞,
1

n2

∫ ·
0

AnF (s)ds⇒ 0e in D.
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Now, X̃n
F (0)⇒ XF (0) implies that Xn

F (0)/n2 ⇒ 0e in R, and by the continuity of addition at

continuous limits, e.g., Theorem 4.1 in Whitt (1980),

1

n2

(∫ ·
0

AnF (s)ds+Xn
F (0)

)
⇒ 0e in D.

Together with (33), this imply that T nR⇒ 0e in D.

For j =A,S,R and Mn
Fj in (23), let M̃n

Fj :=Mn
Fj/λ

n
F . Observe that M̃n

FA is the composition of

the process (λnF )−1(AF (n2t)−n2t) with the function T nA , which is nondecreasing. By the continuity

of the composition map (Theorem 13.2.1 in Whitt (2002)) M̃n
FA⇒ 0e, and similar arguments give

that M̃n
FS⇒ 0e and M̃n

FR⇒ 0e in D as n→∞. Therefore,

(M̃n
FA, M̃

n
FS, M̃

n
FR)⇒ (0e,0e,0e) in D3,

implying that W̃ n
F ⇒ 0e in D as n→∞, due to the continuity of addition when the limits are

continuous. �

Appendix C: Proofs of the Results in the Main Text

The main idea of the proof of Theorem 3 is to represent the process Xz by (25) and (30), and then

applying the continuous mapping theorem. The proof of Theorem 4 relies on Proposition 5, the

proof of which requires a result from Down et al. (1995) and is further postponed to Section D.2.

To prove Theorems 3 and 4 we need the following result.

Lemma 3. The HSDE in (9)–(11) possesses a unique solution Xz ∈C2 .

Proof. By (18) and (19), the HSDE in (9)–(11) is equivalent to

Xz
S = φ

(
Xz
S(0)− (β− rF z)e+

√
2B
)
, (34)

(Xz
F , I

z) = η

(
Xz
F (0) + e+

∫ ·
0

(r−1F Xz
S(s))∧ (−z)ds

)
. (35)

Therefore, the existence of a unique solution to the HSDE, as well as the continuity of Xz, follow

from Lemma 2, noting that the arguments of φ in (34) and of η in (35) are elements in C w.p.1.

�

In the following proof of Theorem 3 all the arrows signifying limits (strong or weak) are taken

as n→∞, and we therefore omit a mention of this fact to streamline the writing.

Proof of Theorem 3. The limits z̃n→ rF z and βn→ β in R, together with (26), give(
W̃ n
S + (z̃n−βn)e+ X̃n

S (0), X̃z,n
F (0), z̃n

)
⇒
(√

2B+ (rF z−β)e+Xz
S(0),Xz

F (0), rF z
)
,

in D ×R2. By Lemma 2, φ is a continuous map from D to D. By (25) and (34) the continuous

mapping theorem gives X̃z,n
S ⇒Xz

S in D, which further implies the joint convergence

(X̃z,n
S , X̃z,n

F (0), z̃n)⇒ (Xz
S,X

z
F (0), rF z) in D×R2.
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Next, Q̃z,n
S = (X̃z,n

S )+ and Qz
S = (Xz

S)+, so that Q̃z,n
S ⇒Qz

S in D and therefore

(X̃z,n
S , Q̃z,n

S , X̃z,n
F (0), z̃n)⇒ (Xz

S,Q
z
S,X

z
F (0), rF z) in D2×R2. (36)

This, the limit r̃nF → rF and Lemma 4, give

(X̃z,n
S , Q̃z,n

S , W̃ n
F , X̃

z,n
F (0), z̃n, r̃nF )⇒ (Xz

S,Q
z
S,0e,X

z
F (0), rF z, rF ) in D3×R3.

In particular, we have the limit in D

X̃z,n
F (0) + (1− z̃n/r̃nF )e+ (r̃nF )−1

∫ ·
0

X̃z,n
S (s)ds+ W̃ n

F ⇒Xz
F (0) + (1− z)e+ r−1F

∫ ·
0

Xz
S(s)ds.

By Lemma 2, η is a continuous map from D+ to D2. By (30) and (35), the continuous mapping

theorem gives (X̃z,n
F , Ĩz,n)⇒ (Xz

F , I
z) in D2, which further implies the joint convergence

(X̃z,n
S , Q̃z,n

S , Q̃z,n
F , Ĩz,n)⇒ (Xz

S,Q
z
S,Q

z
F , I

z) in D4

Finally, Z̃nS/
√
n⇒ 0e in D and (21) imply that ZnF/λ

n
F ⇒ 0e in D and the joint convergence

(X̃z,n
S , Q̃z,n

S , Q̃z,n
F , Ĩz,n,ZnF/λ

n
F )⇒ (Xz

S,Q
z
S,Q

z
F , I

z,0e) in D5

Notice that Xz
F =Qz

F and X̃n
F = Q̃n

F +ZnF/λ
n
F , we have X̃z,n

F ⇒Xz
F in D and the joint convergence

(X̃z,n, Q̃z,n, Ĩz,n)⇒ (Xz,Qz, Iz) in D5. �

To prove Theorem 4 we express Q̃z,n(∞) in terms of X̃z,n(∞). Using (20) and (21), we have

Q̃z,n
S = (X̃z,n

S )+ and Q̃z,n
F =

(
X̃z,n
F − (r̃nFµ

n
F )−1(X̃z,n

S )−− (r̃nFµ
n
F )−1z̃n

)+

,

so that

Q̃z,n
S (∞) = X̃z,n

S (∞)+ and Q̃z,n
F (∞) =

(
X̃z,n
F (∞)− (r̃nFµ

n
F )−1X̃z,n

S (∞)−− (r̃nFµ
n
F )−1z̃n

)+

. (37)

We will also need the following proposition, whose proof appears in Appendix D. Let {Pt : t≥ 0}

denote the transition semigroup of Xz, namely, Pt(x,A) = P (Xz(t) ∈A|Xz(0) = x), for any x ∈ S

and Borel-measurable set A⊂ S. Following standard terminology, we say that Xz is exponentially

ergodic if there exists an invariant measure π, such that

‖Pt(x, ·)−π(·)‖tv ≤M(x)γt (38)

for some γ < 1 and some finite M(x), that depends only on the initial condition x.
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Proposition 5 (exponential ergodicity). Fix z ∈ [0,1], and let Xz be the solution to the HSDE

(9)–(11). Then there exist positive constants K1, K2, and γ < 1, and a random variable Xz(∞) in

R2, such that the following holds for any x= (xS, xF ) ∈ S and any measurable function f : R2→

[1,∞). ∣∣E[f(Xz(t)|Xz(0) = x)]−E[f(Xz(∞))]
∣∣≤ sup

y∈R2

|f(y)|
‖y‖+ 1

(K1‖x‖+K2)γ
t. (39)

In particular, (38) holds, so that Xz is exponentially ergodic.

Proof of Theorem 4. The first statement of Theorem 4 follows immediately from Proposition 5.

To prove the second statement, we first note that the sequence {(X̃z,n(∞), Q̃z,n(∞)) : n≥ 1} is tight

in R4, as will be proved below (note that this claimed tightness follows from the third statement

of the theorem), so that any of its subsequences has a weakly converging sub-subsequence.

Consider X̃z,n with an initial condition X̃z,n(0)
d
= X̃z,n(∞), and consider a subsequence of this

sequence of initial conditions that converges to a random variable Xz
0 in R2 as n→∞. By Theorem

3, {X̃z,n : n≥ 1} converges weakly in D2 to the solution Xz of the HSDE (9)–(11) with the initial

condition Xz(0) =Xz
0 . By Proposition 5, Xz has a unique stationary distribution Xz(∞). On the

other hand, X̃z,n(t) has the same law as X̃z,n(0) for any t ≥ 0, so that Xz(t) also has the same

law as Xz
0 , implying that Xz

0 must have the stationary distribution of the limit process Xz. The

uniqueness of Xz(∞) implies that all converging subsequences have the same limit, and in turn,

that the whole sequence X̃z,n converges to this limit.

To prove the third statement of the theorem, recall that X̃z,n
S is distributed as the number-in-

system process of an M/M/(n− zn) +M queue with arrival rate λnS, service rate 1, and aban-

donment rate θS (see (22) and the discussion following it), so that X̃z,n
S (∞) has the stationary

distribution of this process. By Theorem 1 in Braverman and Dai (2017), there exists a real-valued

random variable Xz
S(∞), such that

|X̃z,n
S (∞)| ⇒ |Xz

S(∞)| and E
[
|X̃z,n

S (∞)|
]
→E

[
|Xz

S(∞)|
]

in R as n→∞.

By Theorem 3.6 Billingsley (2009), {|X̃z,n
S (∞)| : n ≥ 1} is UI. It follows from (37) that

E
[
|Q̃z,n

S (∞)|
]
≤E

[
|X̃z,n

S (∞)|
]

+ z̃n, implying that both {Q̃z,n
S (∞) : n≥ 1} and {X̃z,n

S (∞) : n≥ 1}

are UI.

Now, a simple coupling argument shows that the process Xz,n
F is bounded from above, in the

sample-path stochastic order sense (namely, sample-path wise and w.p.1), by the number-in-system

process in an M/M/∞ queue having arrival rate λnF and service rate θF ; see Lemma A.5 in Perry

and Whitt (2012). Since a sample-path stochastic order between two processes implies that the

corresponding stationary distributions are ordered accordingly in the usual stochastic-order sense

(in R), we conclude that Xz,n
F (∞)≤st Y n, where Y n is a random variables having the stationary



Yu, Iravani, and Perry: Fluid-Diffusion-Hybrid Approximation
52 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

distribution of the bounding M/M/∞ queue, and in particular, Y n is Poisson distributed with

mean λnF/θF . Then

E[Y n]/λnF = θ−1F , and lim
n→∞

Y n/λnF = θ−1F w.p.1,

so that {Y n/λnF : n ≥ 1} is UI. Since 0 ≤ Q̃z,n
F (∞) ≤ X̃z,n

F (∞) ≤st Y n/λnF , {X̃z,n
F (∞) : n ≥ 1} and

{Q̃z,n
F (∞) : n≥ 1} are also UI.

Finally, the tightness of each of the sequences of (univariate) random variables {X̃n,z
i (∞) : n≥ 1}

and {Q̃n,z
i (∞) : n≥ 1}, i= S,F , follows from the fact that the sequence converges for i= S, and

is stochastically bounded by the infinite-server queue for i= F . It also follows from the fact that

each of these sequences is UI. This implies the claimed tightness in R4; see, e.g., Lemma 5.2 in

Pang et al. (2007). �

Proofs of Theorem 1, Corollary 1, and Theorem 2. Taking z = 0, Theorem 3 and Theorem 4

immediately give Theorem 1, Corollary 1, and Theorem 2. �

Proof of Proposition 1. Consider a converging subsequence {zn : n≥ 1} satisfying (16) (we keep

the superscript n for notational convenience), so that zn/Rn
F → z for some z ∈ [0,1], as n→∞.

Theorems 3 and 4 show that E[Q̃z,n
i (∞)]→E[Qz

i (∞)] for i= S,F , implying that n−1/2Cn(zn)→

C(z). In particular, n−1/2Cn(zn∗)→C(z∗) as n→∞. The result follows from the fact that C(z)≥

C(z∗). �

Appendix D: Remaining Proofs

It remains to prove Lemma 1 and Proposition 5. The proofs of these two result, which appear in

§D.2 below, build on technical lemmas which we state and prove in §D.1.

D.1. Auxiliary Results

Recall that S = R× [0,∞) and that {Pt : t≥ 0} denotes the transition semi-group of the solution

Xz to the HSDE (9)–(11).

Lemma 4. For any compact set A⊂ S, there exists a non-trivial measure νA on S such that∫ ∞
0

e−tPt(x, ·)dt≥ νA(·), for all x∈A. (40)

Proof. Consider the point a := (rF ,0) ∈ S. For any x= (xS, xF ) ∈ S, denote by τ(x) the next

recurrence time of a, i.e., τ(x) = inf{t≥ 0|Xz(t) = a}, given Xz(0) = x. Let Fτ(x) denote the cdf of

τ(x). For any T > 0 and measurable set A′ ⊆ S, we have∫ ∞
0

e−tPt(x,A
′)dt≥

∫ ∞
0

e−tP (Xz(t)∈A′, τ(x)≤ t|Xz(0) = x)dt

=

∫ ∞
0

e−t
∫ t

0

P (Xz(t)∈A′|τ(x) = s)dFτ(x)(s)dt
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=

∫ ∞
0

e−t
∫ t

0

Pt−s(a,A
′)dFτ(x)(s)dt

=

∫ ∞
0

e−s
∫ ∞
s

es−tPt−s(a,A
′)dtdFτ(x)(s)

=

∫ ∞
0

e−sdFτ(x)(s)

∫ ∞
0

e−tPt(a,A
′)dt

≥ e−T inf
x∈A

P (τ(x)≤ T )

∫ ∞
0

e−tPt(a,A
′)dt. (41)

Since Pt(a, ·) is a non-trivial measure on S for each t ≥ 0,
∫∞
0
e−tPt(a, ·)dt is also a non-trivial

measure on S, and the statement will follow if we can find T > 0 such that

inf
x∈A

P (τ(x)≤ T )> 0. (42)

Due to the compactness of A, there is a constant K such that |xS|+ |xF |+ 2rF + θ−1F ≤K holds

for any x∈A. For xS =Xz
S(0), let τM(xS) be the first hitting time of −rF by the process Xz

S after

an excursion of this process to the set (−∞,−K) that lasted at least K time units, i.e., given that

Xz
S(0) = xS,

τM(xS) := inf{t≥ τE(xS) :Xz
S(t) =−rF}, where (43)

τE(xS) := inf{t≥K : sup
u∈[t−K,t]

Xz
S(u)<−K}.

We next show that τ(x) ≤ τM(xS) for any x ∈ A by showing that Xz(τM(xS)) = a. Since

Xz
S(τM(xS)) =−rF by (43), we need only to show that Xz

F (τM(xS)) = 0. Observe that (10) implies

that dXz
F (t)/dt < −1{Xz

F
(t)>0} whenever Xz

S(t) < −K < −2rF . This implies that Xz
F (t) at time

t= τE(xS)−K is no larger than K, so that

Xz
F (τE(xS))≤ [Xz

F (τE(xS)−K)−K]+ = 0,

where the latter equality follows from the choice of K and the fact that Xz
F is bounded from below

by 0 and from above by θ−1F ∨Xz
F (0). It follows from (43) that Xz

S(s)≤−rF for s∈ [τE(xS), τM(xS)],

and since Xz
F (t) is non-increasing at t whenever Xz

S(t)≤−rF , we conclude that Xz
F (τM(xS)) = 0,

so that Xz(τM(xS)) = a. Now, Xz(τM(xS)) = a implies that τ(x)≤ τM(xS), and in turn,

inf
x∈A

P (τ(x)≤ T )≥ inf
x∈A

P (τM(xS)≤ T ), for all T ≥ 0. (44)

Next we establish a lower bound for infx∈AP (τM(xS) ≤ T ). For −K ≤ xS ≤ x′S, we have

τM(xS)≤st τM(x′S), as any trajectory of Xz
S from x′S to −K passes through xS. Using |xS| ≤K for

x∈A, we obtain

inf
x∈A

P (τM(xS)≤ T )≥ P (τM(K)≤ T ) for all T ≥ 0. (45)
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Now, Xz
S is a piecewise OU process, as in Dieker and Gao (2013), that is (locally) distributed

like an OU process on (−rF z,∞), which we denote by X+, and like a different OU process on

(−∞,−rF z), which we denote by X−. (The OU processes X+ and X− are characterized by the

SDEs obtained by considering (10) for t∈ (−rF z,∞) and t∈ (−∞,−rF z), respectively.) It follows

from Dieker and Gao (2013) that Xz
S is positive recurrent with R being its support. Further, the

distribution of excursions of Xz
S to (−∞,−K) is the distribution of excursions of the OU process

X+ to this set, so that P (τM(K)<∞) = 1. Therefore, P (τM(K)≤ T )> 0 for some T > 0, which

together with (44) and (45), implies (42). �

For x= (xS, xF )∈ S let

V (x) := u(xS) +u(xF ) + 1, (46)

where

u(y) :=

(
1− 2

π
cos(

π

2
y)

)
1{|y|≤1}+ |y|1{|y|>1}, y ∈R.

It is easily checked that u is a twice continuously differentiable convex function that is minimized

at y = 0, with u(0) = 1, u′(0) = 0, and with u′′ having a finite support; in particular, |u′′|< π/2.

Further, |y| ≤ u(y)≤ |y|+1, for all y ∈R. Therefore, V ≥ 1 is also twice continuously differentiable,

with V (0) = 3 and

‖x‖+ 1≤ V (x)≤ 2‖x‖+ 3. (47)

In particular, V ≥ 1 and V (x)→∞ as ‖x‖ →∞. Let Az be the extended generator of Xz; see

Equations (12)–(13) in Down et al. (1995).

Lemma 5 (drift condition). The function V in (46) is in the domain of the extended generator

Az. Further, there exist positive constants c and d, whose values do not depend on the value of

z, and a compact set A ⊂ S, such that the following drift condition holds for all z ∈ [0,1] and

x= (xS, xF )∈ S
AzV (x) + cV (x)≤ d1{x∈A}.

Proof. We first prove that V in (46) is in the domain of the extended generator Az. To this

end, let

bzS(xS) :=−β+ rF z+x−S − θSx+
S , bzF (xS, xF ) := 1− z− r−1F x−S − θFxF ,

U(x) := bzS(xS)u′(xS) + bzF (x)u′(xF ) +u′′(xS), for x= (xS, xF )∈ S.

By Ito’s formula

V (Xz(t)) = V (Xz(0)) +

∫ t

0

[
∂V (Xz(s))

∂xS
dXz

S(s) +
∂V (Xz(s))

∂xF
dXz

F (s)

]
+

∫ t

0

∂2V (Xz(s))

∂x2
S

ds

= V (Xz(0)) +

∫ t

0

U(Xz(s))ds+

∫ t

0

u′(Xz
F (s))dIz(s), t≥ 0.



Yu, Iravani, and Perry: Fluid-Diffusion-Hybrid Approximation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 55

Since u′(0) = 0, u′(y)> 0 for y > 0, and
∫ t
0

1{Xz
F
(s)>0}dI

z(s) = 0, it holds that
∫ t
0
u′(Xz

F (s))dIz(s) = 0

for all t≥ 0, implying that

V (Xz(t)) = V (Xz(0)) +

∫ t

0

U(Xz(s))ds. (48)

It remains to show that, for any x∈ S,

E
[
‖U(Xz(·))‖t

∣∣Xz(0) = x
]
<∞, t≥ 0. (49)

Observe that |U(x)| ≤C(‖x‖+ 1), x∈ S, for some finite constant C > 0, and recall that

0≤Xz
F (s)≤Xz

F (0)∨ θ−1F for all s≥ 0.

It follows from (34) and the Lipschitz continuity of φ, that ‖Xz
S‖t ≤ Ct(‖B‖t + |Xz

S(0)|) for some

Ct <∞, where B is a standard Brownian motion. Now,

E[‖B‖t]≤
1

2
(1 +E[‖B‖2t ])≤

1

2
(1 + 4‖E[B2]‖t]) =

1

2
(1 + 4t)<∞,

where the first inequality following from the fact that 0 ≤ (1− a)2 for all a ∈ R, and the second

inequality follows from Doob’s martingale inequality. We conclude that (49) holds, which together

with (48), implies that V is in the domain of Az and that AzV =U .

The proof that the drift condition holds is done by direct computation. Since |u′′(y)| ≤ π/2 for

y ∈R, it suffices to prove that

bzS(xS)u′(xS) + bzF (x)u′(xF ) + c(|xS|+ |xF |) +π/2≤ d1{x∈A}. (50)

Take θm = min{1, θS, θF}, and observe that |u′(y)| ≤ 1 for all y ∈ R and u′(y) = y/|y| for |y| ≥ 1.

Hence,

bzF (xS, xF )u′(xF )≤ 1− θFxF ≤ 1− θmxF for all xF ≥ 0

We next establish an upper bound for bzS(xS)u′(xS) + θm|xS|. For xS <−1 we have u′(xS) =−1, so

that

bzS(xS)u′(xS) + θm|xS| ≤−bzS(xS)−xS ≤ β+ (1 + θS)(rF + 1).

For xS > 1 we have u′(xS) = 1, so that

bzS(xS)u′(xS) + θm|xS| ≤ bzS(xS) + θSxS ≤ β+ rF ;

Finally, for |xS| ≤ 1, we have |u′(xS)| ≤ 1, which implies that

bzS(xS)u′(xS) + θm|xS| ≤ |bzS(xS)|+ 1≤ β+ (1 + θS)(rF + 1) + 1.
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Then for dS := β+ (1 + θS)(rF + 1) + 1, we have

bzS(xS)u′(xS) + θm|xS| ≤ dS, for all xS ∈R and z ∈ [0,1],

and

bzS(xS)u′(xS) + bzF (x)u′(xF ) + θm(|xS|+ |xF |)≤ dS + 1, for all x∈ S.

Taking c= θm/2, d= dS + 1 +π/2, and A= {x∈ S : |xS|+ |xF | ≤ d/c} gives (50). �

D.2. Proofs of Proposition 5 and Lemma 1

Proof of Proposition 5. Lemma 4 implies that any compact set in S is a petite set. By Lemma

5, Condition D̃ in (Down et al. 1995, §5) holds for the process Xz with the “norm-like” Lyapunov

function V in (46). We can thus employ Theorem 5.2(c) in Down et al. (1995) to conclude that

there exist K <∞ and γ < 1, and a random variable Xz(∞) ∈R2, such that, for any measurable

function f :R2→R satisfying |f(x)| ≤ ‖x‖+ 1≤ V (x),

∣∣E[f(Xz(t)|Xz(0) = x)]−E[f(Xz(∞))]
∣∣≤KV (x)γt ≤K(2‖x‖+ 3)γt, (51)

where the second inequality in (51) follows from (47). The stated claims follow by observing that

(51) implies (39), which in turn implies (38) by taking f(x) = 1{x∈·}. �

In the proof of Lemma 1 below we will employ sample-path comparisons between solutions to

the HSDE. To this end, Observe that Xz
F is a deterministic function of Xz

S, so that the solution

Xz = (Xz
S,X

z
F ) to the HSDE is also a deterministic function of Xz

S, and in turn, of the initial

condition Xz(0) and the Brownian motion B in (9). Since there exists a unique strong solution

Xz
S to the SDE part of the HSDE, see, e.g., Dieker and Gao (2013), this implies that there exists

a unique strong solution Xz to the HSDE, namely, a solution Xz that is on the same probability

space and is adapted to the filtration generated by Xz(0) and B.

Proof of Lemma 1. We first prove that E[‖Xz(∞)‖] is uniformly bounded with respect to z ∈

[0,1]. By the definition of the extended generator Az (see (48)) we have the following identity

E[V (Xz(t))|Xz(0) = x] =E

[∫ t

0

AzV (Xz(s))ds
∣∣Xz(0) = x

]
+V (x), for any t≥ 0.

Dividing both sides by t and using the drift condition in Lemma 5 gives

t−1E[V (Xz(t))|Xz(0) = x] + ct−1E

[∫ t

0

V (Xz(s))ds
∣∣Xz(0) = x

]
≤ d+ t−1V (x), for any t > 0.

Recall that the values of c and d do not depend on z. Applying Proposition 5, we have

lim
t→∞

t−1E[V (Xz(t))|Xz(0) = x] = 0, and lim
t→∞

t−1E

[∫ t

0

V (Xz(s))ds
∣∣Xz(0) = x

]
=E[V (Xz(∞))].
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This implies that cE[V (Xz(∞))] ≤ d, for any z ∈ [0,1], which together with the bound V (x) ≥

‖x‖+ 1, give

E[‖Xz(∞)‖]≤E[V (Xz(∞))]≤ d/c, for all z ∈ [0,1]. (52)

Our goal is to prove that, for any z ∈ [0,1] and M > 0, there is an ε > 0, such that

‖E[Qw
i (∞)]−E[Qz

i (∞)]‖ ≤M−1, i∈ {S,F} (53)

holds for all w ∈ [0,1] in an ε-neighborhood of z, namely, for all w ∈ [0,1] that satisfies |w− z| ≤ ε.

To this end, let G= (GS,GF ) : S× [0,1]×C→C2, where

GS(x, z, y) := φ(xS − (β− rF z)e+
√

2y), (54)

GF (x, z, y) := η1

(
xF + (1− z)e−

∫ ·
0

r−1F GS(x, z, y)−ds

)
, (55)

where x ∈ S, z ∈ [0,1], y ∈ C, and η1 : C+ → C is the map defined via η1(y) = q, for q in (19),

namely, η1 is the projection of η to its first coordinate.

For w ∈ [0,1] and a random variable Xw(0)∈ S, let Xw be the solution to the HSDE (9)–(11) with

fast track of size w, and let Bw be the corresponding standard Brownian motion. From (54), (55),

and the proof of Lemma 3, Xw =G(Xw(0),w,Bw). By Proposition 5, Xw has a unique stationary

distribution Xw(∞), which does not depend on the initial state Xw(0). In particular, we can take

Xw(0)
d
=Xw(∞), so that E[Xw

i (t)] =E[Xw
i (∞)] for all t≥ 0 and i∈ {S,F}. By (12), we have

Qw = ((Xw
S )+,Xw

F ) and Qw(∞) = (Xw
S (∞)+,Xw

F (∞)), (56)

so that E[Qw
i (t)] =E[Qw

i (∞)] for all t≥ 0 and i∈ {S,F}.

Next, fix z ∈ [0,1] and let Xz,w := G(Xw(0), z,Bw), so that Xz,w is a solution to the HSDE

(9)–(11) with the same initial condition and Brownian motion as in the solution Xw, but with

fast-track of size z. Let Qz,w := ((Xz,w
S )+,Xz,w

F ), and Qz,w(∞) denote a random variable with the

corresponding limiting distribution, and observe that Qz,w(∞)
d
=Qz(∞) for any w ∈ [0,1]; namely,

it is independent of w. Take fS(x) := x+
S and fF (x) := xF , respectively, in Proposition 5. Then there

are constants K1 > 0, K2 > 0, and 0<γ < 1, such that

|E[Qz,w
i (t)]−E[Qz,w

i (∞)]| ≤ sup
x∈R2

|fi(x)|
‖x‖+ 1

(K1 +K2E[‖Xz,w(0)‖])γt ≤ sup
x∈R2

|fi(x)|
‖x‖+ 1

(K1 +K2d/c)γ
t,

where the last inequality follows from (52) and the fact that Xz,w(0) = Xw(0)
d
= Xw(∞). Since

|fi(x)| ≤ (1 + rF )(‖x‖+ 1) for i∈ {S,F} and x∈R2,

∣∣E[Qz,w
i (t)]−E[Qz,w

i (∞)]
∣∣≤ (1 + rF )(K1 +K2d/c)γ

t, for all t≥ 0.
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Finally, fix M > 0 and take t > 0 such that (1 + rF )(K1 +K2d/c)γ
t < (2M)−1. We have∣∣E[Qw

i (∞)]−E[Qz,w
i (∞)]

∣∣≤ ∣∣E[Qw
i (t)−Qz,w

i (t)]
∣∣+ ∣∣E[Qz,w

i (t)]−E[Qz,w
i (∞)]

∣∣
≤E[‖Qw−Qz,w‖t] +

1

2M
.

The inequality |a+− b+| ≤ |a− b|, for all a, b∈R implies that∣∣(Xw
S (t))+− (Xz,w

S (t))+
∣∣≤ ∣∣Xw

S (t)−Xz,w
S (t)

∣∣,
for all t≥ 0. Together with Qw

F =Xw
F and Qz,w

F =Xz,w
F , we have for i∈ {S,F},∣∣E[Qw

i (∞)]−E[Qz,w
i (∞)]

∣∣≤E[‖Xw−Xz,w‖t] +
1

2M

=E[‖G(Xw(0),w,Bw)−G(Xw(0), z,Bw)‖t] +
1

2M
.

Due to the Lipschitz continuity of η1 and φ, there is a constant ct > 0 such that

‖G(x,w, y)−G(x, z, y)‖t ≤ ct|w− z|, for all x∈ S and y ∈C. (57)

Taking ε∈ (0, 1
2Mct

) gives∣∣E[Qw
i (∞)]−E[Qz,w

i (∞)]
∣∣≤ ct|w− z|+ 1

2M
≤ ctε+

1

2M
≤ 1

M
,

for all w such that |w− z| ≤ ε. Then (53) follows from the fact that Qz,w(∞)
d
=Qz(∞) for all w,

i.e., Qz,w(∞) is independent of w. �

Appendix E: Proofs of Proposition 2 and Proposition 3.

In the proof we repeatedly use the inequality (a+ b)+ ≤ a+ + b+ for a, b ∈ R, and the following

generalized Gronwall’s inequality, see, e.g., Theorem 1.3.5 in Pachpatte (1997).

Lemma 6. If f ∈C and θ ∈R+ satisfy f(t)≥−θ
∫ t
0
f(s)+ds for all t≥ 0, then f ≥ 0.

Consider the map GS in (54). We first prove

Lemma 7. The map z 7→GS(x+ rF z, z, y)− rF z is non-decreasing and convex.

Proof. Let zi ∈ [0,1] for i= 1, 2, 3 satisfy z1 ≥ z2 and 2z3 = z1 + z2, and let

ui :=GS(x+ rF zi, zi, y)− rF zi, for i= 1,2,3.

It follows (18) and (54) that

ui(t) + rF zi = φ(x+ rF zi, zi, y)

= xS + rF zi−βt+

∫ t

0

(ui(s) + rF zi)
−ds− θS

∫ t

0

(ui(s) + rF zi)
+ds+

√
2y(t).
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Using a= a+− a− for a∈R, we have

ui(t) = xS −βt−
∫ t

0

ui(s)ds+ (1− θS)

∫ t

0

(ui(s) + rF zi)
+ds+

√
2y(t). (58)

Therefore,

u1(t)−u2(t) =

∫ t

0

(u2(s)−u1(s))ds+ (1− θS)

∫ t

0

(
(u1(s) + rF z1)

+− (u2(s) + rF z2)
+
)
ds

≥
∫ t

0

(u2(s)−u1(s))ds− (1− θS)

∫ t

0

(u2(s) + rF z2−u1(s)− rF z1)+ ds

≥
∫ t

0

(u2(s)−u1(s))ds−
∫ t

0

(u2(s)−u1(s))
+
ds

≥−
∫ t

0

(u1(s)−u2(s))
+ds, (59)

By Lemma 6 we have u1 ≥ u2; hence, GS is increasing in z as stated.

To prove the claimed convexity, it suffices to show that u1+u2 ≥ 2u3, namely, that GS is midpoint

convex; see, e.g., (Roberts and Varberg 1974, pp. 220–221). First notice that

u+
1 +u+

2 − 2u+
3 ≥−(2u3−u1−u2)

+.

We can employ similar arguments as in (59) and conclude that

u1(t) +u2(t)− 2u3(t)≥−
∫ t

0

(u1(s) +u2(s)− 2u3(s))
+ds, for all t≥ 0. (60)

It then follows from Lemma 6 that u1 +u2 ≥ 2u3. �

Recall that Cq(z) =C(z)− drF z.

Lemma 8. Cq : [0,1]→R+ is strictly increasing and strictly convex.

Proof. It follows from (9) and Theorem 4 that

0 =−β+ rF z+E[Xz
S(∞)−]− θSE[Xz

S(∞)+].

By Assumption 5 we have 1− θS > 0. Using x= x+−x− for x∈R, we have

E[Qz
S(∞)] =E[Xz

S(∞)+] = (1− θS)−1(β+E[Xz
S(∞)]− rF z). (61)

A straightforward computation gives

Cq(z) = (cS − cF )E[Qz
S(∞)] +

cFβ

1− θS
+ cFE

[
Xz
S(∞)− rF z

1− θS
+ rFX

z
F (∞)

]
. (62)

We the initialize process Xz at xz0 := (−rF z,0) ∈R2. Using (54) we have Xz
S =GS(xz0, z,B). By

Lemma 7 and (61), the map z 7→Xz
S − rF z is non-decreasing and convex. It then follows Theorem
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4 that E[Xz
S(∞)− rF z] is non-decreasing and convex in z. By (61). the map z 7→Qz

S(∞) is also

non-decreasing and convex. Let

Y z(t) := (1− θS(t))−1(Xz
S(t)− rF z) + rFX

z
F (t), t≥ 0,

and let Y z(∞) be the stationary distribution of Y z. By Theorem 4, E[Y z(t)]→E[Y z(∞)] as t→∞.

By Assumption 5 we have cS > cF . Therefore, it is sufficient to prove that (i) the map z 7→ Y z

is nondecreasing and convex, and (ii) the map z 7→ E[Qz
S(∞)] is strictly increasing and strictly

convex.

To prove (i), we compute Y z via (9) and (10):

Y z(t) =

∫ t

0

[
θF − θS
1− θS

(Xz
S(s)− rF z)− θFY z(s)

]
ds+

(
rF −

β

1− θS

)
t+

√
2dB(t)

1− θS
+ rFdI

z(t). (63)

As Xz
F (0) = 0 and Xz

F solves a generalized Skorohod problem, we can write

Xz
F (t) =

[∫ t

0

(
1− z− r−1F Xz

S(s)−− θFXz
F (s)

)
ds

]
+ Iz(t),

In other words, Xz
F is also the solution to a Skorohod problem (not generalized), where the regulator

process Iz has the following representation:

Iz(t) = sup
s∈[0,t]

[∫ s

0

(
−1 + z+ r−1F Xz

S(s1)
−+ θFX

z
F (s1)

)
ds1

]+
.

Combine with (9), we can compute

rF I
z(t) = sup

s∈[0,t]

[(
β

1− θS
− rF

)
s+

Xz
S(s)− rF z−

√
2B(s)

1− θS

+

∫ s

0

θF − θS
1− θS

(Xz
S(s1)− rF z)ds1− θF

∫ s

0

Y z(s1)ds1

]+
. (64)

To prove that Y z is non-decreasing in z, take z1, z2 ∈ [0,1] such that z1 ≥ z2. It is straightforward

to check that, for any a, b∈C and t≥ 0,

sup
s∈[0,t]

[a(s)+]− sup
s∈[0,t]

[b(s)+]≥− sup
s∈[0,t]

[(b(s)− a(s))+]. (65)

Using (65), the fact that z 7→Xz
S − rF z is nondecreasing and θF ≥ θS (Assumption 5) imply that

rF I
z1(t)− rF Iz2(t)≥− sup

s∈[0,t]

[
1

1− θS
(Xz2

S (s)−Xz1
S (s)− rF (z2− z1))

+

∫ s

0

θF − θS
1− θS

(Xz2
S (s1)−Xz1

S (s1)− rF (z2− z1))ds1

+θF

∫ s

0

(Y z2(s1)−Y z1(s1))ds1

]+
≥− sup

s∈[0,t]

[
θF

∫ s

0

(Y z2(s1)−Y z1(s1))ds1

]+
≥− θF

∫ t

0

(Y z1(s)−Y z2(s))−ds. (66)
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Plugging (66) in (63) and using the fact that Xz
S − rF z is nondecreasing in z give

Y z1(t)−Y z2(t)≥θF
∫ t

0

(Y z2(s)−Y z1(s))ds− θF
∫ t

0

(Y z1(s)−Y z2(s))−ds

≥− θF
∫ t

0

(Y z1(s)−Y z2(s))+ds.

By Lemma 6, we can conclude that Y z1(t)≥ Y z2(t) for all t≥ 0.

To prove that Y z is convex in z let zi ∈ [0,1] for i = 1,2,3 such that z3 = (z1 + z2)/2. It is

straightforward to check that, for any a, b, c∈C and t≥ 0,

sup
s∈[0,t]

[a(s)+] + sup
s∈[0,t]

[b(s)+]− 2 sup
s∈[0,t]

[c(s)+]≥− sup
s∈[0,t]

[2c(s)+− a(s)+− b(s)+]

Similar to the computation of (66), using the fact that Xz
S is convex in z, we obtain

rF (Iz1(t) + Iz2(t)− 2Iz3(t))≥−θF
∫ t

0

(Y z1(s) +Y z2(s)− 2Y z3(s))−ds.

Plugging in (63), we conclude that

Y z1(t) +Y z2(t)− 2Y z3(t)≥− θF
∫ t

0

(Y z1(s) +Y z2(s)− 2Y z3(s))+ds.

By Lemma 6, we have Y z1 +Y z2 ≥ 2Y z3 , which finishes the proof of (i).

To prove (ii), we take z1, z2 ∈ [0,1] such that z1 > z2 and define the interval L := [(z2−z1)rF/4,0].

By (61) we have Qz
S(∞) =Xz

S(∞)+ and (1− θS)E[(Xz
S(∞))+] =E[Xz

S(∞)− rF z] + β. By Lemma

7 we have E[Qz1
S (∞)]≥E[Qz2

S (∞)]. To prove the latter inequality is strict, we recall that

Xz1
S (t)− rF z1 ≥Xz2

S (t)− rF z2 for all t≥ 0.

Therefore, if Xz2
S (t)∈L for some t≥ 0, then Xz1

S (t)+ ≥Xz2
S (t)+ +(z1−z2)rF/2. Taking expectation,

we obtain

E[Xz1
S (t)+]≥E[Xz2

S (t)+] +P (Xz2
S (t)∈L)(z1− z2)rF/2.

for all t≥ 0. By Proposition 5 we have E[Xzi
S (t)]→E[Xzi

S (∞)] and P (Xz2
S (t) ∈L)→ P (Xz2

S (∞) ∈

L) as t→∞, implying that

E[Xz1
S (∞)+]≥E[Xz2

S (∞)+] +P (Xz2
S (∞)∈L)(z1− z2)rF/2, (67)

As Xz2
S (∞) has support on R, we have P (Xz2

S (∞) ∈ L) > 0. Therefore we have E[Xz1
S (∞)+] >

E[Xz2
S (∞)+], implying that E[Qz1

S (∞)]>E[Qz2
S (∞)]. Thus, z 7→E[Qz

S(∞)] is strictly increasing.

To prove that z 7→ E[Qz
S(∞)] is also strictly convex, take z3 = (z1 + z2)/2, and recall from

statement (i) that Xz1
S +Xz2

S ≥ 2Xz3
S and Xz1

S ≥X
z3
S + (z1− z2)rF/2. Then

Xz1
S (t)+ +Xz2

S (t)+ ≥ (Xz3
S (t) + (z1− z2)rF/2)+ ≥ (z1− z2)rF/4 = 2Xz3

S (t)+ + (z1− z2)rF/4,
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hold for all t≥ 0 given Xz3
S (t)∈L. In turn,

E[Xz1
S (t)+] +E[Xz2

S (t)+]≥ 2E[Xz3
S (t)+] + (z1− z2)rF/4P (Xz3

S (t)∈L).

Taking t→∞ and using the fact that P (Xz3
S (∞)∈L)> 0, we have

E[Qz1
S (∞)] +E[Qz2

S (∞)]> 2E[Qz3
S (∞)],

which finishes the proof of (ii). �

Proofs of Proposition 2 and Proposition 3. Proposition 2 and Proposition 3 follow immediately

from Lemma 8. �
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