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As empirically observed in restaurants, call centers and intensive care units, service times needed by cus-

tomers are often related to the delay they experience in queue. Two forms of dependence mechanisms in

service systems with customer abandonment immediately come to mind: First, the service requirement of a

customer may evolve while waiting in queue, in which case the service time of each customer is endogenously

determined by the system’s dynamics. Second, customers may arrive (exogenously) to the system with a

service and patience time that are stochastically dependent, so that the service-time distribution of the cus-

tomers that end up in service is different than that of the entire customer population. We refer to the former

type of dependence as endogenous, and to the latter as exogenous. Since either dependence mechanism can

have significant impacts on a system’s performance, it should be identified and taken into consideration

for performance evaluation and decision-making purposes. However, identifying the source of dependence

from observed data is hard because both the service times and patience times are censored due to customer

abandonment. Further, even if the dependence is known to be exogenous, there remains the difficult problem

of fitting a joint service-patience times distribution to the censored data. We address these two problems,

and provide a solution to the corresponding statistical challenges by proving that both problems can be

avoided. We show that, for any exogenous dependence, there exists a corresponding endogenous dependence,

such that the queuing dynamics under either dependence have the same law. We also prove that there exist

endogenous dependencies for which no equivalent exogenous dependence exists. Therefore, the endogenous

dependence can be considered as a generalization of the exogenous dependence. As a result, if dependence

is observed in data, one can always consider the system as having an endogenous dependence, regardless of

the true underlying dependence mechanism. Since estimating the structure of an endogenous dependence is

substantially easier than estimating a joint service-patience distribution from censored data, our approach

facilitates statistical estimations considerably.
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1. Introduction

Human behavior has significant impacts on the queuing dynamics in service systems. For example,

in many service systems, customers abandon the queue if they deem their waiting time to be too

long. Another important phenomenon, that has only started to receive attention recently, is that

service times of customers may depend on their delay in queue. This phenomenon is well known to

hold in certain health-care settings (each minute of delay can be detrimental for patients having

a stroke or a heart attack, thus substantially affect treatment times; see Chan et al. (2017)), and

has also been empirically observed in other contexts such as call centers (see Reich et al. (2010)),

and restaurants (see De Vries et al. (2017)).

We consider two different underlying mechanisms that lead to such dependence. Under the first

mechanism, the service requirement of a customer evolves while waiting in queue to be served.

In this case, customers do not have a specific service-time distribution, but rather a conditional

service-time distribution, which depends on the delay they experience before their service begins.

Thus, the actual service time of a customer who ends up receiving service (and does not abandon

the queue) is endogenized by the system’s dynamics; we therefore refer to this type of dependence

as endogenous. In the second mechanism, the dependence of the service times on the delays is

induced by a joint service-patience distribution that can be thought of as given exogenously to the

system (customers “arrive exogenously to the system” with their bivariate service and patience

times). Specifically, the patience and service requirement of each customer are dependent (e.g., in

grocery stores, customers with many items tend to be more patient in the check-out line compared

to those with few items), so that the service-time distribution of customers who do not abandon

the queue is different than that of the entire customer population; we refer to this second type of

dependence as exogenous.

It is significant that either type of dependence can have substantial impacts on the system’s

dynamics and therefore on its performance, and on related operational decisions, such as staffing.

This is clear for systems with endogenous dependence (e.g., consider the case in which service



Wu, Bassamboo and Perry: Two Models of Dependence
3

times of delayed customers are substantially longer, or shorter, than those of customers who are

not delayed), and was demonstrated via a fluid model and simulation experiments for systems with

exogenous dependence in Wu et al. (2019). Further, Wu et al. (2019) show that the performance of

a system with exogenous dependence depends heavily on the full joint distribution of the service

and patience times, and not only on the marginal distributions and their correlation. In turn,

optimal staffing decisions depend on this information as well; see Wu et al. (2019, §6).

Unfortunately, data of service and patience times are necessarily censored due to customer aban-

donment, since observations exist only for the service times of customers who did not abandon, and

for the patience of customers who did abandon. This censoring leads to two statistical challenges:

First, it requires efficient econometric methods to identify whether the observed dependence is

exogenous or endogenous. Second, even if the dependence can be identified, or is believed to be

exogenous, there remains the difficult task of fitting a joint service-patience times distribution to

the censored data.

In general, estimating bivariate distributions under censoring is a hard problem; see, e.g., Lopez

and Saint-Pierre (2012). Reich et al. (2010) suggest non-parametric methods to estimate the exoge-

nous dependence, which do not work well for customers with short patience times, for which

unrealistic negative service times are predicted. Other estimation procedures were proposed in the

literature of survival analysis. Unfortunately, the dependent random variables observed in this set-

ting are typically censored simultaneously (e.g., times in which a couple withdrew from a study), so

that the proposed estimation methods are not appropriate for our needs. Dabrowska et al. (1988),

Akritas and Keilegom (2003) develop non-parametric methods to handle bivariate censoring, but,

as mentioned in Lopez and Saint-Pierre (2012), those methods have significant drawbacks: they

either do not define a true joint distribution, or require a careful choice of smoothing parameters, or

make additional assumptions on the censoring conditions, so that the proposed methods are again

not useful for our needs. Parametric procedures for estimating censored joint distributions have

also been considered. Unfortunately, such methods impose stringent assumptions on the bivariate
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distribution one wishes to estimate, and may not perform well when prior knowledge regarding

that distribution is unavailable.

In this paper we provide a solution to the aforementioned statistical challenges by proving that

both can be effectively avoided. Specifically, we show that for any exogenous dependence (with joint

service-patience distribution), there exists a unique endogenous dependence, such that the queuing

dynamics under either dependence mechanism are the same (have the same law), for all arrival

rates and staffing levels. We also prove that the class of systems with endogenous dependencies is

larger than that with exogenous dependencies in the sense that, there exist endogenous dependence

mechanisms for which no equivalent exogenous dependence exists. Therefore, from the point of view

of the queuing dynamics (transient and stationary), the endogenous dependence can be considered

as a generalization of the exogenous dependence.

Our results demonstrate that, regardless of the true dependence mechanism, and regardless of

whether data is available for a desired arrival process or staffing level, both the transient and

the stationary behavior of the system can be treated as if the dependence is endogenous. That

endogenous dependence can be estimated from available data, even if it was collected for different

arrival processes and staffing levels than those we are interested in. Hence, the difficult dependence-

identification problem can be avoided, because a system can always be modeled as having an

endogenous dependence. Furthermore, the problem of fitting a joint distribution for the service

and patience times is avoided as well, and is replaced by the substantially easier task of estimating

the structure of endogenous dependence (which is either the true dependence in the system, or is

equivalent to the exogenous dependence in the system). Thus, for distribution-fitting purposes, we

advocate that the system should be considered as having an endogenous dependence, even if it is

somehow known to possess an exogenous dependence.

We remark that our model of endogenous dependence is related to the literature on deterio-

rating jobs, which studies jobs that deteriorate while waiting, leading to longer processing times

of those jobs; see Sugawa and Takahashi (1965), Glazebrook (1992), Browne and Yechiali (1990)
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and Mosheiov (1991). Motivated mostly by applications in manufacturing, the goal is to develop

scheduling policies to process a fixed number of jobs. However, the models considered in this liter-

ature have no randomness in the arrival process, and no abandonment of jobs from the queue, and

are therefore not appropriate for service systems. Other related works on dependencies in queues

include Whitt (1990) and Boxma and Vlasiou (2007), both deriving the waiting-time distribution

in single-server queues when service and inter-arrival times depend linearly on the delay.

2. The Setting

We consider a service system with n≥ 1 statistically identical agents that are dedicated to serving

statistically homogeneous customers that arrive to the system in accordance with a simple counting

stochastic process (namely, customers arrive one at a time). We let A(t) denote the number of

customers that arrive by time t. A customer begins service with an agent immediately upon arrival,

if an agent is available, and otherwise waits in queue. We assume customers are served in the order

of arrival. Each customer has a finite patience for waiting; if the waiting time in queue exceeds

that patience time, the customer abandons the queue. The key feature of the systems we consider

is that the service time of each customer depends on the delay that customer experiences. This

dependence is either endogenous, in the sense that the service-time distribution is a function of

the delay in queue, or is exogenous and induced by a self-selection mechanism of customers under

a common joint service-patience times distribution.

2.1. The Two Dependence Mechanisms

We consider two types of systems, one with exogenous dependence and the other with endogenous

dependence, and refer to each type (with a slight abuse of language) simply as “the system with

exogenous (endogenous) dependence.” Throughout the paper, we use superscripts ‘ex’ and ‘en’ to

distinguish between entities (random variables, stochastic processes, etc.) corresponding to systems

with exogenous and endogenous dependencies, respectively.

In the system with exogenous dependence, customer i arrives with a service time Sexi and

a patience time T exi which are dependent random variables. The bivariate random variables
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{(Sexi , T exi ) : i≥ 1} are jointly continuous with a joint probability density function (pdf) f ex, inde-

pendent across customers, and independent of the system’s state; see Bassamboo and Randhawa

(2015) and Wu et al. (2019). We let f exT denote the marginal pdf of T exi .

In the system with endogenous dependence, we use T eni to denote the patience time of customer

i, and we assume that {T eni : i≥ 1} are independent and identically distributed (i.i.d.) continuous

random variables that are independent from all other random variables in the queuing system. We

denote the cumulative distribution function (cdf) and pdf of T eni by F en
T and f enT , respectively, with

F̄ en
T , 1−F en

T denoting the corresponding complementary cdf (ccdf). The service-time distribution

of each customer in this system depends on the delay that customer experiences in queue. Specif-

ically, let Zeni denote the offered wait of customer i, representing the virtual waiting time of that

customer, namely, the time he would wait if his patience was infinite. The service times of arriving

customers are described by a stochastic process, {Seni (Zeni ) : i≥ 1}, where Seni (Zeni ) denotes a ran-

dom variable representing customer i’s “virtual” service time , given that his offered wait is Zeni .

(We write “virtual” service time, because the customer may abandon, and not receive service.)

This family of service-time distributions captures the evolution of customers’ service times as they

wait in queue. We assume that {Seni (z) : i≥ 1} are independent across customers, are identically

distributed for each value z of Zeni , and are also independent of all other random variables compris-

ing the system. Let Ψen denote the virtual service-time distribution of a customer, conditioned on

that customer’s offered wait, namely, Ψen(x, z), P (Seni ≤ x|Zeni = z). Define the conditional ccdf

Ψ̄en(x, z), 1−Ψen(x, z).

Assumption 1. Ψen(x, z) is differentiable in x and in z.

Under Assumption 1, the pdf of the virtual service time exists and satisfies ψen(x, z) = ∂Ψen(x,z)

∂x
.

2.2. Systems’ Dynamics

Since we do not assume that the arrival process A(t) is Poisson, and that the service and the

patience times are exponentially distributed (or that the service time of a customer is independent

of his patience in the system with exogenous dependence), the number-in-system process is non-

Markov. (See evidence of non-exponential service and patience times in Brown et al. (2005) and
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Mandelbaum and Zeltyn (2004).) A Markovian representation for the queuing dynamics is achieved

by keeping track, at each time t≥ 0, of the remaining time until the next arrival, as well as the

remaining service time of each customer in service, and the elapsed waiting time of each customer

that is waiting in queue.

Specifically, for M ∈ {ex, en} and t ≥ 0, let Y M (t) ∈ {0,1, . . . , n} and QM (t) ∈ N+ , {0,1, . . .}

denote the number of customers in service and in queue, respectively. Let BM (t) denote the forward

recurrence time for the arrival process A(t), namely, with κi being the time of the ith arrival after

time 0, BM (t) = κA(t)+1− t. Let UM (t) ∈Rn+ denote the remaining services times of customers in

service, sorted in increasing order. Specifically, if Y M (t)< n, so there are n− Y M (t) idle servers,

then for j ∈ {1, . . . , n−Y M (t)}, let UM
j (t), the jth entry of UM (t) , be zero; for j ∈ {n−Y M (t) +

1, . . . , n}, let UM
j (t) be the (Y M (t)+j−n)th (weakly) smallest remaining service time of customers

in service. Similarly, let V M (t)∈R∞+ denote the elapsed waiting times of customers in queue, sorted

in decreasing order (this leads to ranking waiting customers in ascending order of their arrivals). If

QM (t)≥ 1, then for j ∈ {1, . . . ,QM (t)}, let V M
j (t) be the jth (weakly) largest elapsed waiting time

of customers in queue; for j >QM (t), let V M
j (t) = 0. Otherwise if QM (t) = 0, then let all entries of

V M (t) be zero. In general, the entries of UM (t) and V M (t) can be ordered in an arbitrary manner;

we choose the orderings above because they are easy to interpret. Then,

XM (t) =
(
Y M (t),QM (t),UM (t), V M (t),BM (t)

)
, t≥ 0,

is a Markov process, describing the queuing dynamics of system M .

Remark 1. An alternative Markov representation for a system without dependence can be

achieved by tracking the remaining time to abandon of each customer waiting in queue. It is

signficant that this alternative representation cannot be employed in our setting, because the infor-

mation regarding the actual waiting time of each customer is required in order to determine the

service-time distribution of that customer.
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3. Main Results

To formally state our main result, we define an equivalence relation between exogenous and endoge-

nous dependencies; see Definition 1 below. We first note that, in addition to the arrival process A

and the number of agents n, the queuing dynamics in a system with exogenous dependence are

completely determined by the joint service-patience distribution f ex, whereas the dynamics in a

system with endogenous dependence are completely determined by the patience distribution f enT

together with the virtual service-time distribution ψen.

Let Lex(A,n;f ex) denote the probability law of Xex in the system with exogenous dependence

characterized by (A,n, f ex); similarly, let Len(A,n;f enT ,ψen) denote the probability law of Xen in

the system with endogenous dependence described by (A,n;f enT ,ψen). Here, by “the law of XM ”

we mean, as usual, the joint distribution of the family of random variables XM (t), indexed by t≥ 0,

which is determined by the family of finite-dimensional distributions of XM ; see, e.g., Billingsley

(2013) and Whitt (2002). Let
d
= denote equality in distribution.

Definition 1. We say that an exogenous dependence with a joint pdf f ex is equivalent to an

endogenous dependence with (f enT ,ψen), if Lex(A,n;f ex) =Len(A,n;f enT ,ψen), for any arrival pro-

cess A and capacity n, whenever Xex(0)
d
=Xen(0).

We now state the main result of the paper.

Theorem 1. For any exogenous dependence characterized by a joint pdf f ex, there is an equivalent

endogenous dependence (f enT ,ψen). Further, the two dependencies are related via

f enT (z) = f exT (z) and ψen(x, z) =

∫∞
z
f ex(x, y)dy∫∞

z
f exT (y)dy

, for all x, z ≥ 0. (1)

To prove Theorem 1 we define a discrete-time offered-wait process, denoted by {ZM
i , i ≥ 1},

such that ZM
i is customer i’s offered wait. We characterize the offered-wait process {ZM

i , i ≥ 1}

by describing an auxiliary n-dimensional stochastic process {ZM
i , i≥ 1}, which tracks the residual

service times at other servers not serving customer i. Imagine that n− 1 virtual customers with

infinite patience arrive simultaneously with customer i, whom we index by {2,3, . . . , n}. Denoting
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the kth entry of ZM
i by ZM

i (k), let ZM
i (1) be the offered wait of the actual customer i, i.e., ZM

i (1) =

ZM
i . For 2≤ k≤ n, we stipulate that virtual customer k should be served by a distinct server other

than those who have already served the real customer i and virtual customers 2, . . . , k− 1, and we

let ZM
i (k) be his waiting time. In other words, ZM

i (k)−ZM
i (k− 1) represents the time between

the (k− 1)st and kth distinct servers becoming available.

The representation of the offered-wait process follows Moyal (2019), employing the sorting (re-

ordering) operator R : R+
n 7→ R+

n , defined as follows. Let x(j) denote the jth (weakly) smallest

component of the vector x ∈Rn: x(j−1) ≤ x(j) ≤ x(i+1), 2≤ j ≤ n− 1. Then R(x) = (x(1), . . . , x(n)),

i.e., R sorts each vector x in increasing order, with R1(x) being the smallest and Rn(x) being the

largest components of x.

To achieve a unified representation for the process {ZM
i , i ≥ 0}, we employ the notation

SM
i (ZM

i (1)) for M = en as well as for M = ex. This notation is clear for the endogenous case

(M = en), because the service time of each customer is a function of the delay. It is redundant for

the exogenous case (M = ex), but can be justified by treating Sexi as a constant function of Zexi (1),

namely, Sexi (z)≡ Sexi for all i≥ 1 and z ≥ 0. With this notation, the offered-wait process evolves

according to the following recursive formula.

ZM
i+1 = R([ZM

i + I{ZM
i (1)≤TM

i }S
M
i (ZM

i (1))e1−αM
i+11]+), M ∈ {en, ex}, (2)

where e1 , (1,0, . . . ,0), 1, (1,1, . . . ,1), and αM
i+1 is the time between the arrivals of customers i

and i+ 1, namely, αM
i+1 = κM

i+1−κM
i . The initial value ZM

1 is fully characterized by XM (0).

We are now prepared to prove theorem 1. The proof follows two steps: A “construction step”, in

which we construct two systems jointly via a coupling argument, such that one of the systems has

the endogenous dependence, and the coupled system has the same dynamics as the endogenous

one; and a “verification step” in which we show that the coupled system constructed in the first

step has the law of a system with exogenous dependence. Since the verification step requires a

tedious computation, we omit it in the proof for brevity.
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Proof of Theorem 1. As described above, we first couple two systems on the same probability

space, among which one has an endogenous dependence specified in §2.1, such that both systems

have the same sample paths w.p.1. We then argue that the second system (that is coupled with

the endogenous one) has the desired exogenous dependence, therefore proving the claim of the

theorem. The proof focuses on establishing an equivalence between two systems initialized empty,

and can be easily extended to prove systems with arbitrary initial conditions. We use a ∼ (tilde)

to denote the stochastic processes and random variables on the new probability space.

For each sample path describing the dynamics of a system with an endogenous dependence, we

construct a coupled system in the following steps. We first generate (t̃eni , s̃
en
i (·)) and α̃eni for each

new arrival in the system with endogenous dependence. The offered-wait process for these new

arrivals is fully characterized by the recursion (2). We next construct a coupled system and use

superscript ‘c’ to denote the random variables in it.

(i) Set α̃ci = α̃eni , so the ith customer arrives at the same time in the system with endogenous

dependence and the coupled system. Hence, both systems have the same realized arrival process.

(ii) If t̃eni ≤ z̃eni , then the ith customer abandons in the system with endogenous dependence. Set

T̃ ci = t̃eni and generate S̃ci from the density

f ex(·, t̃eni )

f exT (t̃eni )
,

namely, from the conditional distribution of Sexi conditioned on T exi = t̃eni .

(iii) If t̃eni > z̃eni , then the ith customer is served in the system with endogenous dependence and

requires a service time s̃eni (z̃eni ). Set S̃ci = s̃eni (z̃eni ) and generate T̃ ci from the density

f ex(s̃eni (z̃eni ), ·)I{·>z̃eni }∫∞
z̃eni

f ex(s̃eni (z̃eni ), y)dy
,

namely, from the conditional distribution of T exi conditioned on Sexi = s̃eni (z̃eni ) and T exi > z̃eni .

Steps (i) to (iii) above guarantee the coupled system has exactly the same dynamics as the system

with endogenous dependence we start with. Specifically, we can first argue that z̃eni = z̃ci for all

i. This is because Step (iii) guarantees that each customer, if he enters service (when z̃M
i < t̃Mi ,
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for M ∈ {en, c}), requires the same service time in both the coupled system and the system with

endogenous dependence, namely, s̃eni (z̃eni ) = s̃ci . Then using (2), it follows by induction that the

auxiliary processes {Z̃M
i : i≥ 1} are the same in both systems, which implies z̃eni = z̃ci since z̃M

i =

z̃M
i (1). This further implies X̃en = X̃c path by path. For example, consider the queue process

{Q̃M (t), t≥ 0}. We have Q̃M (t) =
∑

κ̃M
i ≤t

I{t−κ̃iM<min(t̃Mi ,z̃M
i )}, where κ̃M

i =
∑i

j=1 α̃
M
j is the arrival

time of the ith customer. Since κ̃eni = κ̃ci by Step (i), it follows that Q̃en(t) = Q̃c(t) for all t. Similarly,

we can verify the other component processes in X̃en and X̃c are equal w.p.1.

Using basic computations, we can show that the coupled system has the desired exogenous

dependence, consistent with the one described in §2.1. Specifically, it can be shown that {(S̃ci , T̃ ci ) :

i≥ 1} generated in steps (i)-(iii) are i.i.d. and have the same joint distribution f ex. Since the law of

the process Xex is uniquely determined by f ex, given A and n, it follows that the coupled system

has the same queuing dynamics as the system with exogenous dependence, which further implies

Lex(A,n;f ex) =Len(A,n;f enT ,ψen). �

The proof of Theorem 1 shows that the two dependence mechanisms impact the queuing dynam-

ics only via the conditional service-time distribution conditioned on the waiting times, namely, via

P (SM
i ≤ s|TM

i >ZM
i ,ZM

i = z). Now, if f enT and ψen in an endogenous dependence satisfy (1), then

Ψ̄(x, z)enF̄ en
T (z) =

∫ ∞
v=z

∫ ∞
u=x

f ex(u, v)dudv,

which is decreasing in x and in z. As we show in Theorem 2 below, this latter monotonicity property

also implies the endogenous dependence has an equivalent exogenous dependence. To prove this

result, we need the following lemma, whose proof appears in the appendix.

Lemma 1. For k = 1,2 let fkT denote a pdf of the patience-time distribution, and ψk denote the

conditional pdf of the virtual waiting time. Then Len(A,n;f1
T ,ψ

1) =Len(A,n;f2
T ,ψ

2) for any arrival

process A, capacity n and initial condition Xen(0) if and only if (f1
T ,ψ

1) = (f2
T ,ψ

2).

Lemma 1 shows that if two systems with endogenous dependencies have the same queuing dynam-

ics under any arbitrary arrival process, capacity and initial conditions, then the two dependencies
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must be characterized by the same patience-time and conditional service-time distributions. Since

each exogenous dependence has an equivalent endogenous dependence, Lemma 1 implies that the

latter equivalent endogenous dependence is unique. Moreover, Lemma 1 allows us to characterize

the condition for an endogenous dependence to have an equivalent exogenous dependence.

Theorem 2. An endogenous dependence with (f enT ,ψen) is equivalent to some exogenous depen-

dence f ex if and only if Ψ̄en(x, z)F̄ en
T (z) is decreasing in x and in z.

Theorem 1 implies that the family of systems with exogenous dependence forms a subclass of

the family of systems with endogenous dependence, in the sense that the queue process under any

exogenous dependence is equal in distribution to the queue process under some (specific) endoge-

nous dependence. Theorem 2 further implies this subclass is proper, since there exist endogenous

dependencies for which the condition in Theorem 2 fails to hold so that no equivalent exogenous

dependence exists.

Example 1. Consider the following endogenous-dependence model: the patience times are expo-

nentially distributed with mean 1/γ and the service times are, conditional on the offered wait being

z, exponentially distributed with mean 1/µ(z) . Then, Ψ̄en(x, z)F̄ en
T (z) = exp(−(γz+µ(z)x)) which

is decreasing in x but is not necessarily decreasing in z when µ(z) is strictly decreasing in z. For

example, consider µ(z) = max{ā− bz, a} where ā > a> 0. Then, for small z such that ā− bz > a, it

holds that

Ψ̄en(x, z)F̄ en
T (z) = exp(−(γz+ (ā− bz)x)) = exp(−(āx+ (γ− bx)z)).

For x > γ/b, Ψ̄en(x, z)F̄ en
T (z) is increasing in z for z < (ā− a)/b, thus violating the condition in

Theorem 2.

It is significant that estimating an endogenous dependence is, in general, simpler than estimating

an exogenous dependence. Therefore, for distribution-fitting purposes, we advocate that the system

should be considered as having an endogenous dependence, even if it is known to possess an exoge-

nous dependence. To elaborate on this latter point, note that under the endogenous dependence,
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the problem of fitting a two-sided censored distribution is replaced by the problem of estimating

the univariate patience distribution, for which (unlike the multivariate case) an efficient estimator

exists, as well as estimating the uncensored service-time distribution corresponding to each delay

time.

4. A Simple Estimation Procedure for Systems with Dependence

We now propose a simple procedure to estimate endogenous dependencies. First, we use the Kaplan-

Meier (K-M) estimator (Kaplan and Meier (1958)) to estimate the patience-time distribution (e.g.,

Zohar et al. (2002).) Let N denote the number of customers in the sample and J denote the number

of customers that abandoned the queue, so N −J is the number of customers that received service.

We rank the waiting times of the abandoned customers in increasing order, 0, t0 < t1 < t2 < . . . <

tJ < tJ+1 ,∞. The K-M estimator for F en
T is then

F̂ en
T (x) =

∏
tj≤x

(
1− # customers who abandon at tj

# customers who have not abandoned by tj−

)
. (3)

Second, the conditional service-time distribution can be estimated from the service times

observed from served customers. For i = 1, . . . ,N , let ai denote whether customer i was served:

ai = 1 if the customer was served, and ai = 0 otherwise. If ai = 1, let si and wi be the service and

waiting times observed from that customer. We split the observations of served customers into

M separate bins {B1,B2, . . . ,BM} based on their waiting times. Each bin is set to be a disjoint

interval such that there are sufficiently many observations in each bin to allow for an estimator

that approximates Ψen well. For each z ∈ R+, find the bin Bm, 1≤m≤M containing z. We use

the following empirical service-time distribution to approximate Ψen(x, z),

Ψ̂en(x, z) =

∑N

i=1 I{ai = 1,wi ∈Bm, si ≤ x}∑N

i=1 I{ai = 1,wi ∈Bm}
. (4)

As the length of each bin is set to be sufficiently small, we expect the approximation in (4) to be

close enough to the true Ψen. We leave the rigorous statistical analysis for future research.
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4.1. Implementation of the Proposed Estimation Procedure

We demonstrate via simulations that the proposed estimation procedure is effective, even when

the actual dependence in the system is exogenous. We start by simulating two systems initialized

empty, each having n = 10 agents, a Poisson arrival process with rate 12, and marginal service

and patience times that are exponentially distributed with means 1 and 2, respectively. Both

systems have an exogenous dependence: one with a positive dependence, and one with a negative

dependence between the service and patience times. We use Gaussian copulas to generate the joint

service-patience distributions (see Wu et al. (2019, Appendix A) for background). We denote by

r the correlation of the generated service and patience times. We take r = −0.3 and r = 0.5 to

represent a negative and a positive dependence, respectively. For each system, we simulate one

sample path over 50,000 time units and collect the service and waiting times of customers served

by an agent, as well as the patience times of customers who abandoned the queue. We employ (3)

and (4) to estimate the patience-time distribution and the conditional service-time distribution for

equivalent endogenous dependencies.

We compare our estimations to an estimation procedure which ignores the dependence, namely,

a procedure that treats the service times as being independent of all other random variables in the

system, as well as the system’s state. In the latter estimation procedure, we use the K-M estimator

(3) to estimate the patience-time distribution. Since the service times are assumed to be i.i.d. and

independent of the waiting times, we estimate the (unconditional) service-time distribution using

the empirical distribution for the service times observed from served customers.

To demonstrate the performance of the estimations for the equivalent endogenous dependencies

as opposed to the estimations that ignore the dependencies, we vary the number of agents while

keep the arrival process fixed. Specifically, we first simulate systems with exogenous dependencies

to produce the true steady-state metrics. We then fix the estimations for the equivalent endogenous

dependencies as well as the estimations that ignore the dependencies, both obtained from the

observations produced by a system with an exogenous dependence and 10 agents. We then simulate

systems with the two different estimations, varying the number of agents from 8 to 12.
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We compare in Table 1 the steady-state queue length and throughput (the average number

of service completions per unit time) of the systems with true exogenous dependencies (‘Actual’

column), the systems with estimations for the equivalent endogenous dependencies (‘Endogenous’

column), and the systems with estimations that ignore the dependencies (‘Independent’ column).

Table 1 Performance comparison of estimation procedures. The steady-state performance metrics are computed

by taking averages of 500 independent runs, each lasting 3,000 time units with the first 1,000 time units serving as

a warm-up period. The 95% confidence interval half-width is less than 0.3% for all reported metrics.

Positive dependence, r= 0.5

Queue Length Throughput

Agents Actual Endogenous Independent Actual Endogenous Independent

8 12.37 -3.0% -12.9% 5.81 +2.6% +13.8%

10 7.74 +0.6% -1.4% 8.13 -0.7% +0.9%

12 3.64 +4.1% +31.0% 10.19 -0.8% -5.3%

Negative Dependence, r=−0.3

Queue Length Throughput

Agents Actual Endogenous Independent Actual Endogenous Independent

8 5.75 +0.0% +20.2% 9.12 +0.3% -6.0%

10 3.37 -0.2% +5.5% 10.31 +0.2% -0.7%

12 1.76 -0.4% -13.3% 11.12 +0.2% +1.2%

We find that treating the stochastic processes as being independent when they are in fact depen-

dent can lead to substantial errors in estimations and predictions. In contrast, the estimation

procedure for equivalent endogenous dependence performs relatively well, despite its simplicity.

More efficient econometric methods can be developed to refine the estimations for endogenous

dependencies, and we leave these methods for future research.

4.2. Optimal Staffing

In this section we use simulation examples to demonstrate how to utilize our estimates in §4.1 to

make predictions for the optimal staffing level if the arrival rate is about to change, with no data

available (e.g., service time, waiting time) for that new rate. Specifically, we consider two systems,
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each having an exogenous dependence (marginal service and patience times are exponentially dis-

tributed with means 1 and 2, respectively, and their joint distributions are generated via Gaussian

copulas with correlation r= 0.5 and r=−0.3, respectively), 10 agents and a Poisson arrival process

with rate 12, and use our proposed procedure to estimate the equivalent endogenous dependence.

We then consider a new system with the same exogenous dependence as before but increase the

arrival rate to 24. The goal is to identify the optimal number of agents for the new system to max-

imize profit. We follow Wu et al. (2019) and define the profit as the difference between the revenue

generated from customers served and cost of allocating servers. Let p denote the revenue of serving

a customer and c denote the unit cost of capacity. Wu et al. (2019) solves this staffing problem

based on a fluid model they develop to approximate large systems with an exogenous dependence.

To apply their fluid model, the entire joint distribution of the service and patience times should be

known a priori as a model input, or if not, one should be able to accurately estimate it from data.

However, the aforementioned censoring of both service and patience times in data renders such

estimation prohibitively challenging. Our estimates of the equivalent endogenous dependence, in

contrast, do not require any prior knowledge regarding the exact form of the dependence underlying

the service system and can deal with any service data for which dependence is observed.

In Table 2 we compare the optimal capacity and profit (‘Optimal’ column) to the corresponding

optimal values obtained from our estimations of the equivalent endogenous dependence (‘Endoge-

nous’ column) and from estimations that ignore the dependence (‘Independent’ column). We find

that our estimations of the equivalent endogenous dependence lead to accurate prescriptions of the

optimal staffing level, whereas the estimations that treat the dependence to be non-existent may

lead to substantial loss in profit, especially when there is a negative dependence and the reward of

serving customers is low, p < c (recall the unconditional service rate of customers not delayed in

queue is µ= 1). When p < c, service is unprofitable in the system with positive dependence because

the throughput in such system is lower than the capacity. However, service can be profitable in

a system with negative dependence, because the throughput in such a system is higher than the
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Table 2 Staffing using estimations of equivalent endogenous dependence compared with optimal staffing and

staffing using estimations that assume independent service and patience times. c = 1 in all examples. When p = 0.95,

service is unprofitable under positive dependence r = 0.5.

Positive dependence, r= 0.5

Optimal Endogenous Independent

p Capacity Profit Capacity Profit Capacity Profit

1.5 25 8.16 26 -1.3% 23 -9.8%

3 27 42.35 28 -0.3% 30 -2.6%

Negative dependence, r=−0.3

Optimal Endogenous Independent

p Capacity Profit Capacity Profit Capacity Profit

0.95 9 2.74 10 -2.0% 15 -30.5%

1.5 18 11.96 18 0% 21 -3.8%

3 24 44.51 24 0% 24 0%

capacity; see Wu et al. (2019). In this latter case, our estimations of the equivalent endogenous

dependence significantly outperform those that ignore the dependence in prescribing the staffing

level.

Appendix A: A Model with Generalized Dependence Mechanism

In this section we consider a generalized dependence mechanism, in which each customer’s service

time depends on his patience and his delay in queue. This generalized model naturally subsumes

exogenous and endogenous dependencies as special cases. As we show below, the queuing dynamics

under such generalized dependence are again equivalent to the queuing dynamics under certain

endogenous dependence, so that, once again, endogenous dependence is all one needs to consider

in practice.

The Model. Letting TGi denote the patience time of customer i, we assume that {TGi : i ≥ 1}

are i.i.d. continuous random variables that are independent from the system’s state. We denote

the cdf and pdf of TGi by FG
T and fGT , respectively, with F̄G

T , 1−FG
T denoting the corresponding

ccdf. The service-time distribution of each customer depends on the customer’s patience, as well

as on his delay in queue. Specifically, letting ZGi denote the offered wait of customer i, we assume

that the service times of arriving customers are described by a stochastic process, {SGi (TGi ,Z
G
i )},

where SGi (TGi ,Z
G
i ) denotes a random variable representing the “virtual” service time of customer
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i, given that his patience time is TGi and offered wait is ZGi . We assume that {SGi (t, z) : i≥ 1} are

independent across customers, are identically distributed for each realized value (t, z) of (TGi ,Z
G
i ),

and are also independent of all other random variables comprising the system. Let ΞG denote the

virtual service-time distribution of a customer, namely, ΞG(x, t, z), P (SGi ≤ x|TGi = t,ZGi = z). We

assume that the pdf of the virtual service time exists and satisfies ξG(x, t, z) = ∂ΞG(x,t,z)

∂x
.

Clearly, the exogenous and endogenous dependence mechanisms are special cases of the

generalized-dependence mechanism just described: the dependence is exogenous if ξ(x, t, z) does

not depend on z, and is endogenous if ξ(x, t, z) does not depend on t. For a system with generalized

dependence, we can follow §2.2 to formulate the queuing dynamics using a Markov process and

define its probability law. We can define an equivalence relation between generalized dependence

and endogenous dependence analogously to Definition 1 by replacing the law under exogenous

dependence by the law under generalized dependence. The following theorem shows that for each

generalized dependence, there exists an equivalent endogenous dependence, and it must be unique

as implied by Lemma 1.

Theorem 3. For any generalized dependence mechanism characterized by (fGT , ξ
G), there is an

equivalent endogenous dependence (f enT ,ψen). The two dependencies are related via

f enT (z) = fGT (z) and ψen(x, z) =

∫∞
z
ξG(x, t, z)fGT (t)dt

F̄G
T (z)

for all x, z ≥ 0.

The fact that the endogenous dependence is subsumed by the generalized dependence implies the

family of systems with endogenous dependence forms a subclass of the family of systems with

generalized dependence. Theorem 3 shows that these two classes are in fact identical. Therefore,

the generalized dependence is not more general than the endogenous dependence, in the sense that

both mechanisms give rise to the same family of distributions of queuing dynamics. As a result,

our main insight remains valid: Statistical analyses of systems can be carried out by assuming that

the service requirement of each customer depends on his delay in queue, even if the service time

depends (solely, or additionally) on his patience.

Appendix B: Appendix: Proofs

Proof of Lemma 1. Sufficiency follows trivially from the fact that the law of the process Xen

is uniquely determined by (fT ,ψ), given A and n. To prove the necessity, we show that, if

Len(A,n;f1
T ,ψ

1) =Len(A,n;f2
T ,ψ

2) for an arbitrary arrival process A, capacity n and initial condi-

tions X(0), then (f1
T ,ψ

1) = (f2
T ,ψ

2). To this end, we focus on the second arriving customer (i= 2) in

the single-server system (n= 1), where we construct proper arrival process A and initial conditions

X(0) to demonstrate that having Z1
2

d
=Z2

2 is sufficient to lead to (f1
T ,ψ

1) = (f2
T ,ψ

2).
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The offered wait of customer 2 is described via a recursive formula (Baccelli et al. (1984, Eq

(2.1))), Zj2 = [Zj1 + I{T j
1>x}

Sj1(Zj1)− αj2]+, j = 1,2. For any z > 0, let Z1
1 = Z2

1 = z w.p.1, (e.g., by

letting U 1(0) = U 2(0) = 2z, Q1(0) = Q2(0) = 0 and α1
1 = α2

1 = z w.p.1) and α1
2 = α2

2 = z/2 w.p.1.

It follows that Zj2 = [z/2 + I{T j
1>Z

j
1}
Sj1(z)]+ w.p.1. Hence, P (Zj2 ≤ z/2) = P ([z/2 + I{T j

1>z}
Sj1(z)]+ ≤

z/2) = P (z/2 + I{T j
1>z}

Sj1(z)≤ z/2) = P (T j1 ≤ z). Since the queuing dynamics in the two systems

have the same law, it must hold that P (Z1
2 ≤ z/2) = P (Z2

2 ≤ z/2) for all z, implying P (T 1
2 ≤ z) =

P (T 2
2 ≤ z) for all z. Since z is arbitrary, it must hold that f1

T = f2
T .

For any z,x > 0, let Z1
1 =Z2

1 = z and α1
2 = α2

2 = z/2 w.p.1. It follows that

P
(
Zj2 >

z

2
+x
)

=P

([z
2

+ I{T j
1>z}

Si1(z)
]+

>
z

2
+x

)
=P

(z
2

+ I{T j
1>z}

Sj1(z)>
z

2
+x
)

= P (I{T j
1>z}

Si1(z)>x) = P (Sj1(z)>x)P (T j1 > z),

where the last equality follows because T j1 and Sj1(·) are independent. Since we have established

earlier that P (T 1
1 > z) = P (T 2

1 > z) for all z > 0, it follows that P (S1
1(z)>x) = P (S2

1(z)>x). Since

z and x are arbitrary, we thus have ψ1 =ψ2. �

Proof of Theorem 2. Sufficiency: Suppose Ψ̄en(x, z)F̄ en
T (z) is decreasing in both z and x.

We show by construction that there exists an equivalent exogenous dependence. Notice that

limz→∞ limx→∞ Ψ̄en(x, z)F̄ en
T (z) = 0 and limz→0 limx→0 Ψ̄en(x, z)F̄ en

T (z) = 1. The differentiabil-

ity of Ψen in Assumption 1 implies that Ψ̄en(x, z)F̄ en
T (z) is jointly continuous in x and in z. Hence,

Ψ̄en(x, z)F̄ en
T (z) can be represented as a continuous two-dimensional ccdf. The differentiability of

Ψen(x, z) in z also implies Ψ̄en(x, z)F̄ en
T (z) is differentiable in z. Hence, there exists a bivariate

joint density f̂ ex : R2
+ 7→ R+ such that Ψ̄en(x, z)F̄ en

T (z) =
∫∞
y=z

∫∞
u=x

f̂ ex(u, y)dudy. One can verify

that f̂ ex defined above, together with (f enT ,ψen) satisfies the conditions in (1). Theorem 1 then

implies the endogenous dependence (f enT ,ψen) is equivalent to an exogenous dependence with joint

service-patience distribution f̂ ex.

Necessity: We prove by contradiction. Suppose there exists an endogenous dependence (f enT ,ψen)

such that Ψ̄en(x, z)F̄ en
T (z) is not decreasing in x and in z. Further, it is equivalent to some exogenous

dependence f̂ ex. Theorem 1 and Lemma 1 imply the latter exogenous dependence f̂ ex is equivalent

to a unique endogenous dependence (f̂ enT , ψ̂en) such that
¯̂
Ψen(x, z)

¯̂
F en
T (z) is decreasing in x and in

z. This leads to a contradiction to the assumed equivalence between (f enT ,ψen) and f̂ ex. �

Proof of Theorem 3. The arguments to prove this result are similar to those of Theorem 1. We

follow two steps: A “construction step,” in which we construct two systems jointly via a coupling

argument; and a “verification step,” in which we show that the coupled system constructed in the

first step has the law of a system with generalized dependence. Since the verification step requires

a tedious computation, we omit it for brevity.
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Following the notation in the proof of Theorem 1, we use a ∼ (tilde) to denote the stochastic

processes and random variables on the new probability space where we couple two systems. For each

sample path describing the dynamics of a system with an endogenous dependence, we construct a

coupled system in the following steps. We first generate (t̃eni , s̃
en
i (·)) and α̃eni for each new arrival

in the system with endogenous dependence. The offered-wait process for these new arrivals is fully

characterized by the recursion (2). We next construct a coupled system and use superscript ‘c’ to

denote the random variables in it.

(i) Set α̃ci = α̃eni , so the ith customer arrives at the same time in the system with endogenous

dependence and the coupled system. Hence, both systems have the same realized arrival process.

(ii) If t̃eni ≤ z̃eni , then the ith customer abandons in the system with endogenous dependence. Set

T̃ ci = t̃eni and generate S̃ci from the density ξG(·, t̃eni , z̃eni ), namely, from the conditional distribution

of SGi (TGi ,Z
G
i ) conditioned on TGi = t̃eni and ZGi = z̃eni .

(iii) If t̃eni > z̃eni , then the ith customer is served in the system with endogenous dependence and

requires a service time s̃eni (z̃eni ). Set S̃ci = s̃eni (z̃eni ) and generate T̃ ci from the density

ξG(s̃eni (z̃eni ), ·, z̃eni )f enT (·)I{·>z̃eni }∫∞
z̃eni

ξG(s̃eni (z̃eni ), t, z̃eni )f enT (t)dt
,

namely, from the conditional distribution of TGi conditioned on SGi = s̃eni (z̃eni ) and TGi > z̃eni .

The coupled system has the same queuing dynamics as the system with endogenous dependence.

Using basic computations, we can further show that the coupled system has the desired generalized

dependence described by (fGT , ξ
G). �
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